Site Loader

Содержание

Важно знать: как работает сотовая связь

Что такое сотовая связь?

Сотовая связь — разновидность радиосвязи, а значит есть устройство, отправляющее сигнал (например, ваш мобильный) и устройство, принимающее его (например, мобильный вашего друга). Между ними находятся базовые станции, которые ретранслируют сигнал. Чтобы вы могли сохранять непрерывную связь на больших расстояниях, без помех и двигаясь в пространстве, этих станций много. Они размещены так, чтобы их «круги охвата» краями накладывались друг на друга.

Что такое базовая станция?

Этот загадочный объект каждый видел, и неоднократно. Да, те самые сотовые вышки, которые стоят в поле. В крупных городах базовые станции обычно «прячут» на крышах домов. Одна такая станция может обслужить до 432 звонков одновременно.

Так выглядит типичная базовая станция на крыше многоэтажки. Фото: Depositphotos

Почему связь «сотовая»?

Если посмотреть сверху на схему сети базовых станций, то их пересекающиеся краями круги покрытия словно составляют пчелиные соты.

Что показывает значок сети?

Даже когда мы не совершаем звонков, телефон постоянно поддерживает сигнал с базовыми станциями. Принцип связи бывает нескольких разных видов, но суть в том, что поймав сигнал, испускаемый станцией, телефон в ответ отправляет свой идентификационный код, уникальный для каждого. Если обмен проходит штатно, у нас «есть сеть», если нет, связь прерывается.

Что происходит после того, как вы набрали чей-то номер телефона?

Читайте также

Первым делом ваш телефон связывается с базовой станцией. Он посылает ей сигнал, которым просит выделить канал для разговора.

Если сигнал принят, то дальше он обрабатывается контроллером базовой станции (BSC). Он управляет освобождением и сменой разговорных каналов. А от BSC сигнал идет на коммутатор.

Если вы представили себе девушек, вручную перетыкающих штекеры соединений, то развидьте. Коммутатор автоматически ищет другой коммутатор, максимально близко расположенный к адресату вашего звонка. Для начала он проверяет, вашего адресата: он из вашей сотовой сети, или абонент другого оператора? Если операторы разные, ваш коммутатор радостно «сваливает работу» на такой же коммутатор этого самого оператора.

Свой или чужой, главное что в итоге ближайший ко второму абоненту коммутатор передает на контроллер сигнала. А этот BSC через самую ближнюю к адресату звонка базовую станцию выделяет голосовой канал для ответа, и ваш друг слышит, что вы ему звоните.

Изображение: Tеле2

Почему иногда внезапно пропадает связь?

Если телефон исправен, то это как правило либо разрыв в покрытии базовых станций, либо их перегрузка.

Разрыв случается там, где не достает мощности сигнала. Например, в подземном переходе. А еще из-за классического «гладко было на бумаге, да забыли про овраги». Покрытие базовой станции образует круг при условии ровного плоского рельефа. Гора, впадина, балка — и края «сот» разомкнулись, получилась «дырка».

Перегрузка возникает из-за того, что каждая базовая станция обеспечивает ограниченное число каналов связи. Если вы на многотысячном концерте, а местная станция может «поднять» несколько сотен звонков, то будьте уверены: связаться ни с кем нормально не получится.

Это тоже интересно:

Как устроена сотовая связь — Страница Виртуальных Путешественников — ЖЖ

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети.

Сложно? Давайте разберемся подробнее.

Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи.

Базовая Станция может работать в трех диапазонах:

900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий
1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе
2100 МГц — Сеть 3G

Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров…

Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах.

Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется.

Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем.

Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга.

SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала.

Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками.

Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле.

С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую.

Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов.

Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка».

ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка».

Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования.

За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Понимаю, что у вас осталась куча вопросов о том, как устроена сотовая сеть. Тема сложная, и я попросил специалиста из «Билайн» помочь мне отвечать на ваши комментарии. Единственная просьба — придерживайтесь темы. А вопросы типа «Билайн редиски. Украли у меня 3 рубля со счета» — адресуйте абонентской службе 0611.

Завтра будет пост о том, как передо мной выпрыгнул кит, а я не успел его сфотографировать. Stay Tuned!


Как работает сотовая связь

Многие задумываются о том, как работают сотовые сети, что происходит, когда мы нажимаем на кнопку вызова? Звоня друг другу, зачастую вызываемый абонент находится не только в пределах одного города, но даже и на другом континенте. Как же работает сотовая связь?


ПРИНЦИП ДЕЙСТВИЯ СОТОВОЙ СВЯЗИ

На большей части территории нашей страны размещается оборудование для сотовой связи, называется оно базовые станции. Их хорошо заметно на открытых площадях – в полях, между населенными пунктами. В городской черте их часто размещают на крышах зданий. Базовая станция способна уловить сигнал от смартфона на расстоянии до тридцати пяти километров, контакт между вышками осуществляется посредством специального служебного или голосового сигнала.

Активное развитие мобильной связи породило проблему, заключающуюся в ограничении частоты, а именно, рабочие каналы, расположенные близко, начали перекликаться, создавая помехи. Много лет наза была предложена идея, по которой определенный участок обслуживания оператором сотовой связи необходимо разбить на ячейки. Каждая ячейка обслуживается специальным передатчиком, предполагающим фиксированный частотный диапазон и радиус действия. Такая система исключает помехи при использовании той же частоты, но уже в другой соте. Чтобы разделить определенную площадь на равные участки наиболее оптимальной является фигура с шестью углами, напоминающая пчелиную соту, так как установленная в центе соты антенна с круговой диаграммой будет обеспечивать свободный устойчивый доступ ко всем точкам ячейки. У всех сот есть собственная полоса частот и обслуживающая базовая станция. Ячейки смежного расположения не используют одинаковые частоты, тем самым исключая перекрестные помехи и интерференции, и наоборот, соты, располагающиеся далеко друг от друга могут использовать идентичные частоты.

КАК РАБОТАЮТ БАЗОВЫЕ СТАНЦИИ

Когда смартфон пребывает в режиме ожидания, его приёмный механизм сканирует каналы системы. Если пользователь собираясь совершить звонок набирает номер аппарат автоматически находит станцию, которая располагается к нему ближе и посылает запрос о выделении голосового канала. Те базовые станции, которые принимают ответный сигнал, перенаправляют его данные в центр коммутации, где происходит переключение разговора на ближайшую станцию к вызываемому абоненту с более высоким уровнем сигнала. В центре коммутации, также, определяют, какой оператор мобильной связи используется вызываемым абонентом.

В том случае, если звонок осуществляется между абонентами внутри одной сети, то в центре коммутации сразу происходит идентификация месторасположения вызываемого абонента, причем, неважно где находится человек: дома, в транспорте или в командировке в другой стране. Физическое месторасположение абонента ни коим образом не помешает соединению и осуществлению звонка. Если в центр коммутации поступает информация о том, что вызываемый абонент использует оператора другой связи, тогда запрос будет отправлен в центр коммутации другой сети. В общем-то, выходит, что система довольно проста, и как работает сотовая связь понятно. Интересным остается вопрос, как же выглядит устройство базовой станции: и здесь все просто – это всего лишь несколько металлических тумб, располагающихся на крышах зданий и для бесперебойной их работы достаточно качественной вентиляции.

ПРОБЛЕМЫ УСТОЙЧИВОСТИ СВЯЗИ

Понятно, что в момент набора номера аппарат занимает незанятый канал с максимально возможным уровнем сигнала. Но, если в процессе разговора абонент начинает удаляться от базовой станции или условия расширения радиоволн ухудшатся – все это неблагоприятным образом скажется на связи и ее качестве. Логично, что ее улучшение происходит после переключения абонентов на другие, более устойчивые, каналы связи.

Каждая базовая станция имеет антенну, состоящую из нескольких элементов, так называемых секторов, отвечающих за «свою» площадь. Вертикальная составляющая антенны ответственна за связь с мобильными аппаратами, круглая – с контроллером. С учетом того, что одна станция чаще всего состоит из 6-ти секторов, и каждый из них способен принять минимум 70 звонков, после нехитрых вычислений выходит, что обслужить более 400 абонентов одновременно для нее не проблема. Такой производительности, зачастую, вполне достаточно. Но, случаются и внештатные ситуации, когда все абоненты всех операторов мобильной связи начинают звонить, например, на большие праздники (Новый Год), и базовые станции просто не справляются — начинаются перебои и помехи. Тем не менее для средней загрузки шести секторов более чем достаточно.

Следует отметить, что в зависимости от площади населенного пункта и плотности населения операторы мобильной связи устанавливают базовые станции с разным диапазоном частот:
900 МГц. Установка такой станции более целесообразна в небольших городках, поселках городского типа и т.д. В данном режиме базовая станция охватывает площадь радиусом порядка 35 км, или даже 70 км если на данный момент она обслуживает малое количество мобильных устройств.
1 800 МГц. Оптимальный вариант для больших городов, когда необходимо проникнуть сквозь толщину бетонной стены, однако, даже при таком диапазоне частот в городской черте базовых станций понадобится намного больше, чем в малонаселенных пунктах.
2 100 МГц. Это связь нового, более современного поколения 3G.

Одна базовая станция способна поддерживать сразу все возможные частотные диапазоны. Основная задача базовых станций заключается в том, чтобы покрыть максимальную площадь земли и обеспечить большое количество абонентов качественной связью. То есть улавливать сигналы на таких же расстояниях, но не на земле, а в воздушном пространстве базовые станции не могут.

Официальный магазин смартфонов Highscreen
Каталог мобильных телефонов Хайскрин

Как устроена сеть сотовой связи GSM/UMTS / Хабр

В комментариях к постам про сеть WiMAX (

1

,

2

) и про

GPRS

был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети — сеть радиодоступа (RAN — Radio Access Network) и сеть коммутации или опорную сеть (CN — Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Существующие сети радиодоступа у наших операторов — продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN — GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN — UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа — оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа — эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть — ядро сетей сотовой связи. Название опорная — мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS — Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже — её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части — верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах — проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи 🙂

HLR — Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько — они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки — в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири — 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
— может ли абонент совершать исходящие звонки
— может ли абонент отправлять/принимать SMS
— разрешена ли услуга конференц-связи
— ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC — Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR — Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.

MSC — классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции — для исходящего вызова — определить куда переключить вызов, для входящего же соединения — определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR — MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC — AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте — на радиоинтерфейсе.

GMSC — Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN — Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN — Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC — Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями — назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга — через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC — TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS — Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути — довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки — это не есть базовая станция 🙂 Базовая станция похожа на холодильник — шкафчик с модулями, который стоит в специальном месте. Это специальное место — например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.

Более подробно можно почитать в недавно опубликованной статье про базовые станции.

RNC — Radio Network Controller, контроллер сети радиодоступа. По сути выступает в той же роли, что BSC в GERAN.

NodeB, базовая станция в UMTS. Аналог BTS в GSM.

В целом, здесь описаны все жизненно важные элементы сети GSM/UMTS. Здесь я не упоминал ещё некоторые узлы, такие как SMS-C (SMS-Center), MMS-C (MMS-Center), WAP-GW (WAP-Gateway).

Если статья вызовет интерес, то в дальнейшем могу рассказать более подробно про сети радиодоступа GERAN и UTRAN, потому что я занимаюсь по большей части именно радийными вещами.

Также уже есть идеи для ряда статей на основе вопросов, вызвавших интерес, в комментариях к статьям по телекоммуникациям, пока не буду раскрывать интригу — задавайте интересные вопросы — будут интересные статьи! 😉

UPD: в комментариях отписались эксперты в своих областях, что очень интересно почитать:
1. Ветка про ПО, устанавливаемом на оборудовании;
2. Ветка про отличия наших (СНГшных) сетей и сетей в Европе/США/Азии;
3. Комментрии от пользователя DeSh с поправлениями и уточнениями: тыц, тыц.
Да и вообще в комментариях довольно много всего интересного всплыло помимо выделенных мной комментариев.

FAQ про работу сотовой сети для самых маленьких / Блог компании Билайн Бизнес / Хабр

— В чём отличие сотовой связи от связи с помощью раций?
Связь — это так называемый вариант точка-многоточка, когда информация от одной рации передается на выделенной частоте, и все, кто настроен на ту же частоту, слышат вызов. Пока у вас 10 абонентов — всё просто. Когда людей становится больше, начинают быстро разбирать частоты, и очень скоро новые разговоры создавать негде – свободных частот не остается. Сотовая связь использует тот же частотный канал, но не отдает его в безраздельную собственность одного абонента, а разделяет его между несколькими, каждому выделяя лишь короткий промежуток времени для передачи информации. Вы можете в этом случае использовать частоты эффективнее и уметь соединять людей друг с другом напрямую. Однако для того, чтобы быстро обработать такой поток информации и разделить информацию одному абоненту в частотном канале от информации другому, необходим новый узел, который будет производить необходимые вычисления – появляется базовая станция или ретранслятор.

— Ок, пока просто. Пропустим пару шагов эволюции инфраструктуры, что получится?
Телефон связывается с ближайшим ретранслятором (базовой станцией), она доставляет данные в контроллер базовых станций и далее через голосовую Core Network несёт на другую базовую станцию, которую использует второй абонент. Та, в свою очередь, отдаёт данные и голос ему. Таким образом, каждый абонент имеет точку входа в общую сеть, а сеть обеспечивает коммутацию и доставку информации.

— А как делается авторизация в такой сети?
По специальному ключу. В вашу SIM-карту, кроме процессора, оперативки и средств I/O, вшит ключ, позволяющий авторизоваться в сотовой сети. Этот же ключ, с использованием других алгоритмов, обеспечивает шифрование сигнала: разговоры в сотовой сети «закрываются».

— А откуда базовая станция знает, что вызываемый абонент находится на её территории покрытия?
Когда абонент звонит другому абоненту, от голосовой Core Network приходит команда на все базовые станции, с требованием проверить наличие вызываемого абонента: что-то вроде «Вася, ты тут?». Эта процедура проверки называется Paging. По идее, телефон абонента отвечает одной из них, что он здесь. Дальше устанавливается соединение через нужные узлы. Но с ростом количества базовых станций их стали объединять в географические группы – Location Area, которые управляются с узла голосового коммутатора — MSC.

— Ок, новый тип узла, коммутатор. Что он делает?
Переходим на новый уровень сложности. Есть регионы, в каждом из них — своя группа базовых станций, координируемая общим узлом-контроллером. Контроллер обеспечивает подключение к себе всех базовых станций, и сбор от них звонков абонентов. Но что с этими звонками делать, он не знает и передает всю информацию на тот самый Коммутатор. Коммутатор знает, где и когда последний раз находился каждый абонент в его зоне действия, и поэтому, когда вы звоните Васе:

  1. Сначала ваш телефон по радиоканалу передает звонок на БС.
  2. БС ретранслирует данные до контроллера
  3. Контроллер передает те же данные на коммутатор
  4. Коммутатор проверяет номер, который вы вызываете – есть ли такой в зоне его обслуживания?
  5. Если да, коммутатор отправляет вызов в нужную Location Area, чтобы получить ответ от базовой станции, где последний раз регистрировался Вася
  6. Если такой номер не принадлежит нашему коммутатору, он отправляет вызов на другой коммутатор в соответствии с имеющимися у него таблицами маршрутизации и ищет нашего Васю в других сетях
  7. Коммутатор другой сети также отправляет вызов своим базовым станциям по известной ему Location Area, где последний раз регистрировался Вася
  8. Одна из базовых станций отвечает на наш вызов, и вы, наконец, можете начать разговор.

— Ладно, а как коммутатор узнает, что Вася в его зоне (LA)?

Базовые станции имеют код зоны — LAC. Когда ваш телефон переключается на базовую станцию, LAC которой отличается от предыдущего использованного, отправляется специальный пакет с обновлением расположения — Location Area Update. Этот сигнальный пакет обрабатывается коммутатором, в нем же сохраняется информация, что ваш телефон зарегистрирован на базовой станции с новым LAC. В будущем все вызовы на ваш номер будут отправляться по базовым станциям имеющим данный LAC, пока коммутатор не получит новый пакет Location Area Update, где будет информации о новом географическом коде. Кроме того, на всякий случай такой пакет отправляется раз в несколько часов, даже если вы не сдвигаетесь с места.

— То есть когда телефон лежит около колонок, и они делают странные звуки — это не пришельцы меня слушают?
Нет, это просто Location Area Update или какой-то другой сигнальный пакет, которые телефон передает и принимает регулярно, даже если вы с ним ничего не делаете.

— Кто строит базовые станции?
Сотовые операторы. Или точнее их подрядчики, которые имеют соответствующие лицензии на строительство и опыт работы. Как показывает нехитрый подсчёт, на Россию нужно от нескольких десятков до нескольких сотен тысяч базовых станций для покрытия 95% территории. Очень приблизительно, одна БС стоит около 2 миллионов — это по затратам как открыть маленький ресторан. Это ещё если нашёлся подходящий годный столб. Если столба нет — смело пишите до 8 миллионов, особенно, если вышка где-то в степи или на горе со сложным доступом.

— Из чего состоит инфраструктура оператора и куда идут мои деньги?
Кроме базовых станций, контроллеров, коммутаторов, магистральных транспортных линий и других узлов сети (которых только чтобы перечислить, потребуется полстраницы) нужны склады запчастей, инженерные службы, сервис и так далее. Базовые станции на домах требуют арендных отчислений собственникам, людям нужна зарплата, оборудование нужно менять, проводить техническое обслуживание, оплачивать счета за электричество, потребляемое оборудованием. Плюс операторы постоянно расширяются — это новое железо, обновление старого, новый софт. А ещё есть офисы с теми, кто пишет ПО, колл-центры, аналитики, маркетинг, реклама, салоны продаж и подключений — в общем, полный набор.

— Стойте-стойте, забыли ЦОД!
Верно, для работы сотового оператора нужно обрабатывать огромное количество данных. Именно поэтому сотовые операторы обычно обладают не только хорошей магистральной сетью, но и наиболее современными дата-центрами. В дата-центрах считается всё. Одна из самых ресурсоёмких задач — подсчёт баланса в реальном времени. Кстати, операторы сотовых сетей настолько давно и успешно работают с ЦОД-ами, что их опытом и ресурсами пользуются многие другие – арендуя ресурсы дата-центров сотовых операторов для своих проектов.

— Ок, тут понятно. А как взаимосвязаны сети разных операторов?
Принцип примерно похож на вызов одним коммутатором другого. Упрощая, вы связываетесь с БС, она — с контроллером, тот — с коммутатором, а коммутатор ищет узел входа в другую сеть по номеру вызываемого абонента. Коммутатор родной сети находит нужный номер в своих таблицах и определяет, на какой внешний коммутатор необходимо отправить вызов, после чего создается маршрут до нужного узла.

— А роуминг?
Телефон обычно пробует найти домашнюю сеть. Если это не получается, он начинает искать другие сети и пытается в них регистрироваться. Коммутатор сотовой сети, где вы пытаетесь зарегистрироваться, проверяет, есть ли у данного оператора роуминговое соглашение с вашим домашним оператором. Если такое разрешение находится, коммутатор точно знает, что абонентов вроде вас можно обслуживать, и вы получите связь. Например, когда вы приезжаете в новую страну, вас почти сразу «подхватывает» другая сеть, с которой у вашего оператора есть соглашение. Эти соглашения в большинстве очень редко обновляются, поэтому цены на трафик могут быть очень высокими. Там, где у вас есть безлимитный трафик в роуминге, скорее всего, соглашение было обновлено относительно недавно невероятной кровью юридических отделов обоих операторов.

— Можно ли выйти в роуминг в своём регионе?
Технически — да, другой оператор имеет возможность вас «подхватить». Но чтобы так не случилось, ваша SIM содержит настройки не цепляться к чужим отечественным сетям, а коммутаторы чужих сетей не разрешают вашему телефону регистрироваться на базовых станциях неродного оператора. Иначе бы вы оказывались в роуминге в лифте, на границе области и так далее. Исключение — аварийный межсетевой роуминг, когда все сети работают для всех абонентов во время чрезвычайных ситуаций. Ну и всегда нужно помнить, что звонки в службу спасения можно делать всегда, даже через чужую сеть! Когда на вашем экране появляется надпись «Только экстренные вызовы» или «SOS» это означает, что ваш оператор в данном месте не имеет своих базовых станций, но через сеть другого оператора вы можете сделать бесплатный звонок на экстренный номер «112».

— Почему телефоны Verizon не работают в РФ?
Причин может быть масса. Самая распространенная – «залочка» телефона под конкретный код сети оператора. Согласно стандарту сотовой связи, каждый оператор имеет уникальный код, который не повторяется нигде в мире, и технически довольно легко обеспечить при включении телефона проверку SIM карты – тот ли код сети на ней использован. Другая возможная причина — в каждой стране используются свои частоты для организации связи, и у каждого оператора лицензия на определённые диапазоны. Соответственно, если устройство вдруг не поддерживает диапазоны, используемые в РФ, работать в отечественных сетях оно не будет.

