Site Loader

Содержание

Как сделать микроскоп из лупы — MOREREMONTA

Главная страница -> Для детей старшего возраста -> Как сделать микроскоп в домашних условиях. Конструкция микроскопа из линз

Микроскоп является довольно сложным оптическим прибором, с помощью которого можно производить наблюдения за невидимыми или плохо видимыми невооружённым глазом объектами. Любознательным людям он позволяет проникнуть в тайны “микрокосмоса”. Микроскоп можно попробовать сделать самим. Конструкций самодельных микроскопов довольно много и в этой статье мы рассмотрим одну из них.

Одна из наиболее удачных конструкций была предложена Л. Померанцевым. Для изготовления микроскопа вам нужно приобрести в аптеке или оптическом магазине две одинаковые линзы по +10 диоптрий, желательно диаметром около 20 миллиметров. Одна линза нужна для окуляра микроскопа, другая – для объектива. Но прежде давайте разберёмся в единицах измерения линз.

Что такое диоптрия линзы

Диоптрия – единица оптической силы (рефракции) линзы, обратная фокусному расстоянию. Одна диоптрия соответствует фокусному расстоянию в 1 метр, две диоптрии – 0,5 метра и т.д. Для определения числа диоптрий надо 1 метр разделить на фокусное расстояние данной линзы в метрах. И наоборот, фокусное расстояние можно определить, разделив 1 метр на число диоптрий. Фокусное расстояние линзы +10 диоптрий равно 0.1 метра или 10 сантиметрам. Знак плюс обозначает собирательную линзу, знак минус – рассеивающую.

Как смастерить самодельный микроскоп

Из бумаги склейте трубку длиной десять сантиметров по диаметру линз. Затем разрежьте её пополам, чтобы получились две трубки длиной по пять сантиметров. В них вставьте линзы.

В один конец каждой трубки вклейте картонное или склеенное из узкой полоски бумаги колечко с отверстием диаметром десять миллиметров. На это колечко изнутри положите линзу и прижмите её картонным цилиндриком, смазанным клеем. Внутри трубка и цилиндрик должны быть окрашены чёрной тушью. (Это надо сделать заранее)

Обе трубки вставьте в тубус – третью трубку длиной 20 сантиметров и таким диаметром, чтобы трубки окуляра и объектива входили в него туго, но могли передвигаться. Внутри тубус также должен быть окрашен в чёрный цвет.

На листе фанеры начертите две концентрические окружности: одну радиусом 10 сантиметров, другую радиусом 6 сантиметров. Получившийся круг выпилите, и разрежьте по диаметру на две части. Из этих полукругов сделайте корпус микроскопа С-образной формы. Полукруги соединяют тремя деревянными колодочками, толщиной 3 сантиметра каждая.

Верхняя и нижняя колодочки должны быть длиной по 6 и шириной по 4 сантиметра. Они выступают на 2 сантиметра за внутренний край фанерных полукругов. На верхней колодочке закрепите тубус с трубками и регулировочный винт. Для тубуса в колодочке вырежьте желобок, а для регулировочного винта просверлите сквозное отверстие и выдолбите квадратное углубление.

А – трубка с линзами; Б – тубус; В – корпус микроскопа; Г – соединительные колодочки; Д – регулировочный винт; Е – предметный столик; Ж – диафрагма; З – зеркальце; И – подставка.

Регулировочный винт – это деревянный стерженёк, на который туго насажен цилиндрик, вырезанный из резинки для карандаша или из намотанной изоляционной ленты. Лучше всего для этой цели использовать небольшой отрезок подходящей резиновой трубки.

Сборка винта производится так. Колодочку разрезаем по длине пополам. В отверстие одной половины продеваем стрежень винта, насаживаем на него, резиновый цилиндрик, затем другой конец продеваем в отверстие второй половины колодочки и склеиваем обе половины. Резиновый цилиндрик должен поместиться в квадратном углублении и свободно в нем вращаться. Колодочку с винтом приклеиваем к фанерным полукругам, сделав на концах их вырезы для стрежня винта. На концы стержня насаживаем ручки – половинки катушки от ниток.

Теперь тубус с трубками прикрепите к колодочке с помощью скобы, выгнутой из жести. Предварительно в скобе сделайте вырезы для винта и прибейте её или привинтите шурупами к колодочке.

Резиновый цилиндрик регулировочного винта должен плотно прижиматься к тубусу при вращении винта тубус будет медленно и плавно передвигаться вверх и вниз.

Микроскоп можно сделать и без регулировочного винта. В этом случае тубус достаточно приклеить к верхней колодочке, а наводить прибор на предмет только передвижением трубок с линзами в тубусе.

К нижней колодочке сверху прибейте или приклейте предметный столик – фанерную пластинку с отверстием диаметром около 10 миллиметров посредине. По бокам отверстия прибейте две выгнутые полоски жести – зажимы, которые будут придерживать стёклышко с рассматриваемым препаратом.

Снизу к предметному столику прикрепите диафрагму – деревянный или фанерный кружочек, в котором по окружности просверлите четыре отверстия разных диаметров: например, 10, 7, 5 и 2 миллиметра. Диафрагму закрепите гвоздём так, чтобы её можно было вращать и чтобы её отверстия при этом совпадали с отверстием предметного столика. С помощью диафрагмы изменяют освещение препарата, регулируют толщину пучка света.

Размеры предметного столика могут быть, например, 50х40 миллиметров, размер диафрагмы – 30 миллиметров. Но эти размеры можно или увеличить или уменьшить.

Ниже предметного столика к той же колодочке прикрепите зеркальце размером 50х40 или 40х40 миллиметров. Зеркальце приклеивают к дощечке, по бокам в неё забивают два гвоздика без шляпок (патефонные иголки). Этими гвоздиками дощечка вставляется в отверстие жестяной скобочки, привинченной шурупом к колодочке. Благодаря такому креплению зеркальце можно поворачивать – устанавливать с разным наклоном, направляя пучок света на отверстие предметного столика.

Третьей соединительной колодочкой корпус микроскопа прикрепите к подставке. Её можно вырезать из толстой доски любых размеров. Важно, чтобы микроскоп держался на ней устойчиво, не шатался. Снизу на колодочке вырежьте прямой шип, а в подставке выдолбите гнездо для него. Шип смажьте клеем и вставьте в гнездо.

Регулируют микроскоп, поворачивая зеркальце, передвигая винтом тубус и трубки с линзами в тубусе, увеличивая изображение в 100 раз и более.

3 комментария к “ Как сделать микроскоп в домашних условиях. Конструкция микроскопа из линз ”

Сделаю такой ребенку, а то он мой рабочий микроскоп sititek постоянно берет для своих опытов. Я думаю, на первое время будет вполне достаточно и такой модели.

Думаю, ваш сын будет рад. Пусть и он участвует в создании микроскопа. Мы с моим младшим сыном делали такой микроскоп вместе и он был полностью в восторге больше от того, что помогал его делать, чем о наличии своего личного микроскопа в собственности 🙂

В статье расскажем как сделать как сделать микроскоп своими руками с увеличением х200, пошаговая инструкция и результатами экспериментов: луковая кожица, кровь, лист.

Здравствуйте! все, вы когда-нибудь мечтали исследовать микроскопический мир? Могу поспорить, что большинство из вас скажет ДА! Но инструменты, которые требуются, очень дорогие. Но есть решение, которое дает достойные результаты, которое будет стоить всего несколько долларов. Микроскопы используют линзы высокой мощности, чтобы сделать изображение с большим увеличением. Просто если у нас есть мощный объектив мы сможем это сделать. В обычных микроскопах изображение сфокусировано прямо на наших глазах. Это требует очень сложной конструкции линзы. Используя смартфон и мощный объектив, мы можем сделать это очень простым способом. Просто нужно держать объектив перед камерой смартфона, прикасаясь друг к другу. Затем через камеру вы можете увидеть сильно увеличенное изображение. Но для того, чтобы постоянно наблюдать за образцом, мы должны создать установку. Итак, давайте приступим!

Подготовка объектива

В этом проекте мы используем линзы высокой мощности, эти линзы очень дороги на рынке. Но мы можем найти их в головке устройства чтения DVD / CD. На самом деле они обладают высокой способностью увеличения для считывания записанных данных в микромасштабе.

Как показано на изображениях, безопасно снимите линзу с ридера. Даже небольшая царапина испортит его.

Материалы и инструменты

В этом проекте мы собираемся использовать объектив высокой мощности, который можно найти в DVD/CD-ридере с камерой смартфона, чтобы получить сильно увеличенное изображение. В списке материалов я упомянул медную доску, она понадобится для подставки под смартфон. Можно использовать любой материал.

Материалы:

1. 1/2 дюйма ПВХ трубы (около 20 см)

2. Стеклянный лист — около 25 см х 16 см

3. 2 мм диаметром 1 ‘1/2 дюйма длиной гайки и болта

4. Медная доска или Акрил

5. Объектив от DVD/CD-ридера

6. Акриловый клей

Инструменты:

1. Ножовочная пила

3. Горячий клеевой пистолет

Платформа для телефона

Чтобы получить четкое представление об образце, нам нужно, чтобы вся установка была устойчивой. Для этого мы используем медный лист, чтобы он соответствовал смартфону. Размеры листа будут всего на 2 мм больше, чем у смартфона по длине и ширине

Теперь у нас есть платформа, которая подходит для нашего смартфона. Следующий шаг — сделать отверстия для объектива и четыре винта. Перед этим я должен кое-что рассказать о дизайне. Для держателя телефона требуется механизм, позволяющий идеально сфокусировать установку на наблюдаемом образце. Для этого я буду использовать четыре винта, которые позволят изменить расстояние между линзой и образцом. Эти винты будут размещены в четырех углах платы держателя. При сверлении отверстия для камеры уделите время и отметьте точку, где находится камера.

После сверления отверстий самое время поместить четыре гайки болтов в углы. С помощью сильного клея поместите их идеально выровненными. Следите за тем, чтобы клей не пролился на резьбу винтов.

После установки четырех гаек самое время разместить линзу. Перед установкой линзы очистите неровные края просверленного отверстия. Затем поместите линзу на просверленное отверстие. 2 мм отверстие идеально облегают линзу и она не падает. Затем приклейте линзу небольшим количеством клея. Это очень сложная часть. Будьте осторожны, любое крошечное смещение может привести к ложному результату. Подставка для телефона готова!

Создание подиума для микроскопа

До этого момента мы завершили держатель. Итак, теперь нам нужна подиум для образца. Я выбрал стеклянную пластину для этой цели. Это позволяет помещать образец непосредственно на подиум. В то время как смартфон может свободно перемещаться и наблюдать любую часть образца. Это может немного запутать вас, но это будет ясно на изображениях.

Для того, чтобы видеть через этот микроскоп, нам нужно освещение. Чтобы освободить место для освещения, я поднял сцену с помощью четырех труб из ПВХ, нарезанных на одинаковую длину около 5 см. Затем мы устанавливаем метод освещения под стеклянной сценой. В моем случае Я использую фонарик телефона. Это легко и идеально подходит для этого проекта. Я испробовал много источников света, но смартфон-фонарик дал лучшие результаты.

Проверяем наш самодельный микроскоп

Теперь у нас есть готовый микроскоп. Посмотрим, как с этим работать. Прежде всего мы должны сбалансировать платформу телефона. Для этого, повернув четыре винта, вы можете изменить высоту держателя телефона. Держите высоту примерно на 2-3 мм. Хорошо, теперь вы должны поместить камеру вашего телефона идеально выровненной с объективом на платформе телефона. Это можно сделать, включив приложение камеры и выровняв его до получения идеального изображения.

После этого нам нужен образец для наблюдения. Как вы можете видеть на изображении, я поместил 2 луковичные ткани. Поскольку у нас достаточно места, можно разместить более одного образца. Затем включите вспышку. Теперь вы можете сдвинуть платформу телефона на стекло, пока изображение с камеры не покажет сфокусированное изображение ткани. Фокусировка может быть выполнена с помощью двух винтов, которые наиболее близко расположены к камере.

Результаты экспериментов под самодельным микроскопом

Вы не поверите результатам этого микроскопа. Трудно поверить, что возможно получить такие результаты с помощью этого простого микроскопа DIY. Примерно увеличение составляет около 200x. Ниже будут результаты под данным самодельным микроскопом.

Луковая кожица под микроскопом

клеточные стенки и ядрышки хорошо видны.

Верхний слой эпидермиса листа под микроскопом

Клетка крови под микроскопом своими руками

Клетки крови кажутся красными, когда они слипаются. В распределенном виде они могут быть видны как маленькие пузырьки или рыбья икра.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Давно известно, что простенькие безделушки, собственноручно сделанные родителем для своего ребятенка, ценятся им куда выше, нежели хитроумные покупные подарки. При этом авторитет старшего в глазах малолетки заметно возрастает. Одну из подобных рукотворных «мелочей» и предлагаем здесь вниманию читателя. Речь пойдет о несложном оптическом приборе из «породы» микроскопов. Способность увеличивать последнего намного превышает возможности самой сильной лупы, микроскоп позволит ребенку увидеть массу интересного, рассматривая, например, насекомых и растения, а взрослому поможет при необходимости оценить качество заточки режущего инструмента.

Самодельный микроскоп из оптики от старого фотоаппарата

В самодельном микроскопе использованы два готовых оптических узла — штатные объективы: от малоформатного фотоаппарата (типа «ФЭДа», «Зенита») и до съемочной восьмимиллиметровой кинокамеры. Добыть кинооптику вполне реально, поскольку тысячи любительских киноаппаратов осели мертвым грузом после массового распространения электронной видеотехники.


Конструкция самодельного микроскопа:
1 — подставка; 2 — кронштейн; 3 — фотообъектив; 4 — кольцо удлинительное; 5 — тубус;
6 — горловина; 7 — кинообъектив (для наглядности фотообъектив в удлинительное кольцо не ввинчен).

Итак, как же из фотоаппарата сделать микроскоп?

Для нашего микроскопа был взят объектив «Зоннар» (от немецкой камеры) с фокусным расстоянием 10 мм, на который возложили роль окуляра микроскопа. В качестве объектива самоделки подошел объектив «Индустар-50» от старого «ФЭДа». Еще понадобилось удлинительное кольцо №4 с присоединительной резьбой М39х1 (самое длинное), применяемое при макросъемке. Если использован объектив от «Зенита», потребуется кольцо №3 с резьбой М42х1. Фото- и кинообъективы объединяют в единое оптическое целое с помощью жесткого светонепроницаемого тубуса. Удлинительное кольцо послужит связующим звеном между объективом микроскопа, тубусом и подставкой. Для сопряжения миниатюрного кинообъектива с задним концом тубуса подойдет верхняя коническая часть (вместе с горлышком) подходящей пластмассовой бутылочки от напитков или парфюмерных снадобий.

Наш оптический прибор в собранном виде показан на рисунке. Подставка изготовлена из тонкой доски либо многослойной фанеры толщиной 6. 10 мм. Для кронштейна подойдет алюминиевая полоска шириной до 50 мм и толщиной 1. 1,5 мм. Можно сделать кронштейн из пары пластинок из текстолита, связав их между собой и с подставкой уголками из алюминия. Желательно придать кронштейну форму, обеспечивающую оптическому узлу удобный для «работы» наклон. Тубус, склеенный из картона, на корпусе удлинительного кольца фиксируют на клею. Длина тубуса зависит от размеров и формы горловины от пластмассовой бутылочки (при этом отрезать горловину следует так, чтобы ее цилиндрическая часть оказалась длиной не менее 20 мм, что обеспечит при стыковке соосность оптических узлов). В горлышке горловины укрепим киносъемочный объектив, например, от простейшей съемочной камеры «Спорт» (любой модификации).

Фокусирование оптической системы на объекте наблюдения осуществляется с помощью дистанционного кольца фотообъектива. Тубус лучше изготовить составным (из отдельных секций, входящих с легким трением одна в другую), что расширит пределы фокусировки. Внутренние поверхности тубуса и горловины желательно покрыть черной матовой краской. Если оснастить прибор столиком для поддержки предметного стекла и зеркальцем, появится возможность рассматривать объекты в проходящем свете.

Порекомендуйте эту страницу друзьям или добавьте в закладки:

Главная
Последние публикации, новое на сайте.

Ремонт и строительство
Дом и квартира, дизайн и архитектура, проекты домов. Обзоры, советы.

Сад, огород, усадьба
Садоводство и огородничество, приусадебное хозяйство.

Декоративно — прикладное искусство
Резьба по дереву, выжигание, чеканка, плетение и многое другое.

Идеи мастеру
Сделай сам, различные оригинальные и полезные самоделки.

Мебель своими руками
Самостоятельное изготовление мебели, чертежи, схемы.

Как сделать цифровой микроскоп своими руками

Ни для кого не секрет, что окружающий нас мир имеет тонкие структуры, организацию и строение которых невозможно различить человеческим глазом. Целая вселенная оставалась недосягаемой и непознанной, пока не был изобретен микроскоп.
Это устройство всем нам известно со школы. В нем мы рассматривали бактерий, живые и мертвые клетки, предметы и объекты, которые все мы видим каждый день. Через узкий смотровой объектив они чудесным образом превращались в модели из решеток и мембран, нервных сплетений и кровеносных сосудов. В такие моменты осознаешь, насколько этот мир велик и многогранен.
С недавнего времени микроскопы начали делать цифровыми. Они намного удобней и эффективнее, ведь теперь не надо пристально вглядываться в объектив. Достаточно взглянуть на экран монитора, и перед нами предстает увеличенное цифровое изображение рассматриваемого объекта. Представьте, что такое чудо техники можно сделать своими руками из обычной веб-камеры. Не верите? Предлагаем вам убедится в этом вместе с нами.
Как сделать цифровой микроскоп

Необходимые ресурсы для изготовления микроскопа


Материалы:
  • Перфорированные пластина, уголок и кронштейны для крепления деревянных деталей;
  • Отрезок профильной трубы 15х15 и 20х20 мм;
  • Небольшой фрагмент стекла;
  • Веб-камера;
  • Светодиодный фонарик;
  • Болт М8 с четырьмя гайками;
  • Винты, гайки.

Инструменты:
  • Электродрель или шуруповерт со сверлом на 3-4 мм;
  • Плоскогубцы;
  • Отвертка крестовая;
  • Термоклеевой пистолет.

Собираем микроскоп – пошаговая инструкция


Для штативной основы микроскопа используем перфорированные пластины и уголки из металла. Их используют для соединения деревянных изделий. Они легко скрепляются болтами, а множество отверстий позволяет это сделать на требуемом уровне.

Шаг первый – монтируем основание


Плоскую перфорированную пластину обкладываем с тыльной стороны мягкими мебельными подпятниками. Их просто наклеиваем по углам прямоугольника.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Следующим элементом будет кронштейн или уголок с разносторонними полками. Скрепляем короткую полку кронштейна и пластину-основание болтом с гайкой. Подтягиваем их плоскогубцами для надежности.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Два мелких кронштейна монтируем на край пластины по обеим ее сторонам. К ним прикрепляем еще два уголка подлиннее так, чтобы у нас образовалась небольшая рамка. Это будет основание для смотрового стекла микроскопа. Его можно сделать из небольшого отрезка тонкого стекла.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп

Шаг второй — делаем штатив


Штатив делаем из отрезка квадратной профильной трубы 15х15 мм. Его высота должна быть около 200-250 мм. Больше нет смысла делать, поскольку превышение отступа от смотрового стекла снижает качество изображения, а меньшее рискует быть засвеченным и некорректным.
Штатив крепим к перфорированному кронштейну, а поверх него насаживаем небольшой отрезок трубы 20х20 таким образом, чтобы он свободно двигался по этой стойке.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Из двух кронштейнов, совмещенных между собой внахлест, делаем открытую рамку. Болты выбираем подлиннее, чтобы их хватило на поджим этой рамки вокруг подвижного отрезка трубы. Насаживаем на них пластину с двумя отверстиями по бокам, и гайками фиксируем ее.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Для настройки отступа рамки от смотрового стекла используем болт М8х100 мм. Нам понадобится две гайки под размер болта, и две большего размера. Берем эпоксидный клей, и в трех местах приклеиваем гайки болта к штативу. Закрученную на конец болта гайку также можно зафиксировать эпоксидкой.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп

Шаг третий – изготавливаем объектив


На месте тубуса с окуляром в нашем микроскопе будет располагаться обычная вебкамера. Разрешение чем больше-тем лучше, подключение к компьютеру может быть, как проводным (USB 2.0, 3.0), так и через Wi Fi или Bluetooth.
Освобождаем камеру от корпуса, откручивая отверткой материнскую плату с матрицей.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Снимаем защитный колпак, и выкручиваем объектив с линзами и светофильтром. Все что необходимо сделать – это разместить его на том же месте, перевернув на 180 градусов.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Обматываем стык объектива камеры с цилиндрическим корпусом изолентой. При желании его можно дополнительно проклеить термоклеевым пистолетом. На этом этапе измененный объектив уже можно проверить в действии.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп

Шаг четвертый – окончательная сборка микроскопа


Собираем камеру в обратном порядке, сажая ее корпус на горячий клей к рамке штатива. Объектив при этом должен быть направлен вниз, на смотровое стекло микроскопа. Шлейф из проводки можно поджать нейлоновыми стяжками к стойке штатива.
Невысокий светодиодный фонарик приспосабливаем под осветитель смотрового стекла. Он должен свободно влезать под смотровую панель микроскопа. Подключаем камеру к компьютеру, и через некоторое время изображение появится на экране монитора.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Сборка готова, ее можно проверить на любом объекте, например, рассмотреть кристаллическую решетку грифеля карандаша или пиксельную структуру экрана своего смартфона. Популярным направлением сегодня является применение таких самодельных или недорогих микроскопов для контроля пайки мелких деталей на электронных платах. Он несомненно понравится и вашему ребенку, и возможно пробудит интерес к познанию окружающего нас мира.
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп
Как сделать цифровой микроскоп

Смотрите видео


Как соорудить микроскоп своими руками: инструкция по изготовлению

Перед тем как сделать микроскоп своими руками, следует разобраться с тем, для чего его можно использовать, а также какие материалы для этого потребуются. Надо сразу отметить, что соорудить такую конструкцию можно самому, при этом вам не нужны какие-либо дорогие элементы.

Для чего используется устройство?

микроскоп своими рукамиВ принципе, основная цель любого микроскопа – увеличение объекта в несколько десятков или сотен раз. Применяются представленные аппараты не только на уроках биологии в школе, но и в медицине, электронике и других сферах. Например, благодаря цифровому микроскопу, существует возможность осуществлять ремонт очень маленьких микросхем, мобильных и компьютерных плат.

Самым удобным является электронный аппарат, так как он способен увеличивать объект очень сильно. Следует отметить, что соорудить микроскоп своими руками нетяжело. Необходимо просто знать его устройство, а также собрать нужные материалы.

Из чего можно сделать устройство?

Естественно, сконструировать микроскоп своими руками можно и с нуля. Однако часто те люди, которые разбираются в электронике, компьютерных технологиях и оптике, изготавливают представленное устройство на базе других агрегатов: фотоаппаратов, биноклей, веб-камер.

Прежде чем начинать изготовление конструкции, необходимо точно определиться с ее функциями, подобрать нужные элементы. Желательно также сделать чертеж устройства на бумаге. Естественно, производятся все необходимые расчеты.

Делаем аппарат с нуля: необходимые материалы и инструменты

Для того чтобы сделать микроскоп своими руками без готовых приборов, вам потребуется такое оборудование:

— Трубка из стекла. Ее длина должна составлять примерно 20 см, а диаметр – до 6 мм.

— Несколько пластин (желательно из меди). Толщина металла не должна быть большой (около 1 мм). Что касается общих размеров пластин, то они составляют 3*6 см.

— Несколько небольших стеклышек.

— Сверло небольшого диаметра.

— Газовая горелка.

— Молоток.

— Отвертка.

— Гайки и винтики.

Если у вас нет металла, который будет служить основанием для конструкции, то можете использовать плотный картон. Однако учтите, что в этом случае аппарат не будет прочным и не прослужит длительное время.

Изготавливаем устройство: инструкция

Перед тем как сделать микроскоп, ознакомьтесь с последовательностью произведения работы:

1. Прежде всего, из стеклянной трубки при помощи горелки надо изготовить небольшой шарик, который будет служить линзой для устройства. Учтите, что этот элемент ни в коем случае нельзя трогать руками, так как на поверхности останутся следы, которые впоследствии будут искажать изображение.

2. На данном этапе нужно сделать корпус для линзы. Для этого понадобятся металлические пластины. Чтобы использование такого аппарата было удобным и безопасным, нужно обязательно закруглить углы. В «корпусе» следует просверлить отверстия: 4 крепежных и одно смотровое.

3. Теперь можно собрать всю конструкцию воедино. Для этого между пластинами устанавливается «линза», и корпус скрепляется болтами. Далее с одной стороны линзы при помощи скотча можно приклеить стекло, на которое и будет укладываться объект.

Такая конструкция микроскопа является ручной и самой простой. Представленным устройством могут пользоваться взрослые в домашних условиях и дети. Для профессиональных работ вам понадобится более сложный, цифровой аппарат. Далее вы узнаете, как его соорудить.

Как сделать электронный микроскоп: необходимые материалы

Для изготовления представленного устройства обычно используется веб-камера. Перед тем как сделать микроскоп такого типа, соберите весь необходимый материал и инструмент:

— Персональный компьютер или ноутбук.

— Веб-камера (желательно с ручной настройкой фокуса). Учтите, что нам понадобится объектив, так что он должен легко выниматься из первоначального устройства.

— Несколько больших и маленьких уголков, из которых впоследствии будет сооружена стойка.

— Трубка стальная небольшого диаметра и специальное крепление, которое может передвигаться и фиксироваться на поверхности металла.

— Стекло.

— Небольшое зеркало или вспышка из мобильного телефона для конструирования подсветки.

— Металлическая пластина для изготовления платформы.

— Крепежи, а также пистолет с термоклеем.

Инструкция по изготовлению цифрового микроскопа

Цифровой микроскоп своими руками делается очень просто, нужно только соблюдать определенную последовательность действий:

1. Для начала следует соорудить «скелет» конструкции. Для этого нужно металлическую пластину соединить с уголками. Все элементы можно скрепить болтами. В качестве штатива можно использовать металлическую трубу небольшого диаметра. Она имеет определенные плюсы. Например, при помощи специальных крепежей вы можете к вертикальному элементу прикрутить еще один небольшой кусочек трубы, к которой прикрепится объектив. При необходимости вы сможете поднимать или опускать данный элемент. Кроме того, для сооружения платформы можно также использовать небольшую картонную коробку, в которую вставляется штатив и заливается плиточным (или другим) клеем. Учтите, что конструкция должна быть максимально устойчивой.

2. Далее можно сделать регулятор настройки фокуса. Для этого используется капроновая нить (или резинка), подвижная втулка, ушко для фиксации нити на штативе. То есть вам нужно сделать своеобразный редуктор, благодаря которому точность фокуса объектива увеличивается.

3. Далее электронный микроскоп своими руками делается просто. Теперь следует выкрутить объектив из веб-камеры. Делайте это осторожно, чтобы не повредить элемент. Далее нужно перевернуть его и поставить на место. Для крепления используйте термоклей. Готовую конструкцию можно прикрепить к подвижной части штатива. Под ней следует организовать предметный столик с подсветкой. Для этого используется обычный светодиод.

4. В последнюю очередь нужно обработать провод веб-камеры. То есть следует срезать его толстую оплетку. В этом случае он станет более гибким и не будет мешать передвижению объектива.

Теперь вы знаете, как сделать микроскоп своими руками. Удачи!

Как сделать микроскоп дома

Главная страница -> Для детей старшего возраста -> Как сделать микроскоп в домашних условиях. Конструкция микроскопа из линз

Микроскоп является довольно сложным оптическим прибором, с помощью которого можно производить наблюдения за невидимыми или плохо видимыми невооружённым глазом объектами. Любознательным людям он позволяет проникнуть в тайны “микрокосмоса”. Микроскоп можно попробовать сделать самим. Конструкций самодельных микроскопов довольно много и в этой статье мы рассмотрим одну из них.

Одна из наиболее удачных конструкций была предложена Л. Померанцевым. Для изготовления микроскопа вам нужно приобрести в аптеке или оптическом магазине две одинаковые линзы по +10 диоптрий, желательно диаметром около 20 миллиметров. Одна линза нужна для окуляра микроскопа, другая – для объектива. Но прежде давайте разберёмся в единицах измерения линз.

Что такое диоптрия линзы

Диоптрия – единица оптической силы (рефракции) линзы, обратная фокусному расстоянию. Одна диоптрия соответствует фокусному расстоянию в 1 метр, две диоптрии – 0,5 метра и т.д. Для определения числа диоптрий надо 1 метр разделить на фокусное расстояние данной линзы в метрах. И наоборот, фокусное расстояние можно определить, разделив 1 метр на число диоптрий. Фокусное расстояние линзы +10 диоптрий равно 0.1 метра или 10 сантиметрам. Знак плюс обозначает собирательную линзу, знак минус – рассеивающую.

Как смастерить самодельный микроскоп

Из бумаги склейте трубку длиной десять сантиметров по диаметру линз. Затем разрежьте её пополам, чтобы получились две трубки длиной по пять сантиметров. В них вставьте линзы.

В один конец каждой трубки вклейте картонное или склеенное из узкой полоски бумаги колечко с отверстием диаметром десять миллиметров. На это колечко изнутри положите линзу и прижмите её картонным цилиндриком, смазанным клеем. Внутри трубка и цилиндрик должны быть окрашены чёрной тушью. (Это надо сделать заранее)

Обе трубки вставьте в тубус – третью трубку длиной 20 сантиметров и таким диаметром, чтобы трубки окуляра и объектива входили в него туго, но могли передвигаться. Внутри тубус также должен быть окрашен в чёрный цвет.

На листе фанеры начертите две концентрические окружности: одну радиусом 10 сантиметров, другую радиусом 6 сантиметров. Получившийся круг выпилите, и разрежьте по диаметру на две части. Из этих полукругов сделайте корпус микроскопа С-образной формы. Полукруги соединяют тремя деревянными колодочками, толщиной 3 сантиметра каждая.

Верхняя и нижняя колодочки должны быть длиной по 6 и шириной по 4 сантиметра. Они выступают на 2 сантиметра за внутренний край фанерных полукругов. На верхней колодочке закрепите тубус с трубками и регулировочный винт. Для тубуса в колодочке вырежьте желобок, а для регулировочного винта просверлите сквозное отверстие и выдолбите квадратное углубление.

А – трубка с линзами; Б – тубус; В – корпус микроскопа; Г – соединительные колодочки; Д – регулировочный винт; Е – предметный столик; Ж – диафрагма; З – зеркальце; И – подставка.

Регулировочный винт – это деревянный стерженёк, на который туго насажен цилиндрик, вырезанный из резинки для карандаша или из намотанной изоляционной ленты. Лучше всего для этой цели использовать небольшой отрезок подходящей резиновой трубки.

Сборка винта производится так. Колодочку разрезаем по длине пополам. В отверстие одной половины продеваем стрежень винта, насаживаем на него, резиновый цилиндрик, затем другой конец продеваем в отверстие второй половины колодочки и склеиваем обе половины. Резиновый цилиндрик должен поместиться в квадратном углублении и свободно в нем вращаться. Колодочку с винтом приклеиваем к фанерным полукругам, сделав на концах их вырезы для стрежня винта. На концы стержня насаживаем ручки – половинки катушки от ниток.

Теперь тубус с трубками прикрепите к колодочке с помощью скобы, выгнутой из жести. Предварительно в скобе сделайте вырезы для винта и прибейте её или привинтите шурупами к колодочке.

Резиновый цилиндрик регулировочного винта должен плотно прижиматься к тубусу при вращении винта тубус будет медленно и плавно передвигаться вверх и вниз.

Микроскоп можно сделать и без регулировочного винта. В этом случае тубус достаточно приклеить к верхней колодочке, а наводить прибор на предмет только передвижением трубок с линзами в тубусе.

К нижней колодочке сверху прибейте или приклейте предметный столик – фанерную пластинку с отверстием диаметром около 10 миллиметров посредине. По бокам отверстия прибейте две выгнутые полоски жести – зажимы, которые будут придерживать стёклышко с рассматриваемым препаратом.

Снизу к предметному столику прикрепите диафрагму – деревянный или фанерный кружочек, в котором по окружности просверлите четыре отверстия разных диаметров: например, 10, 7, 5 и 2 миллиметра. Диафрагму закрепите гвоздём так, чтобы её можно было вращать и чтобы её отверстия при этом совпадали с отверстием предметного столика. С помощью диафрагмы изменяют освещение препарата, регулируют толщину пучка света.

Размеры предметного столика могут быть, например, 50х40 миллиметров, размер диафрагмы – 30 миллиметров. Но эти размеры можно или увеличить или уменьшить.

Ниже предметного столика к той же колодочке прикрепите зеркальце размером 50х40 или 40х40 миллиметров. Зеркальце приклеивают к дощечке, по бокам в неё забивают два гвоздика без шляпок (патефонные иголки). Этими гвоздиками дощечка вставляется в отверстие жестяной скобочки, привинченной шурупом к колодочке. Благодаря такому креплению зеркальце можно поворачивать – устанавливать с разным наклоном, направляя пучок света на отверстие предметного столика.

Третьей соединительной колодочкой корпус микроскопа прикрепите к подставке. Её можно вырезать из толстой доски любых размеров. Важно, чтобы микроскоп держался на ней устойчиво, не шатался. Снизу на колодочке вырежьте прямой шип, а в подставке выдолбите гнездо для него. Шип смажьте клеем и вставьте в гнездо.

Регулируют микроскоп, поворачивая зеркальце, передвигая винтом тубус и трубки с линзами в тубусе, увеличивая изображение в 100 раз и более.

3 комментария к “ Как сделать микроскоп в домашних условиях. Конструкция микроскопа из линз ”

Сделаю такой ребенку, а то он мой рабочий микроскоп sititek постоянно берет для своих опытов. Я думаю, на первое время будет вполне достаточно и такой модели.

Думаю, ваш сын будет рад. Пусть и он участвует в создании микроскопа. Мы с моим младшим сыном делали такой микроскоп вместе и он был полностью в восторге больше от того, что помогал его делать, чем о наличии своего личного микроскопа в собственности 🙂

В статье расскажем как сделать как сделать микроскоп своими руками с увеличением х200, пошаговая инструкция и результатами экспериментов: луковая кожица, кровь, лист.

Здравствуйте! все, вы когда-нибудь мечтали исследовать микроскопический мир? Могу поспорить, что большинство из вас скажет ДА! Но инструменты, которые требуются, очень дорогие. Но есть решение, которое дает достойные результаты, которое будет стоить всего несколько долларов. Микроскопы используют линзы высокой мощности, чтобы сделать изображение с большим увеличением. Просто если у нас есть мощный объектив мы сможем это сделать. В обычных микроскопах изображение сфокусировано прямо на наших глазах. Это требует очень сложной конструкции линзы. Используя смартфон и мощный объектив, мы можем сделать это очень простым способом. Просто нужно держать объектив перед камерой смартфона, прикасаясь друг к другу. Затем через камеру вы можете увидеть сильно увеличенное изображение. Но для того, чтобы постоянно наблюдать за образцом, мы должны создать установку. Итак, давайте приступим!

Подготовка объектива

В этом проекте мы используем линзы высокой мощности, эти линзы очень дороги на рынке. Но мы можем найти их в головке устройства чтения DVD / CD. На самом деле они обладают высокой способностью увеличения для считывания записанных данных в микромасштабе.

Как показано на изображениях, безопасно снимите линзу с ридера. Даже небольшая царапина испортит его.

Материалы и инструменты

В этом проекте мы собираемся использовать объектив высокой мощности, который можно найти в DVD/CD-ридере с камерой смартфона, чтобы получить сильно увеличенное изображение. В списке материалов я упомянул медную доску, она понадобится для подставки под смартфон. Можно использовать любой материал.

Материалы:

1. 1/2 дюйма ПВХ трубы (около 20 см)

2. Стеклянный лист — около 25 см х 16 см

3. 2 мм диаметром 1 ‘1/2 дюйма длиной гайки и болта

4. Медная доска или Акрил

5. Объектив от DVD/CD-ридера

6. Акриловый клей

Инструменты:

1. Ножовочная пила

3. Горячий клеевой пистолет

Платформа для телефона

Чтобы получить четкое представление об образце, нам нужно, чтобы вся установка была устойчивой. Для этого мы используем медный лист, чтобы он соответствовал смартфону. Размеры листа будут всего на 2 мм больше, чем у смартфона по длине и ширине

Теперь у нас есть платформа, которая подходит для нашего смартфона. Следующий шаг — сделать отверстия для объектива и четыре винта. Перед этим я должен кое-что рассказать о дизайне. Для держателя телефона требуется механизм, позволяющий идеально сфокусировать установку на наблюдаемом образце. Для этого я буду использовать четыре винта, которые позволят изменить расстояние между линзой и образцом. Эти винты будут размещены в четырех углах платы держателя. При сверлении отверстия для камеры уделите время и отметьте точку, где находится камера.

После сверления отверстий самое время поместить четыре гайки болтов в углы. С помощью сильного клея поместите их идеально выровненными. Следите за тем, чтобы клей не пролился на резьбу винтов.

После установки четырех гаек самое время разместить линзу. Перед установкой линзы очистите неровные края просверленного отверстия. Затем поместите линзу на просверленное отверстие. 2 мм отверстие идеально облегают линзу и она не падает. Затем приклейте линзу небольшим количеством клея. Это очень сложная часть. Будьте осторожны, любое крошечное смещение может привести к ложному результату. Подставка для телефона готова!

Создание подиума для микроскопа

До этого момента мы завершили держатель. Итак, теперь нам нужна подиум для образца. Я выбрал стеклянную пластину для этой цели. Это позволяет помещать образец непосредственно на подиум. В то время как смартфон может свободно перемещаться и наблюдать любую часть образца. Это может немного запутать вас, но это будет ясно на изображениях.

Для того, чтобы видеть через этот микроскоп, нам нужно освещение. Чтобы освободить место для освещения, я поднял сцену с помощью четырех труб из ПВХ, нарезанных на одинаковую длину около 5 см. Затем мы устанавливаем метод освещения под стеклянной сценой. В моем случае Я использую фонарик телефона. Это легко и идеально подходит для этого проекта. Я испробовал много источников света, но смартфон-фонарик дал лучшие результаты.

Проверяем наш самодельный микроскоп

Теперь у нас есть готовый микроскоп. Посмотрим, как с этим работать. Прежде всего мы должны сбалансировать платформу телефона. Для этого, повернув четыре винта, вы можете изменить высоту держателя телефона. Держите высоту примерно на 2-3 мм. Хорошо, теперь вы должны поместить камеру вашего телефона идеально выровненной с объективом на платформе телефона. Это можно сделать, включив приложение камеры и выровняв его до получения идеального изображения.

После этого нам нужен образец для наблюдения. Как вы можете видеть на изображении, я поместил 2 луковичные ткани. Поскольку у нас достаточно места, можно разместить более одного образца. Затем включите вспышку. Теперь вы можете сдвинуть платформу телефона на стекло, пока изображение с камеры не покажет сфокусированное изображение ткани. Фокусировка может быть выполнена с помощью двух винтов, которые наиболее близко расположены к камере.

Результаты экспериментов под самодельным микроскопом

Вы не поверите результатам этого микроскопа. Трудно поверить, что возможно получить такие результаты с помощью этого простого микроскопа DIY. Примерно увеличение составляет около 200x. Ниже будут результаты под данным самодельным микроскопом.

Луковая кожица под микроскопом

клеточные стенки и ядрышки хорошо видны.

Верхний слой эпидермиса листа под микроскопом

Клетка крови под микроскопом своими руками

Клетки крови кажутся красными, когда они слипаются. В распределенном виде они могут быть видны как маленькие пузырьки или рыбья икра.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

11 октября 2013

Подсчёт эритроцитов в камере Горяева. Увеличение: 100×.

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Повышенный уровень лейкоцитов, бактериальная инфекция, картофель содержит крахмал, насекомые переносят заболевания — эти и другие похожие высказывания приходится слышать отовсюду. Каждый день с экранов телевизоров, из уст знакомых, с полос газет и журналов нам в мозг поступает одна и та же информация. Информация, которая, как может показаться, является уделом лишь специалистов — медиков и биологов. Ведь именно они касаются этих вопросов в своей повседневной жизни. Простому же человеку достаются лишь только выводы из тех или иных исследований, сухие слова, не обладающие наглядностью. В этой статье я постараюсь рассказать просто о сложном. О том, как каждый может приблизить к себе неуловимый, на первый взгляд, мир клеток и микроорганизмов.

«Био/мол/текст»-2013

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Своя работа».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Вот уже два года, как я наблюдаю за этим миром у себя дома, и год, как делаю фотоснимки. За это время я успел увидеть собственными глазами, какие бывают клетки крови, что опадает с крыльев бабочек и молей, как бьётся сердце у улитки. Конечно, многое можно было бы почерпнуть из учебников, видеолекций и с тематических веб-сайтов. Единственное, что осталось бы не почерпнутым — это ощущение присутствия и близости к тому, чего не видно невооружённым глазом. То, что прочитано в книге или увидено в телепередаче, скорее всего, сотрется из памяти в весьма сжатые сроки. Что увидено лично в объектив микроскопа — останется с тобой навсегда. И останется не столько сам образ увиденного, сколько понимание, что мир устроен именно так, а не иначе. Что это не просто слова из книжки, а личный опыт. Опыт, который в наше время доступен каждому.

Что купить?

Театр начинается с вешалки, а исследование — с покупки оборудования. В нашем случае это будет микроскоп, ибо в лупу много не разглядишь. Из основных характеристик микроскопа «для домашних нужд» стоит выделить, конечно же, набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива. Не всякий биологический образец хорош для исследования на больших увеличениях. Связано это с тем, что большее увеличение оптической системы предполагает меньшую глубину резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения во всем диапазоне увеличения: 10–20×, 40–60×, 100–200×, 400–600×, 900–1000×. Иногда бывает оправдано увеличение 1500×, достигающееся при покупке окуляра 15× и объектива 100×. Всё, что увеличивает сильнее, разрешающей способности заметно не прибавит, так как на увеличениях около 2000–2500× уже близок так называемый «оптический предел», обусловленный дифракционными явлениями.

Следующим немаловажным моментом является тип насадки. Обычно выделяют монокулярную, бинокулярную и тринокулярную разновидности. Принцип классификации основывается на том, «сколькими глазами» вы хотите смотреть на объект. В случае монокулярной системы вам придётся щуриться, постоянно меняя глаза от усталости при длительном наблюдении. Здесь вам на помощь придёт бинокулярная насадка, в которую, как и следует из её названия, можно глядеть обоими глазами. В целом, это более благоприятно скажется на самочувствии ваших глаз. Не следует путать бинокуляр со стереомикроскопом. Последний позволяет добиться объёмного восприятия наблюдаемого объекта за счёт наличия двух объективов, в то время как бинокулярные микроскопы просто подают на оба глаза одно и то же изображение. Для фото- и видеосъёмки микрообъектов понадобится «третий глаз», а именно насадка для установки камеры. Многие производители выпускают специальные камеры для своих моделей микроскопов, хотя можно использовать и обычный фотоаппарат (правда, при этом придётся купить переходник).

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры соответствующих объективов. Канули те времена, когда препарат исследовали в отражённом от зеркала свете. Сейчас микроскопы представляют собой комплексные оптико-механо-электрические приборы, в которых всецело используются достижения научно-технического прогресса. В современных устройствах имеется своя лампочка, свет от которой распространяется через специальное устройство — конденсор, — которое и освещает препарат. В зависимости от типа конденсора можно выделить различные способы наблюдения, самыми популярными из которых являются методы светлого и тёмного поля. Первый метод, знакомый многим ещё со школы, предполагает, что препарат освещается равномерно снизу. При этом в тех местах, где препарат оптически прозрачен, свет распространяется от конденсора в объектив, а в непрозрачной среде свет поглощается, приобретает окраску и рассеивается. Поэтому на белом фоне получается тёмное изображение — отсюда и название метода.

С темнопольным конденсором всё иначе. Он устроен так, что лучи света, выходящие из него, направлены в разные стороны, кроме непосредственно отверстия объектива. Поэтому они проходят сквозь оптически прозрачную среду, не попадая в поле зрения наблюдателя. С другой стороны, лучи, попавшие на непрозрачный объект, рассеиваются на нём во все стороны, в том числе и в направлении объектива. Поэтому в итоге на тёмном фоне будет виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных объектов, которые на светлом фоне не являются контрастными. По умолчанию большинство микроскопов являются светлопольными. Поэтому, если вы планируете расширить набор методов наблюдения, то стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсоров, устройств фазового контраста, поляризаторов и т.п.

Как известно, оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы. Они используются при профессиональных исследованиях и имеют адекватную цену. Объективы с большим увеличением (например, 100×) имеют числовую апертуру больше 1, что предполагает использование масла при наблюдении — так называемая иммерсия. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионном масле. Его показатель преломления обязательно должен соответствовать вашему конкретному объективу.

Конечно, это не весь список параметров, которые следует учитывать при покупке микроскопа. Иногда бывает важно обратить внимание на устройство и расположение предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который светит ярче и греется меньше. Также микроскопы могут иметь индивидуальные особенности. Но основное, что стоило бы сказать об их устройстве, пожалуй, сказано. Каждая дополнительная опция — это добавка к цене, поэтому выбор модели и комплектации — это удел конечного потребителя.

В последнее время наметилась тенденция покупки микроскопов для детей. Такие устройства обычно являются монокулярами с небольшим набором объективов и скромными параметрами, стоят недорого и могут послужить хорошей отправной точкой не только для непосредственно наблюдений, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже можно будет купить более серьёзное устройство на основании выводов, сделанных при работе с «бюджетной» моделью.

Как смотреть?

Любительское наблюдение не предполагает исключительных навыков ни в работе с микроскопом, ни в подготовке препаратов. Конечно, можно купить далеко не дешёвые наборы уже готовых препаратов, но тогда не таким ярким будет ощущение вашего личного присутствия в исследовании, да и готовые препараты рано или поздно наскучат. Поэтому, купив микроскоп, стоит задуматься о реальных объектах для наблюдения. Кроме того, вам понадобятся хоть и специальные, но доступные средства для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект является достаточно тонким. Даже не каждая кожура с ягоды или фрукта сама по себе обладает необходимой толщиной, поэтому в микроскопии исследуют срезы. В домашних условиях достаточно адекватные срезы можно делать обычными лезвиями для бритья. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, что во многом повысит дифференцируемость объектов препарата. В идеале стоит работать с моноклеточным слоем ткани, ибо несколько слоёв клеток, наложенных друг на друга, создают нечёткое и сумбурное изображение.

Исследуемый препарат помещается на стекло предметное и, в случае необходимости, накрывается стеклом покровным. Поэтому, если в комплекте к микроскопу стёкла не прилагаются, их следует купить отдельно. Сделать это можно в ближайшем магазине медицинской техники. Однако не каждый препарат хорошо прилегает к стеклу, поэтому применяют методы фиксации. Основными являются фиксация огнём и спиртом. Первый метод требует определённого навыка, так как можно попросту «спалить» препарат. Второй способ зачастую более оправдан. Чистый спирт достать не всегда возможно, поэтому в аптеке в качестве заменителя можно приобрести антисептик, который, по сути, является спиртом с примесями. Там же стоит купить йод и зелёнку. Эти привычные для нас средства дезинфекции на деле оказываются ещё и хорошими красителями для препаратов. Ведь не всякий препарат открывает свою сущность при первом взгляде. Иногда ему нужно «помочь», подкрасив его форменные элементы: ядро, цитоплазму, органеллы.

Для взятия образцов крови следует приобрести скарификаторы, пипетки и вату. Всё это есть в продаже в медицинских магазинах и аптеках. Кроме того, для сбора объектов из дикой природы следует запастись маленькими пакетиками и баночками. Брать с собой баночку для набора воды из ближайшего водоёма при выезде на природу должно стать у вас хорошей привычкой.

Что смотреть?

Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного. Что может быть доступнее кожуры репчатого лука (рис. 1 и 2)? Являясь тонкой сама по себе, кожура лука, будучи подкрашенной йодом, обнаруживает в своём строении чётко дифференцируемые ядра. Этот опыт, хорошо знакомый со школы, пожалуй, и стоит провести первым. Саму кожуру лука нужно залить йодом и оставить окрашиваться на 10–15 минут, после чего нужно промыть её под струёй воды.

Кроме того, йод можно использовать для окраски картофеля (рис. 3). Не стоит забывать, что срез необходимо делать как можно более тонким. Буквально 5–10 минут пребывания среза картофеля в йоде проявят пласты крахмала, которые окрасятся в синий цвет. Йод является достаточно универсальным красителем. Им можно окрашивать широкий спектр препаратов.

Рисунок 1. Кожица лука (увеличение: 1000×). Окраска йодом. На фотографии дифференцируется ядро в клетке.

Фотография автора статьи.

Рисунок 2. Кожица лука (увеличение: 1000×). Окраска Азур-Эозином. На фотографии в ядре дифференцируется ядрышко.

Фотография автора статьи.

Рисунок 3. Зерна крахмала в картофеле (увеличение: 100×). Окраска йодом.

Фотография автора статьи.

На балконах жилых домов часто скапливается большое количество трупов летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что крылья насекомых волосатые (рис. 4–6). Насекомым это необходимо для того, чтобы крылья не намокали . В силу большого поверхностного натяжения, капли воды не могут «провалиться» сквозь волоски и коснуться крыла.

Это явление называется гидрофобностью. Подробно мы о нем говорили в статье «Физическая водобоязнь». — Ред.

Рисунок 4. Крыло божьей коровки (увеличение: 400×).

Фотография автора статьи.

Рисунок 5. Крыло бибионида (увеличение: 400×).

Фотография автора статьи.

Рисунок 6. Крыло бабочки боярышницы (увеличение: 100×).

Фотография автора статьи.

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На фотографиях отчётливо видно, что этой пылью являются чешуйки с их крыльев (рис. 7). Они имеют разную форму и достаточно легки на отрыв.

Кроме того, можно поверхностно изучить строение конечностей членистоногих (рис. 8), рассмотреть хитиновые плёнки — например, на спине таракана (рис. 9). При должном увеличении можно убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Рисунок 7. Чешуйки с крыльев моли (увеличение: 400×).

Фотография автора статьи.

Рисунок 8. Конечность паука (увеличение: 100×).

Фотография автора статьи.

Рисунок 9. Плёнка на спине таракана (увеличение: 400×).

Фотография автора статьи.

Следующее, что стоило бы понаблюдать — это кожура ягод и фруктов (рис. 10 и 11). Не все фрукты и ягоды обладают приемлемой для наблюдения в микроскоп кожурой. Либо её клеточное строение может быть не дифференцируемым, либо толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем вы получите хороший препарат. Вам придётся перебрать разные сорта винограда — например, для того, чтобы найти тот, у которого красящие вещества в кожуре имели бы «приятную для глаза» форму, или сделать несколько срезов кожицы сливы, пока не добьётесь моноклеточного слоя. В любом случае, вознаграждение за проделанную работу будет достойным.

Рисунок 10. Кожура чёрного винограда (увеличение: 1000×).

Фотография автора статьи.

Рисунок 11. Кожура сливы (увеличение: 1000×).

Фотография автора статьи.

Рисунок 12. Лист клевера (увеличение: 100×). Некоторые клетки содержат тёмнокрасный пигмент.

Фотография автора статьи.

Достаточно доступным для исследования объектом является зелень: трава, водоросли, листья (рис. 12 и 13). Но, несмотря на повсеместную распространённость, выбрать и приготовить хороший образец бывает не так-то просто.

Самым интересным в зелени являются, пожалуй, хлоропласты (рис. 14 и 15). Поэтому срез должен быть исключительно тонким. Нередко приемлемой толщиной обладают зелёные водоросли, встречающиеся в любых открытых водоёмах.

Рисунок 13. Лист земляники (увеличение: 40×).

Фотография автора статьи.

Рисунок 14. Хлоропласты в клетках травы (увеличение: 1000×).

Фотография автора статьи.

Рисунок 15. Хлоропласты в клетках водоросли (увеличение: 1000×).

Фотография автора статьи.

Там же вы встретите и плавучие водоросли и других водных микроорганизмов (рис. 16). Вам также может посчастливиться встретить малька улитки или другого животного, живущего в водоёме (рис. 17 и 18). Маленький детёныш улитки, будучи достаточно оптически прозрачным, позволяет разглядеть у себя биение сердца (видео 1).

Рисунок 16. Плавающая водоросль со жгутиком (увеличение: 400×).

Фотография автора статьи.

Рисунок 17. Детёныш улитки (увеличение: 40×).

Фотография автора статьи.

Рисунок 18. Мазок крови. Окраска Азур-Эозином по Романовскому (увеличение: 1000×). На фотографии эозинофил на фоне эритроцитов.

Фотография автора статьи.

Сам себе учёный

Видео 1. Биение сердца улитки (увеличение оптического микроскопа 100×).

После исследования простых и доступных препаратов естественным желанием является усложнение техник наблюдения и расширение класса изучаемых объектов. Для этого, во-первых, понадобится литература по специальным методам исследования, а, во-вторых, специальные средства. Эти средства, хотя и являются своими для каждого типа объектов, всё-таки обладают некоторой общностью и универсальностью. Например, всеобще известный метод окраски по Граму, когда разные виды бактерий после окраски дифференцируются по цветам, может быть применён и при окраске других, не бактериальных, клеток. Близким к нему по сути является и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из таких красящих веществ, как азур и эозин. Все красители можно купить в специализированных медико-биологических магазинах, либо заказать в интернете. Если же по каким-то причинам вы не можете достать краситель для крови, можно попросить лаборанта, делающего вам анализ крови в больнице, приложить к анализу стёклышко с окрашенным мазком вашей крови.

Продолжая тему исследования крови, нельзя не упомянуть камеру Горяева — устройство для подсчёта форменных элементов крови. Будучи важным инструментом для оценки количества эритроцитов в крови ещё в те времена, когда не было устройств для автоматического анализа её состава, камера Горяева также позволяет измерять размеры объектов благодаря нанесённой на неё разметке с известными размерами делений. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

Заключение

В данной статье я постарался рассмотреть основные моменты, связанные с выбором микроскопа, подручных средств и основные классы объектов для наблюдения, которые нетрудно встретить в быту и на природе. Как уже было сказано, специальные средства наблюдения предполагают наличие хотя бы начальных навыков работы с микроскопом, поэтому их обзор выходит за рамки данной статьи. Как видно из фотографий, микроскопия может стать приятным хобби, а может быть, для кого-то даже и искусством.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить собственные деньги. Из развлекательных соображений это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Но находятся и те, кто отводит свой взор от экранов и направляет его либо далеко в космос, приобретая телескоп, либо, смотря в окуляр микроскопа, проникают взглядом глубоко внутрь. Внутрь той природы, частью которой мы являемся.

Микроскопия в домашних условиях

Станислав Яблоков,
Ярославский государственный университет им. П. Г. Демидова
«Наука и жизнь» №2, 2014

Вот уже два года, как я наблюдаю за микромиром у себя дома, и год, как снимаю его на фотокамеру. За это время собственными глазами увидел, как выглядят клетки крови, чешуйки, опадающие с крыльев бабочек, как бьётся сердце улитки. Конечно, многое можно было бы узнать из учебников, видеолекций и тематических сайтов. Но при этом не было бы ощущения присутствия, близости к тому, что не видно невооружённым глазом. Что это не просто слова из книжки, а личный опыт. Опыт, который сегодня доступен каждому.

Что купить

Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего — микроскопа. Одна из основных его характеристик — набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.

Детёныш улитки. Увеличение 40×

Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10–20 до 900–1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.

Лист клевера. Увеличение 100×. Некоторые клетки содержат тёмно-красный пигмент

Следующий немаловажный момент — тип окуляра. «Сколькими глазами» вы хотите рассматривать изображение? Обычно выделяют монокулярную, бинокулярную и тринокулярную его разновидности. В случае монокуляра придётся щуриться, утомляя глаз при длительном наблюдении. В бинокуляр смотрят обоими глазами (не следует путать его со стереомикроскопом, дающим объёмное изображение). Для фото- и видеосъёмки микрообъектов понадобится «третий глаз» — насадка для установки аппаратуры. Многие производители выпускают специальные камеры для своих моделей микроскопов, но можно использовать и обычный фотоаппарат, купив к нему переходник.

Лист земляники. Увеличение 40×

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве — конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых — методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т. п.

Оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы для профессиональных исследований. Сильные объективы (с увеличением, например, 100×) имеют числовую апертуру больше 1 при использовании иммерсии, масла с высоким показателем преломления, раствора глицерина (для УФ-области) или просто воды. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионной жидкости. Её показатель преломления обязательно должен соответствовать конкретному объективу.

Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция — это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.

Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.

Как смотреть

Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани — несколько слоёв клеток создают нечёткое сумбурное изображение.

Крыло жучка бибиониды. Увеличение 400×

Исследуемый препарат помещают на предметное стекло и в случае необходимости закрывают покровным. Купить стёкла можно в магазине медицинской техники. Если препарат плохо прилегает к стеклу, его фиксируют, слегка смачивая водой, иммерсионным маслом или глицерином. Не всякий препарат сразу открывает свою структуру, иногда ему нужно «помочь», подкрасив его форменные элементы: ядра, цитоплазму, органеллы. Неплохими красителями служат йод и «зелёнка». Йод достаточно универсальный краситель, им можно окрашивать широкий спектр биологических препаратов.

При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т. п.

Что смотреть

Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного — например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10–15 минут, после чего промыть под струёй воды.

Кожица лука. Увеличение 1000×. Окраска йодом. На фотографии видно клеточное ядро. Кожица лука. Увеличение 1000×. Окраска азур-эозином. На фотографии в ядре заметно ядрышко

Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5–10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.

Картофель. Синие пятна — зёрна крахмала. Увеличение 100×. Окраска йодом.

На балконах часто скапливается большое количество трупиков летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что на крыльях насекомых есть волоски, которые защищают их от намокания. Большое поверхностное натяжение воды не позволяет капле «провалиться» сквозь волоски и коснуться крыла.

Плёнка на спине таракана. Увеличение 400×

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На снимках отчётливо видно, что это не пыль, а чешуйки с крыльев. Они имеют разную форму и довольно легко отрываются.

Чешуйки с крыльев моли. Увеличение 400×

Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Крыло бабочки боярышницы. Увеличение 100×

Не менее интересный объект для наблюдения — кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.

Кожура сливы. Увеличение 1000×

Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени — это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.

Хлоропласты в клетках травы. Увеличение 1000×

Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей — мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.

Хлоропласты в клетках водоросли. Увеличение 1000×

Сам себе исследователь

После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов — азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: эозинофил на фоне эритроцитов

Продолжая тему исследования крови, следует упомянуть камеру Горяева — устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: слева — моноцит, справа — лимфоцит

***

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.

Фото автора.

«Наука и жизнь» о микросъёмке:
Микроскоп «Аналит» — 1987, №1.
Ошанин С. Л. С микроскопом у пруда. — 1988, №8.
Ошанин С. Л. Невидимая миру жизнь. — 1989, №6.
Милославский В. Ю. Домашняя микрофотография. — 1998, №1.
Мологина Н. Фотоохота: макро и микро. — 2007, №4.

Как сделать микроскоп из мобильника. Макросъемка в домашних условиях. :: Это интересно!

У нас дома есть самый простенький ученический микроскоп. И мы с большим интересом периодически разглядываем в него микромир (вот тут я выкладывала фотки, которые мы через него делали:  «Мир через микроскоп», «Наблюдаем в микроскоп», «Улитки»). Хотя и увеличение у него совсем маленькое, и в пользовании он не самый удобный. Но он у нас очень востребован. И мы даже мечтаем о покупке современного хорошего микроскопа. А пока наши мечты ждут своего часа, Антон сделал нам домашний микроскоп буквально из подручных материалов — для него нужно всего лишь две вещи: мобильный телефон с фотокамерой и лазерная указка. 

Сразу скажу — действительно получается настоящий микроскоп! Правда, увеличение не намного больше, чем в нашем школьном. Но нам пока и так очень понравилось! Главное, тут можно сразу делать электронные фотографии того, что видишь!


Фото, полученные через самодельный микроскоп

Итак, для того, чтобы сделать микроскоп своими руками, нужно взять мобильный телефон с фотокамерой. Лучше всего, если у фотокамеры не будет автоматического фокуса или его можно будет выключить — тогда она хорошо ловит резкость. Например, мобильник мужа LENOVO фотографирует через линзу прекрасно, а мой LG вообще никак не может(((

Второе, что нужно взять, это линзу от лазерной указки. Знаете, продают такие среди детских игрушек, которые светят красным лучом. Или можно взять лазерный прицел от игрушечного автомата (мамы мальчиков знают, о чем я говорю). Нам из всего этого прибора понадобится только само стеклышко, через которое проходит луч. Оно совсем крохотное — обычно диаметром около 6-и мм.
После этого линзу нужно как-то зафиксировать так, чтобы «глазок» фотоаппарата мобильного телефона «смотрел» прямо сквозь нее. Можно хоть пинцетом держать. Но это неудобно. Поэтому Антон сделал своеобразную оправу из куска пластиковой упаковки-блистера. Проделал отверстие под диаметр линзы, при этом пластик приобрел необходимую толщину и упругость для крепления линзы. Очень важно линзу не поцарапать. Она тоже пластиковая и очень нежная. Лучше взять мягкий платок и все операции делать им или на нем.
Линза имеет две стороны — ровную и выпуклую. Нужно вставить ее в оправу так, чтобы выпуклая сторона была наружу, а ровная — к линзе фотоаппарата телефона.


1. Необходимые материалы

2. Готовим оправу для линзы из пластиковой упаковки

3. Вставляем линзу в оправу

4. Крепим линзу на глазок фотоаппарата с помощью скотча


Все! Микроскоп готов! Смотрите теперь на экран телефона — и вы увидите сильно увеличенное изображение! И фотографии делать очень просто — нажимаешь кнопочку, и — щелк! — огромные нити и или лист комнатного цветка у вас в электронном виде!

Вот посмотрите, что у нас получилось:
Соль «Экстра» мелкого помола под микроскопом

Сахар под микроскопом

Соль поваренная крупного помола под микроскопом

Тканевая салфетка под микроскопом

Шурупчик и монета под микроскопом

Денежная купюра под микроскопом

Чайная ложка под микроскопом

Еще одна чайная ложка под микроскопом

Обивка дивана под микроскопом

А зимою мы использовали этот микроскоп, чтобы делать Макрофотографии снежинок.

А тут я писала о других «самоделках» Антона: Проволочные головоломки, Наушники без проводов, Шум морского прибоя в ванной, Автоукачивалка на детскую кроватку, Люстра ручной работы в кухню, робот из ненужных деталек и Робот-компьютерная мышка, Робот-паук, Модель электрического мотора, Радистский (телеграфный) ключ, Водяная ракета, Паровая турбина, Светофор, Перископ.

Эта  статья участвует в апрельском Креативе у Лизы Арье

Детский микроскоп — мир в кармане: как сделать своими руками

Микроскопы позволяют вам рассматривать очень маленькие объекты. С помощью этого портативного микроскопа вы сможете разглядывать крошечные вещи в мельчайших подробностях. Вы можете исследовать растения, насекомых, даже земля при ближайшем рассмотрении может быть впечатляющей!

До этого я уже занимался проектами недорогих приспособлений и пару месяцев назад, в рамках научной программы, начал работу над самодельным микроскопом в домашних условиях.

Уникальными особенностями этого микроскопа являются:

  • Свободный дизайн, который вы сможете повторить
  • Встроенный отсек для подсветки — когда вы подсвечиваете микроскоп, многие вещи становятся более различимыми
  • Он открывает широкий угол обзора, и вы легко сможете рассмотреть исследуемый образец

Заметка об увеличении: у мини микроскопа есть две линзы: одна примерно 0,6 см диаметром (увеличение 80x), и вторая примерно 0,24 см диаметром (увеличение 140x). Несмотря на большее увеличение у второй линзы, я обычно предпочитаю пользоваться первой, ведь чем меньше линза, тем больше ей нужно света, а фокусировка становится сложнее и это приводит к большим трудностям при изучении образцов. Большое поле обзора у большей линзы делает её простой в использовании, а увеличения в 80 раз вполне хватает, чтобы рассмотреть все детали, невидимые невооруженному глазу.

Дочитайте статью до конца, и вы научитесь тому, как сделать детский микроскоп своими руками!

Шаг 1: Собираем материалы

Вот список материалов, нужных для сборки карманного микроскопа. В дополнение к этому списку, для изготовления корпуса вам будет необходим 3D принтер (или креативность для создания корпуса своими руками). Если не считать стеклянных шариков (линз), то, возможно, всё что нужно для сборки, вы сможете найти дома под рукой.

Я приобрёл шарики в McMaster:

  • Боросиликатный стеклянный шар на 1/4 дюйма (8996K25)
  • Боросиликатный стеклянный шар на 3/23 дюйма (8996K21)
  • дюймовый винт 4-40 (винт M3 длиной 25mm тоже подойдёт) (90283A115)
  • 5mm белый светодиод (например такой)
  • Батарейка CR2032
  • Скрепки (например такие)

Если ваш бюджет ограничен, то вы можете купить лишь стеклянный шарик — в то время как остальные части лишь добавляют функциональности, для работы микроскопа на самом деле необходим лишь этот шарик.

Шаг 2: Напечатайте корпус

Печать 3D — это наиболее доступный способ изготовления деталей для любителей сделать что-то своими руками. Я спроектировал корпус микроскопа для печати на принтере, но он может быть изготовлен из дерева или из обычного пластика.

Файлы для 3D принтера:
Файл STL для нижней части
Файл STL для верхней части

Батарейка выступает и вы можете волноваться из-за некоторого натяжения в отсеке для неё. Не волнуйтесь — вы уберёте лишний пластик, когда будете вставлять батарейку. Я не рекомендую добавлять опоры, потому что их будет сложно убрать.

Что, если у меня нет 3D принтера?

Если вы сбираетесь сделать корпус другим способом, то я добавил для вас чертёж с основными измерениями. Ваши габариты не должны очень точно совпадать с моими. Любая часть механизма, держащего линзу, находится на расстоянии менее 1 мм от изучаемого образца, и вы можете слегка двигать его вверх и вниз для фокусировки — это сработает.

Файлы

Шаг 3: Сборка микроскопа

Когда все части микроскопа находятся под рукой, можно приступить к сборке.

Вдавите линзы
Первым делом вдавите линзы в верхнюю часть корпуса. Большая линза помещается в большое отверстие, а маленькая в выступающую часть маленького отверстия.
Если какая-то из линз сидит неплотно, смажьте край корпуса суперклеем для её закрепления. Если же наоборот, линза не входит в отверстие при давлении пальцами, используйте кусочек пластика, чтобы вдавить её на место.

Скрутите две части корпуса вместе
Соедините верхнюю и нижнюю части микроскопа при помощи болта длиной примерно 25 мм. Если части корпуса сидят очень туго — срежьте немного пластика. Соединение должно быть надёжным, но не слишком тугим.

Вставьте скрепки
Скрепки будут держать ваши образцы на нужном месте. Вставьте их на свои места, как показано на фотографиях.

Вставьте батарейку
Возьмите батарейку 2032 и вставьте в отсек для батареек. Для этого нужно будет приложить небольшое усилие и вы можете отломить несколько кусочков пластика, которые заполняли зазор. Вставьте батарейку так глубоко, как это возможно.

Вставьте диод
Аккуратно вставьте ножки диода по обеим сторонам батарейки. Диод будет гореть только тогда, когда подключён правильным образом. Если ножки диода слишком длинные — немного обрежьте их. Если подсветка не требуется, можете вставить ножки светодиода по одну сторону батарейки — схема не будет замкнута, и заряд не будет тратиться.

Шаг 4: Подготовьте образец для изучения

Далее вам следует найти вещи, которые вы хотели бы изучить под микроскопом. Вам не нужно искать слишком усердно — даже простые вещи могут смотреться впечатляюще! Если вы ничего не находите — попробуйте начать с оторванного края обычной бумаги. Поместите образец под линзу и закрепите его скрепками.

Вот несколько советов по поиску хороших образцов для изучения:

  • Чем тоньше — тем лучше. Если свет не может проникнуть сквозь образец, то его будет сложнее изучить
  • Если ваш образец всё-таки толстый — рассмотрите его край
  • При фокусировке ищите легко различимую часть вашего образца, например, если вы изучаете лист растения — фокусируйтесь на жилке или каком-либо изъяне.
  • Закрепляйте маленькие предметы между двумя слоями прозрачной плёнки

Карманный детский микроскоп предназначен для закрепления слайдов микроскопа на фиксированном месте, поэтому вам не нужно делать стеклянные слайды (как это делается в лабораториях). «Сэндвич» из прозрачного скотча вполне подойдёт — просто остерегайтесь пузырьков воздуха, похожих на что-то интересное.

Еще один совет: листья растений высыхают и деформируются, поэтому приклеивание их на слайд микроскопа дольше сохраняет их форму.

Шаг 5: Используйте микроскоп

Теперь у вас есть рабочий микроскоп, и вы можете исследовать мир!

Как использовать микроскоп

Наиболее простым способом начать использовать микроскоп будет просто посмотреть через большую линзу с расстояния на что-то с хорошим узором. Я начал с разглядывания листьев бамбука, так как на них было много разных неровностей.

Чтобы сфокусироваться, двигайте руку вверх и вниз. Если у вас не получается, начните вплотную к образцу и постепенно удаляйте микроскоп, пока не попадёте в фокус.

Когда вы разберётесь, как фокусироваться и как выглядят вещи в фокусе, поднесите его к своему глазу. Микроскоп должен покрыть бОльшую часть вашего поля зрения и вы попадёте в микроскопический мир!

Что вы можете сделать при помощи карманного микроскопа

Всё выглядит совсем иначе в другом масштабе. На что похожа земля? Или песок? А пыль? Чем отличается свежий листок от сухого?

Микроскопия позволяет вам отвечать на вопросы об окружающем мире путём наблюдений. Вы можете даже перевернуть микроскоп и использовать просто линзу. Держите её напротив монитора компьютера или смартфона, и вы увидите отдельные пиксели и то, как различные комбинации цветов на экране складываются из отдельных красных, зеленых и синих пикселей. Попробуйте держать камеру поверх микроскопа и заснять то, что вы изучаете.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *