Site Loader

Как работает сотовая связь | Как это сделано

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2. 

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3. 

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:

4.  

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.  

6. 

 

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

 

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7. 

 

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:

8.  

9.  

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10. 

 

11.  

12.  

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.  

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.  

Вся крыша такого автомобиля утыкана антеннами:

15.  

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.  

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.  

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:

18.  

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.  

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.  

21. 

Источник

FAQ про работу сотовой сети для самых маленьких / ВымпелКом (Билайн) corporate blog / Habr

— В чём отличие сотовой связи от связи с помощью раций?


Связь — это так называемый вариант точка-многоточка, когда информация от одной рации передается на выделенной частоте, и все, кто настроен на ту же частоту, слышат вызов. Пока у вас 10 абонентов — всё просто. Когда людей становится больше, начинают быстро разбирать частоты, и очень скоро новые разговоры создавать негде – свободных частот не остается. Сотовая связь использует тот же частотный канал, но не отдает его в безраздельную собственность одного абонента, а разделяет его между несколькими, каждому выделяя лишь короткий промежуток времени для передачи информации. Вы можете в этом случае использовать частоты эффективнее и уметь соединять людей друг с другом напрямую. Однако для того, чтобы быстро обработать такой поток информации и разделить информацию одному абоненту в частотном канале от информации другому, необходим новый узел, который будет производить необходимые вычисления – появляется базовая станция или ретранслятор.

— Ок, пока просто. Пропустим пару шагов эволюции инфраструктуры, что получится?
Телефон связывается с ближайшим ретранслятором (базовой станцией), она доставляет данные в контроллер базовых станций и далее через голосовую Core Network несёт на другую базовую станцию, которую использует второй абонент. Та, в свою очередь, отдаёт данные и голос ему. Таким образом, каждый абонент имеет точку входа в общую сеть, а сеть обеспечивает коммутацию и доставку информации.

— А как делается авторизация в такой сети?
По специальному ключу. В вашу SIM-карту, кроме процессора, оперативки и средств I/O, вшит ключ, позволяющий авторизоваться в сотовой сети. Этот же ключ, с использованием других алгоритмов, обеспечивает шифрование сигнала: разговоры в сотовой сети «закрываются».

— А откуда базовая станция знает, что вызываемый абонент находится на её территории покрытия?
Когда абонент звонит другому абоненту, от голосовой Core Network приходит команда на все базовые станции, с требованием проверить наличие вызываемого абонента: что-то вроде «Вася, ты тут?». Эта процедура проверки называется Paging. По идее, телефон абонента отвечает одной из них, что он здесь. Дальше устанавливается соединение через нужные узлы. Но с ростом количества базовых станций их стали объединять в географические группы – Location Area, которые управляются с узла голосового коммутатора — MSC.

— Ок, новый тип узла, коммутатор. Что он делает?
Переходим на новый уровень сложности. Есть регионы, в каждом из них — своя группа базовых станций, координируемая общим узлом-контроллером. Контроллер обеспечивает подключение к себе всех базовых станций, и сбор от них звонков абонентов. Но что с этими звонками делать, он не знает и передает всю информацию на тот самый Коммутатор. Коммутатор знает, где и когда последний раз находился каждый абонент в его зоне действия, и поэтому, когда вы звоните Васе:

  1. Сначала ваш телефон по радиоканалу передает звонок на БС.
  2. БС ретранслирует данные до контроллера
  3. Контроллер передает те же данные на коммутатор
  4. Коммутатор проверяет номер, который вы вызываете – есть ли такой в зоне его обслуживания?
  5. Если да, коммутатор отправляет вызов в нужную Location Area, чтобы получить ответ от базовой станции, где последний раз регистрировался Вася
  6. Если такой номер не принадлежит нашему коммутатору, он отправляет вызов на другой коммутатор в соответствии с имеющимися у него таблицами маршрутизации и ищет нашего Васю в других сетях
  7. Коммутатор другой сети также отправляет вызов своим базовым станциям по известной ему Location Area, где последний раз регистрировался Вася
  8. Одна из базовых станций отвечает на наш вызов, и вы, наконец, можете начать разговор.