— Что надо знать про транспорт до БС?
Транспортный канал требуется каждой базовой станции, чтобы передавать информацию от абонентов, которая собирается через радиоканалы. Чаще всего транспорт до базовой станции сегодня — либо радиорелейный канал (РРЛ), либо кабели: медные и оптические. Оптика быстрая и крутая, медь дешевле и проще в использовании, а радио позволяет не класть кабель там, где это сложно или дорого делать. Учитывая, что каналы резервируются кольцами, обычная архитектура — пара оптических колец на город и область, плюс ветки базовых станций на медном транспорте и выносы на 1-2 хопа по РРЛ.


Чебоксары и Новочебоксарск, схема конца 2012 года

— Что с магистралями?
Только оптика, причём, сегодня — со спектральным уплотнением (DWDM). Для надежности — тоже кольца. Главный враг магистрали — экскаватор, который решил покопать там, где лежит кабель-канал. И даже красная ленточка с предупреждениями за полметра до кабеля не спасает — её обычно снимают с ковша уже постфактум.

— Чем отличаются 2G, 3G и 4G?
Это разные поколения стандартов сотовой сети, о чем можно догадаться по буковке G, которая означает Generation. Сети 2G, в основном, предназначены для передачи голоса, скорости передачи данных там очень невысоки по современным меркам. В сетях 3G можно передавать высококачественный голос, и одновременно предоставлять сервис передачи данных с высокой скоростью. Сети 4G сейчас являются сетями последнего поколения и предназначены только для высокоскоростных сервисов передачи данных, коммутация голосовых каналов в этой сети не предусмотрена стандартом, так что стоит помнить: даже если оператор предоставляет услуги голоса в сетях 4G, это какой-то вариант передачи голоса в IP сетях. Как правило, на одном сайте устанавливается несколько комплектов оборудования для создания сетей разных стандартов, которые предоставляют абонентам разные сервисы. В ближайших планах — замена множества разнотипных блоков базовых станций на общие – мультистандартные. Стандарты сотовой сети отличаются массой технического функционала, но вы этого почти не видите. Наиболее значимые отличия для обычного абонента — разная скорость интернета, разные зоны покрытия, разное качество голоса (HD-Voice очень крут).

Как работает сотовая связь для чайников

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, — его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, — его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Как это работает. Базовые станции сотовых операторов в Воронежской области. Последние свежие новости Воронежа и области

Ежегодно операторы сотовой связи запускают в Воронеже и области новые станции. Они нужны в первую очередь для повышения качества мобильной связи – ведь требования к скорости постоянно увеличиваются. Благодаря базовым станциям абоненты имеют бесперебойную сотовую связь и доступ к интернету. Вместе с тем соседство сотовых станций с жилыми домами вызывает у людей беспокойство: они боятся, что электромагнитное излучение приведет к неблагоприятным последствиям для здоровья.

Почему возникает радиофобия, может ли излучение от вышек влиять на человека, какие существуют нормативы к установке станций на крышах жилых домов и кто контролирует следование им – в материале РИА «Воронеж».

Как работает сотовая связь?

Общая зона покрытия делится на участки (соты), определяющиеся зонами покрытия отдельных базовых станций. Соты частично перекрываются и вместе образуют сеть. Определенную часть населенного пункта или территории обслуживают сразу несколько базовых станций, подключенных к специальному блоку – контроллеру локальной зоны.

– Сотовый телефон и базовая станция поддерживают постоянный радиоконтакт. При вызове телефон связывается с ближайшей базовой станцией и «просит» выделить голосовой канал. Базовая станция отправляет запрос на контроллер, а тот переадресует его на коммутатор. Коммутатор выясняет, где в данный момент находится вызываемый абонент, и переводит звонок на соответствующий коммутатор, откуда тот его переправит на контроллер, затем – на базовую станцию, которая соединяется с необходимым телефоном, – пояснил технический директор макрорегиона «Черноземье» Tele2 Александр Гречишников.

В последние годы одним из параметров, по которым оценивают качество связи, является скорость интернета. Почти 20 лет назад мы пользовались 2G-сетью до 364 Кбит/с, позже у нас появился 3G-доступ до 42 Мбит/с, затем мы стали пользоваться 4G-скоростями до 100 Мбит/c, а сейчас операторы в регионах активно запускают технологию передачи данных LTE-Advanced до 300 Мбит/с. Все они работают в разных диапазонах частот – путях, по которым следует передаваемая информация. Для 2G достаточно 900 и 1800 Мгц, 3G – 900 и 2100 Мгц, 4G работает во всех частотных диапазонах, в том числе в 2600 Мгц. Технология LTE-Advanced на данный момент позволяет качать трафик с максимальной скоростью, не только потому, что работает в самом широком диапазоне (2600 Мгц), но еще и потому, что объединяет сразу две радиочастоты (20 Мгц + 20 Мгц). Понятно, что чем больше диапазон частот, тем шире дорога и тем быстрее проходит сигнал, тем больше абонентов одновременно может качать информацию. 

Почему операторы сотовой связи не размещают сотовые вышки за городом?

Операторы размещают базовые станции в максимально допустимой близости к источнику трафика, чтобы предоставить абонентам качественные услуги голосовой связи и обеспечить высокую скорость мобильного интернета. Размещение технических объектов производится в строгом соответствии с санитарными нормами. Расстояние между базовой станцией и мобильным устройством влияет на качество сигнала между ними. Чем дальше телефон находится от базовой станции, тем больше абонентское устройство увеличивает свою выходную мощность. Частое расположение базовых станций как раз снижает уровень излучения устройств.

Операторы строят свои базовые станции в населенных пунктах, чтобы обеспечить наиболее качественный сигнал без обрывов. Находясь за пределами города, базовые станции не смогут обеспечить надежное покрытие по всей территории. Во-первых, даже если они будут работать на полную мощность, по законам физики сигнал все равно будет ослабевать в несколько раз пропорционально квадрату расстояния. А толстые стены строений будут еще одной ощутимой помехой для его проникновения. Таким образом, нельзя гарантировать стопроцентно надежную сеть. А это в первую очередь серьезные риски для абонентов. 

Кто контролирует деятельность базовых станций?

За соблюдением всех санитарных требований и норм следит Роспотребнадзор. Только после экспертного заключения ведомства выдается разрешительная документация на размещение новых базовых станций и оформляются соответствующие санитарно-эпидемиологические заключения. А проверяет базовые станции на электромагнитное излучение подведомственное учреждение – Центр гигиены и эпидемиологии Воронежской области.

Специалисты радиологической лаборатории проводят инструментальный контроль уровней электромагнитных полей не реже одного раза в три года. В зависимости от результатов динамического наблюдения периодичность проведения измерений могут сокращать по решению соответствующего центра Госсанэпиднадзора, но не чаще чем раз в год.

– Если жильцы дома, соседствующего с базовой станцией, сомневаются в законности установки вышки, они могут заключить договор с организацией, аккредитованной на проведение измерений уровней электромагнитных полей от базовых станций сотовой связи, с предоставлением сведений, необходимых для соответствующих измерений. Это сведения о рабочих частотах, направлениях излучения антенн. Если проверка выявит превышение допустимого уровня излучения или нарушения в установке, от оператора в судебном порядке потребуют изменений вплоть до демонтажа станций, – сообщили в регуправлении Роспотребнадзора.

Каковы нормы для установки мобильных ретрансляторов на крышах жилых домов?

Уровень допустимого электромагнитного излучения контролирует управление Роспотребнадзора по региону, ориентируясь на «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи» (СанПиН 2.1.8/2.2.4.1190-03) и «Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов» (СанПиН 2.1.8/2.2.4.1383-03). Размещение объектов сотовой инфраструктуры, в том числе базовых станций, планируется так, чтобы до минимума снизить воздействие электромагнитных полей на людей. Диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, чтобы основной сигнал был направлен выше жилых домов, промышленных зданий и сооружений.

Согласно нормативам, операторам сотовой связи рекомендуется размещать антенны на отдельно стоящих опорах и мачтах, минимальное расстояние от жилого дома до вышки должно составлять 7 м. Высота стандартной вышки – 29 м, ее антенны монтируются в верхней части. Мобильные ретрансляторы располагают на высоте до 5 м от поверхности крыши.

Качественное покрытие сети по всей территории города могут обеспечить плотная застройка и правильное расположение объектов связи. Дело в том, что радиоволны не проникают в любую точку с одинаковой мощностью. Преградами могут стать толстые стены домов. Чтобы сеть была надежной, оператор устанавливает базовые станции не только на специальных конструкциях, но и на зданиях. Тогда радиоволны можно направить по конкретному маршруту и обеспечить качественный сигнал без обрывов в конкретной части населенного пункта.

Если базовая станция построена на жилом доме, требуется еще и согласие жильцов. В остальном надзорные органы предъявляют к установке базовой станции на крыше жилого дома такие же требования, что и к строительству объекта на мачте. Это в том числе оформление разрешения на использование радиочастот и регистрация самой базовой станции – причем место размещения РЭС, высота подвеса антенны должны соответствовать условиям использования радиочастот. На первом этапе строительства оператор предоставляет в Роспотребнадзор проектную документацию. Перед установкой передающих радиотехнических объектов (ПРТО) сотрудники санитарно-эпидемиологического контроля дают соответствующее заключение, подтверждающее безопасность базовой станции. В России одни из самых строгих в мире норм к работе ПРТО.

Сколько сотовых вышек в Воронежской области?

С марта 2005 года по октябрь 2019-го управление Роспотребнадзора по региону выдало 4790 санитарно-эпидемиологических заключений на проектную документацию базовых станций. Это показатель с учетом проектов модернизации базовых станций и иных оснований для переоформления санитарно-эпидемиологических заключений.

Опасны ли радиоволны от базовых вышек?

По данным Роскомнадзора, госстандарты в России полностью исключают опасное для здоровья воздействие электромагнитных волн на организм человека.

Установка и эксплуатация базовых станций сотовых операторов, так же как и уровень допустимого электромагнитного излучения, строго регулируются законодательством и контролируются уполномоченными государственными органами. Размещение вышек планируется так, чтобы снизить до минимума воздействие электромагнитных полей на людей. К тому же излучение базовых станций не постоянно – ночью их загрузка практически равна нулю. Все это позволяет отнести их к наиболее безопасным средствам связи.

– Российские нормативы – 10 мкВт/см². В ряде европейских стран эта норма в десять раз выше. В течение дня уровень излучения от базовой станции значительно ниже, чем от смартфона или домашнего радиотелефона, притом их уровни значительно ниже действующих в России санитарных норм, – добавил Александр Гречишников.


Фото – pixabay.com

Специалисты отметили: в общем фоне радиоизлучения – одновременной работы мобильных телефонов, теле- и радиостанций, бытовых электрических приборов, СВЧ-печей, Wi-Fi-роутеров и высоковольтных линий – доля излучения от базовых станций сотовой связи составляет менее 1%. Человек поглощает в пять раз больше сигналов от радиоприемника и телевизора, потому что частоты, используемые в радиовещании (около 100 МГц) и телевещании (около 300-0400 МГц), ниже частот, используемых в мобильной телефонной связи (900 МГц и 1800 МГц). Кроме того, благодаря своему росту человек сам представляет эффективную приемную антенну.

Когда базовая станция находится слишком далеко от мобильного телефона, тот работает на пределе мощности в поисках сигнала, что в разы увеличивает его радиоизлучение.

По законам физики радиоволны не могут проникать в любую точку с одинаковым уровнем сигнала. Они ослабевают пропорционально квадрату расстояния – это значит, что уже в 2 м от базовой станции они будут в четыре раза менее интенсивными. С учетом того, что базовые станции устанавливаются либо на крышах строений, либо на столбах, у находящихся в радиусе их действия людей нет причин волноваться.

Как объяснили в компании МТС, в подавляющем большинстве случаев электромагнитное излучение от базовой станции не фиксируют приборы: предельно допустимая плотность потока энергии для частот, на которых работают российские базовые станции, в десятки раз ниже принятых во всем мире стандартов.

– Таким образом, страхи по поводу излучения не имеют под собой реальных оснований: обычная лампочка-«сотка» в пять раз мощнее, чем антенна базовой станции, – подытожили в компании.

О безопасности излучения базовых станций также говорится в заключении Всемирной организации здравоохранения: «Все фактические данные, имеющиеся на сегодняшний день, свидетельствуют о том, что воздействие радиочастотных сигналов, испускаемых базовыми станциями, не приводит к каким-либо неблагоприятным кратко- или долговременным последствиям для здоровья».

Что такое радиофобия и почему она возникает?

Медицинского диагноза «радиофобия» не существует. Под радиофобией подразумевают нервно-соматические психические и физиологические расстройства, выражающиеся в необоснованной боязни человеком электромагнитного излучения. Психотическое состояние связано с расстройством мышления, нарушением восприятия реальности, отсутствием осознания болезни и нелепым поведением. Радиофоб чувствует на себе действие волн физически, а это уже симптомы шизофрении и ряда других серьезных заболеваний.

Летом 2019 года российские СМИ сообщили сразу о двух случаях повреждения вышек сотовой связи жителями. В Тверской области мужчина подпилил опору вышки, излучение которой, по его мнению, уничтожило урожай овощей и фруктов на его участке. А жительница Свердловской области попыталась сжечь вышку. Поджигательница страдала недомоганием и бессонницей и связала причину своего плохого самочувствия с расположенной недалеко от дома вышкой связи.

– Фобия – это болезненный, навязчивый и необоснованный страх, охватывающий человека в определенных ситуациях и вызывающий вегетативные нарушения, например, усиление сердцебиения и потоотделения. Человек, страдающий фобией, пытается избежать ситуаций и объектов, вызывающих страх, – объяснил заместитель главврача Воронежского областного клинического психоневрологического диспансера Александр Седнев. – У страха и фобии есть общие черты – дискомфорт, внутренняя напряженность, которые мешают спокойно жить. Во всем остальном они сильно различаются с точки зрения влияния и на самочувствие, и на самоощущение, и на качество жизни в целом. Страх – это нормальное, здоровое чувство, возникающее как реакция на потенциальную опасность и позволяющее избегать опасных для жизни ситуаций. А фобия – это состояние навязчивого страха, с которым невозможно справиться. Она заставляет в полной мере включаться фантазии и рисовать в мозгу картинки одна страшнее другой, в центре которых – предмет или событие. У человека, страдающего фобиями, проявляются вегетативные реакции: он может покраснеть или побледнеть, появляется тремор, усиливается потоотделение, учащается дыхание и пульс, начинаются сильное сердцебиение, одышка. Чтобы избежать неприятных ощущений, люди с фобией вынуждены избегать предмета своего страха, причем неважно, представляет ли он реальную угрозу. Одновременно со страхом в симптоматике фобий обязательно присутствует и тревога.

По словам врача, если человек боится чего-нибудь, это еще не значит, что у него фобия:

– В большинстве случаев мы не испытываем ярко выраженного страха, справляясь с потенциально опасными ситуациями, которыми наполнена жизнь современного человека. Чем меньше знаний, тем выше уровень тревоги. Большинство из нас инстинктивно оценивает уровень реальной опасности для себя или своих близких и выбирает способ ее преодоления.

Александр Седнев отметил, что заболевание и его причины могут выявить только психолог, психиатр или психотерапевт. 

Заметили ошибку? Выделите ее мышью и нажмите Ctrl+Enter

Мобильная связь. Как это устроено?

Мобильный телефон — это электронное устройство, используемое для мобильной связи по сотовой сети специализированных базовых станций, известных как сотовые узлы. Сотовый телефон предлагает полнодуплексную связь и передает ссылку, когда пользователь переходит из одной ячейки в другую. Когда пользователь телефона перемещается из одной области сотовой связи в другую, система автоматически дает команду мобильному телефону и сотовому узлу с более сильным сигналом переключиться на новую частоту, чтобы сохранить связь.

Мобильный телефон в первую очередь предназначен для голосовой связи. Помимо стандартной голосовой функции, мобильные телефоны нового поколения поддерживают множество дополнительных услуг и аксессуаров, таких как SMS для обмена текстовыми сообщениями, электронная почта, коммутация пакетов для доступа в Интернет, игры, Bluetooth, камера с видеомагнитофоном и MMS для отправки и прием фото и видео, MP3-плеер, радио и GPS.

Связанные товары: АОН | Речевая сеть | Телефонные цепи

Частота сигнала в сотовом телефоне

Клеточная система — это разделение территории на мелкие ячейки.
Это позволяет многократно использовать частоту в этой области, так что многие люди могут использовать сотовые телефоны одновременно. Сотовые сети имеют ряд преимуществ, таких как увеличенная емкость, меньшее потребление энергии, большая зона покрытия, меньшие помехи от других сигналов и т. Д.

Системы FDMA и CDMA

Множественный доступ с частотным разделением каналов (FDMA) и множественный доступ с кодовым разделением каналов (CDMA) были разработаны для различения сигналов от нескольких различных передатчиков. В FDMA частоты передачи и приема, используемые в каждой ячейке, отличаются от частот, используемых в соседних ячейках.Принцип CDMA более сложен, и распределенные приемопередатчики могут выбрать одну ячейку и прослушать ее. Другие методы включают в себя множественный доступ с поляризационным разделением (PDMA) и множественный доступ с временным разделением (TDMA). Множественный доступ с временным разделением каналов используется в сочетании с FDMA или CDMA, чтобы предоставить несколько каналов в пределах зоны покрытия одной соты.

Коды в мобильном телефоне

С мобильными телефонами связаны специальные коды. К ним относятся:

  • Электронный серийный номер (ESN) -Уникальный 32-битный номер, запрограммированный в телефоне
  • Мобильный идентификационный номер (МИН) — 10-значный номер, полученный из номера телефона.
  • Системный идентификационный код (SID) — уникальный 5-значный номер, который присваивается каждому оператору связи FCC.

Связанные товары: CODEC | Связь Разное | Сотовый модуль

ESN является постоянной частью телефона, а коды MIN и SID программируются в телефоне при выборе и активации тарифного плана.

Мобильный телефон — это дуплексное устройство. Когда мы используем одну частоту для разговора, вторая отдельная частота используется для прослушивания.Чтобы оба собеседника могли говорить одновременно. Мобильный телефон может общаться по 1664 каналам и более. Мобильные телефоны работают внутри ячеек, поэтому их легко переключать на разные ячейки, когда они перемещаются. Человек, использующий сотовый телефон, может проехать сотни километров и может поддерживать разговор в течение всего времени благодаря сотовой связи.

Активация SIM-карты

SIM-карта

(модуль идентификации абонента (SIM)) — это тип смарт-карты , используемой в мобильном телефоне.SIM-карта представляет собой съемную смарт-карту, содержащую информацию о подписке и телефонную книгу пользователя. Это позволяет пользователю сохранять свою информацию даже после выключения трубки. В качестве альтернативы пользователь может также сменить поставщика услуг, оставив при этом трубку, просто заменив SIM-карту. На SIM-карте надежно хранится 15-значный ключ абонента услуги.
Цифры ключа:

  • Первые 3 цифры — Мобильный код страны
  • Вторые 2 цифры — код мобильной сети
  • Третьи 10 цифр — идентификационный номер мобильной станции

Связанные товары: ATM UNI | Аудиокодек

Модуль идентификации абонента SIM

Когда мобильный телефон используется в первый раз, он отправляет номер, называемый «международный идентификатор мобильного абонента» — IMSI, присутствующий на SIM-карте, в сеть, которая ищет его в базе данных, чтобы убедиться, что карта зарегистрирована.Если IMSI распознается, сеть создает другой номер, называемый временным идентификатором мобильного абонента (TMSI), который шифруется и отправляется обратно на телефон. Во всех последующих вызовах телефон идентифицирует себя, передавая TMSI.

Что происходит, когда мы звоним?

  1. Когда мы включаем мобильный телефон, он пытается найти SID на канале управления. Канал управления — это особая частота, которую телефон и базовая станция используют для общения друг с другом.Если мобильный телефон не может установить связь с каналом управления, он отображает сообщение «нет обслуживания».
  2. Если мобильный телефон получает SID, он сравнивает SID с SID, запрограммированным в телефоне. Если оба SID совпадают, телефон определяет, что ячейка, с которой он взаимодействует, является частью его домашней системы.
  3. Телефон также передает запрос на регистрацию вместе с идентификатором безопасности, и MTSO отслеживает местоположение вашего телефона в базе данных. MTSO знает, в какой ячейке вы находитесь, когда хочет позвонить по телефону.
  4. Затем MTSO получает сигнал и пытается найти телефон. MTSO просматривает свою базу данных, чтобы найти ячейку, в которой находится телефон. Затем MTSO выбирает частотную пару, чтобы принять вызов.
  5. MTSO связывается с мобильным телефоном по каналу управления, чтобы сообщить ему, какие частоты использовать. Как только мобильный телефон и вышка переключаются на эти частоты, происходит соединение.
  6. Когда мобильный телефон приближается к краю соты, базовая станция соты заметит, что мощность сигнала уменьшается.В то же время базовая станция в ячейке, в которой движется телефон, сможет увидеть, как усиливается сигнал телефона.
  7. Две базовые станции координируют свою работу через MTSO. В какой-то момент мобильный телефон получает сигнал по каналу управления и направляет его на изменение частоты. Это переключит телефон на новую ячейку.

Мобильная сеть

Система GSM

Global System for Mobile Communications является стандартом для мобильных телефонных систем в мире.В GSM сигнальные и речевые каналы являются цифровыми, поэтому GSM считается системой 2G (второго поколения). Это способствует широкому распространению приложений передачи данных. В сети GSM есть пять различных размеров ячеек. Это макро-, микро-, пико-, фемтосоты и зонтичные ячейки.

Макроячейки — это ячейки, в которых антенна базовой станции установлена ​​на мачте выше среднего уровня крыши. Микроячейки — это ячейки, высота антенны которых ниже среднего уровня крыши. Пикосоты — это небольшие соты, диаметр покрытия которых составляет несколько десятков метров.В основном они используются в помещениях. Фемто-ячейки — это ячейки, предназначенные для использования в жилых помещениях или в среде малого бизнеса и подключаемые к сети поставщика услуг через широкополосное подключение к Интернету.

Зонтичные ячейки используются для покрытия затененных областей меньших ячеек и заполнения пробелов в покрытии между этими ячейками. Горизонтальный радиус ячейки варьируется в зависимости от высоты антенны, усиления антенны и условий распространения. Максимальное расстояние, которое поддерживает GSM, составляет 35 километров.Большинство сетей 2G GSM работают в полосах частот 900 МГц или 1800 МГц, а сети 3G GSM — в полосах частот 2100 МГц.

Разделение времени

Метод мультиплексирования с временным разделением каналов используется для совместного использования восьми полноскоростных или шестнадцати половинных речевых каналов на радиочастотный канал. Есть восемь временных интервалов радиосвязи, сгруппированных в кадр TDMA.

Мобильная сеть

Мобильный телефон преобразует голосовые, текстовые, мультимедийные сообщения или вызовы с данными в радиочастоты (RF).Базовые станции мобильных телефонов передают и принимают эти радиочастотные сигналы и подключают вызывающих абонентов к другим телефонам и другим сетям. Сеть мобильной связи разделена на тысячи перекрывающихся отдельных географических областей или «ячеек», каждая из которых имеет базовую станцию. Размер ячейки зависит от зоны покрытия и количества вызовов, совершаемых в этой зоне. Самые маленькие ячейки находятся в густонаселенных городских районах с большими зданиями и высокой плотностью населения, в то время как самые большие ячейки находятся в сельской местности, где люди рассредоточены.

В GSM используются два типа каналов. Это каналы управления и каналы трафика.

Каналы управления

Они отвечают за служебные задачи, такие как сообщение мобильному телефону о входящем вызове и частоте использования. Чтобы гарантировать, что эта передача работает, телефон постоянно контролирует канал управления вещанием до 16 соседних ячеек. В нормальном режиме работы телефоны постоянно регулируют мощность излучаемых радиоволн до минимума, необходимого для приема базовой станцией четкого сигнала.Если телефон удаляется далеко от своей базовой станции и если сигнал слабый, сеть сверяется со списком и запускает передачу обслуживания в соседнюю соту с лучшим сигналом.

Каналы трафика

Он используется для передачи вызовов или других данных с мобильного телефона на базовую станцию ​​и наоборот. В канале трафика голосовые или текстовые данные передаются пакетами. Каждый пакет состоит из двух последовательных цепочек битов (серии сигналов, представляющих единицы и нули), каждая длиной 57 бит.

Диапазон

Диапазон, в котором могут подключаться мобильные устройства, не является фиксированным числом. Это зависит от ряда факторов, таких как частота используемого сигнала, номинальная мощность передатчика, размер передатчика и т. Д.

Внутри мобильного телефона

Мобильный телефон — это сложное устройство, использующее компоненты SMD, микропроцессор, флэш-память и т. Д. В дополнение к монтажной плате мобильный телефон также имеет антенну, жидкокристаллический дисплей (ЖКД), клавиатуру, микрофон, динамик и аккумулятор.Ниже представлена ​​блок-схема мобильного телефона

.

Печатная плата — это сердце мобильного телефона. Он имеет такие микросхемы, как аналогово-цифровые и цифро-аналоговые преобразователи, которые переводят исходящий аудиосигнал из аналогового в цифровой, а входящий — из цифрового обратно в аналоговый. Далее следуют чипы Chips , присутствующие в мобильных телефонах.

  1. Цифровой сигнальный процессор

Обычно он оценивается как имеющий 40 MIPS (миллионы инструкций в секунду) для проведения вычислений обработки сигналов на высокой скорости.Этот чип занимается как сжатием, так и декомпрессией сигналов.

2. Микропроцессор

Он выполняет все служебные задачи для клавиатуры и дисплея. Он также занимается передачей сигналов управления и контроля с базовой станцией и координирует остальные функции на плате.

Мобильный микропроцессор и флэш-память

3. Флэш-память и ПЗУ мобильного телефона служат местом хранения телефона.Эти чипы хранят настраиваемые параметры мобильного телефона, а также всю операционную систему. Эта микросхема контролирует участки питания и радиочастоты телефона, подзарядку телефона, управление питанием и т. Д. Он также контролирует несколько сотен FM-каналов. РЧ-усилители фокусируются на сигналах, которые входят в антенны телефона и выходят из них.

Обслуживание мобильных телефонов

Мобильный телефон — хрупкое устройство, и для его правильного функционирования требуется уход. Вот общие меры по поддержанию мобильного телефона в хорошем состоянии.

  • Не храните мобильный телефон во влажных местах и ​​не используйте его мокрыми руками. Влага может вызвать не подлежащую ремонту внутреннюю коррозию деталей.
  • Не роняйте телефон и не повреждайте точки подключения.
  • Не перенапрягайте телефон. Это может повредить дисплей.
  • Не держите телефон рядом с тепловыделяющими устройствами. Высокая температура в автомобиле может повредить его электронику.
  • Не заряжайте аккумулятор слишком сильно. Заряжайте аккумулятор, только если его уровень заряда опускается ниже 50 процентов.
  • Предотвратить клонирование.

Телефон «клонируется», когда кто-то крадет его идентификационный номер и может совершать мошеннические звонки со счета владельца. Когда телефон звонит, он передает ESN и MIN — уникальный тег — для вашего телефона в сеть в начале звонка. Когда телефон передает свою пару MIN / ESN, возможно захватить пару ESN-MIN. С помощью сканера легко изменить другой телефон так, чтобы он содержал ваши теги MIN-ESN. Это позволяет человеку совершать звонки из вашей учетной записи.Клонирование также может происходить при ремонте телефона в неавторизованном сервисном центре. Можно копировать данные, включая изображения и видео, присутствующие в телефоне.

Как работают мобильные телефоны? — Объясни, что материал

Как работают мобильные телефоны? — Объясни это Реклама

Ходить и разговаривать, работать над тренироваться, всегда на связи, никогда не терять связь — мобильные телефоны значительно изменил образ жизни и работы.Никто точно не знает, сколько мало Пластиковые трубки есть в мире, но по текущим оценкам их подписано более 8,3 миллиарда. Это больше, чем население планеты! В развивающихся странах, где крупномасштабные наземные сети (обычные телефоны) подключены к стене) немногочисленны, более 93 процентов используемых телефонов сотовые телефоны. [1] Мобильные телефоны (также известные как сотовые телефоны и, в основном в Европе, как мобильные телефоны или мобильные) — это радиотелефоны, которые направляют свои звонки через сеть мачт, подключенных к основной телефонной сети общего пользования.Вот как они работают.

Фото: Большинство людей сейчас используют смартфоны в качестве мобильных, которые на самом деле небольшие компьютеры со встроенной схемой сотового телефона. В 1990-х годах мобильные телефоны были проще и их можно было использовать только для голосовых вызовов. Теперь сети стали быстрее и способны обрабатывать большие объемы трафика, смартфоны используются в качестве портативных центров связи, способных делать все, что вы можете делать с телефоном, цифровой камерой, MP3-плеером, спутниковой навигацией GPS и портативным компьютером.

Мобильные телефоны используют беспроводную технологию

Фото: Мобильные телефоны в прежнем виде. Эта Nokia датируется началом 2000-х годов. имеет выдвижную клавиатуру. Хотя в нем есть камера и несколько других основных функций, в нем ничего нет. как вычислительная мощность современного смартфона. Такие телефоны иногда называют «портативными» или «обычные телефоны», чтобы отличать их от iPhone и других смартфонов.

Хотя они выполняют ту же работу, наземные линии связи а мобильные телефоны работают совершенно по-другому.Наземные линии несут звонки по электрическим кабели. Вырезаны все спутники, оптоволоконные кабели, коммутация офисы и прочий раззматаз, а наземных линий не так уж и много отличается от игрушечных телефонов, которые вы могли бы сделать из куска нитку и пару банок с запеченной фасолью. Слова, которые вы говорите в конечном итоге пройдите по прямому проводному соединению между двумя телефонными трубками. Что такое Отличие сотового телефона в том, что он может отправлять и принимать звонки без проводов. связи любого рода. Как оно работает? Используя электромагнитное радиоволны, чтобы посылать и принимать звуки, которые обычно проходят по проводам.

Сидите ли вы дома, гуляете по улице, ведете машину машина, или едешь в поезде, ты купаешься в море электромагнитного волны. ТВ и радио программы, сигналы от радиоуправляемых машины, беспроводные телефонные звонки и даже беспроводные дверные звонки — все это работа с использованием электромагнитной энергии: волнообразные модели электричества и магнетизм, который невидимо проносится сквозь пространство со скоростью легкий (300 000 км или 186 000 миль в секунду). Сети сотовой связи на сегодняшний день самый быстрорастущий источник электромагнитной энергии в мире вокруг нас.

Рекламные ссылки

Как звонки по мобильному телефону путешествуют

Когда вы говорите по мобильному телефону, крошечный микрофон в трубке преобразует восходящие и нисходящие звуки вашего голоса в соответствующие восходящая и нисходящая диаграмма электрических сигналов. Микрочип внутри телефона превращает эти сигналы в цепочки чисел. Номера упакованы в радиоволны и лучи из телефона антенна (в некоторых страны антенна называется антенной). Радиоволновые гонки через воздух со скоростью света, пока не достигнет ближайшего мачта для мобильного телефона.

Фото: Инженеры ремонтируют мачту мобильного телефона. Фото Брайена Ахо любезно предоставлено ВМС США.

Мачта принимает сигналы и передает их своей базовой станции, который эффективно координирует то, что происходит внутри каждой локальной части сети сотового телефона, которая называется клетка. С базовой станции вызовы направляются к месту назначения. Звонки, сделанные с мобильного телефона на другой мобильный телефон в той же сети, попадают в их пункт назначения, будучи направленным на базовую станцию, ближайшую к пункту назначения телефон и, наконец, сам телефон.Звонки на мобильный телефон другая сеть или наземная линия связи проходят более длинный путь. Они могут иметь должны быть направлены в основную телефонную сеть до того, как они достигнут их конечный пункт назначения.

Как помогают мачты для мобильных телефонов

На первый взгляд мобильные телефоны очень похожи на рации двусторонней связи и рации, где у каждого человека есть радио (содержащее как отправителя, так и получателя), которое напрямую пересылает сообщения туда и обратно, как в теннисе игроки возвращают мяч. Проблема с такими радиоприемниками в том, что вы можете использовать только так много из них в определенной области до того, как сигналы от одной пары абонентов начнут мешать тем от других пар абонентов.Вот почему мобильные телефоны намного сложнее и работают совершенно по-другому.

В трубке мобильного телефона есть радиопередатчик для передачи радиосигналов от телефон и радиоприемник для приема сигналов от других телефоны. Радиопередатчик и приемник не очень мощные, что означает, что мобильные телефоны не могут посылать сигналы на большие расстояния. Это не недостаток — это намеренная особенность их дизайна! Все, что нужно сделать мобильному телефону, — это связаться с местной мачтой и базовой станцией; базовая станция должна улавливать слабые сигналы от многих мобильных телефонов и маршрутизировать они направляются к месту назначения, поэтому мачты представляют собой огромные мощные антенны (часто устанавливаемые на холме или высоком здании).Если бы у нас не было мачт, нам потребовались бы сотовые телефоны с огромными антеннами и гигантскими блоками питания — а они быть слишком громоздким, чтобы быть мобильным. Мобильный телефон автоматически связывается с ближайшим сотовым (тот, у которого самый сильный сигнал) и использует для этого как можно меньше энергии (что делает его батарею работает как можно дольше и снижает вероятность того, что он создаст помехи другим телефонам поблизости).

Что делают клетки

Так зачем заморачиваться с ячейками? Почему мобильные телефоны просто не разговаривают друг с другом напрямую? Предположим, несколько все люди в вашем районе хотят использовать свои мобильные телефоны одновременно.Если все их телефоны отправляют и принимают звонки одинаково, используя одни и те же радиоволны, сигналы будут мешать и скремблироваться вместе, и будет невозможно отличить один звонок от другого. Один из способов обойти это — использовать разные радиоволны для разных звонков. Если каждый телефонный звонок использует немного разную частоту (количество колебаний вверх и вниз в радиоволне за одну секунду), звонки легко разделить. Они могут путешествовать по воздуху, как разные радиостанции, использующие разные диапазоны волн.

Это нормально, если одновременно звонят всего несколько человек. Но предположим, что вы находитесь в центре большого города, и миллионы людей все звонят сразу. Тогда вам понадобится столько же миллионов отдельных частот — больше, чем обычно доступно. Решение состоит в том, чтобы разделите город на более мелкие части, каждая из которых обслуживается своими мачтами и базовой станцией. Эти области то, что мы называем клетками, и они выглядят как лоскутное одеяло из невидимых шестиугольников. Каждый ячейка имеет свою базовую станцию ​​и мачты, и все вызовы, сделанные или полученные внутри этой ячейки, маршрутизируются через них.Ячейки позволяют системе обрабатывать намного больше вызовов одновременно, потому что каждая ячейка использует тот же набор частот, что и ее соседние ячейки. Чем больше ячеек, тем больше количество звонков, которые можно сделать за один раз. Вот почему в городских районах гораздо больше ячеек, чем в сельских, и почему ячейки в городских районах значительно меньше.

Как сотовые телефоны обрабатывают звонки

На этом рисунке показаны два способа работы клеток.

Простой звонок

Если телефон в ячейке A вызывает телефон в ячейке B, звонок не проходить напрямую между телефонами, но от первого телефона к мачте A и его базовой станции, затем к мачте B и его базовой станции, а затем ко второму телефону.

Звонок в роуминге

Мобильные телефоны, которые перемещаются между ячейками (когда люди пешком или за рулем) регулярно посылают сигналы туда и обратно близлежащие мачты, так что в любой момент времени сеть сотовой связи всегда знает, какая мачта к какому телефону ближе всего.

Если пассажир автомобиля звонит, а машина едет между ячейками C, D и E, телефон вызов автоматически «передается» (передается от ячейки к ячейке), поэтому звонок не прерывается.

Ключом к пониманию клеток является осознание того, что мобильные телефоны и мачты, с которыми они общаются, являются предназначен для передачи радиоволн только в ограниченном диапазоне; что эффективно определяет размер ячеек.Также стоит отметить, что это упрощенное изображение; точнее сказать, что мачты расположены на пересечении ячеек, но это немного легче понять, как я им показал.

Типы сотовых телефонов

Первые мобильные телефоны использовали аналоговую технологию. Примерно так же могут работать и телефоны. Когда вы говорите на запеченная фасоль может звонить, ваш голос заставляет струну колебаться вверх и вниз (так быстро, что вы этого не видите). Вибрации поднимаются и опускаются, как твой голос.Другими словами, это аналог вашего голос — вот почему мы называем эту технологию аналоговой. Некоторые наземные линии все еще работают таким образом сегодня.

Большинство мобильных телефонов работают с использованием цифровых технологий: они превращают звуки вашего голоса в набор цифр (цифр), а затем луч их по воздуху. Использование цифровых технологий дает много преимуществ. Это означает, что мобильные телефоны могут использоваться для отправки и получения компьютеризированных данных. Вот почему большинство мобильных телефонов теперь могут отправлять и получать текстовые сообщения (SMS). сообщения, веб-страницы, музыкальные файлы MP3 и цифровые фотографии.Цифровые технологии позволяют шифровать звонки по мобильному телефону (зашифровано с использованием математической код) до того, как они покинут телефон отправителя, чтобы перехватчики не могли перехватить их. (Это было большой проблемой с более ранними аналоговыми телефонами, который любой мог перехватить с помощью миниатюрного радиоприемника, называемого сканер.) Это делает цифровые мобильные телефоны намного более безопасными.

Мир мобильных телефонов

Мобильные телефоны кардинально изменили способ общения в мире. В начале 1990-х гг. только один процент населения мира владеет мобильным телефоном; сегодня, во все большем числе стран люди тратят больше времени на мобильные телефоны, чем на их стационарные телефоны.Согласно МСЭ-Т, в 2001 году только 58 процентов населения мира имело доступ к сети сотовой связи (2G); к 2019 году этот показатель вырос до 98,8 процента. Также к 2019 г. более 8,3 миллиарда абонентов сотовой связи — немного больше, чем количество людей на планете. Сотовые телефоны также сделали большой скачок в доступе к Интернету. В конце 2016 года мобильный интернет-трафик (смартфоны и планшеты) впервые превысил трафик настольных компьютеров. К концу 2019 года 83 процента населения мира имели активные подписки на мобильный широкополосный доступ с использованием мобильных телефонов, и этот срок закончился. в пять раз больше, чем у традиционного проводного широкополосного доступа (всего 14.9 процентов). [2]

Диаграмма: Подписки на сотовые телефоны: Наиболее значительный рост количества абонентов мобильных телефонов произошел в развивающихся странах, на которые сейчас приходится около 80 процентов подписок. Источник: построено на основе данных от 28 октября 2019 г. Международный союз электросвязи (ITU).

Сотовые телефоны также используются разными людьми по-разному. Еще в начале 2000-х мобильные телефоны использовались полностью. для голосовых разговоров и отправки коротких «текстов» (текстовые сообщения, также известные как SMS-сообщения).Многие люди владели мобильным телефоном исключительно для случайного использования в экстренных случаях; и это до сих пор остается популярной причиной для обладания телефоном (согласно FCC, около 70 процентов всех вызовов службы экстренной помощи в США совершаются с мобильных телефонов). Сегодня смартфоны есть повсюду, и люди используют их для электронной почты, просмотра веб-страниц, загрузка музыки, социальные сети и запуск всевозможных приложений. В то время как старомодные сотовые телефоны полностью полагались на приличный сигнал из сотовой сети, смартфоны при необходимости переключались между обычными сетями и Wi-Fi.Там, где старые сотовые телефоны были буквально «мобильными телефонами» (стационарные беспроводные телефоны), современные смартфоны — это, по сути, карманные компьютеры, которые просто делают телефонные звонки. Вы можете увидеть, насколько сильно изменились телефоны внутри компании, на фотографиях в поле ниже.

Мобильные телефоны и мобильная широкополосная связь

Если вы хотите узнать, как сети мобильных телефонов превратились из чисто голосовых сетей в являются важной частью Интернета, см. нашу отдельную статью о широкополосный и мобильный широкополосный доступ.Он также охватывает все эти сбивающие с толку сокращения, такие как FDMA, TDMA, CDMA, WCDMA и HSDPA / HSPA.

Что внутри вашего телефона?

Фото: Мобильные телефоны в прошлом и настоящем. Слева: Motorola V66 примерно 2000 г., Nokia 106 примерно 2010 г. и смартфон LG серии G. Я буду разбирать Motorola и LG.

Сломанный телефон — замечательная вещь, если вам, как и мне, нравится выяснять, как все работает. Неудивительно, что здесь много В современных смартфонах происходит больше, чем в обычных мобильных телефонах, которые люди носили с собой около 20 лет назад.Старые телефоны были просто телефонами; Смартфоны — это компьютеры, укомплектованные всевозможными гаджетами, от считывателей отпечатков пальцев до электронных платежных чипов. Но хотя телефоны кардинально изменились, проблемы разработки нового телефона во многом остались такими же, как и всегда: как упаковать все эти компоненты в достаточно маленькое пространство, снизить их общий вес и избежать их? перегрев? Как вы гарантируете, что критически важные компоненты, такие как микрофоны, громкоговорители и антенны, продолжат работать эффективно, даже если они миниатюрны?

Внутри классический телефон

Самая большая разница между старыми телефонами и новыми в том, что старые имеют клавиатуры и маленькие ЖК-экраны, в то время как у смартфонов есть сенсорные экраны, которые полностью избавляют от необходимости в клавиатуре (им по-прежнему нужно несколько кнопок для включения и выключения питания и управления громкостью динамика).В старых телефонах клавиатура, как правило, является одной из «мембранных»: вместо движущихся клавиш на ней есть мягкие резиновые кнопки, которые нажимают на электрические контакты на печатной плате (PCB) ниже.

Фото: Слева: Верхняя сторона клавиатуры старого телефона Motorola представляет собой так называемую резиновую мембрану, тонкий лист эластичного пластика с «клавишами», которые нажимают, чтобы установить электрический контакт с печатной платой ниже. Справа: каждая клавиша прижимает маленький круглый штифт к соответствующей части печатной платы (маленькие точки).Клавиатура также снабжена светодиодами (восемь прямоугольников с белыми контурами), которые загораются, когда вы звоните или принимаете вызов.

К сожалению, цифровые гаджеты не так интересны (или их легко понять), как механические устройства: большинство хороших вещей происходит внутри микросхем, вне поля зрения, и вы не можете понять, как работает микросхема, просто глядя на это. Сняв клавиатуру, вы увидите, что плата под ней не представляет особого интереса, но обратите внимание на золотую антенну, идущую вокруг нее.Вот почему такому мобильному телефону не нужна длинная телескопическая (выдвижная) антенна.

Фото: основная плата телефона Motorola V66 находится прямо под клавиатурой и над аккумуляторным отсеком.

Другая сторона печатной платы немного интереснее:

  1. ЖК-экран, подключаемый к клавиатуре с помощью ленточного кабеля.
  2. Гнездо для наушников.
  3. Разъем аккумулятора
  4. Зарядное устройство и разъем кабеля для подключения к компьютеру.
  5. Радиаторы / экран для микросхем на печатной плате.
  6. Пьезоэлектрический зуммер.
  7. Микросхема управления зуммером
  8. Антенный разъем — соединяет небольшую внешнюю антенну с золотой антенной, проходящей вокруг печатной платы.

Фото: задняя сторона основной платы телефона Motorola V66.

Внутри смартфона

Как и следовало ожидать, внутри смартфона происходит гораздо больше. Я не разбирал экран (он находится прямо под монтажной платой с правой стороны), но вот некоторые другие вещи, которые вы найдете:

Фото: Основная плата от более современного смартфона LG G-серии.

  1. Контактные соединения между верхней (фото слева) и нижней (фотография справа) частями печатной платы.
  2. Радиатор / экран для микросхем процессора. (Серое вещество, которое вы видите здесь, представляет собой термопасту — своего рода теплопроводящую слизь, которая помогает улучшить охлаждение.) Здесь находится кнопка включения / выключения питания.
  3. Антенные разъемы NFC (для бесконтактных платежей).
  4. Инфракрасный фокусирующий луч для камеры.
  5. 13-мегапиксельная основная цифровая камера.
  6. Фонарик / вспышка камеры.
  7. Четырехъядерный процессор Qualcomm Snapdragon.
  8. Слот для карты Micro SD (позволяет увеличить объем памяти до 32 ГБ).
  9. Слот для карты Micro-SIM
  10. Литий-ионный аккумулятор (емкость 3000 мАч).
  11. Полностью пластиковый корпус с отделкой «матовый металл» создает впечатление металлического корпуса с пятнами отпечатков пальцев.
  12. Разъем для наушников.
  13. Микрофон.
  14. USB и разъем для зарядки.
  15. Громкоговоритель.
  16. Привинченная пластиковая прокладка защищает печатную плату и компоненты, когда вы открываете корпус для замены батареи.
  17. Винты!
  18. Больше контактных соединений между верхней и нижней платами.

Кто изобрел мобильные телефоны?

Фото: оригинальный дизайн радиотелефонной системы (мобильного телефона) Мартина Купера, подана как патентная заявка в 1973 году. Обратите внимание на то, что мобильная часть образует полностью отдельную систему (показана синим справа), которая взаимодействует с существующей общедоступной сетью (показана слева красным). Отдельные мобильные телефоны (бирюзовый край справа) связываются с ближайшими мачтами и базовыми станциями с помощью радиоволн (желтые зигзаги).Патентный чертеж любезно предоставлен Управлением по патентам и товарным знакам США.

Как мы перешли от наземных линий связи к мобильным телефонам? Вот краткая история:

  • 1873: британский физик Джеймс Клерк Максвелл (1831–1879) опубликовал теорию электромагнетизма, объясняя, как электричество может создавать магнетизм и наоборот. Узнать больше о его работах в нашей основной статье о магнетизме.
  • 1876: изобретатель шотландского происхождения Александр Грэм Белл (1847–1922) разработал первый телефон, живя в Соединенных Штатах. (хотя есть некоторые споры о том, был ли он на самом деле первоначальным изобретателем).Позже Белл разработал так называемый «фотофон», который мог отправлять и принимать телефонные звонки с помощью световых лучей. Поскольку он задумывался как беспроводной телефон, он действительно был далеким предком современного мобильного телефона.
  • 1888: немецкий физик Генрих Герц (1857–1894) создал первые электромагнитные радиоволны в своей лаборатории.
  • 1894: британский физик сэр Оливер Лодж (1851–1940) отправил первое сообщение с помощью радиоволн в Оксфорд, Англия.
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш.К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда. Маркони помнят как отец радио, но такие пионеры, как Герц и Лодж, были не менее важны.
  • 1906: американский инженер Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн. Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1920-е годы: службы экстренной помощи начали экспериментировать с громоздкими радиотелефоны.
  • 1940-е годы: мобильные радиотелефоны начали становиться популярными среди службы экстренной помощи и такси.
  • 1946: AT&T и Southwestern Bell представили свой мобильный телефон Телефонная система (МТС) для радиосвязи между автомобилями.
  • 1960-е: Bell Laboratories (Bell Labs) разработала мобильный Metroliner сотовые телефоны в поездах.
  • 1973: Мартин Купер (1928–) из Motorola сделала первый звонок по мобильному телефону, используя свой прототип DynaTAC весом 28 фунтов.
  • 1975: Купер и его коллеги получили патент на их радиотелефонная система.Их оригинальный дизайн показан на картинке, которую вы можете увидеть здесь.
  • 1978: Аналоговая система мобильной связи (AMPS) была представлена ​​в Чикаго. Иллинойс Белл и AT&T.
  • 1982: Европейские телефонные компании согласовали всемирный стандарт для как будут работать мобильные телефоны, которая получила название Groupe Speciale Mobile и позже Глобальная система мобильной связи (GSM).
  • 1984: Motorola DynaTAC стала первой в мире коммерческой портативный мобильный телефон. Взгляните на фотографию Мартина Купера и его DynaTAC.
  • 1995: GSM и аналогичная система под названием PCS (Personal Службы связи) были приняты в США.
  • 2001: GSM захватил более 70 процентов мобильных телефонов в мире рынок.
  • 2000-е: Выпущены мобильные телефоны третьего поколения (3G и 3.5G) с более быстрые сети, доступ в Интернет, загрузка музыки и многое другое расширенные функции на основе цифровых технологий.
  • 2007: iPhone от Apple произвел революцию в мире мобильных телефонов, упаковав то, что эффективно миниатюрный компьютер с сенсорным управлением в гаджет, такой же, как и обычный сотовый телефон.
  • 2013: Мобильные телефоны празднуют свое 40-летие.
  • 2020: количество абонентов мобильных телефонов достигло 8,3 миллиарда. Около 80 процентов из них находятся в развивающихся странах.
Рекламные ссылки

Узнать больше

На этом сайте

Книги

Статьи

История мобильных телефонов

Список литературы

  1. ↑ Статистика подписки на мобильные телефоны взята из статистики Международного союза электросвязи ООН (ITU).
  2. ↑ Если не указано иное, все статистические данные в этом параграфе взяты из статистики Международного союза электросвязи (ITU) ООН.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2006, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2006/2020) Мобильные телефоны. Получено с https://www.explainthatstuff.com/cellphones.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте…

Как работают мобильные телефоны? — Объясни, что материал

Как работают мобильные телефоны? — Объясни это Реклама

Ходить и разговаривать, работать над тренироваться, всегда на связи, никогда не терять связь — мобильные телефоны значительно изменил образ жизни и работы. Никто точно не знает, сколько мало пластиковых телефонов есть в мире, но, по текущим оценкам, их более 8.3 миллиарда подписок. Это больше, чем население планеты! В развивающихся странах, где крупномасштабные наземные сети (обычные телефоны) подключены к стене) немногочисленны, более 93 процентов используемых телефонов сотовые телефоны. [1] Мобильные телефоны (также известные как сотовые телефоны и, в основном в Европе, как мобильные телефоны или мобильные) — это радиотелефоны, которые направляют свои звонки через сеть мачт, подключенных к основной телефонной сети общего пользования. Вот как они работают.

Фото: Большинство людей сейчас используют смартфоны в качестве мобильных, которые на самом деле небольшие компьютеры со встроенной схемой сотового телефона.Еще в 1990-х сотовые телефоны были проще и их можно было использовать только для голосовых вызовов. Теперь сети стали быстрее и способны обрабатывать большие объемы трафика, смартфоны используются в качестве портативных центров связи, способных делать все, что вы можете делать с телефоном, цифровой камерой, MP3-плеером, спутниковой навигацией GPS и портативным компьютером.

Мобильные телефоны используют беспроводную технологию

Фото: Мобильные телефоны в прежнем виде. Эта Nokia датируется началом 2000-х годов. имеет выдвижную клавиатуру.Хотя в нем есть камера и несколько других основных функций, в нем ничего нет. как вычислительная мощность современного смартфона. Такие телефоны иногда называют «портативными» или «обычные телефоны», чтобы отличать их от iPhone и других смартфонов.

Хотя они выполняют ту же работу, наземные линии связи а мобильные телефоны работают совершенно по-другому. Наземные линии несут звонки по электрическим кабели. Вырезаны все спутники, оптоволоконные кабели, коммутация офисы и прочий раззматаз, а наземных линий не так уж и много отличается от игрушечных телефонов, которые вы могли бы сделать из куска нитку и пару банок с запеченной фасолью.Слова, которые вы говорите в конечном итоге пройдите по прямому проводному соединению между двумя телефонными трубками. Что такое Отличие сотового телефона в том, что он может отправлять и принимать звонки без проводов. связи любого рода. Как оно работает? Используя электромагнитное радиоволны, чтобы посылать и принимать звуки, которые обычно проходят по проводам.

Сидите ли вы дома, гуляете по улице, ведете машину машина, или едешь в поезде, ты купаешься в море электромагнитного волны. ТВ и радио программы, сигналы от радиоуправляемых машины, беспроводные телефонные звонки и даже беспроводные дверные звонки — все это работа с использованием электромагнитной энергии: волнообразные модели электричества и магнетизм, который невидимо проносится сквозь пространство со скоростью легкий (300 000 км или 186 000 миль в секунду).Сети сотовой связи на сегодняшний день самый быстрорастущий источник электромагнитной энергии в мире вокруг нас.

Рекламные ссылки

Как звонки по мобильному телефону путешествуют

Когда вы говорите по мобильному телефону, крошечный микрофон в трубке преобразует восходящие и нисходящие звуки вашего голоса в соответствующие восходящая и нисходящая диаграмма электрических сигналов. Микрочип внутри телефона превращает эти сигналы в цепочки чисел. Номера упакованы в радиоволны и лучи из телефона антенна (в некоторых страны антенна называется антенной).Радиоволновые гонки через воздух со скоростью света, пока не достигнет ближайшего мачта для мобильного телефона.

Фото: Инженеры ремонтируют мачту мобильного телефона. Фото Брайена Ахо любезно предоставлено ВМС США.

Мачта принимает сигналы и передает их своей базовой станции, который эффективно координирует то, что происходит внутри каждой локальной части сети сотового телефона, которая называется клетка. С базовой станции вызовы направляются к месту назначения. Звонки, сделанные с мобильного телефона на другой мобильный телефон в той же сети, попадают в их пункт назначения, будучи направленным на базовую станцию, ближайшую к пункту назначения телефон и, наконец, сам телефон.Звонки на мобильный телефон другая сеть или наземная линия связи проходят более длинный путь. Они могут иметь должны быть направлены в основную телефонную сеть до того, как они достигнут их конечный пункт назначения.

Как помогают мачты для мобильных телефонов

На первый взгляд мобильные телефоны очень похожи на рации двусторонней связи и рации, где у каждого человека есть радио (содержащее как отправителя, так и получателя), которое напрямую пересылает сообщения туда и обратно, как в теннисе игроки возвращают мяч. Проблема с такими радиоприемниками в том, что вы можете использовать только так много из них в определенной области до того, как сигналы от одной пары абонентов начнут мешать тем от других пар абонентов.Вот почему мобильные телефоны намного сложнее и работают совершенно по-другому.

В трубке мобильного телефона есть радиопередатчик для передачи радиосигналов от телефон и радиоприемник для приема сигналов от других телефоны. Радиопередатчик и приемник не очень мощные, что означает, что мобильные телефоны не могут посылать сигналы на большие расстояния. Это не недостаток — это намеренная особенность их дизайна! Все, что нужно сделать мобильному телефону, — это связаться с местной мачтой и базовой станцией; базовая станция должна улавливать слабые сигналы от многих мобильных телефонов и маршрутизировать они направляются к месту назначения, поэтому мачты представляют собой огромные мощные антенны (часто устанавливаемые на холме или высоком здании).Если бы у нас не было мачт, нам потребовались бы сотовые телефоны с огромными антеннами и гигантскими блоками питания — а они быть слишком громоздким, чтобы быть мобильным. Мобильный телефон автоматически связывается с ближайшим сотовым (тот, у которого самый сильный сигнал) и использует для этого как можно меньше энергии (что делает его батарею работает как можно дольше и снижает вероятность того, что он создаст помехи другим телефонам поблизости).

Что делают клетки

Так зачем заморачиваться с ячейками? Почему мобильные телефоны просто не разговаривают друг с другом напрямую? Предположим, несколько все люди в вашем районе хотят использовать свои мобильные телефоны одновременно.Если все их телефоны отправляют и принимают звонки одинаково, используя одни и те же радиоволны, сигналы будут мешать и скремблироваться вместе, и будет невозможно отличить один звонок от другого. Один из способов обойти это — использовать разные радиоволны для разных звонков. Если каждый телефонный звонок использует немного разную частоту (количество колебаний вверх и вниз в радиоволне за одну секунду), звонки легко разделить. Они могут путешествовать по воздуху, как разные радиостанции, использующие разные диапазоны волн.

Это нормально, если одновременно звонят всего несколько человек. Но предположим, что вы находитесь в центре большого города, и миллионы людей все звонят сразу. Тогда вам понадобится столько же миллионов отдельных частот — больше, чем обычно доступно. Решение состоит в том, чтобы разделите город на более мелкие части, каждая из которых обслуживается своими мачтами и базовой станцией. Эти области то, что мы называем клетками, и они выглядят как лоскутное одеяло из невидимых шестиугольников. Каждый ячейка имеет свою базовую станцию ​​и мачты, и все вызовы, сделанные или полученные внутри этой ячейки, маршрутизируются через них.Ячейки позволяют системе обрабатывать намного больше вызовов одновременно, потому что каждая ячейка использует тот же набор частот, что и ее соседние ячейки. Чем больше ячеек, тем больше количество звонков, которые можно сделать за один раз. Вот почему в городских районах гораздо больше ячеек, чем в сельских, и почему ячейки в городских районах значительно меньше.

Как сотовые телефоны обрабатывают звонки

На этом рисунке показаны два способа работы клеток.

Простой звонок

Если телефон в ячейке A вызывает телефон в ячейке B, звонок не проходить напрямую между телефонами, но от первого телефона к мачте A и его базовой станции, затем к мачте B и его базовой станции, а затем ко второму телефону.

Звонок в роуминге

Мобильные телефоны, которые перемещаются между ячейками (когда люди пешком или за рулем) регулярно посылают сигналы туда и обратно близлежащие мачты, так что в любой момент времени сеть сотовой связи всегда знает, какая мачта к какому телефону ближе всего.

Если пассажир автомобиля звонит, а машина едет между ячейками C, D и E, телефон вызов автоматически «передается» (передается от ячейки к ячейке), поэтому звонок не прерывается.

Ключом к пониманию клеток является осознание того, что мобильные телефоны и мачты, с которыми они общаются, являются предназначен для передачи радиоволн только в ограниченном диапазоне; что эффективно определяет размер ячеек.Также стоит отметить, что это упрощенное изображение; точнее сказать, что мачты расположены на пересечении ячеек, но это немного легче понять, как я им показал.

Типы сотовых телефонов

Первые мобильные телефоны использовали аналоговую технологию. Примерно так же могут работать и телефоны. Когда вы говорите на запеченная фасоль может звонить, ваш голос заставляет струну колебаться вверх и вниз (так быстро, что вы этого не видите). Вибрации поднимаются и опускаются, как твой голос.Другими словами, это аналог вашего голос — вот почему мы называем эту технологию аналоговой. Некоторые наземные линии все еще работают таким образом сегодня.

Большинство мобильных телефонов работают с использованием цифровых технологий: они превращают звуки вашего голоса в набор цифр (цифр), а затем луч их по воздуху. Использование цифровых технологий дает много преимуществ. Это означает, что мобильные телефоны могут использоваться для отправки и получения компьютеризированных данных. Вот почему большинство мобильных телефонов теперь могут отправлять и получать текстовые сообщения (SMS). сообщения, веб-страницы, музыкальные файлы MP3 и цифровые фотографии.Цифровые технологии позволяют шифровать звонки по мобильному телефону (зашифровано с использованием математической код) до того, как они покинут телефон отправителя, чтобы перехватчики не могли перехватить их. (Это было большой проблемой с более ранними аналоговыми телефонами, который любой мог перехватить с помощью миниатюрного радиоприемника, называемого сканер.) Это делает цифровые мобильные телефоны намного более безопасными.

Мир мобильных телефонов

Мобильные телефоны кардинально изменили способ общения в мире. В начале 1990-х гг. только один процент населения мира владеет мобильным телефоном; сегодня, во все большем числе стран люди тратят больше времени на мобильные телефоны, чем на их стационарные телефоны.Согласно МСЭ-Т, в 2001 году только 58 процентов населения мира имело доступ к сети сотовой связи (2G); к 2019 году этот показатель вырос до 98,8 процента. Также к 2019 г. более 8,3 миллиарда абонентов сотовой связи — немного больше, чем количество людей на планете. Сотовые телефоны также сделали большой скачок в доступе к Интернету. В конце 2016 года мобильный интернет-трафик (смартфоны и планшеты) впервые превысил трафик настольных компьютеров. К концу 2019 года 83 процента населения мира имели активные подписки на мобильный широкополосный доступ с использованием мобильных телефонов, и этот срок закончился. в пять раз больше, чем у традиционного проводного широкополосного доступа (всего 14.9 процентов). [2]

Диаграмма: Подписки на сотовые телефоны: Наиболее значительный рост количества абонентов мобильных телефонов произошел в развивающихся странах, на которые сейчас приходится около 80 процентов подписок. Источник: построено на основе данных от 28 октября 2019 г. Международный союз электросвязи (ITU).

Сотовые телефоны также используются разными людьми по-разному. Еще в начале 2000-х мобильные телефоны использовались полностью. для голосовых разговоров и отправки коротких «текстов» (текстовые сообщения, также известные как SMS-сообщения).Многие люди владели мобильным телефоном исключительно для случайного использования в экстренных случаях; и это до сих пор остается популярной причиной для обладания телефоном (согласно FCC, около 70 процентов всех вызовов службы экстренной помощи в США совершаются с мобильных телефонов). Сегодня смартфоны есть повсюду, и люди используют их для электронной почты, просмотра веб-страниц, загрузка музыки, социальные сети и запуск всевозможных приложений. В то время как старомодные сотовые телефоны полностью полагались на приличный сигнал из сотовой сети, смартфоны при необходимости переключались между обычными сетями и Wi-Fi.Там, где старые сотовые телефоны были буквально «мобильными телефонами» (стационарные беспроводные телефоны), современные смартфоны — это, по сути, карманные компьютеры, которые просто делают телефонные звонки. Вы можете увидеть, насколько сильно изменились телефоны внутри компании, на фотографиях в поле ниже.

Мобильные телефоны и мобильная широкополосная связь

Если вы хотите узнать, как сети мобильных телефонов превратились из чисто голосовых сетей в являются важной частью Интернета, см. нашу отдельную статью о широкополосный и мобильный широкополосный доступ.Он также охватывает все эти сбивающие с толку сокращения, такие как FDMA, TDMA, CDMA, WCDMA и HSDPA / HSPA.

Что внутри вашего телефона?

Фото: Мобильные телефоны в прошлом и настоящем. Слева: Motorola V66 примерно 2000 г., Nokia 106 примерно 2010 г. и смартфон LG серии G. Я буду разбирать Motorola и LG.

Сломанный телефон — замечательная вещь, если вам, как и мне, нравится выяснять, как все работает. Неудивительно, что здесь много В современных смартфонах происходит больше, чем в обычных мобильных телефонах, которые люди носили с собой около 20 лет назад.Старые телефоны были просто телефонами; Смартфоны — это компьютеры, укомплектованные всевозможными гаджетами, от считывателей отпечатков пальцев до электронных платежных чипов. Но хотя телефоны кардинально изменились, проблемы разработки нового телефона во многом остались такими же, как и всегда: как упаковать все эти компоненты в достаточно маленькое пространство, снизить их общий вес и избежать их? перегрев? Как вы гарантируете, что критически важные компоненты, такие как микрофоны, громкоговорители и антенны, продолжат работать эффективно, даже если они миниатюрны?

Внутри классический телефон

Самая большая разница между старыми телефонами и новыми в том, что старые имеют клавиатуры и маленькие ЖК-экраны, в то время как у смартфонов есть сенсорные экраны, которые полностью избавляют от необходимости в клавиатуре (им по-прежнему нужно несколько кнопок для включения и выключения питания и управления громкостью динамика).В старых телефонах клавиатура, как правило, является одной из «мембранных»: вместо движущихся клавиш на ней есть мягкие резиновые кнопки, которые нажимают на электрические контакты на печатной плате (PCB) ниже.

Фото: Слева: Верхняя сторона клавиатуры старого телефона Motorola представляет собой так называемую резиновую мембрану, тонкий лист эластичного пластика с «клавишами», которые нажимают, чтобы установить электрический контакт с печатной платой ниже. Справа: каждая клавиша прижимает маленький круглый штифт к соответствующей части печатной платы (маленькие точки).Клавиатура также снабжена светодиодами (восемь прямоугольников с белыми контурами), которые загораются, когда вы звоните или принимаете вызов.

К сожалению, цифровые гаджеты не так интересны (или их легко понять), как механические устройства: большинство хороших вещей происходит внутри микросхем, вне поля зрения, и вы не можете понять, как работает микросхема, просто глядя на это. Сняв клавиатуру, вы увидите, что плата под ней не представляет особого интереса, но обратите внимание на золотую антенну, идущую вокруг нее.Вот почему такому мобильному телефону не нужна длинная телескопическая (выдвижная) антенна.

Фото: основная плата телефона Motorola V66 находится прямо под клавиатурой и над аккумуляторным отсеком.

Другая сторона печатной платы немного интереснее:

  1. ЖК-экран, подключаемый к клавиатуре с помощью ленточного кабеля.
  2. Гнездо для наушников.
  3. Разъем аккумулятора
  4. Зарядное устройство и разъем кабеля для подключения к компьютеру.
  5. Радиаторы / экран для микросхем на печатной плате.
  6. Пьезоэлектрический зуммер.
  7. Микросхема управления зуммером
  8. Антенный разъем — соединяет небольшую внешнюю антенну с золотой антенной, проходящей вокруг печатной платы.

Фото: задняя сторона основной платы телефона Motorola V66.

Внутри смартфона

Как и следовало ожидать, внутри смартфона происходит гораздо больше. Я не разбирал экран (он находится прямо под монтажной платой с правой стороны), но вот некоторые другие вещи, которые вы найдете:

Фото: Основная плата от более современного смартфона LG G-серии.

  1. Контактные соединения между верхней (фото слева) и нижней (фотография справа) частями печатной платы.
  2. Радиатор / экран для микросхем процессора. (Серое вещество, которое вы видите здесь, представляет собой термопасту — своего рода теплопроводящую слизь, которая помогает улучшить охлаждение.) Здесь находится кнопка включения / выключения питания.
  3. Антенные разъемы NFC (для бесконтактных платежей).
  4. Инфракрасный фокусирующий луч для камеры.
  5. 13-мегапиксельная основная цифровая камера.
  6. Фонарик / вспышка камеры.
  7. Четырехъядерный процессор Qualcomm Snapdragon.
  8. Слот для карты Micro SD (позволяет увеличить объем памяти до 32 ГБ).
  9. Слот для карты Micro-SIM
  10. Литий-ионный аккумулятор (емкость 3000 мАч).
  11. Полностью пластиковый корпус с отделкой «матовый металл» создает впечатление металлического корпуса с пятнами отпечатков пальцев.
  12. Разъем для наушников.
  13. Микрофон.
  14. USB и разъем для зарядки.
  15. Громкоговоритель.
  16. Привинченная пластиковая прокладка защищает печатную плату и компоненты, когда вы открываете корпус для замены батареи.
  17. Винты!
  18. Больше контактных соединений между верхней и нижней платами.

Кто изобрел мобильные телефоны?

Фото: оригинальный дизайн радиотелефонной системы (мобильного телефона) Мартина Купера, подана как патентная заявка в 1973 году. Обратите внимание на то, что мобильная часть образует полностью отдельную систему (показана синим справа), которая взаимодействует с существующей общедоступной сетью (показана слева красным). Отдельные мобильные телефоны (бирюзовый край справа) связываются с ближайшими мачтами и базовыми станциями с помощью радиоволн (желтые зигзаги).Патентный чертеж любезно предоставлен Управлением по патентам и товарным знакам США.

Как мы перешли от наземных линий связи к мобильным телефонам? Вот краткая история:

  • 1873: британский физик Джеймс Клерк Максвелл (1831–1879) опубликовал теорию электромагнетизма, объясняя, как электричество может создавать магнетизм и наоборот. Узнать больше о его работах в нашей основной статье о магнетизме.
  • 1876: изобретатель шотландского происхождения Александр Грэм Белл (1847–1922) разработал первый телефон, живя в Соединенных Штатах. (хотя есть некоторые споры о том, был ли он на самом деле первоначальным изобретателем).Позже Белл разработал так называемый «фотофон», который мог отправлять и принимать телефонные звонки с помощью световых лучей. Поскольку он задумывался как беспроводной телефон, он действительно был далеким предком современного мобильного телефона.
  • 1888: немецкий физик Генрих Герц (1857–1894) создал первые электромагнитные радиоволны в своей лаборатории.
  • 1894: британский физик сэр Оливер Лодж (1851–1940) отправил первое сообщение с помощью радиоволн в Оксфорд, Англия.
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш.К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда. Маркони помнят как отец радио, но такие пионеры, как Герц и Лодж, были не менее важны.
  • 1906: американский инженер Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн. Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1920-е годы: службы экстренной помощи начали экспериментировать с громоздкими радиотелефоны.
  • 1940-е годы: мобильные радиотелефоны начали становиться популярными среди службы экстренной помощи и такси.
  • 1946: AT&T и Southwestern Bell представили свой мобильный телефон Телефонная система (МТС) для радиосвязи между автомобилями.
  • 1960-е: Bell Laboratories (Bell Labs) разработала мобильный Metroliner сотовые телефоны в поездах.
  • 1973: Мартин Купер (1928–) из Motorola сделала первый звонок по мобильному телефону, используя свой прототип DynaTAC весом 28 фунтов.
  • 1975: Купер и его коллеги получили патент на их радиотелефонная система.Их оригинальный дизайн показан на картинке, которую вы можете увидеть здесь.
  • 1978: Аналоговая система мобильной связи (AMPS) была представлена ​​в Чикаго. Иллинойс Белл и AT&T.
  • 1982: Европейские телефонные компании согласовали всемирный стандарт для как будут работать мобильные телефоны, которая получила название Groupe Speciale Mobile и позже Глобальная система мобильной связи (GSM).
  • 1984: Motorola DynaTAC стала первой в мире коммерческой портативный мобильный телефон. Взгляните на фотографию Мартина Купера и его DynaTAC.
  • 1995: GSM и аналогичная система под названием PCS (Personal Службы связи) были приняты в США.
  • 2001: GSM захватил более 70 процентов мобильных телефонов в мире рынок.
  • 2000-е: Выпущены мобильные телефоны третьего поколения (3G и 3.5G) с более быстрые сети, доступ в Интернет, загрузка музыки и многое другое расширенные функции на основе цифровых технологий.
  • 2007: iPhone от Apple произвел революцию в мире мобильных телефонов, упаковав то, что эффективно миниатюрный компьютер с сенсорным управлением в гаджет, такой же, как и обычный сотовый телефон.
  • 2013: Мобильные телефоны празднуют свое 40-летие.
  • 2020: количество абонентов мобильных телефонов достигло 8,3 миллиарда. Около 80 процентов из них находятся в развивающихся странах.
Рекламные ссылки

Узнать больше

На этом сайте

Книги

Статьи

История мобильных телефонов

Список литературы

  1. ↑ Статистика подписки на мобильные телефоны взята из статистики Международного союза электросвязи ООН (ITU).
  2. ↑ Если не указано иное, все статистические данные в этом параграфе взяты из статистики Международного союза электросвязи (ITU) ООН.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2006, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2006/2020) Мобильные телефоны. Получено с https://www.explainthatstuff.com/cellphones.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте…

Как работают мобильные телефоны? — Объясни, что материал

Как работают мобильные телефоны? — Объясни это Реклама

Ходить и разговаривать, работать над тренироваться, всегда на связи, никогда не терять связь — мобильные телефоны значительно изменил образ жизни и работы. Никто точно не знает, сколько мало пластиковых телефонов есть в мире, но, по текущим оценкам, их более 8.3 миллиарда подписок. Это больше, чем население планеты! В развивающихся странах, где крупномасштабные наземные сети (обычные телефоны) подключены к стене) немногочисленны, более 93 процентов используемых телефонов сотовые телефоны. [1] Мобильные телефоны (также известные как сотовые телефоны и, в основном в Европе, как мобильные телефоны или мобильные) — это радиотелефоны, которые направляют свои звонки через сеть мачт, подключенных к основной телефонной сети общего пользования. Вот как они работают.

Фото: Большинство людей сейчас используют смартфоны в качестве мобильных, которые на самом деле небольшие компьютеры со встроенной схемой сотового телефона.Еще в 1990-х сотовые телефоны были проще и их можно было использовать только для голосовых вызовов. Теперь сети стали быстрее и способны обрабатывать большие объемы трафика, смартфоны используются в качестве портативных центров связи, способных делать все, что вы можете делать с телефоном, цифровой камерой, MP3-плеером, спутниковой навигацией GPS и портативным компьютером.

Мобильные телефоны используют беспроводную технологию

Фото: Мобильные телефоны в прежнем виде. Эта Nokia датируется началом 2000-х годов. имеет выдвижную клавиатуру.Хотя в нем есть камера и несколько других основных функций, в нем ничего нет. как вычислительная мощность современного смартфона. Такие телефоны иногда называют «портативными» или «обычные телефоны», чтобы отличать их от iPhone и других смартфонов.

Хотя они выполняют ту же работу, наземные линии связи а мобильные телефоны работают совершенно по-другому. Наземные линии несут звонки по электрическим кабели. Вырезаны все спутники, оптоволоконные кабели, коммутация офисы и прочий раззматаз, а наземных линий не так уж и много отличается от игрушечных телефонов, которые вы могли бы сделать из куска нитку и пару банок с запеченной фасолью.Слова, которые вы говорите в конечном итоге пройдите по прямому проводному соединению между двумя телефонными трубками. Что такое Отличие сотового телефона в том, что он может отправлять и принимать звонки без проводов. связи любого рода. Как оно работает? Используя электромагнитное радиоволны, чтобы посылать и принимать звуки, которые обычно проходят по проводам.

Сидите ли вы дома, гуляете по улице, ведете машину машина, или едешь в поезде, ты купаешься в море электромагнитного волны. ТВ и радио программы, сигналы от радиоуправляемых машины, беспроводные телефонные звонки и даже беспроводные дверные звонки — все это работа с использованием электромагнитной энергии: волнообразные модели электричества и магнетизм, который невидимо проносится сквозь пространство со скоростью легкий (300 000 км или 186 000 миль в секунду).Сети сотовой связи на сегодняшний день самый быстрорастущий источник электромагнитной энергии в мире вокруг нас.

Рекламные ссылки

Как звонки по мобильному телефону путешествуют

Когда вы говорите по мобильному телефону, крошечный микрофон в трубке преобразует восходящие и нисходящие звуки вашего голоса в соответствующие восходящая и нисходящая диаграмма электрических сигналов. Микрочип внутри телефона превращает эти сигналы в цепочки чисел. Номера упакованы в радиоволны и лучи из телефона антенна (в некоторых страны антенна называется антенной).Радиоволновые гонки через воздух со скоростью света, пока не достигнет ближайшего мачта для мобильного телефона.

Фото: Инженеры ремонтируют мачту мобильного телефона. Фото Брайена Ахо любезно предоставлено ВМС США.

Мачта принимает сигналы и передает их своей базовой станции, который эффективно координирует то, что происходит внутри каждой локальной части сети сотового телефона, которая называется клетка. С базовой станции вызовы направляются к месту назначения. Звонки, сделанные с мобильного телефона на другой мобильный телефон в той же сети, попадают в их пункт назначения, будучи направленным на базовую станцию, ближайшую к пункту назначения телефон и, наконец, сам телефон.Звонки на мобильный телефон другая сеть или наземная линия связи проходят более длинный путь. Они могут иметь должны быть направлены в основную телефонную сеть до того, как они достигнут их конечный пункт назначения.

Как помогают мачты для мобильных телефонов

На первый взгляд мобильные телефоны очень похожи на рации двусторонней связи и рации, где у каждого человека есть радио (содержащее как отправителя, так и получателя), которое напрямую пересылает сообщения туда и обратно, как в теннисе игроки возвращают мяч. Проблема с такими радиоприемниками в том, что вы можете использовать только так много из них в определенной области до того, как сигналы от одной пары абонентов начнут мешать тем от других пар абонентов.Вот почему мобильные телефоны намного сложнее и работают совершенно по-другому.

В трубке мобильного телефона есть радиопередатчик для передачи радиосигналов от телефон и радиоприемник для приема сигналов от других телефоны. Радиопередатчик и приемник не очень мощные, что означает, что мобильные телефоны не могут посылать сигналы на большие расстояния. Это не недостаток — это намеренная особенность их дизайна! Все, что нужно сделать мобильному телефону, — это связаться с местной мачтой и базовой станцией; базовая станция должна улавливать слабые сигналы от многих мобильных телефонов и маршрутизировать они направляются к месту назначения, поэтому мачты представляют собой огромные мощные антенны (часто устанавливаемые на холме или высоком здании).Если бы у нас не было мачт, нам потребовались бы сотовые телефоны с огромными антеннами и гигантскими блоками питания — а они быть слишком громоздким, чтобы быть мобильным. Мобильный телефон автоматически связывается с ближайшим сотовым (тот, у которого самый сильный сигнал) и использует для этого как можно меньше энергии (что делает его батарею работает как можно дольше и снижает вероятность того, что он создаст помехи другим телефонам поблизости).

Что делают клетки

Так зачем заморачиваться с ячейками? Почему мобильные телефоны просто не разговаривают друг с другом напрямую? Предположим, несколько все люди в вашем районе хотят использовать свои мобильные телефоны одновременно.Если все их телефоны отправляют и принимают звонки одинаково, используя одни и те же радиоволны, сигналы будут мешать и скремблироваться вместе, и будет невозможно отличить один звонок от другого. Один из способов обойти это — использовать разные радиоволны для разных звонков. Если каждый телефонный звонок использует немного разную частоту (количество колебаний вверх и вниз в радиоволне за одну секунду), звонки легко разделить. Они могут путешествовать по воздуху, как разные радиостанции, использующие разные диапазоны волн.

Это нормально, если одновременно звонят всего несколько человек. Но предположим, что вы находитесь в центре большого города, и миллионы людей все звонят сразу. Тогда вам понадобится столько же миллионов отдельных частот — больше, чем обычно доступно. Решение состоит в том, чтобы разделите город на более мелкие части, каждая из которых обслуживается своими мачтами и базовой станцией. Эти области то, что мы называем клетками, и они выглядят как лоскутное одеяло из невидимых шестиугольников. Каждый ячейка имеет свою базовую станцию ​​и мачты, и все вызовы, сделанные или полученные внутри этой ячейки, маршрутизируются через них.Ячейки позволяют системе обрабатывать намного больше вызовов одновременно, потому что каждая ячейка использует тот же набор частот, что и ее соседние ячейки. Чем больше ячеек, тем больше количество звонков, которые можно сделать за один раз. Вот почему в городских районах гораздо больше ячеек, чем в сельских, и почему ячейки в городских районах значительно меньше.

Как сотовые телефоны обрабатывают звонки

На этом рисунке показаны два способа работы клеток.

Простой звонок

Если телефон в ячейке A вызывает телефон в ячейке B, звонок не проходить напрямую между телефонами, но от первого телефона к мачте A и его базовой станции, затем к мачте B и его базовой станции, а затем ко второму телефону.

Звонок в роуминге

Мобильные телефоны, которые перемещаются между ячейками (когда люди пешком или за рулем) регулярно посылают сигналы туда и обратно близлежащие мачты, так что в любой момент времени сеть сотовой связи всегда знает, какая мачта к какому телефону ближе всего.

Если пассажир автомобиля звонит, а машина едет между ячейками C, D и E, телефон вызов автоматически «передается» (передается от ячейки к ячейке), поэтому звонок не прерывается.

Ключом к пониманию клеток является осознание того, что мобильные телефоны и мачты, с которыми они общаются, являются предназначен для передачи радиоволн только в ограниченном диапазоне; что эффективно определяет размер ячеек.Также стоит отметить, что это упрощенное изображение; точнее сказать, что мачты расположены на пересечении ячеек, но это немного легче понять, как я им показал.

Типы сотовых телефонов

Первые мобильные телефоны использовали аналоговую технологию. Примерно так же могут работать и телефоны. Когда вы говорите на запеченная фасоль может звонить, ваш голос заставляет струну колебаться вверх и вниз (так быстро, что вы этого не видите). Вибрации поднимаются и опускаются, как твой голос.Другими словами, это аналог вашего голос — вот почему мы называем эту технологию аналоговой. Некоторые наземные линии все еще работают таким образом сегодня.

Большинство мобильных телефонов работают с использованием цифровых технологий: они превращают звуки вашего голоса в набор цифр (цифр), а затем луч их по воздуху. Использование цифровых технологий дает много преимуществ. Это означает, что мобильные телефоны могут использоваться для отправки и получения компьютеризированных данных. Вот почему большинство мобильных телефонов теперь могут отправлять и получать текстовые сообщения (SMS). сообщения, веб-страницы, музыкальные файлы MP3 и цифровые фотографии.Цифровые технологии позволяют шифровать звонки по мобильному телефону (зашифровано с использованием математической код) до того, как они покинут телефон отправителя, чтобы перехватчики не могли перехватить их. (Это было большой проблемой с более ранними аналоговыми телефонами, который любой мог перехватить с помощью миниатюрного радиоприемника, называемого сканер.) Это делает цифровые мобильные телефоны намного более безопасными.

Мир мобильных телефонов

Мобильные телефоны кардинально изменили способ общения в мире. В начале 1990-х гг. только один процент населения мира владеет мобильным телефоном; сегодня, во все большем числе стран люди тратят больше времени на мобильные телефоны, чем на их стационарные телефоны.Согласно МСЭ-Т, в 2001 году только 58 процентов населения мира имело доступ к сети сотовой связи (2G); к 2019 году этот показатель вырос до 98,8 процента. Также к 2019 г. более 8,3 миллиарда абонентов сотовой связи — немного больше, чем количество людей на планете. Сотовые телефоны также сделали большой скачок в доступе к Интернету. В конце 2016 года мобильный интернет-трафик (смартфоны и планшеты) впервые превысил трафик настольных компьютеров. К концу 2019 года 83 процента населения мира имели активные подписки на мобильный широкополосный доступ с использованием мобильных телефонов, и этот срок закончился. в пять раз больше, чем у традиционного проводного широкополосного доступа (всего 14.9 процентов). [2]

Диаграмма: Подписки на сотовые телефоны: Наиболее значительный рост количества абонентов мобильных телефонов произошел в развивающихся странах, на которые сейчас приходится около 80 процентов подписок. Источник: построено на основе данных от 28 октября 2019 г. Международный союз электросвязи (ITU).

Сотовые телефоны также используются разными людьми по-разному. Еще в начале 2000-х мобильные телефоны использовались полностью. для голосовых разговоров и отправки коротких «текстов» (текстовые сообщения, также известные как SMS-сообщения).Многие люди владели мобильным телефоном исключительно для случайного использования в экстренных случаях; и это до сих пор остается популярной причиной для обладания телефоном (согласно FCC, около 70 процентов всех вызовов службы экстренной помощи в США совершаются с мобильных телефонов). Сегодня смартфоны есть повсюду, и люди используют их для электронной почты, просмотра веб-страниц, загрузка музыки, социальные сети и запуск всевозможных приложений. В то время как старомодные сотовые телефоны полностью полагались на приличный сигнал из сотовой сети, смартфоны при необходимости переключались между обычными сетями и Wi-Fi.Там, где старые сотовые телефоны были буквально «мобильными телефонами» (стационарные беспроводные телефоны), современные смартфоны — это, по сути, карманные компьютеры, которые просто делают телефонные звонки. Вы можете увидеть, насколько сильно изменились телефоны внутри компании, на фотографиях в поле ниже.

Мобильные телефоны и мобильная широкополосная связь

Если вы хотите узнать, как сети мобильных телефонов превратились из чисто голосовых сетей в являются важной частью Интернета, см. нашу отдельную статью о широкополосный и мобильный широкополосный доступ.Он также охватывает все эти сбивающие с толку сокращения, такие как FDMA, TDMA, CDMA, WCDMA и HSDPA / HSPA.

Что внутри вашего телефона?

Фото: Мобильные телефоны в прошлом и настоящем. Слева: Motorola V66 примерно 2000 г., Nokia 106 примерно 2010 г. и смартфон LG серии G. Я буду разбирать Motorola и LG.

Сломанный телефон — замечательная вещь, если вам, как и мне, нравится выяснять, как все работает. Неудивительно, что здесь много В современных смартфонах происходит больше, чем в обычных мобильных телефонах, которые люди носили с собой около 20 лет назад.Старые телефоны были просто телефонами; Смартфоны — это компьютеры, укомплектованные всевозможными гаджетами, от считывателей отпечатков пальцев до электронных платежных чипов. Но хотя телефоны кардинально изменились, проблемы разработки нового телефона во многом остались такими же, как и всегда: как упаковать все эти компоненты в достаточно маленькое пространство, снизить их общий вес и избежать их? перегрев? Как вы гарантируете, что критически важные компоненты, такие как микрофоны, громкоговорители и антенны, продолжат работать эффективно, даже если они миниатюрны?

Внутри классический телефон

Самая большая разница между старыми телефонами и новыми в том, что старые имеют клавиатуры и маленькие ЖК-экраны, в то время как у смартфонов есть сенсорные экраны, которые полностью избавляют от необходимости в клавиатуре (им по-прежнему нужно несколько кнопок для включения и выключения питания и управления громкостью динамика).В старых телефонах клавиатура, как правило, является одной из «мембранных»: вместо движущихся клавиш на ней есть мягкие резиновые кнопки, которые нажимают на электрические контакты на печатной плате (PCB) ниже.

Фото: Слева: Верхняя сторона клавиатуры старого телефона Motorola представляет собой так называемую резиновую мембрану, тонкий лист эластичного пластика с «клавишами», которые нажимают, чтобы установить электрический контакт с печатной платой ниже. Справа: каждая клавиша прижимает маленький круглый штифт к соответствующей части печатной платы (маленькие точки).Клавиатура также снабжена светодиодами (восемь прямоугольников с белыми контурами), которые загораются, когда вы звоните или принимаете вызов.

К сожалению, цифровые гаджеты не так интересны (или их легко понять), как механические устройства: большинство хороших вещей происходит внутри микросхем, вне поля зрения, и вы не можете понять, как работает микросхема, просто глядя на это. Сняв клавиатуру, вы увидите, что плата под ней не представляет особого интереса, но обратите внимание на золотую антенну, идущую вокруг нее.Вот почему такому мобильному телефону не нужна длинная телескопическая (выдвижная) антенна.

Фото: основная плата телефона Motorola V66 находится прямо под клавиатурой и над аккумуляторным отсеком.

Другая сторона печатной платы немного интереснее:

  1. ЖК-экран, подключаемый к клавиатуре с помощью ленточного кабеля.
  2. Гнездо для наушников.
  3. Разъем аккумулятора
  4. Зарядное устройство и разъем кабеля для подключения к компьютеру.
  5. Радиаторы / экран для микросхем на печатной плате.
  6. Пьезоэлектрический зуммер.
  7. Микросхема управления зуммером
  8. Антенный разъем — соединяет небольшую внешнюю антенну с золотой антенной, проходящей вокруг печатной платы.

Фото: задняя сторона основной платы телефона Motorola V66.

Внутри смартфона

Как и следовало ожидать, внутри смартфона происходит гораздо больше. Я не разбирал экран (он находится прямо под монтажной платой с правой стороны), но вот некоторые другие вещи, которые вы найдете:

Фото: Основная плата от более современного смартфона LG G-серии.

  1. Контактные соединения между верхней (фото слева) и нижней (фотография справа) частями печатной платы.
  2. Радиатор / экран для микросхем процессора. (Серое вещество, которое вы видите здесь, представляет собой термопасту — своего рода теплопроводящую слизь, которая помогает улучшить охлаждение.) Здесь находится кнопка включения / выключения питания.
  3. Антенные разъемы NFC (для бесконтактных платежей).
  4. Инфракрасный фокусирующий луч для камеры.
  5. 13-мегапиксельная основная цифровая камера.
  6. Фонарик / вспышка камеры.
  7. Четырехъядерный процессор Qualcomm Snapdragon.
  8. Слот для карты Micro SD (позволяет увеличить объем памяти до 32 ГБ).
  9. Слот для карты Micro-SIM
  10. Литий-ионный аккумулятор (емкость 3000 мАч).
  11. Полностью пластиковый корпус с отделкой «матовый металл» создает впечатление металлического корпуса с пятнами отпечатков пальцев.
  12. Разъем для наушников.
  13. Микрофон.
  14. USB и разъем для зарядки.
  15. Громкоговоритель.
  16. Привинченная пластиковая прокладка защищает печатную плату и компоненты, когда вы открываете корпус для замены батареи.
  17. Винты!
  18. Больше контактных соединений между верхней и нижней платами.

Кто изобрел мобильные телефоны?

Фото: оригинальный дизайн радиотелефонной системы (мобильного телефона) Мартина Купера, подана как патентная заявка в 1973 году. Обратите внимание на то, что мобильная часть образует полностью отдельную систему (показана синим справа), которая взаимодействует с существующей общедоступной сетью (показана слева красным). Отдельные мобильные телефоны (бирюзовый край справа) связываются с ближайшими мачтами и базовыми станциями с помощью радиоволн (желтые зигзаги).Патентный чертеж любезно предоставлен Управлением по патентам и товарным знакам США.

Как мы перешли от наземных линий связи к мобильным телефонам? Вот краткая история:

  • 1873: британский физик Джеймс Клерк Максвелл (1831–1879) опубликовал теорию электромагнетизма, объясняя, как электричество может создавать магнетизм и наоборот. Узнать больше о его работах в нашей основной статье о магнетизме.
  • 1876: изобретатель шотландского происхождения Александр Грэм Белл (1847–1922) разработал первый телефон, живя в Соединенных Штатах. (хотя есть некоторые споры о том, был ли он на самом деле первоначальным изобретателем).Позже Белл разработал так называемый «фотофон», который мог отправлять и принимать телефонные звонки с помощью световых лучей. Поскольку он задумывался как беспроводной телефон, он действительно был далеким предком современного мобильного телефона.
  • 1888: немецкий физик Генрих Герц (1857–1894) создал первые электромагнитные радиоволны в своей лаборатории.
  • 1894: британский физик сэр Оливер Лодж (1851–1940) отправил первое сообщение с помощью радиоволн в Оксфорд, Англия.
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш.К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда. Маркони помнят как отец радио, но такие пионеры, как Герц и Лодж, были не менее важны.
  • 1906: американский инженер Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн. Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1920-е годы: службы экстренной помощи начали экспериментировать с громоздкими радиотелефоны.
  • 1940-е годы: мобильные радиотелефоны начали становиться популярными среди службы экстренной помощи и такси.
  • 1946: AT&T и Southwestern Bell представили свой мобильный телефон Телефонная система (МТС) для радиосвязи между автомобилями.
  • 1960-е: Bell Laboratories (Bell Labs) разработала мобильный Metroliner сотовые телефоны в поездах.
  • 1973: Мартин Купер (1928–) из Motorola сделала первый звонок по мобильному телефону, используя свой прототип DynaTAC весом 28 фунтов.
  • 1975: Купер и его коллеги получили патент на их радиотелефонная система.Их оригинальный дизайн показан на картинке, которую вы можете увидеть здесь.
  • 1978: Аналоговая система мобильной связи (AMPS) была представлена ​​в Чикаго. Иллинойс Белл и AT&T.
  • 1982: Европейские телефонные компании согласовали всемирный стандарт для как будут работать мобильные телефоны, которая получила название Groupe Speciale Mobile и позже Глобальная система мобильной связи (GSM).
  • 1984: Motorola DynaTAC стала первой в мире коммерческой портативный мобильный телефон. Взгляните на фотографию Мартина Купера и его DynaTAC.
  • 1995: GSM и аналогичная система под названием PCS (Personal Службы связи) были приняты в США.
  • 2001: GSM захватил более 70 процентов мобильных телефонов в мире рынок.
  • 2000-е: Выпущены мобильные телефоны третьего поколения (3G и 3.5G) с более быстрые сети, доступ в Интернет, загрузка музыки и многое другое расширенные функции на основе цифровых технологий.
  • 2007: iPhone от Apple произвел революцию в мире мобильных телефонов, упаковав то, что эффективно миниатюрный компьютер с сенсорным управлением в гаджет, такой же, как и обычный сотовый телефон.
  • 2013: Мобильные телефоны празднуют свое 40-летие.
  • 2020: количество абонентов мобильных телефонов достигло 8,3 миллиарда. Около 80 процентов из них находятся в развивающихся странах.
Рекламные ссылки

Узнать больше

На этом сайте

Книги

Статьи

История мобильных телефонов

Список литературы

  1. ↑ Статистика подписки на мобильные телефоны взята из статистики Международного союза электросвязи ООН (ITU).
  2. ↑ Если не указано иное, все статистические данные в этом параграфе взяты из статистики Международного союза электросвязи (ITU) ООН.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2006, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2006/2020) Мобильные телефоны. Получено с https://www.explainthatstuff.com/cellphones.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте…

Как работают мобильные телефоны? — Объясни, что материал

Как работают мобильные телефоны? — Объясни это Реклама

Ходить и разговаривать, работать над тренироваться, всегда на связи, никогда не терять связь — мобильные телефоны значительно изменил образ жизни и работы. Никто точно не знает, сколько мало пластиковых телефонов есть в мире, но, по текущим оценкам, их более 8.3 миллиарда подписок. Это больше, чем население планеты! В развивающихся странах, где крупномасштабные наземные сети (обычные телефоны) подключены к стене) немногочисленны, более 93 процентов используемых телефонов сотовые телефоны. [1] Мобильные телефоны (также известные как сотовые телефоны и, в основном в Европе, как мобильные телефоны или мобильные) — это радиотелефоны, которые направляют свои звонки через сеть мачт, подключенных к основной телефонной сети общего пользования. Вот как они работают.

Фото: Большинство людей сейчас используют смартфоны в качестве мобильных, которые на самом деле небольшие компьютеры со встроенной схемой сотового телефона.Еще в 1990-х сотовые телефоны были проще и их можно было использовать только для голосовых вызовов. Теперь сети стали быстрее и способны обрабатывать большие объемы трафика, смартфоны используются в качестве портативных центров связи, способных делать все, что вы можете делать с телефоном, цифровой камерой, MP3-плеером, спутниковой навигацией GPS и портативным компьютером.

Мобильные телефоны используют беспроводную технологию

Фото: Мобильные телефоны в прежнем виде. Эта Nokia датируется началом 2000-х годов. имеет выдвижную клавиатуру.Хотя в нем есть камера и несколько других основных функций, в нем ничего нет. как вычислительная мощность современного смартфона. Такие телефоны иногда называют «портативными» или «обычные телефоны», чтобы отличать их от iPhone и других смартфонов.

Хотя они выполняют ту же работу, наземные линии связи а мобильные телефоны работают совершенно по-другому. Наземные линии несут звонки по электрическим кабели. Вырезаны все спутники, оптоволоконные кабели, коммутация офисы и прочий раззматаз, а наземных линий не так уж и много отличается от игрушечных телефонов, которые вы могли бы сделать из куска нитку и пару банок с запеченной фасолью.Слова, которые вы говорите в конечном итоге пройдите по прямому проводному соединению между двумя телефонными трубками. Что такое Отличие сотового телефона в том, что он может отправлять и принимать звонки без проводов. связи любого рода. Как оно работает? Используя электромагнитное радиоволны, чтобы посылать и принимать звуки, которые обычно проходят по проводам.

Сидите ли вы дома, гуляете по улице, ведете машину машина, или едешь в поезде, ты купаешься в море электромагнитного волны. ТВ и радио программы, сигналы от радиоуправляемых машины, беспроводные телефонные звонки и даже беспроводные дверные звонки — все это работа с использованием электромагнитной энергии: волнообразные модели электричества и магнетизм, который невидимо проносится сквозь пространство со скоростью легкий (300 000 км или 186 000 миль в секунду).Сети сотовой связи на сегодняшний день самый быстрорастущий источник электромагнитной энергии в мире вокруг нас.

Рекламные ссылки

Как звонки по мобильному телефону путешествуют

Когда вы говорите по мобильному телефону, крошечный микрофон в трубке преобразует восходящие и нисходящие звуки вашего голоса в соответствующие восходящая и нисходящая диаграмма электрических сигналов. Микрочип внутри телефона превращает эти сигналы в цепочки чисел. Номера упакованы в радиоволны и лучи из телефона антенна (в некоторых страны антенна называется антенной).Радиоволновые гонки через воздух со скоростью света, пока не достигнет ближайшего мачта для мобильного телефона.

Фото: Инженеры ремонтируют мачту мобильного телефона. Фото Брайена Ахо любезно предоставлено ВМС США.

Мачта принимает сигналы и передает их своей базовой станции, который эффективно координирует то, что происходит внутри каждой локальной части сети сотового телефона, которая называется клетка. С базовой станции вызовы направляются к месту назначения. Звонки, сделанные с мобильного телефона на другой мобильный телефон в той же сети, попадают в их пункт назначения, будучи направленным на базовую станцию, ближайшую к пункту назначения телефон и, наконец, сам телефон.Звонки на мобильный телефон другая сеть или наземная линия связи проходят более длинный путь. Они могут иметь должны быть направлены в основную телефонную сеть до того, как они достигнут их конечный пункт назначения.

Как помогают мачты для мобильных телефонов

На первый взгляд мобильные телефоны очень похожи на рации двусторонней связи и рации, где у каждого человека есть радио (содержащее как отправителя, так и получателя), которое напрямую пересылает сообщения туда и обратно, как в теннисе игроки возвращают мяч. Проблема с такими радиоприемниками в том, что вы можете использовать только так много из них в определенной области до того, как сигналы от одной пары абонентов начнут мешать тем от других пар абонентов.Вот почему мобильные телефоны намного сложнее и работают совершенно по-другому.

В трубке мобильного телефона есть радиопередатчик для передачи радиосигналов от телефон и радиоприемник для приема сигналов от других телефоны. Радиопередатчик и приемник не очень мощные, что означает, что мобильные телефоны не могут посылать сигналы на большие расстояния. Это не недостаток — это намеренная особенность их дизайна! Все, что нужно сделать мобильному телефону, — это связаться с местной мачтой и базовой станцией; базовая станция должна улавливать слабые сигналы от многих мобильных телефонов и маршрутизировать они направляются к месту назначения, поэтому мачты представляют собой огромные мощные антенны (часто устанавливаемые на холме или высоком здании).Если бы у нас не было мачт, нам потребовались бы сотовые телефоны с огромными антеннами и гигантскими блоками питания — а они быть слишком громоздким, чтобы быть мобильным. Мобильный телефон автоматически связывается с ближайшим сотовым (тот, у которого самый сильный сигнал) и использует для этого как можно меньше энергии (что делает его батарею работает как можно дольше и снижает вероятность того, что он создаст помехи другим телефонам поблизости).

Что делают клетки

Так зачем заморачиваться с ячейками? Почему мобильные телефоны просто не разговаривают друг с другом напрямую? Предположим, несколько все люди в вашем районе хотят использовать свои мобильные телефоны одновременно.Если все их телефоны отправляют и принимают звонки одинаково, используя одни и те же радиоволны, сигналы будут мешать и скремблироваться вместе, и будет невозможно отличить один звонок от другого. Один из способов обойти это — использовать разные радиоволны для разных звонков. Если каждый телефонный звонок использует немного разную частоту (количество колебаний вверх и вниз в радиоволне за одну секунду), звонки легко разделить. Они могут путешествовать по воздуху, как разные радиостанции, использующие разные диапазоны волн.

Это нормально, если одновременно звонят всего несколько человек. Но предположим, что вы находитесь в центре большого города, и миллионы людей все звонят сразу. Тогда вам понадобится столько же миллионов отдельных частот — больше, чем обычно доступно. Решение состоит в том, чтобы разделите город на более мелкие части, каждая из которых обслуживается своими мачтами и базовой станцией. Эти области то, что мы называем клетками, и они выглядят как лоскутное одеяло из невидимых шестиугольников. Каждый ячейка имеет свою базовую станцию ​​и мачты, и все вызовы, сделанные или полученные внутри этой ячейки, маршрутизируются через них.Ячейки позволяют системе обрабатывать намного больше вызовов одновременно, потому что каждая ячейка использует тот же набор частот, что и ее соседние ячейки. Чем больше ячеек, тем больше количество звонков, которые можно сделать за один раз. Вот почему в городских районах гораздо больше ячеек, чем в сельских, и почему ячейки в городских районах значительно меньше.

Как сотовые телефоны обрабатывают звонки

На этом рисунке показаны два способа работы клеток.

Простой звонок

Если телефон в ячейке A вызывает телефон в ячейке B, звонок не проходить напрямую между телефонами, но от первого телефона к мачте A и его базовой станции, затем к мачте B и его базовой станции, а затем ко второму телефону.

Звонок в роуминге

Мобильные телефоны, которые перемещаются между ячейками (когда люди пешком или за рулем) регулярно посылают сигналы туда и обратно близлежащие мачты, так что в любой момент времени сеть сотовой связи всегда знает, какая мачта к какому телефону ближе всего.

Если пассажир автомобиля звонит, а машина едет между ячейками C, D и E, телефон вызов автоматически «передается» (передается от ячейки к ячейке), поэтому звонок не прерывается.

Ключом к пониманию клеток является осознание того, что мобильные телефоны и мачты, с которыми они общаются, являются предназначен для передачи радиоволн только в ограниченном диапазоне; что эффективно определяет размер ячеек.Также стоит отметить, что это упрощенное изображение; точнее сказать, что мачты расположены на пересечении ячеек, но это немного легче понять, как я им показал.

Типы сотовых телефонов

Первые мобильные телефоны использовали аналоговую технологию. Примерно так же могут работать и телефоны. Когда вы говорите на запеченная фасоль может звонить, ваш голос заставляет струну колебаться вверх и вниз (так быстро, что вы этого не видите). Вибрации поднимаются и опускаются, как твой голос.Другими словами, это аналог вашего голос — вот почему мы называем эту технологию аналоговой. Некоторые наземные линии все еще работают таким образом сегодня.

Большинство мобильных телефонов работают с использованием цифровых технологий: они превращают звуки вашего голоса в набор цифр (цифр), а затем луч их по воздуху. Использование цифровых технологий дает много преимуществ. Это означает, что мобильные телефоны могут использоваться для отправки и получения компьютеризированных данных. Вот почему большинство мобильных телефонов теперь могут отправлять и получать текстовые сообщения (SMS). сообщения, веб-страницы, музыкальные файлы MP3 и цифровые фотографии.Цифровые технологии позволяют шифровать звонки по мобильному телефону (зашифровано с использованием математической код) до того, как они покинут телефон отправителя, чтобы перехватчики не могли перехватить их. (Это было большой проблемой с более ранними аналоговыми телефонами, который любой мог перехватить с помощью миниатюрного радиоприемника, называемого сканер.) Это делает цифровые мобильные телефоны намного более безопасными.

Мир мобильных телефонов

Мобильные телефоны кардинально изменили способ общения в мире. В начале 1990-х гг. только один процент населения мира владеет мобильным телефоном; сегодня, во все большем числе стран люди тратят больше времени на мобильные телефоны, чем на их стационарные телефоны.Согласно МСЭ-Т, в 2001 году только 58 процентов населения мира имело доступ к сети сотовой связи (2G); к 2019 году этот показатель вырос до 98,8 процента. Также к 2019 г. более 8,3 миллиарда абонентов сотовой связи — немного больше, чем количество людей на планете. Сотовые телефоны также сделали большой скачок в доступе к Интернету. В конце 2016 года мобильный интернет-трафик (смартфоны и планшеты) впервые превысил трафик настольных компьютеров. К концу 2019 года 83 процента населения мира имели активные подписки на мобильный широкополосный доступ с использованием мобильных телефонов, и этот срок закончился. в пять раз больше, чем у традиционного проводного широкополосного доступа (всего 14.9 процентов). [2]

Диаграмма: Подписки на сотовые телефоны: Наиболее значительный рост количества абонентов мобильных телефонов произошел в развивающихся странах, на которые сейчас приходится около 80 процентов подписок. Источник: построено на основе данных от 28 октября 2019 г. Международный союз электросвязи (ITU).

Сотовые телефоны также используются разными людьми по-разному. Еще в начале 2000-х мобильные телефоны использовались полностью. для голосовых разговоров и отправки коротких «текстов» (текстовые сообщения, также известные как SMS-сообщения).Многие люди владели мобильным телефоном исключительно для случайного использования в экстренных случаях; и это до сих пор остается популярной причиной для обладания телефоном (согласно FCC, около 70 процентов всех вызовов службы экстренной помощи в США совершаются с мобильных телефонов). Сегодня смартфоны есть повсюду, и люди используют их для электронной почты, просмотра веб-страниц, загрузка музыки, социальные сети и запуск всевозможных приложений. В то время как старомодные сотовые телефоны полностью полагались на приличный сигнал из сотовой сети, смартфоны при необходимости переключались между обычными сетями и Wi-Fi.Там, где старые сотовые телефоны были буквально «мобильными телефонами» (стационарные беспроводные телефоны), современные смартфоны — это, по сути, карманные компьютеры, которые просто делают телефонные звонки. Вы можете увидеть, насколько сильно изменились телефоны внутри компании, на фотографиях в поле ниже.

Мобильные телефоны и мобильная широкополосная связь

Если вы хотите узнать, как сети мобильных телефонов превратились из чисто голосовых сетей в являются важной частью Интернета, см. нашу отдельную статью о широкополосный и мобильный широкополосный доступ.Он также охватывает все эти сбивающие с толку сокращения, такие как FDMA, TDMA, CDMA, WCDMA и HSDPA / HSPA.

Что внутри вашего телефона?

Фото: Мобильные телефоны в прошлом и настоящем. Слева: Motorola V66 примерно 2000 г., Nokia 106 примерно 2010 г. и смартфон LG серии G. Я буду разбирать Motorola и LG.

Сломанный телефон — замечательная вещь, если вам, как и мне, нравится выяснять, как все работает. Неудивительно, что здесь много В современных смартфонах происходит больше, чем в обычных мобильных телефонах, которые люди носили с собой около 20 лет назад.Старые телефоны были просто телефонами; Смартфоны — это компьютеры, укомплектованные всевозможными гаджетами, от считывателей отпечатков пальцев до электронных платежных чипов. Но хотя телефоны кардинально изменились, проблемы разработки нового телефона во многом остались такими же, как и всегда: как упаковать все эти компоненты в достаточно маленькое пространство, снизить их общий вес и избежать их? перегрев? Как вы гарантируете, что критически важные компоненты, такие как микрофоны, громкоговорители и антенны, продолжат работать эффективно, даже если они миниатюрны?

Внутри классический телефон

Самая большая разница между старыми телефонами и новыми в том, что старые имеют клавиатуры и маленькие ЖК-экраны, в то время как у смартфонов есть сенсорные экраны, которые полностью избавляют от необходимости в клавиатуре (им по-прежнему нужно несколько кнопок для включения и выключения питания и управления громкостью динамика).В старых телефонах клавиатура, как правило, является одной из «мембранных»: вместо движущихся клавиш на ней есть мягкие резиновые кнопки, которые нажимают на электрические контакты на печатной плате (PCB) ниже.

Фото: Слева: Верхняя сторона клавиатуры старого телефона Motorola представляет собой так называемую резиновую мембрану, тонкий лист эластичного пластика с «клавишами», которые нажимают, чтобы установить электрический контакт с печатной платой ниже. Справа: каждая клавиша прижимает маленький круглый штифт к соответствующей части печатной платы (маленькие точки).Клавиатура также снабжена светодиодами (восемь прямоугольников с белыми контурами), которые загораются, когда вы звоните или принимаете вызов.

К сожалению, цифровые гаджеты не так интересны (или их легко понять), как механические устройства: большинство хороших вещей происходит внутри микросхем, вне поля зрения, и вы не можете понять, как работает микросхема, просто глядя на это. Сняв клавиатуру, вы увидите, что плата под ней не представляет особого интереса, но обратите внимание на золотую антенну, идущую вокруг нее.Вот почему такому мобильному телефону не нужна длинная телескопическая (выдвижная) антенна.

Фото: основная плата телефона Motorola V66 находится прямо под клавиатурой и над аккумуляторным отсеком.

Другая сторона печатной платы немного интереснее:

  1. ЖК-экран, подключаемый к клавиатуре с помощью ленточного кабеля.
  2. Гнездо для наушников.
  3. Разъем аккумулятора
  4. Зарядное устройство и разъем кабеля для подключения к компьютеру.
  5. Радиаторы / экран для микросхем на печатной плате.
  6. Пьезоэлектрический зуммер.
  7. Микросхема управления зуммером
  8. Антенный разъем — соединяет небольшую внешнюю антенну с золотой антенной, проходящей вокруг печатной платы.

Фото: задняя сторона основной платы телефона Motorola V66.

Внутри смартфона

Как и следовало ожидать, внутри смартфона происходит гораздо больше. Я не разбирал экран (он находится прямо под монтажной платой с правой стороны), но вот некоторые другие вещи, которые вы найдете:

Фото: Основная плата от более современного смартфона LG G-серии.

  1. Контактные соединения между верхней (фото слева) и нижней (фотография справа) частями печатной платы.
  2. Радиатор / экран для микросхем процессора. (Серое вещество, которое вы видите здесь, представляет собой термопасту — своего рода теплопроводящую слизь, которая помогает улучшить охлаждение.) Здесь находится кнопка включения / выключения питания.
  3. Антенные разъемы NFC (для бесконтактных платежей).
  4. Инфракрасный фокусирующий луч для камеры.
  5. 13-мегапиксельная основная цифровая камера.
  6. Фонарик / вспышка камеры.
  7. Четырехъядерный процессор Qualcomm Snapdragon.
  8. Слот для карты Micro SD (позволяет увеличить объем памяти до 32 ГБ).
  9. Слот для карты Micro-SIM
  10. Литий-ионный аккумулятор (емкость 3000 мАч).
  11. Полностью пластиковый корпус с отделкой «матовый металл» создает впечатление металлического корпуса с пятнами отпечатков пальцев.
  12. Разъем для наушников.
  13. Микрофон.
  14. USB и разъем для зарядки.
  15. Громкоговоритель.
  16. Привинченная пластиковая прокладка защищает печатную плату и компоненты, когда вы открываете корпус для замены батареи.
  17. Винты!
  18. Больше контактных соединений между верхней и нижней платами.

Кто изобрел мобильные телефоны?

Фото: оригинальный дизайн радиотелефонной системы (мобильного телефона) Мартина Купера, подана как патентная заявка в 1973 году. Обратите внимание на то, что мобильная часть образует полностью отдельную систему (показана синим справа), которая взаимодействует с существующей общедоступной сетью (показана слева красным). Отдельные мобильные телефоны (бирюзовый край справа) связываются с ближайшими мачтами и базовыми станциями с помощью радиоволн (желтые зигзаги).Патентный чертеж любезно предоставлен Управлением по патентам и товарным знакам США.

Как мы перешли от наземных линий связи к мобильным телефонам? Вот краткая история:

  • 1873: британский физик Джеймс Клерк Максвелл (1831–1879) опубликовал теорию электромагнетизма, объясняя, как электричество может создавать магнетизм и наоборот. Узнать больше о его работах в нашей основной статье о магнетизме.
  • 1876: изобретатель шотландского происхождения Александр Грэм Белл (1847–1922) разработал первый телефон, живя в Соединенных Штатах. (хотя есть некоторые споры о том, был ли он на самом деле первоначальным изобретателем).Позже Белл разработал так называемый «фотофон», который мог отправлять и принимать телефонные звонки с помощью световых лучей. Поскольку он задумывался как беспроводной телефон, он действительно был далеким предком современного мобильного телефона.
  • 1888: немецкий физик Генрих Герц (1857–1894) создал первые электромагнитные радиоволны в своей лаборатории.
  • 1894: британский физик сэр Оливер Лодж (1851–1940) отправил первое сообщение с помощью радиоволн в Оксфорд, Англия.
  • 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш.К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда. Маркони помнят как отец радио, но такие пионеры, как Герц и Лодж, были не менее важны.
  • 1906: американский инженер Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн. Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
  • 1920-е годы: службы экстренной помощи начали экспериментировать с громоздкими радиотелефоны.
  • 1940-е годы: мобильные радиотелефоны начали становиться популярными среди службы экстренной помощи и такси.
  • 1946: AT&T и Southwestern Bell представили свой мобильный телефон Телефонная система (МТС) для радиосвязи между автомобилями.
  • 1960-е: Bell Laboratories (Bell Labs) разработала мобильный Metroliner сотовые телефоны в поездах.
  • 1973: Мартин Купер (1928–) из Motorola сделала первый звонок по мобильному телефону, используя свой прототип DynaTAC весом 28 фунтов.
  • 1975: Купер и его коллеги получили патент на их радиотелефонная система.Их оригинальный дизайн показан на картинке, которую вы можете увидеть здесь.
  • 1978: Аналоговая система мобильной связи (AMPS) была представлена ​​в Чикаго. Иллинойс Белл и AT&T.
  • 1982: Европейские телефонные компании согласовали всемирный стандарт для как будут работать мобильные телефоны, которая получила название Groupe Speciale Mobile и позже Глобальная система мобильной связи (GSM).
  • 1984: Motorola DynaTAC стала первой в мире коммерческой портативный мобильный телефон. Взгляните на фотографию Мартина Купера и его DynaTAC.
  • 1995: GSM и аналогичная система под названием PCS (Personal Службы связи) были приняты в США.
  • 2001: GSM захватил более 70 процентов мобильных телефонов в мире рынок.
  • 2000-е: Выпущены мобильные телефоны третьего поколения (3G и 3.5G) с более быстрые сети, доступ в Интернет, загрузка музыки и многое другое расширенные функции на основе цифровых технологий.
  • 2007: iPhone от Apple произвел революцию в мире мобильных телефонов, упаковав то, что эффективно миниатюрный компьютер с сенсорным управлением в гаджет, такой же, как и обычный сотовый телефон.
  • 2013: Мобильные телефоны празднуют свое 40-летие.
  • 2020: количество абонентов мобильных телефонов достигло 8,3 миллиарда. Около 80 процентов из них находятся в развивающихся странах.
Рекламные ссылки

Узнать больше

На этом сайте

Книги

Статьи

История мобильных телефонов

Список литературы

  1. ↑ Статистика подписки на мобильные телефоны взята из статистики Международного союза электросвязи ООН (ITU).
  2. ↑ Если не указано иное, все статистические данные в этом параграфе взяты из статистики Международного союза электросвязи (ITU) ООН.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2006, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2006/2020) Мобильные телефоны. Получено с https://www.explainthatstuff.com/cellphones.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте…

Обзор технологий сотовых телефонов


Цифровой сотовый телефон от Nokia.

Было бы полезно дать обзор технологии сотовых телефонов здесь, поскольку это вполне соответствует нашим монтаж. Посмотрим, как сотовый телефон работает? Чем он отличается от обычного телефона? Что все эти запутанные термины, такие как PCS, GSM, CDMA и Значит TDMA?

Начнем с основ: по сути, сотовый телефон — это радио.Одна из самых интересных особенностей сотового телефона заключается в том, что он на самом деле радио — чрезвычайно сложное радио, но все же радио. Телефон был изобретен Александром Грэмом Беллом в 1876 году, а беспроводная связь может проследить его корни до изобретения радио Николаем Тесла в 1880-е годы (официально представлен в 1894 году молодым итальянцем по имени Гульельмо. Маркони). Было вполне естественно, что эти две великие технологии со временем объединятся!

В темные времена до сотовых телефонов люди кто действительно нуждался в мобильной связи установил радио телефоны в своих машинах.В радиотелефонной системе был один центральная антенная вышка на город, и возможно 25 каналов доступно на той башне. Эта центральная антенна означала, что телефон в вашем автомобилю нужен был мощный передатчик — достаточно большой, чтобы передать 40 или 50 миль (около 70 км). Это также означало, что не многие люди могли пользоваться радио. телефоны — каналов просто не хватало.

Гений сотовой системы деление города на маленькие ячейки .Это позволяет использовать расширенную частоту повторно использовать по всему городу, чтобы миллионы людей могли пользоваться сотовыми телефонами одновременно. В типичной аналоговой системе сотового телефона в США Штаты, оператор сотовой связи получает около 800 частот использовать по городу. Носитель дробит город на ячейки. Каждый размер ячейки обычно составляет около 10 квадратных миль (26 квадратных миль). километров). Ячейки обычно представляют собой шестиугольники на большом шестиугольнике . сетка , вот так:


Поскольку в сотовых телефонах и базовых станциях используются маломощные передатчики, одни и те же частоты могут быть повторно использованы в несмежных ячейках.Две фиолетовые клетки можно повторно использовать одни и те же частоты.

Каждая ячейка имеет базовую станцию ​​, которая состоит из башни и небольшого здания с радиооборудованием (подробнее о базовых станциях позже).

Одна ячейка в аналоговой системе использует одна седьмая доступного дуплекса голосовые каналы. То есть каждая ячейка (из семи на гексагональной сетке) использует одну седьмую доступных каналов, поэтому имеет уникальный набор частоты и нет коллизий:

  • Оператор сотовой связи обычно получает 832 радиочастоты использовать в городе.
  • Каждый сотовый телефон использует две частоты на звонок — дуплекс канал — так что обычно 395 голосовых каналов на перевозчик. (Остальные 42 частоты используются для каналов управления — подробнее об этом в следующем страница.)
  • Следовательно, в каждой ячейке около 56 голосовых каналов доступно.

То есть в любой камере 56 человек могут разговаривать по мобильному телефону одновременно.С цифровым методы передачи, количество доступных каналов увеличивается. Для Например, цифровая система на основе TDMA может передавать в три раза больше звонки как аналоговая система, поэтому каждая ячейка имеет около 168 доступных каналов (видеть это страницу для получения дополнительной информации о TDMA, CDMA, GSM и других цифровых сотовый телефон).

В сотовых телефонах маломощных передатчика в них.Многие сотовые телефоны имеют два уровня сигнала: 0,6 Вт и 3 Вт. (для сравнения, большинство радиостанций CB передают на уровне 4 Вт). Базовая станция также передача на малой мощности. Передатчики малой мощности имеют два преимущества:

  • коробки передач базовой станции и телефоны в ее ячейке не уносятся далеко за пределы эта ячейка. Следовательно, на рисунке выше обе фиолетовые ячейки может повторно использовать те же 56 частот .Те же частоты могут быть многократно используется по всему городу.
  • потребляемая мощность ячейки телефон, который обычно работает от батареи, относительно низкий. Низкий мощность означает маленькие батарейки, и это то, что сделало возможными карманные сотовые телефоны.
Сотовый подход требует большого количества базовых станций в городе любого размера. Типичный большой город может иметь сотни башен.Но поскольку так много людей пользуются сотовыми телефонами, затраты на Пользователь. Каждый оператор в каждом городе также имеет один центральный офис под названием Mobile. АТС (МТСО). Этот офис обрабатывает все телефонные соединения с обычной наземной телефонной системой и контролируют все базовых станций в регионе.

А теперь разберем, что происходит у нас, когда вы (и ваш мобильный телефон) перемещаетесь из ячейки в ячейку.

От сотового телефона к сотовому
Все сотовые телефоны имеют специальные коды , связанные с ними. Эти коды используются для идентификации телефона, владельца телефона и поставщик услуг.

Допустим, у вас есть сотовый телефон, вы включаете он включен, и кто-то пытается дозвониться до вас. Вот что происходит с вызовом:

  • При первом включении телефона он прослушивает SID (см. врезку) на канале управления .Канал управления — это особая частота, которую телефон и база станции используются, чтобы разговаривать друг с другом о таких вещах, как установка вызова и изменение канала. Если телефон не может найти каналы управления для послушайте, он знает, что это вне диапазона , и отображает «нет» сервисное сообщение.
  • При получении SID телефон сравнивает это на SID, запрограммированный в телефоне.Если идентификаторы безопасности совпадают, телефон знает, что сотовый телефон, с которым он обменивается данными, является частью его дома система.
  • Наряду с SID телефон еще передает запрос на регистрацию , и MTSO отслеживает местоположение вашего телефона в базе данных — таким образом, MTSO знает, какой сотовый, в котором вы находитесь, когда он хочет позвонить на ваш телефон.
  • MTSO принимает вызов, и он пытается найти вас .Он смотрит в свою базу данных, чтобы узнать, какая ячейка ты внутри.
  • MTSO выбирает частотную пару что ваш телефон будет использовать в этой ячейке, чтобы ответить на звонок.
  • MTSO связывается с вашим телефоном по каналу управления , чтобы указать ему, какие частоты использовать, и как только ваш телефон и башня включат эти частоты, звонок соединен . Вы разговариваете по двусторонней радиосвязи с друг!
  • По мере приближения к краю ячейка, базовая станция вашей ячейки отмечает, что ваш сигнал сила уменьшается.Между тем, базовая станция в ячейке вы движетесь к (который слушает и измеряет сигнал сила на всех частотах, а не только на своей одной седьмой) видит ваш уровень сигнала телефона увеличивается. Две базовые станции координируют друг с другом через MTSO, и в какой-то момент ваш телефон получит сигнал на канале управления, говорящий об изменении частоты. Эта рука off переключает ваш телефон на новую ячейку.

Когда вы путешествуете, сигнал передается от ячейки к ячейке.

Роуминг
Если SID на канале управления не совпадает с SID, запрограммированным в ваш телефон, тогда телефон знает, что это в роуминге . MTSO ячейка, в которой вы находитесь в роуминге, контактирует с MTSO вашей домашней системы, которая затем проверяет свою базу данных на , подтверждает , что SID телефона, который вы используется.Ваша домашняя система проверяет ваш телефон на местный MTSO, который затем отслеживает ваш телефон, когда вы перемещаетесь по его ячейкам. И что удивительно, все это происходит в считанные секунды!

Сотовые телефоны и выключатели
Хороший способ понять сложность сотового телефона — это сравните это с радио CB или рацией.

  • Одностороннее и двустороннее — Оба рации и радиостанции CB — это симплексных устройств.То есть два люди, общающиеся по радио CB, используют ту же частоту, поэтому одновременно может говорить только один человек. Сотовый телефон дуплекс устройство. Это означает, что вы используете одну частоту для разговора, а во-вторых, отдельная частота для прослушивания. Оба человека по вызову могут говорить сразу.
  • каналы — рация обычно имеет один канал, а радиостанция CB имеет 40 каналов.Типичный сотовый телефон может общаться по 1664 каналам и более!
  • Range — рация передайте около 1 мили (1,6 км) с помощью передатчика 0,25 Вт. CB радио, поскольку оно имеет гораздо большую мощность, может передавать около 5 миль (8 км) с помощью 5-ваттного передатчика. Сотовые телефоны работают в пределах ячеек , и они могут переключать клетки при перемещении. Сотовые телефоны дают сотовые телефоны невероятный диапазон.Кто-то, использующий мобильный телефон, может проехать сотни миль и поддерживать разговор все время из-за клеточный подход.


В симплексном радио оба передатчика используют одну и ту же частоту. Только одна сторона может разговаривать одновременно.

В дуплексном радио два передатчика используют разные частоты, чтобы обе стороны могли разговаривать одновременно.
Сотовые телефоны дуплексные.

В следующем разделе вы подробно рассмотрите внутри цифрового сотового телефона.

Внутри сотового телефона
По шкале «сложность на кубический дюйм» сотовые телефоны одни из самых сложных устройств, с которыми люди играют ежедневно. Современные цифровые сотовые телефоны могут обрабатывать миллиона вычислений в расчете на второй для сжатия и распаковки голосового потока.


Детали сотового телефона

Если разобрать сотовый телефон, вы обнаружите что он состоит всего из нескольких отдельных частей:

Печатная плата — это сердце системы. Вот один из типичных Nokia цифровой телефон:


Передняя часть печатной платы

Задняя часть печатной платы

На фотографиях выше вы видите несколько компьютерные чипы.Давайте поговорим о том, что делают отдельные чипы. В аналого-цифровой и цифро-аналоговый преобразователь микросхемы преобразовать исходящий аудиосигнал из аналогового в цифровой и входящий сигнал из цифрового обратно в аналоговый. Вы можете узнать больше о Преобразование A-to-D и D-to-A и его важность для цифрового звука в How Компакт диски работают. Цифровой сигнальный процессор (DSP) — это настраиваемый процессор, предназначенный для обработки сигналов расчеты на высокой скорости.


Микропроцессор

Микропроцессор выполняет все работы по обслуживанию клавиатуры и дисплея, занимается с сигнализацией управления и контроля с базовой станцией, а также координирует остальные функции на плате. ПЗУ и Flash Микросхемы памяти обеспечивают память для работы телефона системы и настраиваемые функции, такие как телефонный справочник.Радио частота (RF) и мощность Секция обрабатывает управление питанием и подзарядка, а также работает с сотнями каналов FM. Наконец, RF усилители обрабатывают сигналы, идущие к антенне и от нее.


Контакты дисплея и клавиатуры

Дисплей значительно вырос в размерах, поскольку количество функций в сотовых телефонах увеличились.Большинство современных телефонов имеют встроенные телефонные справочники, калькуляторы и даже игры. И многие из телефонов включают в себя какой-то тип КПК или Web браузер .


Карта флэш-памяти на печатной плате

Карта флэш-памяти удалена

Некоторые телефоны хранят определенную информацию, например в качестве кодов SID и MIN во внутренней флэш-памяти, в то время как другие используют внешние карты, похожие на SmartMedia карты.


Динамик мобильного телефона, микрофон и резервный аккумулятор

В сотовых телефонах есть такие крошечные динамики и микрофоны, что просто невероятно, насколько хорошо большинство из них воспроизводят звук. Как вы можете видеть на картинке выше, размер динамика составляет примерно десять центов и микрофон не больше батареи часов рядом с ним. Говоря о батарее часов, она используется во внутренней части сотового телефона . микросхема часов .

Что удивительно, так это то, что все это функциональность, которая всего 30 лет назад заполнила бы весь этаж офисного здания — теперь умещается в упаковке, в которой удобно ладонь твоей руки!

AMPS
В 1983 году стандарт аналоговых сотовых телефонов назывался AMPS . (Advanced Mobile Phone System) была одобрена FCC и впервые использовалась в Чикаго.AMPS использует диапазон частот от 824 мегагерц (МГц) до 894 МГц для аналоговой ячейки телефоны. Чтобы стимулировать конкуренцию и удерживать низкие цены, США правительство требовало наличия двух перевозчиков на каждом рынке, известные как перевозчики A и B. Одним из перевозчиков обычно была местная телефонная станция . оператор (LEC), причудливый способ обозначить местную телефонную компанию.

Каждому из операторов A и B назначено 832 частоты : 790 для голоса и 42 для данных.Пара частот (одна для передачи и один для приема) используется для создания одного канала . Частоты, используемые в аналоговых голосовых каналах, обычно составляют 30 кГц широкий — 30 кГц был выбран в качестве стандартного размера, потому что он дает вам голос качество сопоставимо с проводным телефон.

Частоты передачи и приема каждый голосовой канал разделен 45 МГц , чтобы они не мешают друг другу.У каждого оператора также есть 395 голосовых каналов. как 21 канал данных для использования в служебных целях, таких как регистрация и пейджинг.

Версия AMPS, известная как Narrowband Advanced Mobile Phone Service (NAMPS) включает в себя некоторые цифровые технология, позволяющая системе передавать примерно в три раза больше вызовов как оригинальная версия. Несмотря на то, что он использует цифровые технологии, он до сих пор считается аналогом.AMPS и NAMPS работают только в диапазоне 800 МГц. и не предлагают многие из функций, характерных для цифровой сотовой связи, таких как электронная почта и просмотр веб-страниц.

Цифровой переходник
Цифровые сотовые телефоны используют ту же радиотехнологию, что и аналоговые телефоны, но они используют его по-другому. Аналоговые системы не полностью использовать сигнал между телефоном и сотовой сетью — аналоговый сигналы не могут быть сжаты и обработаны так же легко, как настоящие цифровые сигнал.Это причина, по которой многие кабели компании переходят на цифровую технологию — теперь они могут разместить на канала больше в пределах заданной полосы пропускания . Удивительно, насколько эффективнее цифровые системы могут быть.

Цифровые телефоны преобразуют ваш голос в двоичный информации (единицы и нули), а затем сжать ее (см. Как Аналогово-цифровая запись Работает для получения подробной информации о процессе преобразования). Это сжатие позволяет использовать от трех до 10 цифровых сотовых телефонов. вызовы, чтобы занять место одиночного аналогового вызова .

Многие цифровые сотовые системы полагаются на частотный сдвиг набор (FSK) для передачи данных туда и обратно через AMPS. ФСК использует два частоты , одна для единиц, а другая для нулей, чередуется быстро между двумя, чтобы отправить цифровую информацию между вышками сотовой связи и телефон. Для преобразовать аналоговую информацию в цифровую, сжать и преобразовать обратно опять же с сохранением приемлемого уровня качества голоса.Все это означает, что цифровые сотовые телефоны должны содержать большую вычислительную мощность!

Технологии сотового доступа
Есть три общие технологии, используемые сетями сотовой связи для передача информации:

  • Множественный доступ с частотным разделением каналов (FDMA)
  • Множественный доступ с временным разделением каналов (TDMA)
  • Множественный доступ с кодовым разделением каналов (CDMA)
Хотя эти технологии звучат очень пугающе, вы можете получить хорошее представление о том, как они работают, просто взломав вниз по названию каждого.

Первое слово говорит вам, к чему имеет доступ метод есть. Второе слово, деление , позволяет узнать, что оно разделяет вызовы на основе этого метода доступа.

  • FDMA помещает каждый вызов на отдельную частоту .
  • TDMA назначает каждому вызову определенную часть из времени на заданной частоте.
  • CDMA дает уникальный код каждому колл и спреды это по доступным частотам.
Последняя часть каждого имени — кратное доступ . Это просто означает, что более одного пользователя могут использовать каждый клетка.

FDMA разделяет спектр на отдельные голосовые каналы, разделив их на одинаковых фрагмента с полосой пропускания . К лучше понять FDMA, подумайте о радиостанциях: каждая станция отправляет свои сигнал на другой частоте в доступном диапазоне. FDMA используется в основном для аналог трансмиссии .Хотя он, безусловно, способен несущий цифровую информацию, FDMA не считается эффективным метод цифровой передачи.


В FDMA каждый телефон использует свою частоту.

TDMA — это метод доступа, используемый электроникой. Промышленный альянс и телекоммуникации Промышленная ассоциация по Interim Standard 54 (IS-54) и Interim Стандарт 136 (ИС-136).Используя TDMA, узкополосный , который составляет 30 кГц ширина и длина 6,7 миллисекунд разбиваются по времени на три временных интервала .

Узкая полоса означает «каналы» в в традиционном смысле. Каждый разговор получает радио на одну треть время. Это возможно, потому что голосовые данные, преобразованные в цифровая информация сжимается, поэтому она занимает значительно меньше пространство передачи. Таким образом, TDMA имеет , в три раза больше, чем аналоговая система, использующая такое же количество каналов.Системы TDMA работают на частоте 800 МГц (IS-54) или 1900 МГц (IS-136) группы.


TDMA разбивает частоту на временные интервалы.

TDMA также используется в качестве технологии доступа для глобального Система мобильной связи (GSM). Однако GSM реализует TDMA несколько отличается и несовместимо с IS-136.Думать о GSM и IS-136 как две разные операционные системы, работающие на одном процессоре, как Windows и Linux, оба работают на Intel Pentium III. Системы GSM использовать шифрование чтобы сделать телефонные звонки более безопасными. GSM работает в диапазонах 900 МГц и 1800 МГц. диапазонах в Европе и Азии, а также в диапазоне 1900 МГц (иногда называемый 1,9 ГГц) в США. Используется в цифровой сотовой связи и PCS на базе системы.GSM также является основой для интегрированной цифровой расширенной сети (IDEN), популярная система, представленная Motorola и используется Nextel.

Основное руководство по сигналу сотового телефона

Сигнал сотового телефона — это то, что связывает одного пользователя с другим через сети. Сигнал достигает сотового телефона, чтобы облегчить связь по существу так же, как двусторонняя радиосвязь — через передатчик сигнала и приемник сигнала. Когда вы разговариваете по мобильному телефону, он преобразует ваш голос в сигнал, который передается по радиоволнам на ближайшую вышку сотовой связи.Затем вышка сотовой связи передает радиоволну обратно человеку, с которым вы разговариваете, преобразовывая ее сначала в сигнал, а затем снова в звук. Когда сотовый сигнал сильный, все происходит без проблем, и пользователи не задумываются об этом. Но иногда сотовый сигнал слабее, и именно тогда мы сталкиваемся с прерыванием вызовов и остановкой передачи данных.

Сегодня сотовые телефоны есть у более 95 процентов населения, из которых 77 процентов составляют смартфоны.В большинстве случаев эти телефоны работают надежно и, как и ожидалось, что означает, что звонки и текстовые сообщения могут быть выполнены и получены, а данные могут быть отправлены и загружены. Хотя многие из нас полагаются на сигнал сотового телефона в повседневной жизни, большинство из нас не имеет четкого представления о том, откуда исходит этот сотовый сигнал и как он работает.

Как измеряется сотовый сигнал?

Уровень сигнала сотового телефона измеряется в децибелах (дБм), который принимает мобильный телефон из сотовой сети.Сила сигнала обычно находится в диапазоне приблизительно от -30 дБм до -110 дБм. Чем ближе это число к 0, тем сильнее сигнал соты. Любой сигнал с уровнем выше -85 дБм считается хорошим уровнем сигнала сотового телефона.

Большинство мобильных устройств показывают набор полосок для отображения мощности сигнала, принимаемого устройством. Однако на самом деле эти полоски на вашем сотовом телефоне не являются точным показателем силы сигнала. Это связано с тем, что не существует отраслевого стандарта в отношении того, что представляет собой полоса или измеряет ли она ваши данные 4G или голосовую связь 3G.Таким образом, два столбца покрытия в сети Verizon могут быть, например, тремя полосами в Sprint. Помимо различий в операторах связи, количество полосок, которые вы видите, может варьироваться в зависимости от того, как вы держите телефон, производителя телефона и даже предыдущих действий на устройстве.

Использование режима полевых испытаний

Если вам действительно интересно узнать, какой сигнал принимает ваш телефон, определение дБм на вашем собственном телефоне — гораздо более точная мера силы сигнала, чем полагаться на количество отображаемых полосок.В зависимости от вашего устройства есть разные способы сделать это, в том числе использовать режим полевых испытаний, доступный на устройствах Android и Apple iOS.

Режим полевого тестирования

на iPhone дает пользователям подробную информацию об их сигнале и сотовой связи, а также поставщиках. В режиме полевого тестирования сигнал соты на iPhone отображается в виде числа, а не в виде полос или точек.

* Инструкции могут не работать для iPhone с iOS 11 и выше.

Чтобы использовать режим полевых испытаний для iPhone, у вас должно быть активное сотовое соединение.Затем выполните следующие действия:

1. Откройте приложение «Телефон» на своем iPhone и введите точно следующий номер: * 3001 # 12345 # *

2. Нажмите кнопку «Call», чтобы набрать номер, который запустит скрытое приложение «Field Test Mode» на iPhone.

3. Выберите «LTE» в главном меню

4. Выберите «Serving Cell Meas»

5. Найдите «rsrp0.» Соответствующее число представляет собой числовое измерение уровня сотового сигнала в дБм

Чтобы использовать режим полевого тестирования для Android, выполните следующие действия при активном сотовом соединении: Перейдите в меню телефона (расположение экранов меню зависит от производителя телефона, модели и версии ОС Android).

1. «О телефоне»

2. «Статус» или «Сеть»

3. «Мощность сигнала» или «Тип и мощность сети».

Альтернативный переход к режиму полевых испытаний для устройств Android:

1. «Настройки»

2. «Дополнительные параметры» или «Дополнительные настройки»

3. «О телефоне»

4. «Мобильные сети»

5. «Уровень сигнала»

Для некоторых старых устройств Android перейти в режим полевого тестирования так же просто, как:

1.«Открыть настройки»

2. «Общие»

3. «Об устройстве»

4. Выберите «Статус», чтобы отобразить уровень сигнала в дБм.

Если вам не удается определить уровень сигнала вашего устройства Android с помощью любого из этих методов, обратитесь к руководству по эксплуатации устройства. В Play Store также доступны приложения, такие как SignalCheck Lite, которые также могут позволить вам определить уровень вашего сигнала.

Помните, чем ближе ваше значение в дБм к нулю, тем сильнее ваш сигнал.Например, -100 будет очень плохим сигналом, а -50 будет сильным сигналом.

Сигнал сотовой связи наиболее сильный, когда телефоны находятся в непосредственной близости от вышек сотовой связи. В наши дни относительно немного районов, где поблизости нет инфраструктуры вышек сотовой связи; однако существует множество факторов окружающей среды, которые могут препятствовать тому, чтобы сигнал сотовой связи достиг вашего телефона для надежного соединения.

Что блокирует сотовый сигнал?

Скорее всего, у вас были прерванные звонки, или вы были в процессе отправки или получения сообщения или документа только для того, чтобы прогресс резко остановился.Может быть, это случается, когда вы едете через туннель, едете в метро, ​​заходите на парковку или заходите в офисное здание, но в тот или иной момент мы все попадаем в ужасную «мертвую зону». Фактически, 72 процента американцев жалуются на прерванные звонки, а 6 процентов говорят, что они сталкиваются с прерыванием звонков несколько раз в день, согласно данным Pew Research.

Так что же блокирует сотовый сигнал даже в тех областях, где много вышек сотовой связи и теоретически большая зона покрытия? Короче, многое.Сигналу клеток могут препятствовать естественные препятствия окружающей среды, включая гористую местность или густые леса и растительность. Внутри помещений обычные строительные материалы, включая кирпич, сталь, бетон и стеклянные окна, сертифицированные по стандарту LEED, могут препятствовать сильному сигналу соты.

Кроме того, по мере увеличения количества пользователей сотовой связи сети становятся все более «увязшими», поскольку устройства конкурируют за сигнал. Вот почему вы наверняка столкнетесь с задержкой в ​​обслуживании, когда будете на концерте, конференции или любом другом мероприятии, где большое количество людей используют свои сотовые и мобильные устройства.

Как можно улучшить сотовый сигнал?

Если вы испытывали разочарование из-за обрыва вызовов или плохого сигнала сотовой связи, то, вероятно, задавались вопросом, что можно сделать, чтобы это улучшить. Многие потребители сразу же обвиняют своего сетевого оператора и думают, что переключение станет последней волшебной палочкой для решения проблемы. В действительности, однако, вышеупомянутые факторы могут нанести ущерб сотовому сигналу, независимо от того, в какой сети вы находитесь.

В то время как некоторые сети имеют более широкое и надежное покрытие, даже самая сильная сеть не может сравниться со зданием, заполненным бетоном и кирпичом, или горным шоссе, покрытым соснами.Хорошая новость заключается в том, что благодаря технологиям усиления сигнала соты, сигнал соты может быть улучшен даже в самых больших областях.

Как работают усилители сигнала сотового телефона?

По мере того, как мы углубляемся в эпоху 4G и LTE, сигнал сотовой связи в целом улучшается. Но все еще есть много пробелов в обслуживании, которые могут возникнуть из-за всех факторов, которые мы затронули в этой статье. Однако благодаря изобретательным технологиям есть способы получить максимальную отдачу от доступного сотового сигнала.Системы усиления сотовых телефонов предлагают масштабируемые решения, подходящие для
настроек, начиная от жилых домов и заканчивая большими рабочими площадками. Самая маленькая квартира или самое большое коммерческое здание может извлечь выгоду из этой запатентованной технологии, которая улавливает и усиливает существующий сотовый сигнал.

В усилителях сигнала сотового телефона

используются различные антенны (в зависимости от местоположения и потребности) для приема сигнала с существующих вышек. Затем эти сигналы усиливаются электроникой и перераспределяются по всему местоположению через сеть меньших антенн.Этот захваченный сигнал усиливается в пределах объекта в 32 раза.

Поскольку бустеры могут быть установлены зонально, существует множество вариантов того, как и где можно улучшить сигнал. Например, в коммерческой конфигурации усилителя сотового телефона, вероятно, потребуется больше антенн, чем в жилой.

Активные и пассивные распределенные антенные системы (DAS)

Усилители сигнала сотового телефона основаны на активной или пассивной технологии DAS. Active DAS создает покрытие соты внутри здания, генерируя и распределяя свой собственный сигнал соты.Активные конфигурации DAS требуют, чтобы сложные оптоволоконные сети были подключены к жилому или коммерческому зданию. Хотя этот тип усилителя предлагает надежное и высокопроизводительное решение для подключения к сотовой связи, стоимость и интенсивность инфраструктуры делают его недоступным для большинства потребителей сотовых услуг.

Active DAS включает оборудование и установку, которые повышают цену до 2–4 долларов за квадратный фут для решения с одной несущей. Если вы ищете решение с несколькими операторами связи, эта цена может достигать 10 долларов за квадратный фут.

С другой стороны, пассивные усилители сигнала DAS

предлагают более осуществимый и доступный вариант для большинства потребителей сотовой связи. Поскольку пассивный DAS использует существующий сотовый сигнал, установка намного менее инвазивна и более доступна. В отличие от активного DAS, пассивные DAS-решения обычно стоят от 30 до 70 центов за квадратный фут, включая оборудование и установку. Кроме того, пассивные решения DAS могут быть независимыми от оператора связи, что означает, что все пользователи могут получить выгоду от этих ускорителей, независимо от конкретного оператора связи.

Пассивный DAS захватывает существующий сотовый сигнал от близлежащих вышек сотовой связи через донорские антенны и направляет сигнал на усилитель сотовой связи, где он усиливается, а затем перераспределяется по всей зоне через меньшие широковещательные антенны.

Проведение обследования объекта

Чтобы выбрать подходящую антенну для конкретного места, важно провести обследование участка, чтобы определить, где сигнал сильный, а где слабый. Многие люди полагаются на свои сотовые телефоны для оценки покрытия в различных областях, но, как упоминалось ранее, полосы на вашем сотовом телефоне являются неверным показателем силы сигнала сотовой связи.

Обследование участка более точно определяет источник самого сильного сигнала соты и предоставляет ценную информацию о том, где должна быть установлена ​​донорная антенна для максимальной эффективности. Опрос также сообщает человеку, устанавливающему бустер, сколько кабеля и других аксессуаров потребуется.

Для правильного обследования места требуется использование измерителя сигнала. Это портативное устройство, используемое профессиональными специалистами по установке для точного определения и отображения частоты, ширины полосы и силы сигнала.

Выбор подходящей антенны

Обследование площадки также поможет определить, какой тип «донорской» или наружной антенны следует использовать для захвата сигнала, который затем будет усилен в помещении. Антенны — важная часть системы усилителя. Донорские антенны, установленные на
на крыше или у окна, выводят наружный сигнал. Установка вещательных или «внутренних» антенн на внутренней стене (панельные антенны) или потолке (купольные антенны) помогает передавать усиленный сигнал на телефоны и другие сотовые устройства в помещении.

Существует два типа донорных антенн — всенаправленная, или всенаправленная, и направленная, или антенна Яги. Всенаправленные антенны способны принимать радиочастотный (RF) сигнал с любого направления. Антенны Yagi, названные в честь японского инженера Хидэцугу Яги, имеют высокую направленность и принимают радиочастотный сигнал с одного определенного направления.

Чтобы определить, какой тип антенны лучше всего усиливает сигнал в определенном месте, установщик должен определить, откуда исходит самый сильный сигнал и что может мешать этому сигналу.

Преимущества усилителей сигнала сотовой связи по Wi-Fi

Многие потребители сотовой связи полагаются на Wi-Fi, когда их собственное сотовое соединение не работает. Однако использование незащищенного или даже защищенного паролем Wi-Fi может подвергнуть риску данные, которые могут быть загружены или загружены. Сети Wi-Fi по своей природе более восприимчивы к слежению за данными и киберпреступным атакам. Усилители сотового сигнала улучшают сигнал, сохраняя при этом ваши данные в безопасности. Кроме того, сильный сотовый сигнал, обеспечиваемый этими усилителями, приводит к более высокой скорости загрузки и выгрузки, чем может обеспечить соединение Wi-Fi.

Операторы, поддерживающие пассивный DAS

Ведущие операторы сотовой связи в стране отказались от решений, ориентированных на сеть, и теперь поддерживают решения, не зависящие от оператора связи, которые позволяют каждому пользователю пользоваться преимуществами существующей инфраструктуры, независимо от того, работают ли они с Verizon, Sprint или AT&T. , или T-Mobile.

Мы приближаемся к концу того времени, когда вышки сотовой связи принадлежали определенным операторам связи, поскольку крупные провайдеры осознали преимущества решений, улучшающих сотовый сигнал на благо каждого пользователя.В прошлом операторы связи заботились о защите своих сетей от внедрения решений, которые отключили бы целые сети. Но благодаря постановлениям Федеральной комиссии связи, принятым в 2014 году, теперь существуют стандарты, которые предотвращают это.

WilsonPro является лидером в области решений для пассивного усиления сигнала ячеек DAS и работал в тесном сотрудничестве с FCC над созданием стандартов, которые сегодня регулируют усилители сигнала ячеек. Эти рекомендации FCC в сочетании с развитием пассивной технологии DAS привели к обоюдной выгоде как для операторов связи, так и для клиентов.

И хотя до 5G еще далеко, независимость от операторов связи играет ключевую роль в продвижении к реальности настоящей сети 5G.

Повышение уровня сигнала ячейки там, где это необходимо

Если вы заинтересованы в улучшении сигнала сотовой связи в собственном доме, или если вы управляете зданием или являетесь владельцем, которому необходимо улучшить сигнал для арендаторов, WilsonPro может вам помочь.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *