Site Loader

Содержание

Схема зарядного устройства для телефона

Содержание:

  1. Основные неисправности зарядных устройств
  2. Простая электронная схема
  3. Схема повышенной надежности
  4. Ремонт зарядника своими руками
  5. Видео

Количество мобильных средств связи, находящихся в активном пользовании, постоянно растет. К каждому из них идет зарядное устройство, поставляемое в комплекте. Однако далеко не все изделия выдерживают сроки, установленные производителями. Основные причины заключаются в низком качестве электрических сетей и самих устройств. Они часто ломаются и не всегда возможно быстро приобрести замену. В таких случаях требуется схема зарядного устройства для телефона, используя которую вполне возможно отремонтировать неисправный прибор или изготовить новый своими руками.

Основные неисправности зарядных устройств

Зарядное устройство считается наиболее слабым звеном, которым укомплектованы мобильные телефоны. Они часто выходят из строя из-за некачественных деталей, нестабильного сетевого напряжения или в результате обычных механических повреждений.

Наиболее простым и оптимальным вариантом считается приобретение нового прибора. Несмотря на различие производителей, общие схемы очень похожи друг на друга. По своей сути, это стандартный блокинг-генератор, выпрямляющий ток с помощью трансформатора. Зарядники могут отличаться конфигурацией разъема, у них могут быть разные схемы входных сетевых выпрямителей, выполненные в мостовом или однополупериодном варианте. Существуют различия в мелочах, не имеющих решающего значения.

Как показывает практика, основными неисправностями ЗУ являются следующие:

  • Пробой конденсатора, установленного за сетевым выпрямителем. В результате пробоя повреждается не только сам выпрямитель, но и постоянный резистор с низким сопротивлением, который просто сгорает. В подобных ситуациях резистор практически выполняет функции предохранителя.
  • Выход из строя транзистора. Как правило, многие схемы используют высоковольтные элементы повышенной мощности с маркировкой 13001 или 13003. Для ремонта можно воспользоваться изделием КТ940А отечественного производства.
  • Не запускается генерация из-за пробоя конденсатора. Выходное напряжение становится нестабильным, когда поврежденным оказывается стабилитрон.

Практически все корпуса зарядных устройств являются неразборными. Поэтому во многих случаях ремонт становится нецелесообразным и неэффективным. Гораздо проще воспользоваться готовым источником постоянного тока, подключив его к нужному кабелю и дополнив недостающими элементами.

Простая электронная схема

Основой многих современных зарядных устройств служат наиболее простые импульсные схемы блокинг-генераторов, содержащие всего лишь один высоковольтный транзистор. Они отличаются компактными размерами и способны выдавать требуемую мощность. Эти устройства совершенно безопасны в эксплуатации, поскольку любая неисправность ведет к полному отсутствию напряжения на выходе. Таким образом, исключается попадание в нагрузку высокого нестабилизированного напряжения.

Выпрямление переменного напряжения сети осуществляется диодом VD1. Некоторые схемы включают в себя целый диодный мост из 4-х элементов. Ограничение импульса тока в момент включения производится резистором R1, мощностью 0,25 Вт. В случае перегрузки он просто сгорает, предохраняя всю схему от выхода из строя.

Для сборки преобразователя используется обычная обратноходовая схема на основе транзистора VT1. Более стабильная работа обеспечивается резистором R2, запускающим генерацию в момент подачи питания. Дополнительная поддержка генерации происходит за счет конденсатора С1. Резистор R3 ограничивает базовый ток во время перегрузок и перепадов в сети.

Схема повышенной надежности

В данном случае входное напряжение выпрямляется за счет использования диодного моста VD1, конденсатора С1 и резистора, мощностью не ниже 0,5 Вт. В противном случае во время зарядки конденсатора при включении устройства, он может сгореть.

Конденсатор С1 должен обладать емкостью в микрофарадах, равной показателю мощности всего зарядника в ваттах. Основная схема преобразователя такая же, как и в предыдущем варианте, с транзистором VT1. Для ограничения тока используется эмиттер с датчиком тока на основе резистора R4, диода VD3 и транзистора VT2.

Данная схема зарядного устройства телефона ненамного сложнее предыдущей, но значительно эффективнее. Преобразователь может стабильно работать без каких-либо ограничений, несмотря на короткие замыкания и нагрузки. Транзистор VT1 защищен от выбросов ЭДС самоиндукции специальной цепочкой, состоящей из элементов VD4, C5, R6.

Необходимо ставить только высокочастотный диод, иначе схема вообще не будет работать. Данная цепочка может устанавливаться в любых аналогичных схемах. За счет нее корпус ключевого транзистора нагревается гораздо меньше, а срок службы всего преобразователя существенно увеличивается.

Выходное напряжение стабилизируется специальным элементом – стабилитроном DA1, установленным на выходе зарядки. Для гальванической развязки задействован оптрон V01.

Ремонт зарядника своими руками

Обладая некоторыми знаниями электротехники и практическими навыками работы с инструментом, можно попытаться отремонтировать зарядное устройство для сотовых телефонов собственными силами.

В первую очередь нужно вскрыть корпус зарядника. Если он разборный, потребуется соответствующая отвертка. При неразборном варианте придется действовать острыми предметами, разделяя зарядку по линии стыка половинок. Как правило, неразборная конструкция свидетельствует о низком качестве зарядников.

После разборки осуществляется визуальный осмотр платы с целью обнаружения дефектов. Чаще всего неисправные места отмечены следами от сгорания резисторов, а сама плата в этих точках будет более темной. На механические повреждения указывают трещины на корпусе и даже на самой плате, а также отогнутые контакты. Вполне достаточно загнуть их на свое место в сторону платы, чтобы возобновить поступление сетевого напряжения.

Нередко шнур на выходе устройства оказывается оборванным. Разрывы возникают чаще всего возле основания или непосредственно у штекера. Дефект выявляется путем прозвонки проводов и замеров сопротивления.

Если видимые повреждения отсутствуют, транзистор выпаивается и прозванивается. Вместо неисправного элемента подойдут детали от сгоревших энергосберегающих ламп. Все остальные делали – резисторы, диоды и конденсаторы – проверяются таким же образом и при необходимости меняются на исправные.

Как работает беспроводная зарядка для телефона и как ею пользоваться

Современные телефоны разряжаются довольно быстро, особенно если использовать их для просмотра фильмов и прохождения уровней в играх. Заряжать устройство посредством обычного кабеля не всегда удобно. Иногда длины шнура не хватает из-за нестандартного расположения розетки, а что происходит чаще всего – блок питания или разъём попросту выходит из строя. Производители смартфонов идут в ногу со временем, поэтому в магазинах можно встретить так называемые беспроводные зарядки. В основном они представляют собой платформу, на которую кладётся сам аппарат, после чего он начинает заряжаться без подключения с помощью провода. Давайте подробно рассмотрим, как работает беспроводная зарядка для телефона, а также разберёмся с принципом её использования.

Что такое беспроводная зарядка

беспроводная зарядкаПо названию можно догадаться, что беспроводная зарядка позволяет заряжать различные устройства без использования проводов. Это может быть не только телефон, но и камера, фотоаппарат, планшет, умные часы, наушники и прочая техника. Естественно, для того чтобы это работало, заряжаемое устройство должно поддерживать беспроводную зарядку. Если такой поддержки нет, то в некоторых случаях ее можно реализовать при помощи специального чехла.

Подобный способ зарядки значительно экономит время и позволяет отказаться от использования кабелей и разъемов. Пользователю достаточно положить свой телефон на специальную платформу, и аккумулятор в автоматическом режиме начнёт наполняться. А чтобы прервать процесс зарядки нужно просто взять устройство в руки, отнеся его от источника энергии на 5-10 см.

Стандарт беспроводной зарядки Qi

Многие думают, что беспроводная зарядка появилась совсем недавно, однако это ошибочное мнение. Компания Wireless Power Consortium еще в 2008 году представила технологию беспроводной зарядки, работающую по стандарту WPC. Такое название не закрепилось в памяти людей, поэтому в различной литературе и описаниях чаще всего можно встретить обозначение Qi.

В стандарте WPC прописано, что беспроводная зарядка работает благодаря двум катушкам, взаимодействующим между собой. Одна из них расположена в платформе, а другая – в телефоне пользователя. Поэтому и получается, что магнитное поле охватывает две катушки, тем самым заряжая батарею устройства.

стандарт беспроводной зарядки Qi

На сегодняшний день многие аэропорты и автовокзалы предлагают своим посетителям зарядить смартфон или планшет полностью без проводов. Как раз здесь и используется стандарт Qi. Однако не каждый телефон может заряжаться по «воздуху», поэтому если вы захотите приобрести подобную технологичную платформу, обязательно почитайте характеристики своего устройства.

Принцип работы беспроводной зарядки телефона

Принцип работы беспроводной зарядки довольно прост, конечно, если не вдаваться в физические подробности. Пользователь заранее подключает специальную платформу к источнику питания, а после кладёт на неё смартфон. Кажется, что всё так просто, но на деле же всё происходит немного иначе. В платформу встраивается индукционная катушка, которая выполняет функцию приёмника и передатчика.

Точно такая же катушка расположена и в телефоне пользователя. После подключения платформы к источнику тока вокруг катушки формируется магнитное поле. Когда вы кладёте телефон на саму панель между двумя катушками начинается взаимодействие. Электромагнитные волны преобразуются в электричество, которое и заряжает аккумулятор телефона.

принцип работы беспроводной зарядки

Более наглядно процесс представлен на изображении выше. Желтым цветом как раз и показаны магнитные волны, преобразующиеся в электроэнергию.

Что такое обратная беспроводная зарядка

Обратная беспроводная зарядка – это ещё более усовершенствованная версия этой технологии. Впервые она появилась в 2018 году на ряде смартфонов Huawei и Samsung. Её суть сводится к тому, что при помощи одного телефона можно заряжать другой, причём полностью без проводов.

обратная беспроводная зарядка

Достаточно прислонить два аппарата друг к другу и активировать необходимую функцию в настройках. Это очень удобно, так как избавляет людей от необходимости носить с собой портативные зарядки.

Как пользоваться беспроводной зарядкой

Пользоваться беспроводной зарядкой так же легко, как и обычной, работающей посредством подключения по кабелю. Однако для наглядности приводим подробную инструкцию:

  1. Подключите беспроводную зарядку к источнику питания. Это может быть USB-порт компьютера или обычная розетка. После выполнения этого действия устройство должно подать какой-то сигнал, чаще всего световой или звуковой.
  2. Расположите телефон на платформе беспроводной зарядки. Чаще всего особых требований к этому нет, но лучше класть телефон по центру блока. Если зарядка не началась, то проверьте, активирована ли в настройках подобная опция.

как пользоваться беспроводной зарядкой

Как видите, принцип действий очень даже простой, поэтому с ним справится любой пользователь.

Таким образом, беспроводная зарядка – это специальная платформа, на которую кладётся телефон для начала зарядки аккумулятора. Принцип её работы сводится к взаимодействию магнитных полей между двумя индукционными катушками, расположенными в телефоне и самом приборе.

Какие телефоны поддерживают беспроводную зарядку

Сейчас технология беспроводной зарядки активно набирает популярность и ее поддерживают все больше новых телефонов. На данный момент, заряжать без проводов можно практически все флагманские модели. Ниже мы приведем актуальный список моделей с беспроводной зарядкой.

Смартфоны Apple iPhone:

  • iPhone 8/8 Plus;
  • iPhone X;
  • iPhone XS, XS Max;
  • iPhone XR;
  • iPhone 11, 11 Pro, 11 Pro Max;

Смартфоны Huawei:

  • HUAWEI Mate 20 RS PORSCHE DESIGN;
  • HUAWEI Mate 20 Pro;
  • HUAWEI P30 Proа;
  • HUAWEI Mate 30, Mate 30 Pro;

Смартфоны Samsung:

  • Samsung Galaxy Note 5, Note 8, Note 9;
  • Samsung Galaxy S6/S6 Edge;
  • Samsung Galaxy S7/S7 Edge;
  • Samsung Galaxy S8/S8 Plus;
  • Samsung Galaxy S9/S9 Plus;
  • Samsung Galaxy S10e/S10/S10 Plus;
  • Samsung Galaxy Note 10+/Note 10;

Смартфоны LG:

Смартфоны Xiaomi:

  • Xiaomi Mi Mix 2S;
  • Xiaomi Mi Mix 3;
  • Xiaomi Mi 9;

Смартфоны Google Nexus и Pixel:

  • Nexus 4;
  • Nexus 5;
  • Nexus 6;
  • Google Pixel 3;
  • Google Pixel 3 XL;
  • Google Pixel 4, 4 XL;

Смартфоны Sony:

  • Sony Xperia XZ2 Premium;
  • Sony Xperia XZ3;

Смартфоны ZTE:

  • ZTE V975;
  • ZTE Axon 9 Pro;

Смартфоны Nokia:

  • Nokia Lumia 1520, 720, 735, 820, 830, 920, 928, 930, 950;
  • Nokia 8 Sirocco;

Смартфоны Doogee:

  • Doogee S80/S80 Lite;
  • Doogee S70;
  • Doogee S60/S60 Lite;

Смартфоны Blackview:

  • Blackview BV9600 Pro;
  • Blackview BV9500/BV9500 Pro;
  • Blackview BV6800 Pro;
  • Blackview BV5800 Pro;

схемы импульсных сетевых адаптеров для зарядки телефонов

Схемы импульсных сетевых адаптеров для зарядки телефонов

Схемы импульсных сетевых адаптеров для зарядки телефонов
Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

схемы импульсных сетевых адаптеров

Рис. 1
Простая импульсная схема блокинг-генератора


Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает… То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15…25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Схема сетевого адаптера

Рис. 2
Электрическая схема более сложного
преобразователя


Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250…350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10…20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

banner-turbobit-unlock