— Ладно, а как коммутатор узнает, что Вася в его зоне (LA)?
Базовые станции имеют код зоны — LAC. Когда ваш телефон переключается на базовую станцию, LAC которой отличается от предыдущего использованного, отправляется специальный пакет с обновлением расположения — Location Area Update. Этот сигнальный пакет обрабатывается коммутатором, в нем же сохраняется информация, что ваш телефон зарегистрирован на базовой станции с новым LAC. В будущем все вызовы на ваш номер будут отправляться по базовым станциям имеющим данный LAC, пока коммутатор не получит новый пакет Location Area Update, где будет информации о новом географическом коде. Кроме того, на всякий случай такой пакет отправляется раз в несколько часов, даже если вы не сдвигаетесь с места.

— То есть когда телефон лежит около колонок, и они делают странные звуки — это не пришельцы меня слушают?
Нет, это просто Location Area Update или какой-то другой сигнальный пакет, которые телефон передает и принимает регулярно, даже если вы с ним ничего не делаете.

— Кто строит базовые станции?
Сотовые операторы. Или точнее их подрядчики, которые имеют соответствующие лицензии на строительство и опыт работы. Как показывает нехитрый подсчёт, на Россию нужно от нескольких десятков до нескольких сотен тысяч базовых станций для покрытия 95% территории. Очень приблизительно, одна БС стоит около 2 миллионов — это по затратам как открыть маленький ресторан. Это ещё если нашёлся подходящий годный столб. Если столба нет — смело пишите до 8 миллионов, особенно, если вышка где-то в степи или на горе со сложным доступом.

— Из чего состоит инфраструктура оператора и куда идут мои деньги?
Кроме базовых станций, контроллеров, коммутаторов, магистральных транспортных линий и других узлов сети (которых только чтобы перечислить, потребуется полстраницы) нужны склады запчастей, инженерные службы, сервис и так далее. Базовые станции на домах требуют арендных отчислений собственникам, людям нужна зарплата, оборудование нужно менять, проводить техническое обслуживание, оплачивать счета за электричество, потребляемое оборудованием. Плюс операторы постоянно расширяются — это новое железо, обновление старого, новый софт. А ещё есть офисы с теми, кто пишет ПО, колл-центры, аналитики, маркетинг, реклама, салоны продаж и подключений — в общем, полный набор.

— Стойте-стойте, забыли ЦОД!
Верно, для работы сотового оператора нужно обрабатывать огромное количество данных. Именно поэтому сотовые операторы обычно обладают не только хорошей магистральной сетью, но и наиболее современными дата-центрами. В дата-центрах считается всё. Одна из самых ресурсоёмких задач — подсчёт баланса в реальном времени. Кстати, операторы сотовых сетей настолько давно и успешно работают с ЦОД-ами, что их опытом и ресурсами пользуются многие другие – арендуя ресурсы дата-центров сотовых операторов для своих проектов.

— Ок, тут понятно. А как взаимосвязаны сети разных операторов?
Принцип примерно похож на вызов одним коммутатором другого. Упрощая, вы связываетесь с БС, она — с контроллером, тот — с коммутатором, а коммутатор ищет узел входа в другую сеть по номеру вызываемого абонента. Коммутатор родной сети находит нужный номер в своих таблицах и определяет, на какой внешний коммутатор необходимо отправить вызов, после чего создается маршрут до нужного узла.

— А роуминг?
Телефон обычно пробует найти домашнюю сеть. Если это не получается, он начинает искать другие сети и пытается в них регистрироваться. Коммутатор сотовой сети, где вы пытаетесь зарегистрироваться, проверяет, есть ли у данного оператора роуминговое соглашение с вашим домашним оператором. Если такое разрешение находится, коммутатор точно знает, что абонентов вроде вас можно обслуживать, и вы получите связь. Например, когда вы приезжаете в новую страну, вас почти сразу «подхватывает» другая сеть, с которой у вашего оператора есть соглашение. Эти соглашения в большинстве очень редко обновляются, поэтому цены на трафик могут быть очень высокими. Там, где у вас есть безлимитный трафик в роуминге, скорее всего, соглашение было обновлено относительно недавно невероятной кровью юридических отделов обоих операторов.

— Можно ли выйти в роуминг в своём регионе?
Технически — да, другой оператор имеет возможность вас «подхватить». Но чтобы так не случилось, ваша SIM содержит настройки не цепляться к чужим отечественным сетям, а коммутаторы чужих сетей не разрешают вашему телефону регистрироваться на базовых станциях неродного оператора. Иначе бы вы оказывались в роуминге в лифте, на границе области и так далее. Исключение — аварийный межсетевой роуминг, когда все сети работают для всех абонентов во время чрезвычайных ситуаций. Ну и всегда нужно помнить, что звонки в службу спасения можно делать всегда, даже через чужую сеть! Когда на вашем экране появляется надпись «Только экстренные вызовы» или «SOS» это означает, что ваш оператор в данном месте не имеет своих базовых станций, но через сеть другого оператора вы можете сделать бесплатный звонок на экстренный номер «112».

— Почему телефоны Verizon не работают в РФ?
Причин может быть масса. Самая распространенная – «залочка» телефона под конкретный код сети оператора. Согласно стандарту сотовой связи, каждый оператор имеет уникальный код, который не повторяется нигде в мире, и технически довольно легко обеспечить при включении телефона проверку SIM карты – тот ли код сети на ней использован. Другая возможная причина — в каждой стране используются свои частоты для организации связи, и у каждого оператора лицензия на определённые диапазоны. Соответственно, если устройство вдруг не поддерживает диапазоны, используемые в РФ, работать в отечественных сетях оно не будет.

— Что надо знать про транспорт до БС?
Транспортный канал требуется каждой базовой станции, чтобы передавать информацию от абонентов, которая собирается через радиоканалы. Чаще всего транспорт до базовой станции сегодня — либо радиорелейный канал (РРЛ), либо кабели: медные и оптические. Оптика быстрая и крутая, медь дешевле и проще в использовании, а радио позволяет не класть кабель там, где это сложно или дорого делать. Учитывая, что каналы резервируются кольцами, обычная архитектура — пара оптических колец на город и область, плюс ветки базовых станций на медном транспорте и выносы на 1-2 хопа по РРЛ.


Чебоксары и Новочебоксарск, схема конца 2012 года

— Что с магистралями?
Только оптика, причём, сегодня — со спектральным уплотнением (DWDM). Для надежности — тоже кольца. Главный враг магистрали — экскаватор, который решил покопать там, где лежит кабель-канал. И даже красная ленточка с предупреждениями за полметра до кабеля не спасает — её обычно снимают с ковша уже постфактум.

— Чем отличаются 2G, 3G и 4G?
Это разные поколения стандартов сотовой сети, о чем можно догадаться по буковке G, которая означает Generation. Сети 2G, в основном, предназначены для передачи голоса, скорости передачи данных там очень невысоки по современным меркам. В сетях 3G можно передавать высококачественный голос, и одновременно предоставлять сервис передачи данных с высокой скоростью. Сети 4G сейчас являются сетями последнего поколения и предназначены только для высокоскоростных сервисов передачи данных, коммутация голосовых каналов в этой сети не предусмотрена стандартом, так что стоит помнить: даже если оператор предоставляет услуги голоса в сетях 4G, это какой-то вариант передачи голоса в IP сетях. Как правило, на одном сайте устанавливается несколько комплектов оборудования для создания сетей разных стандартов, которые предоставляют абонентам разные сервисы. В ближайших планах — замена множества разнотипных блоков базовых станций на общие – мультистандартные. Стандарты сотовой сети отличаются массой технического функционала, но вы этого почти не видите. Наиболее значимые отличия для обычного абонента — разная скорость интернета, разные зоны покрытия, разное качество голоса (HD-Voice очень крут).

Как работает сотовая связь

Многие задумываются о том, как работают сотовые сети, что происходит, когда мы нажимаем на кнопку вызова? Звоня друг другу, зачастую вызываемый абонент находится не только в пределах одного города, но даже и на другом континенте. Как же работает сотовая связь?


ПРИНЦИП ДЕЙСТВИЯ СОТОВОЙ СВЯЗИ

На большей части территории нашей страны размещается оборудование для сотовой связи, называется оно базовые станции. Их хорошо заметно на открытых площадях – в полях, между населенными пунктами. В городской черте их часто размещают на крышах зданий. Базовая станция способна уловить сигнал от смартфона на расстоянии до тридцати пяти километров, контакт между вышками осуществляется посредством специального служебного или голосового сигнала.

Активное развитие мобильной связи породило проблему, заключающуюся в ограничении частоты, а именно, рабочие каналы, расположенные близко, начали перекликаться, создавая помехи. Много лет наза была предложена идея, по которой определенный участок обслуживания оператором сотовой связи необходимо разбить на ячейки. Каждая ячейка обслуживается специальным передатчиком, предполагающим фиксированный частотный диапазон и радиус действия. Такая система исключает помехи при использовании той же частоты, но уже в другой соте. Чтобы разделить определенную площадь на равные участки наиболее оптимальной является фигура с шестью углами, напоминающая пчелиную соту, так как установленная в центе соты антенна с круговой диаграммой будет обеспечивать свободный устойчивый доступ ко всем точкам ячейки. У всех сот есть собственная полоса частот и обслуживающая базовая станция. Ячейки смежного расположения не используют одинаковые частоты, тем самым исключая перекрестные помехи и интерференции, и наоборот, соты, располагающиеся далеко друг от друга могут использовать идентичные частоты.

КАК РАБОТАЮТ БАЗОВЫЕ СТАНЦИИ

Когда смартфон пребывает в режиме ожидания, его приёмный механизм сканирует каналы системы. Если пользователь собираясь совершить звонок набирает номер аппарат автоматически находит станцию, которая располагается к нему ближе и посылает запрос о выделении голосового канала. Те базовые станции, которые принимают ответный сигнал, перенаправляют его данные в центр коммутации, где происходит переключение разговора на ближайшую станцию к вызываемому абоненту с более высоким уровнем сигнала. В центре коммутации, также, определяют, какой оператор мобильной связи используется вызываемым абонентом.

В том случае, если звонок осуществляется между абонентами внутри одной сети, то в центре коммутации сразу происходит идентификация месторасположения вызываемого абонента, причем, неважно где находится человек: дома, в транспорте или в командировке в другой стране. Физическое месторасположение абонента ни коим образом не помешает соединению и осуществлению звонка. Если в центр коммутации поступает информация о том, что вызываемый абонент использует оператора другой связи, тогда запрос будет отправлен в центр коммутации другой сети. В общем-то, выходит, что система довольно проста, и как работает сотовая связь понятно. Интересным остается вопрос, как же выглядит устройство базовой станции: и здесь все просто – это всего лишь несколько металлических тумб, располагающихся на крышах зданий и для бесперебойной их работы достаточно качественной вентиляции.

ПРОБЛЕМЫ УСТОЙЧИВОСТИ СВЯЗИ

Понятно, что в момент набора номера аппарат занимает незанятый канал с максимально возможным уровнем сигнала. Но, если в процессе разговора абонент начинает удаляться от базовой станции или условия расширения радиоволн ухудшатся – все это неблагоприятным образом скажется на связи и ее качестве. Логично, что ее улучшение происходит после переключения абонентов на другие, более устойчивые, каналы связи.

Каждая базовая станция имеет антенну, состоящую из нескольких элементов, так называемых секторов, отвечающих за «свою» площадь. Вертикальная составляющая антенны ответственна за связь с мобильными аппаратами, круглая – с контроллером. С учетом того, что одна станция чаще всего состоит из 6-ти секторов, и каждый из них способен принять минимум 70 звонков, после нехитрых вычислений выходит, что обслужить более 400 абонентов одновременно для нее не проблема. Такой производительности, зачастую, вполне достаточно. Но, случаются и внештатные ситуации, когда все абоненты всех операторов мобильной связи начинают звонить, например, на большие праздники (Новый Год), и базовые станции просто не справляются — начинаются перебои и помехи. Тем не менее для средней загрузки шести секторов более чем достаточно.

Следует отметить, что в зависимости от площади населенного пункта и плотности населения операторы мобильной связи устанавливают базовые станции с разным диапазоном частот:
900 МГц. Установка такой станции более целесообразна в небольших городках, поселках городского типа и т.д. В данном режиме базовая станция охватывает площадь радиусом порядка 35 км, или даже 70 км если на данный момент она обслуживает малое количество мобильных устройств.
1 800 МГц. Оптимальный вариант для больших городов, когда необходимо проникнуть сквозь толщину бетонной стены, однако, даже при таком диапазоне частот в городской черте базовых станций понадобится намного больше, чем в малонаселенных пунктах.
2 100 МГц. Это связь нового, более современного поколения 3G.

Одна базовая станция способна поддерживать сразу все возможные частотные диапазоны. Основная задача базовых станций заключается в том, чтобы покрыть максимальную площадь земли и обеспечить большое количество абонентов качественной связью. То есть улавливать сигналы на таких же расстояниях, но не на земле, а в воздушном пространстве базовые станции не могут.

Официальный магазин смартфонов Highscreen
Каталог мобильных телефонов Хайскрин

Как работает мобильная связь: ликбез

Мобильным телефоном пользуется порядка 90% всех живущих в России граждан. Но мало кто из них задумывался – как же все это работает? Правда ли, что сотовая связь работает на самом деле по проводам? Наш корреспондент нашел ответы на эти и некоторые другие вопросы.

Немного грустно, что подавляющее большинство людей на вопрос: «Как работает сотовая связь?», отвечают «по воздуху» или вообще — «не знаю».

В продолжение этой темы, у меня вышел один забавный разговор с другом на тему работы мобильной связи. Случилось это аккурат за пару дней до отмечаемого всеми связистами и телекомщиками праздника «Дня радио». Так уж сложилось, что в силу своей ярой жизненной позиции, мой друг считал, что мобильная связь работает вообще без проводов через спутник. Исключительно за счет радиоволн. Сначала у меня не получалось переубедить его. Но после непродолжительной беседы все встало на свои места.

После этой дружеской «лекции» появилась идея написать простым языком о том, как работает сотовая связь. Все как есть.

Когда вы набираете номер и начинаете звонить, ну, или вам кто-нибудь звонит, то ваш мобильный телефон по радиоканалу связывается с одной из антенн ближайшей базовой станции. Где же находятся эти базовые станции, спросите вы?

 Установленная на крише высотного дома базовая станция сети 3G Huawei.

Обратите внимание на промышленные здания, городские высотки и специальные вышки. На них и располагаются большие серые прямоугольные блоки с торчащими антеннами разных форм. Но антенны эти не телевизионные и не спутниковые, а приемо-передающие операторов сотовой связи. Они направлены в разные стороны, чтобы обеспечить связью абонентов со всех сторон. Ведь мы же не знаем, откуда будет поступать сигнал и куда занесет «горе-абонента» с телефонной трубкой? На профессиональном жаргоне антенны также называют «секторами». Как правило, они устанавливаются от одной до двенадцати.

От антенны сигнал по кабелю передается непосредственно в управляющий блок станции. Вместе они и образуют базовую станцию [антенны и управляющий блок]. Несколько базовых станций, чьи антенны обслуживают отдельную территорию, например, район города или небольшой населенный пункт, подсоединены к специальному блоку – контроллеру. К одному контроллеру обычно подключается до 15 базовых станций.

Контроллеры, которых также может быть несколько, кабелями подключены к «мозговому центру»  – коммутатору. Не такая уж мобильная связь и беспроводная, как кажется сначала.

В свою очередь, контроллеры, которых также может быть несколько, кабелями подключены к «мозговому центру»  – коммутатору. Коммутатор обеспечивает выход и вход сигналов на городские телефонные линии, на других операторов сотовой связи, а также операторов междугородней и международной связи.

В небольших сетях используется только один коммутатор, в более крупных, обслуживающих сразу более миллиона абонентов, могут использоваться два, три и более коммутаторов, объединенных между собой опять-таки проводами.

Зачем же такая сложность? Спросят читатели. Казалось бы, можно антенны просто подключить к коммутатору и все будет работать. А тут базовые станции, коммутаторы, куча кабелей… Но, не все так просто.

В сердце коммутатора челябинского Билайна.

Когда человек передвигается по улице пешком или идет на автомобиле, поезде и т.д. и при этом еще и разговаривает по телефону, важно обеспечить непрерывность связи. Связисты процесс эстафетной передачи обслуживания в мобильных сетях называют термином «handover». Необходимо вовремя переключать телефон абонента из одной базовой станции на другую, от одного контроллера к другому и так далее. 

Если бы базовые станции были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору. А ему «бедному» и так есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку на технические средства. Это снижает вероятность отказа оборудования и, как следствие, потери связи. Ведь все мы заинтересованы в бесперебойной связи, не так ли?

 Многоуровневая схема сети: базовая станция, контроллер, коммутатор -  дает возможность равномерно распределить нагрузку на оборудование.

Итак, достигнув коммутатора, наш звонок переводится далее – на сеть другого оператора мобильной, городской междугородной и международной связи. Конечно же, это происходит по высокоскоростным кабельным каналам связи. Звонок поступает на коммутатор другого оператора. При этом последний «знает», на какой территории [в области действия, какого контроллера] сейчас находится нужный абонент. Коммутатор передает телефонный вызов конкретному контроллеру, в котором содержится информация, в зоне действия какой базовой станции находится адресат звонка. Контроллер посылает сигнал этой единственной базовой станции, а она в свою очередь «опрашивает», то есть вызывает мобильный телефон. Трубка начинает причудливо звонить.

Весь этот длинный и сложный процесс в реальности занимает 2-3 секунды!

Точно также происходят телефонные звонки в разные города России, Европы и мира. Для связи коммутаторов различных операторов связи используются высокоскоростные оптоволоконные каналы связи. Благодаря им сотни тысяч километров телефонный сигнал преодолевает за считанные секунды.

Спасибо великому Александру Попову за то, что он дал миру радио! Если бы не он, возможно, мы бы сейчас были лишены многих благ цивилизации.

Как устроена сотовая связь. — Как это сделано, как это работает, как это устроено — LiveJournal

Оригинал взят у sergeydolya в Как устроена сотовая связь Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь… Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам. После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше: 2. Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером: 3. Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием: 4. На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно. 5. 6. Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет: Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов: 7. В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор: 8. 9. Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием: 10. 11. 12. Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы: 13. Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»: 14. Вся крыша такого автомобиля утыкана антеннами: 15. Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию: 16. Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС): 17. Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера: 18. На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит: 19. Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети: 22. 21.

Как устроена сеть сотовой связи GSM/UMTS / Habr

В комментариях к постам про сеть WiMAX (1, 2) и про GPRS был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети — сеть радиодоступа (RAN — Radio Access Network) и сеть коммутации или опорную сеть (CN — Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Существующие сети радиодоступа у наших операторов — продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN — GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN — UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа — оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа — эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть — ядро сетей сотовой связи. Название опорная — мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS — Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже — её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части — верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах — проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи 🙂

HLR — Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько — они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки — в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири — 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
— может ли абонент совершать исходящие звонки
— может ли абонент отправлять/принимать SMS
— разрешена ли услуга конференц-связи
— ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC — Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR — Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.

MSC — классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции — для исходящего вызова — определить куда переключить вызов, для входящего же соединения — определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR — MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC — AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте — на радиоинтерфейсе.

GMSC — Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN — Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN — Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC — Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями — назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга — через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC — TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS — Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути — довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки — это не есть базовая станция 🙂 Базовая станция похожа на холодильник — шкафчик с модулями, который стоит в специальном месте. Это специальное место — например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.

Более подробно можно почитать в недавно опубликованной статье про базовые станции.

RNC — Radio Network Controller, контроллер сети радиодоступа. По сути выступает в той же роли, что BSC в GERAN.

NodeB, базовая станция в UMTS. Аналог BTS в GSM.

В целом, здесь описаны все жизненно важные элементы сети GSM/UMTS. Здесь я не упоминал ещё некоторые узлы, такие как SMS-C (SMS-Center), MMS-C (MMS-Center), WAP-GW (WAP-Gateway).

Если статья вызовет интерес, то в дальнейшем могу рассказать более подробно про сети радиодоступа GERAN и UTRAN, потому что я занимаюсь по большей части именно радийными вещами.

Также уже есть идеи для ряда статей на основе вопросов, вызвавших интерес, в комментариях к статьям по телекоммуникациям, пока не буду раскрывать интригу — задавайте интересные вопросы — будут интересные статьи! 😉

UPD: в комментариях отписались эксперты в своих областях, что очень интересно почитать:
1. Ветка про ПО, устанавливаемом на оборудовании;
2. Ветка про отличия наших (СНГшных) сетей и сетей в Европе/США/Азии;
3. Комментрии от пользователя DeSh с поправлениями и уточнениями: тыц, тыц.
Да и вообще в комментариях довольно много всего интересного всплыло помимо выделенных мной комментариев.

Сотовая связь — Википедия

Сотовая связь, сеть подвижной связи — один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид шестиугольных ячеек (сот).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Первое использование подвижной телефонной радиосвязи в США относится к 1921 г.: полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приёмникам, установленным на автомашинах. В 1933 г. полиция Нью-Йорка начала использовать систему двусторонней подвижной телефонной радиосвязи также в диапазоне 2 МГц. В 1934 г. Федеральная комиссия связи США выделила для телефонной радиосвязи 4 канала в диапазоне 30—40 МГц, и в 1940 г. телефонной радиосвязью пользовались уже около 10 тысяч полицейских автомашин. Во всех этих системах использовалась амплитудная модуляция. Частотная модуляция начала применяться с 1940 г. и к 1946 г. полностью вытеснила амплитудную. Первый общественный подвижный радиотелефон появился в 1946 г. (Сент-Луис, США; фирма Bell Telephone Laboratories), в нём использовался диапазон 150 МГц. В 1955 г. начала работать 11-канальная система в диапазоне 150 МГц, а в 1956 г. — 12-канальная система в диапазоне 450 МГц. Обе эти системы были симплексными, и в них использовалась ручная коммутация. Автоматические дуплексные системы начали работать соответственно в 1964 г. (150 МГц) и в 1969 г. (450 МГц).

В СССР в 1957 г. московский инженер Л. И. Куприянович создал опытный образец носимого автоматического дуплексного мобильного радиотелефона ЛК-1 и базовую станцию к нему. Мобильный радиотелефон весил около трех килограммов и имел радиус действия 20—30 км. В 1958 году Куприянович создаёт усовершенствованные модели аппарата весом 0,5 кг и размером с папиросную коробку. В 1960-х гг. Христо Бочваров в Болгарии демонстрирует свой опытный образец карманного мобильного радиотелефона. На выставке «Интероргтехника-66» Болгария представляет комплект для организации местной мобильной связи из карманных мобильных телефонов РАТ-0,5 и АТРТ-0,5 и базовой станции РАТЦ-10, обеспечивающей подключение 10 абонентов.

В конце 50-х гг в Воронежском НИИ Связи разработали первую в мире систему полностью автоматической мобильной связи «Алтай»[1], введённая в опытную эксплуатацию в 1963 г. Система «Алтай» первоначально работала на частоте 150 МГц. В 1970 г. система «Алтай» работала в 30 городах СССР и для неё был выделен диапазон 330 МГц. Принцип связи был таков: город обслуживала одна базовая станция. Оборудование устанавливалось, как правило, на одном из самых высоких зданий в городе. В зависимости от высоты, рельефа и этажности застройки, устойчивый сигнал в городе мог быть в радиусе до 50 — 60 км, а кое-где и до 100 км вокруг базовой станции. В этом радиусе и можно было звонить, причём как с «Алтая» на «Алтай», так и на городские номера АТС, и даже по межгороду и за рубеж.

Аналогичным образом, с естественными отличиями и в меньших масштабах, развивалась ситуация и в других странах. Так, в Норвегии общественная телефонная радиосвязь использовалась в качестве морской мобильной связи с 1931 г.; в 1955 г. в стране было 27 береговых радиостанций. Наземная мобильная связь начала развиваться после второй мировой войны в виде частных сетей с ручной коммутацией. Таким образом, к 1970 г. подвижная телефонная радиосвязь, с одной стороны, уже получила достаточно широкое распространение, но с другой — явно не успевала за быстро растущими потребностями, при ограниченном числе каналов в жёстко определённых полосах частот. Выход был найден в виде системы сотовой связи, что позволило резко увеличить ёмкость за счёт повторного использования частот в системе с ячеистой структурой.

Сотовые системы[править | править код]

Отдельные элементы системы сотовой связи существовали и раньше. В частности, некоторое подобие сотовой системы использовалось в 1949 г. в Детройте (США) диспетчерской службой такси — с повторным использованием частот в разных ячейках при ручном переключении каналов пользователями в оговорённых заранее местах. Однако архитектура той системы, которая сегодня известна как система сотовой связи, была изложена только в техническом докладе компании Bell System, представленном в Федеральную комиссию связи США в декабре 1971 года. С этого времени начинается развитие собственно сотовой связи.

В 1974 г. Федеральная комиссия связи США приняла решение о выделении для сотовой связи полосы частот в 40 МГц в диапазоне 800 МГц; в 1986 г. к ней было добавлено ещё 10 МГц в том же диапазоне. В 1978 г. в Чикаго начались испытания первой опытной системы сотовой связи на 2 тыс. абонентов. Поэтому 1978 год можно считать годом начала практического применения сотовой связи. Первая автоматическая коммерческая система сотовой связи была введена в эксплуатацию также в Чикаго в октябре 1983 г. компанией American Telephone and Telegraph (AT&T). В Канаде сотовая связь используется с 1978 г., в Японии — с 1979 г., в североевропейских странах (Дания, Норвегия, Швеция, Финляндия) — с 1981 г., в Испании и Англии — с 1982 г. По состоянию на июль 1997 г. сотовая связь работала более чем в 140 странах всех континентов, обслуживая более 150 млн абонентов.

Первой коммерчески успешной сотовой сетью была финская сеть Autoradiopuhelin (ARP). Это название переводится на русский как «Автомобильный радиотелефон». Запущенная в 1971 г., она достигла 100%-го покрытия территории Финляндии в 1978 году, а в 1986 году в ней было более 30 тыс. абонентов. Работала сеть на частоте 150 МГц, размер соты — около 30 км.

Сотовая вышка CDMA

Основные составляющие сотовой сети — это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора. Как правило, это осуществляется по повышенным тарифам. Возможность автоматического роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.[2]

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Операторы сотовой связи предоставляют следующие услуги:

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *