назначение и основные характеристики, принцип работы для «чайников» и проверка в схемах
Полупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.
Общие сведения
Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.
Информация о ключах
Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками.
- Механические.
- Электромеханические.
- Электронные.
К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.
Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации.
- Число переключений ограниченно, поскольку контакты изнашиваются.
- При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
- Очень низкое быстродействие.
Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.
Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.
Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.
Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.
Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.
При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.
Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.
Принцип работы симистора
Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.
Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение
Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.
Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.
При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.
Рисунок 2. ВАХ триака
Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.
Виды и сферы применения
- Конструкция.
- Величина тока, при которой наступает перегрузка.
- Характеристики базы.
- Значения прямых и обратных токов.
- Величина прямого и обратного напряжений.
- Тип электрической нагрузки. Бывают силовыми и обычными.
- Параметр силы тока, необходимой для открытия затвора.
- Коэффициент dv/dt или скорость, с которой происходит переключение.
- Производитель.
- Мощность.
Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры
- Приборах для регулировки яркости света или диммерах.
- Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
- Электронной регулировке температур для индукционных плит.
- Холодильной аппаратуре для плавного запуска двигателя.
- Бытовой технике.
- Промышленности для освещения, плавного пуска приводов машин и механизмов.
Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.
Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.
Технические характеристики
У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов
- Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
- Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
- Период включения и выключения.
- Коэффициент dv/dt.
Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.
При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.
Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.
Диагностика в схемах
В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:
- Включить прибор в режим измерения величины сопротивления.
- Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
- Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.
Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.
Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания
В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.
Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.
Что такое симистор, как его проверить
Симистор — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока.
Симистор — это разновидность тиристора. Он как и тринистор имеет три вывода, однако p-n-переходов у симистора не три, а целых пять. Характерно для симистора и два устойчивых состояния: «открытое» и «закрытое», при том проводимостью симистора можно управлять в двух направлениях, несмотря на то, что управляющий электрод у него всего один.
По причине такой своей универсальности, именно симистор чаще всего играет роль ключа в цепях переменного тока для управления различного рода устройствами (например двигателем болгарки или стиральной машины).
Взгляните на рисунок. Здесь пять переходов, которые по своему расположению аналогичны двум встречно-параллельно включенным тринисторам. Если приложить к электроду MТ2 плюс, а к MТ1 — минус, то активируется (станет готова к работе) последовательность переходов снизу-вверх n-p-n-p, а при смене полярности в наше распоряжение попадет последовательность переходов сверху-вниз n-p-n-p. И управляющего электрода по прежнему достаточно всего одного.
Итак, для управления состоянием проводимости симистора, установленного в каком-нибудь приборе, на управляющий электрод G симистора подают управляющий импульс, полярность которого указывается относительно вывода MТ1, и зависит она от текущей полярности коммутируемого напряжения, действующего в цепи, то есть от напряжения, приложенного к выводам MT1 и MT2 данного симистора.
Если вывод MT2 находится под положительным напряжением относительно вывода MT1, то переход симистора в проводящее состояние возможен при любой полярности импульса управляющего напряжения, приложенного к выводу G относительно вывода MT1. Если же на выводе MT2 находится минус, а на MT1 – плюс, то к открыванию симистора приведет отрицательная полярность напряжения, приложенного к выводу G.
Чтобы «закрыть» симистор, находящийся в проводящем состоянии, необходимо обесточить коммутируемую симистором цепь (сделать ее ток меньшим, чем ток удержания, характерный для данного симистора).
Из сказанного выше очевидным образом вытекает, что для проверки симистора можно воспользоваться простой универсальной схемой, предназначенной для тестирования, которая содержит два развязанных друг от друга источника питания (например две обмотки трансформатора с выпрямителями и конденсаторами фильтров).
Такую схему каждый сможет собрать себе сам. Два переключателя (SA1 и SA2) служат для изменения полярности в коммутируемой цепи и в цепи питания управляющего электрода. Переключатели (кнопки без фиксации) SB1 и SB2 предназначены соответственно для открывания и для выключения симистора. Лампочка здесь служит индикатором исправности симистора, так как она установлена в цепи, коммутируемой симистором.
Работает схема так. Когда переключатели SA1 и SA2 пребывают в положении как изображено на рисунке, достаточно нажать на кнопку SB1, чтобы исправный симистор открылся и лампа тут же загорелась. Далее нажимают SB2 – лампа гаснет, так как симистор запирается. После этого переключателем SA1 изменяют полярность управляющего импульса.
Нажатие на SB1 приведет к загоранию лампы. Следующим шагом изменяют полярность в коммутируемой цепи, для чего нажимают на SA2. Теперь лампа должна вспыхивать только тогда, когда на управляющий электрод будет подано напряжение отрицательное, относительно минусового электрода симистора.
Есть более простая схема с батарейкой «крона» и со светодиодами. Данная схема позволяет проверять не только симисторы, но и тринисторы. Переключатель S1 позволяет изменять полярность питания, а кнопки ST1 и ST2 дают в распоряжение пользователю импульсы разной полярности.
Исправный тринистор станет проводить лишь в одном направлении, поэтому только светодиод VD4 будет индикатором. А вот симистор сможет открыться в том направлении, в котором подана полярность питания, и в зависимости от нажатия на кнопку ST1 или ST2. Нажатие на ST2 не должно привести к открыванию симистора, если на нижнем его выводе будет плюс.
Ранее ЭлектроВести писали, что в России на Калининской АЭС было отключено от сети три энергоблока из четырех. Представитель концерна «Росэнергоатом» сказал, что остановка была вызвана отключением одного из трансформаторов тока.
По материалам: electrik.info.
принцип работы триака, как работает, схема управления, ВАХ симистора.
Для управления мощными нагрузками в цепях переменного тока часто используются электромагнитные реле. Контактные группы этих приборов служат дополнительным источником ненадежности из-за склонности к обгоранию, привариванию. Также недостатком выглядит возможность искрения при коммутации, что в некоторых случаях требует дополнительных мер безопасности. Поэтому предпочтительнее выглядят электронные ключи. Один из вариантов такого ключа выполняется на симисторах.
Что такое симистор и для чего нужен
В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:
- отсутствие контактной группы;
- отсутствие вращающихся и движущихся механических элементов;
- небольшая масса и габариты;
- длительный ресурс, независящий от количества циклов включения-выключения;
- невысокая стоимость;
- высокое быстродействие и бесшумная работа.
Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).
На самом деле симистор не является в буквальном смысле двумя тринисторами, помещенными в один корпус.
Вся система реализована на одном кристалле с различными зонами p- и n- проводимостей, и эта структура не симметрична (хотя вольт-амперная характеристика триака имеет симметрию относительно начала координат и представляет собой отзеркаленную ВАХ тринистора). И в этом состоит принципиальное отличие симистора от двух тринисторов, каждый из которых должен управляться положительным, по отношению к катоду, током.
У симистора по отношению к направлению пропускаемого тока анода и катода нет, но по отношению к управляющему электроду эти выводы неравнозначны. В литературе встречаются термины «условный катод» (МТ1, А1) и «условный анод» (МТ2, А2). Ими удобно пользоваться для описания работы триака.
При подаче полуволны любой полярности, прибор сначала заперт (красный участок ВАХ). Также, как и у тринистора, отпирание триака может произойти при превышении порогового уровня напряжения при любой полярности волны синусоиды (синий участок). В электронных ключах это явление (динисторный эффект), скорее, вредное. Его надо избегать при выборе режима работы. Открывание триака происходит подачей тока в управляющий электрод. Чем больше ток, тем раньше откроется ключ (красный штриховой участок). Этот ток создается приложением напряжения между управляющим электродом и условным катодом. Это напряжение должно быть или отрицательным, или совпадать по знаку с напряжением, приложенным между МТ1 и МТ2.
При определенном значении тока, симистор открывается сразу и ведет себя как обычный диод – вплоть до запирания (зеленый штриховой и сплошной участки). Совершенствование технологий ведет к уменьшению потреблённого тока для полного отпирания симистора. У современных модификаций он составляет до 60 мА и ниже. Но увлекаться снижением тока в реальной схеме не следует – это может привести к нестабильному открыванию триака.
Закрывание, как и у обычного тринистора, происходит при снижении тока до определенного предела (почти до нуля). В цепи переменного тока это происходит при очередном прохождении через ноль, после чего потребуется снова подать управляющий импульс. В цепях постоянного тока управляемое запирание симистора требует громоздких технических решений.
Особенности и ограничения
Существуют ограничения применения симистора при коммутации реактивной (индуктивной или ёмкостной) нагрузки. При наличии такого потребителя в цепи переменного тока, фазы напряжения и тока сдвинуты относительно друг друга. Направление сдвига зависит от характера реактивности, а величина – от величины реактивной составляющей. Уже сказано, что триак выключается в момент перехода тока через ноль. А напряжение между MT1 и МТ2 в этот момент может быть достаточно большим. Если скорость изменения напряжения dU/dt при этом превысит пороговую величину, то симистор может не закрыться. Чтобы избежать этого эффекта, параллельно силовому тракту симистора включают варисторы. Их сопротивление зависит от приложенного напряжения, и они ограничивают скорость изменения разности потенциалов. Того же эффекта можно добиться применением RC-цепочки (снаббера).
Опасность от превышения скорости нарастания тока при коммутации нагрузки связана с конечным временем отпирания симистора. В момент, когда триак ещё не закрылся, может оказаться, что к нему приложено большое напряжение и одновременно через силовой тракт протекает достаточно большой сквозной ток. Это может привести к выделению на приборе большой тепловой мощности, и кристалл может перегреться. Для устранения этого дефекта надо по возможности компенсировать реактивность потребителя последовательным включением в цепь реактивности примерно той же величины, но противоположного знака.
Также надо иметь в виду, что в открытом состоянии на симисторе падает около 1-2 В. Но так как область применения – мощные высоковольтные ключи, это свойство на практическое применение триаков не влияет. Потеря 1-2 вольт в 220-вольтовой цепи сравнима с погрешностью измерения напряжения.
Примеры использования
Основная область использования триака – ключ в цепях переменного тока. Принципиальных ограничений для применения симистора в качестве ключа постоянного тока нет, но и смысла в этом нет. В этом случае проще использовать более дешевый и распространенный тринистор.
Как и любой ключ, симистор включается в цепь последовательно с нагрузкой. Включением и выключением триака управляется подача напряжения на потребителя.
Также симистор можно применять в качестве регулятора напряжения на нагрузках, которым не важна форма напряжения (например, лампы накаливания или термоэлектронагреватели). В этом случае схема управления выглядит так.
Здесь на резисторах R1, R2 и конденсаторе С1 организована фазовращающая цепь. Регулировкой сопротивления добиваются сдвига начала импульса относительно перехода сетевого напряжения через ноль. За формирование импульса отвечает динистор с напряжением открывания около 30 вольт. При достижении этого уровня он открывается и пропускает ток на управляющий электрод триака. Очевидно, что этот ток совпадает по направлению с током через силовой тракт симистора. Некоторые производители выпускают полупроводниковые приборы под названием Quadrac. У них в одном корпусе расположены симистор и динистор в цепи управляющего электрода.
Такая схема проста, но ток её потребления имеет резко несинусоидальную форму, при этом в питающей сети создаются помехи. Для их подавления надо использовать фильтры – хотя бы простейшие RC-цепочки.
Достоинства и недостатки
Достоинства симистора совпадают с плюсами тринистора, описанными выше. К ним надо лишь добавить возможность работы в цепях переменного тока и простое управление в таком режиме. Но имеются и минусы. В основном они касаются области применения, которая ограничена реактивной составляющей нагрузки. Предложенные выше меры защиты применить не всегда возможно. Также к недостаткам надо отнести:
- повышенную чувствительность к шумам и помехам в цепи управляющего электрода, которая может вызвать ложные срабатывания;
- необходимость отведения тепла от кристалла — обустройство радиаторов компенсирует небольшие габариты прибора, и для коммутации мощных нагрузок использование контакторов и реле становится предпочтительным;
- лимитирование по рабочей частоте — оно не имеет значения при работе на промышленных частотах 50 или 100 Гц, но ограничивает применение в преобразователях напряжения.
Для грамотного применения симисторов необходимо знать не только принципы работы прибора, но и его недостатки, определяющие границы применения триаков. Только в этом случае разработанный прибор будет работать долго и надежно.
что такое, из чего состоит и как проверить
Доброго времени суток, уважаемые читатели нашего сайта! В данной статье мы решили рассказать вам о таком важном маленьком приборчике, без которого современную электронику представить себе очень сложно. Для того, чтобы понять, что такое симистор, давайте сначала поговорим немного о полупроводниках.
Что такое полупроводник?
Полупроводники — это нечто среднее между проводниками и диэлектриками (про них у нас есть отдельная статья, рекомендуем ознакомиться). Да, они проводят электрический ток, но проводят они их не так хорошо, как проводники. Физики любят говорить, что у них есть “определенный коэффицент” проводимости. Нам же больше нравится называть их такими веществами, которые достаточно плохо проводят ток. Так вот, из полупроводников изготавливают тиристоры. Что это такое?
Перейдем к тиристорам
Тиристоры — это штуки, которые очень напоминают электронные ключи, однако у них нет закрытого состояния? Как? А вот так! У них немного другое предназначение. По сути, это 2 транзистора, которые управляют мощностью нагрузки с помощью очень слабого сигнала. Обычные тиристоры состоят из 3 деталей — катода, управляющего электрода и анода.
ТиристорВиды тиристоров
Давайте теперь узнаем, какие тиристоры существуют в природе и какие из них будут интересны нам в первую очередь:
- динисторы (тиристоры, у которых всего 2 вывода — анод и катод)
- триодный тиристор (с 3 выводами)
- тетроидный тиристор (с 4 выводами)
- симистор или симметричный тиристор (именно его мы сегодня изучим доскосконально)
Симистор? Впервые слышу
Симистор — это один из подвидов тиристоров, который обычно состоит из множества тиристоров. По-другому его также называют симметричный симистор.
Из чего состоит этот симистор?
Симистор очень часто физики представляют в виде пятислойного полупроводника. Также бывают и изображения в виде 2 тиристоров. При этом, управление сильно отличается от того, как управляется включенные триодные тиристоры потому их и выделили в отдельную группу. Давайте теперь узнаем, как работает управление.
Управление симистором
Дело в том, что у обыкновенного тиристора есть как катод, так и анод, причем каждый из них выполняет строго определенную функцию, а вот у симистора все немного иначе. Представим, что у нас есть и катод и анод, но когда симистор подключен и работает, то катод становится анодом, а анод — катодом. Вот такое чудесное превращение. Именно поэтому мы не можем сказать, что они здесь присутствуют в явном виде и будет просто называть их выходами (электродами). Для того, чтобы точно не ошибиться, давайте будет называть выходы симистора условными катодом и анодом. Еще немного теории.
У симистора управление работает следующим образом: на входе полярность может быть либо отрицательной — это первый вариант. Второй вариант — это тот, когда она совпадает с полярностью на аноде, что встречается реже. Далее все просто — задаем нужную силу тока и ее хватает для отпирания симистора. Обратите внимание, что для тока специально сделан управляющий электрод, именно им мы и пользуемся для этой цели.
Вуаля! Главная сложность для нас здесь — это подобрать идеальный ток, вот и все!
Симистор схема
Теперь, когда мы уже знаем достаточно много о структуре симисторов и том, каким образом они обычно управляются, пришло время посмотреть, как они выглядят на схемах и что здесь есть интересного. Взгляните, например, на эту схему:
Здесь нам стоит сразу отметить, какие есть условные обозначения, чтобы дальше без проблем разбираться во всех схемах. Симисторы обычно имеют 3 электрода, один из которых — это затвор. Его обозначают через английскую букву G. Что, уже гораздо больше понимания, верно? Отлично! Теперь давайте разберемся со схемой немного другого симистора. Замечаете отличия? Да, ведь здесь симистор составлен из целых 2 тиристоров!
Ага, а почему же тогда это симистор? Почему нельзя было сюда поставить схему обычного эквивалентного тиристора? А все дело в том, что управляется такая схема несколько иначе.
Регулятор на симисторе
Теперь пришло время нам обсудить, каким образом симистор регулирует напряжение. Это на самом деле очень интересно. Смотрите. Как только симистор начинает работать, на один из его электронов сразу же подается напряжение, которое всегда является переменным. Далее на управляющий электрод дается отрицательный ток, который и будет управлять процессом. Как будет преодолен порог включения (он всегда известен заранее, в этом и удобство), симистор откроется и ток начнет проходить через него. Отметим, что симистор перестанет работать в тот момент, когда ток поменяет полярность (другими словами он закроется). Далее все идет цикл за циклом и повторяется.
Ага, вроде понятно. А что влияет на скорость открытия и закрытия симистора? Что влияет на силу на выходе? Здесь все опять же очень просто. При нарастании входного напряжения импульс на выходе также увеличивается. Соответственно, если на входе маленькое напряжение — то и на выходе импульс будет короткий. Приведем в пример обыкновенную лампочку с симистором. Чем больше подаем напряжения — тем ярче лампочка. Здорово, не так ли?
Режимы работы симистора
Симистор может работать как под воздействием отрицательного тока, так и под воздействием положительного. Всего выделяют четыре основных режима работы: все зависит от полярности и входного напряжения.
В чем главные достоинства симистора
Давайте рассмотрим симистор как реле. В такой роли у него много существенных преимуществ:
- дешево. Да, это тоже плюс. Ну а что? Когда вам нужно сразу много, то будет очень хорошо, если потратить нужно будет меньше
- служит очень долго (конечно же, по сравнению с другими приборами этого класса)
- надежность из-за отсутствия контактов
Но есть у него и минусы
Конечно, идеальных приборов пока не придумали, поэтому здесь мы тоже не в праве их скрывать:
- сильная чувствительность к высоким температурам
- работает только на низких частотах (уж слишком долго он открывается и закрывается)
- иногда бывают внезапные срабатывания из-за естественного внешнего электромагнитного воздействия
Как проверить симистор?
Поговорив о положительных и отрицательных моментах симистора, мы плавно подвели наше с вами изучение симисторов к очень важному аспекту, а именно — к проверке. Вы можете сказать? Что это еще за проверка. Наверняка это что-то бесполезное. А мы вам ответим, что проверять симисторы — это очень важно, ведь на нем по сути держится весь электроприбор, и выявив брак или неисправность хотя бы в одном симисторе из партии, у вас есть шанс спасти целые электроприборы от серьезных поломок. Но и здесь новички задают вопрос.
А на фабриках, где изготавливают эти симисторы разве их не проверяют. Вопрос этот очень интересен, но ответ тоже довольно прост. На заводах нет времени на проверку каждого отдельного симистора, поэтому от силы проверке может подвергаться один прибор из партии. Поэтому давайте теперь уже поговорим о том, как же все-таки можно проверить на исправность этот замечательный прибор.
Существует сразу несколько эффективных способов проверки симистора. Давайте подробно разберемся с каждым из них. Для начала сразу скажем, что проверять симистор внутри схемы — это совершенно неверное действие. Вам сначала обязательно нужно извлечь его из платы, а потом уже работать с ним. Почему?
Тут все очень просто. Если вы будете проверять свой симистор и при этом он будет внутри схемы, то вы можете проверить его и он будет неисправен, но на самом деле будет неисправен соседний элемент, подключенный к нему параллельно. Поэтому нужно исключить все факторы, отключив симистор от схемы, выпаяв его. Отметим, что проверять нужно будет каждый отдельный элемент, иначе вы не сможете найти причину поломки. Сначала, как правило, проверяют силовые цепи, потом уже переходят к ключам, сделанным из полупроводниковых материалов. Как же можно проверить полупроводниковые ключи:
- проверка мультиметром (например прозвонкой или омметром). Это работает по следующему принципу: используем мультиметр в режиме измерения сопротивления Контактами присоединяем к нашему симистору, а затем смотрим полученные измерения. Дело в том, что у исправного симистора значение на омметре должно быть большим или очень большим.
Вот так выглядит мультиметр
- проверка батарейкой в паре с лампочкой. На первый взгляд такая идея может показаться глупой и нерациональной, но на деле же это не так. Давайте узнаем, как это работает. Тут все немного сложнее, но все по порядку. Для начала нам нужно будет подсоединить лампочку одним контактом к катоду (условному) нашего симистора. Далее второй контакт лампочки подключается к “отрицательной” стороне батарейки. Останется только присоединить “плюсовой” конец к аноду. Если лампочка горит нормально, то значит и симистор полностью рабочий.
Мощность симистора
Теперь, когда мы уже достаточно много знаем о симисторах, пришло время перейти к технической части. Как? Уже? Ага, вы уже к этому готовы. Итак, самый главный аспект, который волнует всех покупателей этого замечательного прибора — это мощность. Конечно, под этим понимается обычно целая совокупность технических характеристик симистора. О них и пойдет речь. Отметим, что мы разберем характеристики на примере довольно популярной модели — BT139-800.
Сначала давайте узнаем. Что вообще из себя представляют технические характеристики. Больше всего нас будут волновать:
- самое большое напряжение, которое только возможно
- самое большое напряжение, когда симистор открыт
- то напряжение, при котором симистор отпирается
- самый маленький ток, при котором открывается симистор
- температуры, при которых работает симистор
- время отклика (срабатывания)
Ага, вроде бы мы обо всем этом уже говорили, поэтому не так уж и сложно. Хорошо. Теперь о каждой характеристике немного подробнее.
Время отклика (срабатывания)
Скорость срабатывания симистора — это тоже очень важный параметр. Почему? Когда в цепи много таких симисторов и если каждый будет долго срабатывать, то большой аппарат будет очень долго реагировать на каждую команду или даже вообще не сможет работать.
У тока тоже есть своя скорость, а если на его задержку еще будет накладываться куча других, то прибор может стать ну очень медленным, поэтому на это тоже нужно обращать внимание. Наш симистор срабатывает в среднем за 2 микросекунды и это очень хороший результат. Формально, это то время, которое пройдет с момента, когда симистор начинает открываться и уже открыт.
Температура тоже важна
Симисторы, конечно же, работают при достаточно обычных для нас температурах. Однако при помещении его в критические условия будет лучше, если этот диапазон будет очень широким. Наш симистор работает при температуре от МИНУС 40, до ПЛЮС 125 градус по Цельсию. В обычной жизни этот диапазон оптимален, поэтому тут добавить нечего.
Самое большее возможное напряжение
В симисторе BT139-800 это 800 вольт и других моделей этот параметр может отличаться. Не стоит считать, что это напряжение, при котором симистор отлично работает. Нет, напротив — это теоретическое напряжение, от которого симистор еще не выйдет из строя. То есть при идеальных условиях для конкретной модели этот симистор еще вытянет такое напряжение в цепи, однако при превышении его шансов на дальнейшую работоспособностью почти нет. Идем дальше.
Минимальный ток управления
Начнем с того, что этот ток принято измерять в миллиамперах. Разумеется, все зависит от того, как определена полярность симистора в данное время, а также от полярности входного напряжения. Наш симистор имеет мин ток управления от 5 до 22 миллиампер. Однако при проектировании схемы, в которой будет работать симистор, правильнее всего будет ориентироваться на максимальные значения тока. Для нашего симистора это значения, которые находятся между 35 и 70 миллиамперами.
принцип действия, плюсы и минусы, применение прибора
Полупроводниковая структура симистора
Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия.
. Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.
Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.
Рис. №4. Структура симистора, включенного в обратном направлении. По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а p—n-переходы j2 и j4 подключаются в прямом, а p—n-переходы j1 и j3 – в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную p—n—p—n структуру с добавочным пятым слоем n0 , который граничит со слоем p1.
Назначение и устройство
Симисторы – это полупроводниковые полууправляемые ключи, которые открываются импульсом тока через управляющий электрод. Чтобы его закрыть нужно прервать ток в цепи или приложить обратное напряжение.
По принципу действия они подобны аналогичны тиристорам. Отличаются лишь тем, что симистор представляет собой два тиристора, соединённых встречно-параллельно. Обозначение на схеме вы видите ниже.
По определению они часто используются в релейном режиме – простыми словами работают на «включение» и «отключение», кстати такие реле называются полупроводниковыми.
Отличия от электромеханического следующие — быстродействие на порядки выше, нет контактов, в связи с чем большая долговечность. Главное условие долгой эксплуатации – обеспечить номинальный тепловой режим и нагрузку.
Что такое симистор и для чего нужен
В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:
- отсутствие контактной группы;
- отсутствие вращающихся и движущихся механических элементов;
- небольшая масса и габариты;
- длительный ресурс, независящий от количества циклов включения-выключения;
- невысокая стоимость;
- высокое быстродействие и бесшумная работа.
Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).
Электромеханические ключи
Для коммутации в электрических схемах используются ключи различного типа:
- механические;
- электромеханические;
- электронные.
К электромеханической группе относятся реле или контакторы. Замыканием и размыканием контактов управляет электромагнит. На катушку электромагнита подается управляющее напряжение, которое может быть как постоянным, так и переменным. Механические контакты реле могут коммутировать практически любые токи. Сопротивление контактной пары ничтожно, падение напряжения на контактах практически отсутствует. Нет потерь мощности при коммутации нагрузок, хотя есть потери на питание управляющей катушки.
Огромным преимуществом контакторов является то, что цепи нагрузки и управления электрически изолированы.
Недостатков тоже немало:
- Ограниченно число переключений. Контакты изнашиваются;
- Возникновение электрической дуги при размыкании — искрение контактов. Приводит к электроэрозии и недопустимо во взрывоопасных средах;
- Низкое быстродействие.
Там, где применение контакторов невозможно или нецелесообразно, применяют электронные ключи.
Что это за устройство, его обозначение
Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.
В открытом состоянии симистор проводит ток в обоих направлениях.
На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.
Внешний вид симистора и его обозначение на схемах
Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.
Эффект dv/dt и способы борьбы с ним
Управляющий сигнал для симистора необходим только для его включения (выключение происходит при снижении коммутируемого тока ниже тока удержания), но при высокой скорости изменения коммутируемого напряжения dv/dt есть вероятность самопроизвольного включения триака даже при отсутствии управляющего сигнала. По этой причине производители симисторов указывают максимально допустимую величину dv/dt, при которой неуправляемое включение триака не происходит. Превышение скорости нарастания выше указанных значений в документации может привести к выходу симисторных структур из строя. Причинами нежелательных включений могут стать импульсные помехи по цепям питания нагрузки или выбросы напряжения при срабатывании ключа, работающего на индуктивную нагрузку. Эффективный способ решения этой проблемы – включение снабберной (демпфирующей) RC-цепи параллельно выходу ключевого каскада, как показано на рисунке 5.
Рис. 5. Управление симистором с переключением по нулевому уровню и защитой снабберной
RC-цепью
В снабберной цепи желательно использовать металлопленочный полиэстерный конденсатор. Его номинал выбирается в пределах 0,01…0,1 мкФ, сопротивление резистора – от 20 до 500 Ом. Эти значения следует рассматривать только в качестве ориентировочных величин. Подробный расчет снабберных цепей можно найти в руководстве по применению AN1048/D компании On Semiconductor («RC Snabber Networks for Thyristor Power Control and Transient Supression»).
Особенно важно обратить внимание на обеспечение допустимых режимов работы симисторов при их работе на индуктивную нагрузку. На рисунке 6 приведены диаграммы напряжений при работе симистора на резистивную и индуктивную нагрузки. На активной нагрузке ток через симистор совпадает по фазе с выходным напряжением. При работе на индуктивную нагрузку ток через симистор имеет фазовый сдвиг q (задержку). Из-за этого в моменты переключения по нулевому уровню тока напряжение на симисторе не равно нулю (появляются выбросы напряжения). Наиболее неприятный момент происходит при выключении триака, работающего на индуктивную нагрузку. В эти моменты скорость нарастания напряжения на симисторе dv/dt может достичь недопустимо больших значений и вывести прибор из строя, если не принять никаких мер защиты (снабберная RC-цепь, варистор, защитные ограничительные диоды – супрессоры).
Рис. 6. Диаграммы напряжений при работе симистора на активную и индуктивную нагрузки
Для обеспечения переключения симистора по нулевому уровню тока можно использовать схему с оптической развязкой, приведенной на рисунке 5. Встроенная в оптроны схема управления обеспечивает надежное срабатывание по нулевому току.
Как проверить работоспособность симистора?
В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:
- Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
- Собрать специальную схему.
Алгоритм проверки омметром:
- Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
- Устанавливаем кратность на омметре х1.
- Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
- Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
- Меняем полярность и повторяем тест с пункта 3 по 4.
Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.
Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).
Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.
Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.
Схема простого тестера для симисторов
Обозначения:
- Резистор R1 – 51 Ом.
- Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
- Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
- Лампочка HL – 12 В, 0,5А.
Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.
Алгоритм проверки:
- Устанавливаем переключатели в исходное положение (соответствующее схеме).
- Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
- Жмем SB2, лампа гаснет (устройство закрылось).
- Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
- Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.
Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.
Схема для проверки тиристоров и симисторов
Обозначения:
- Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
- Емкости: С1 и С2 – 100 мкФ х 10 В.
- Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.
В качестве источника питания используется батарейка на 9V, по типу Кроны.
Тестирование тринисторов производится следующим образом:
- Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
- Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
- Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
- Кратковременно жмем S2, светодиоды не должны загораться.
Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.
Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:
- Выполняем пункты 1-4.
- Нажимаем кнопку S1- загорается светодиод VD
То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).
Источник: www.asutpp.ru
Использование симистора
Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока.
Где используется и как выглядит
Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.
Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.
Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два
По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).
Виды
Говоря о видах устройств, необходимо принять тот факт, что это симистор считается одним из типов тиристоров. Если существуют различия по работе, в таком случае и тиристор можно представить своего рода разновидностью симистора. Отличия заключаются в управляющем катоде и в разных принципах работы данных тиристоров.
Импортные устройства обширно представлены на российском рынке. Их главное отличие от российских симисторов заключается в том, что они не требуют заблаговременной настройки в самой схеме. Это даёт возможность экономить детали и место в печатной плате. Как правило, они начинают работать одновременно уже после введения в схему. Необходимо только точно выбрать нужный симистор по всем необходимым данным.
Коммутация тиристора
Для перехода тиристора в закрытое состояние ток нагрузки должен снизиться ниже значения тока удержания IH на время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.
Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IH достаточное время.
Обратите внимание, что значение IH указывается для температуры перехода 25 °C и, подобно IL, оно уменьшается при повышении температуры. Поэтому для успешной коммутации цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.
Что такое симистор, и в чем его отличие от тиристора
Симисторы (или «триаки») являются особыми разновидностями триодных симметричных тиристоров. Главным преимуществом любого симистора можно считать наличие способности проводки тока на рабочем p-n переходе в двух направлениях. Благодаря этому осуществляется использование радиоэлементов сфере систем, имеющих переменное напряжение.
Их рабочие принципы и конструктивные особенности сходны с остальными тиристорами. При подачах управляющих токов p-n переходы отпираются, и остаются открытым до момента снижения величин рабочих токов. Популярным применением симистора является использование его для регуляторов напряжений в осветительных системах и бытовых электроинструментах.
Принцип работы этого радиокомпонента схожий с принципом действия транзистора, однако деталь не является взаимозаменяемой. Разобравшись в том, что такое симистор и тиристор, необходимо также рассмотреть вопрос, о проверке этих деталей на показатели работоспособности.
Принцип работы симистора
Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.
Схема реле на симисторе (триаке)
В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.
При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.
Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.
Плюсы и минусы
После того как мы сориентировались, что такое симистор, давайте исследуем плюсы и минусы этого управляющего устройства.
К плюсам причисляют:
- В устройстве отсутствуют механические контакты.
- Продолжительный период эксплуатации, при этом поломки почти не происходят.
- Принцип работы устройств исключает искрение во время эксплуатации даже при наибольших мощностях проходящего тока.
- Низкая стоимость.
Но, как и каждое приспособление, симметричные тиристоры не лишены минусов:
- Существенное тепловыделение во время работы.
- Восприимчивость к электромагнитным помехам и шумам.
- Неумение работать при значительных частотах переменчивого тока.
- Падение напряжения до 2-х вольт в устройстве, пребывающем в открытом состоянии. При этом этот коэффициент не зависит от силы проходящего тока. Этот фактор считается препятствием для использования симисторов в маломощных конструкциях.
В то же время симметричные тиристоры при наибольших токах нагреваются, что потребует использования приспособлений для остывания корпуса. В индустрии встречается охлаждение мощных устройств активным методом — при поддержке вентилятора.
Как работает отпирание тиристора
Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.
Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.
Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.
История
К 1963 году уже были известны конструкции симисторов[2]. Мордовский научно-исследовательский электротехнический институт[3] подал заявку на авторское свидетельство на симметричный тиристор 22 июня 1963 года[4][2], то есть раньше[4], чем подана заявка на патент от американской корпорации «Дженерал электрик»[5][6].
Примечания
- Лабунцов В.А, Обухов С.Г., Свиридов А.Ф.
Тиристоры. Технический справочник. — М.: Энергия, 1971. — С. 358. — 560 с. - ↑ 12
Номер патента: 349356, Авторы: Думаневич, Евсеев, Заявка 0843040 от 22.06.1963 - Позже преобразованный в Научно-исследовательский и технологический институт силовой полупроводниковой техники (НИИ )
- ↑ 12
История - Mark P.D. Burgess Semiconductor Research and Development at General Electric General Electric History, 2008
- Автор: Gutzwiller W, US Patent 3275909 «Semiconductor Switch», заполнен 19 декабря 1963 года
Способы регулирования мощности
Соотношение напряжения на входе и выходе определяется числом витков в первичной и вторичной обмотках. Сделав много отводов на вторичной обмотке, можно осуществить ступенчатое регулирование. По такой схеме работают релейные стабилизаторы напряжения.
Плюсов у такой схемы немало. В первую очередь, это ее простота. А также высокий КПД трансформатора, гальваническая развязка входа и выхода, чисто синусоидальная форма выходного тока.
Однако, на частоте сети 50 Гц мощные трансформаторы становятся тяжелыми и громоздкими, невозможно плавно регулировать мощность, определенные проблемы возникают при коммутации обмоток.
Читать также: Бензопила партнёр 350 не смазывается цепь
Другой способ регулирования мощности называется методом фазового регулирования. При этом способе нагрузка подключается к источнику через электронный ключ.
Ключ прерывает цепь питания на определенную долю периода синусоиды переменного тока. Меняя время закрытого состояния ключа, можно регулировать величину мощности, передаваемой в нагрузку и действующее значение напряжения на выходе.
Ссылки
- Симисторы: от простого к сложному
- «Тиристоры и симисторы»
Основные характеристики
Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:
- Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
- Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
- Рабочий диапазон температур.
- Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
- Время включения.
- Минимальный постоянный ток управления, нужный для включения прибора.
- Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
- Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
- Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
- Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.
Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!
Опубликовано: 03.07.2019 Обновлено:
03.07.2019
нет комментариев
Литература
- 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
- 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).
Борьба с шумами
Представленная на рис. 3 схема цифрового термостата предполагает наличие идеального сетевого питания. В реальной сети имеются достаточно сильные помехи, которые могут сказаться на функционировании микроконтроллера. Особенно опасны шумы мегагерцового диапазона, амплитуда которых может достигать десятков киловольт. Если при разработке схемы учесть этот факт и принять ряд несложных мер, то это сэкономит много сил и времени при отладке. Создание надежного сетевого устройства предполагает изолирование микроконтроллера от высокочастотных шумов. Это относится не только к цепям питания, но и к остальным выводам контроллера. На рис. 5 представлена модификация схемы с учетом данных рекомендаций.
Рис. 5. Защищенное от шумов устройство
Первое, на что следует обратить внимание, это фильтр по цепи питания микроконтроллера (C3, R4 и R5). Получены две «земли» — одна для цифровой части схемы, другая — для зашумленной аналоговой.
Второе — защита выводов микроконтроллера с помощью ФНЧ (GP2, GP3). В них рекомендуется использовать керамические конденсаторы.
Как отпирается симистор
При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.
Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.
Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.
Самодельный пробник
Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.
Схема самодельного пробника представлена сочетанием следующих элементов:
- Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
- Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
- Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
- В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
- Создается сопротивление с номиналом 47 Ом.
- Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.
Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.
Симистор принцип работы – Tokzamer
Что такое симистор, как он работает и для чего нужен
Симисторы — это полупроводниковые ключи, которые используют для коммутации цепей сетевого напряжения. Узнайте, как работает симистор и для чего он нужен в цепи.
Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.
Конструкция и принцип действия
Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.
Условное обозначение на схеме по ГОСТ:
Внешний вид следующий:
В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.
Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.
При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).
Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.
Управляющие сигналы
Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.
Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.
Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.
При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.
Достоинства и недостатки
Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.
Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.
Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).
Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.
Область применения
Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:
- В стиральной машине.
- В печи.
- В духовках.
- В электродвигателе.
- В перфораторах и дрелях.
- В посудомоечной машине.
- В регуляторах освещения.
- В пылесосе.
На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.
Основные характеристики
Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:
- Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
- Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
- Рабочий диапазон температур.
- Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
- Время включения.
- Минимальный постоянный ток управления, нужный для включения прибора.
- Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
- Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
- Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
- Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.
Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!
Симистор принцип работы
Симисторы: принцип работы
Симистор — один из видов тиристоров, отличающийся от базового типа большим числом p-n переходови принципом работы.
Использование симистора
Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока.
Схема переключения симистора
Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.
Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .
Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.
Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.
Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.
Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.
Модифицированная цепь переключения симистора
Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.
Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .
Фазовый контроль симистора
Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.
Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.
Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).
В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.
Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.
Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.
Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.
Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.
Принцип работы симистора
Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.
Схема реле на симисторе (триаке)
В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.
При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.
Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.
Сигналы управления
Управляется симистор не напряжением, а током.
Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.
Схема подачи напряжения для управления симистором
Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.
Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель.
Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания.
Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.
Как отпирается симистор
При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.
Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.
Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.
Симисторы: от простого к сложномуВ 1963 году у многочисленного семейства тринисторов появился еще один «родственник» — симистор. Чем же он отличается от своих «собратьев» — тринисторов (тиристоров)? Вспомните о свойствах этих приборов. Их работу часто сравнивают с действием обычной двери: прибор заперт — ток в цепи отсутствует (дверь закрыта — прохода нет), прибор открыт — в цепи возникает электрический ток (дверь отворилась — входите). Но у них есть общий недостаток. Тиристоры пропускают ток только в прямом направлении — так обычная дверь легко открывается «от себя», но сколько ни тяни ее на себя — в противоположную сторону, все усилия окажутся бесполезными.
Увеличив число полупроводниковых слоев тиристора с четырех до пяти и снабдив его управляющим электродом, ученые обнаружили, что прибор с такой структурой (названный впоследствии симистором) способен пропускать электрический ток как в прямом, так и в обратном направлениях.
Посмотрите на рисунок 1, изображающий строение полупроводниковых слоев симистора. Внешне они напоминают транзисторную структуру р- n -р типа, но отличаются тем, что имеют три дополнительные области с n -проводимостью. И вот что интересно: оказывается, две из них, расположенные у катода и анода, выполняют функции только одного полупроводникового слоя — четвертого. Пятый образует область с n -проводимостью, лежащая около управляющего электрода.
Ясно, что работа такого прибора основана на более сложных физических процессах, чем у других типов тиристоров. Чтобы лучше разобраться в принципе действия симистора, воспользуемся его тиристорным аналогом. Почему именно тиристорным? Дело в том, что разделение четвертого полупроводникового слоя симистора не случайно. Благодаря такой структуре при прямом направлении тока, протекающего через прибор, анод и катод выполняют свои основные функции, а при обратном они как бы меняются местами — анод становится катодом, а катод, наоборот, анодом, то есть симистор можно рассматривать как два встречно-параллельно включенных тиристора (рис. 2).
Тринисторный аналог симистора
Представим, что на управляющий электрод подан отпирающий сигнал. Когда на аноде прибора напряжение положительной полярности, а на катоде — отрицательной, электрический ток потечет через левый по схеме тринистор. Если полярность напряжения на силовых электродах поменять на противоположную, включится правый по схеме тринистор. Пятый полупроводниковый слой, подобно регулировщику, руководящему движением автомобилей на перекрестке, направляет отпирающий сигнал, зависимости от фазы тока на один из тринисторов. При отсутствии отпирающего сигнала симистор закрыт.
В целом его действие можно сравнить, например, с вращающейся дверью на станции метро — в какую сторону ни толкни ее, она обязательно откроется. Действительно, подадим отпирающее напряжение на управляющий электрод симистора — «подтолкнем» его, и электроны, словно спешащие на посадку или выход пассажиры, потекут через прибор в направлении, диктуемом полярностью включения анода и катода.
Этот вывод подтверждается и вольтамперной характеристикой прибора (рис. 3). Она состоит из двух одинаковых кривых, повернутых относительно друг друга на 180°. Их форма соответствует вольтамперной характеристике динистора, а области непроводящего состояния, как и у тринистора, легко преодолеваются, если на управляющий электрод подать отпирающее напряжение (изменяющиеся участки кривых показаны штриховыми линиями).
Благодаря симметричности вольтамперной характеристики новый полупроводниковый прибор был назван симметричным тиристором (сокращенно — симистор). Иногда его называют триаком (термин, пришедший из английского языка).
Симистор унаследовал от своего предшественника — тиристора все его лучшие свойства. Но самое главное достоинство новинки в том, что в ее корпусе расположили сразу два полупроводниковых прибора. Судите сами. Для управления цепью постоянного тока необходим один тиристор, для цепи переменного тока приборов должно быть два (включены встречно-параллельно). А если учесть, что для каждого из них нужен отдельный источник отпирающего напряжения, который к тому же должен включать прибор точно в момент изменения фазы тока, становится ясно, каким сложным будет такой управляющий узел. Для симистора же род тока не имеет значения. Достаточно лишь одного такого прибора с источником отпирающего напряжения, и универсальное управляющее устройство готово. Его можно использовать в силовой цепи постоянного или переменного тока.
Близкое родство тиристора и симистора привело к тому, что у этих приборов оказалось много общего. Так электрические свойства симистора характеризуются теми же параметрами, что и у тиристора. Маркируются они тоже одинаково — буквами КУ, трехзначным числом и буквенным индексом в конце обозначения. Иногда симисторы обозначают несколько иначе — буквами ТС, что означает «тиристор симметричный».
Условное графическое обозначение симисторов на принципиальных схемах показано на рисунке 4.
Для практического знакомства с симисторами выберем приборы серии КУ208 — триодные симметричные тиристоры п-р-п-р типа. На разновидности приборов указывают буквенные индексы в их обозначении — А, Б, В или Г. Постоянное напряжение, которое выдерживает в закрытом состоянии симистор с индексом А, составляет 100 В, Б — 200 В, В — 300 В и Г — 400 В. Остальные параметры у этих приборов идентичные: максимальный постоянный ток в открытом состоянии — 5 А, импульсный —10 А, ток утечки в закрытом состоянии — 5 мА, напряжение между катодом и анодом в проводящем состоянии — -2 В, величина отпирающего напряжения на управляющем электроде равна 5 В при токе 160 мА, рассеиваемая корпусом прибора мощность— 10 Вт, предельная рабочая частота — 400 Гц.
А теперь обратимся к электроосветительным приборам. Нет ничего проще управлять работой любого из них. Нажал, к примеру, клавишу выключателя — ив комнате загорелась люстра, нажал еще раз — погасла. Иногда, правда, это достоинство неожиданно превращается в недостаток, особенно если вы хотите сделать свою комнату уютной, создать ощущение комфорта, а для этого так важно удачно подобрать освещение. Вот если бы свечение ламп менялось плавно.
Оказывается, в этом нет ничего невозможного. Нужно только вместо обычного выключателя подсоединить электронное устройство, управляющее яркостью светильника. Функции регулятора, «командующего» лампами, в таком приборе выполняет полупроводниковый симистор.
Построить простое регулирующее устройство, которое поможет управлять яркостью свечения настольной лампы или люстры, изменять температуру электроплитки или жала паяльника, вы сможете, воспользовавшись схемой, представленной на рисунке 5.
Рис. 5. Принципиальная схема регулятора
Трансформатор Т1 преобразует сетевое напряжение 220 В в 12 — 25 В. Оно выпрямляется диодным блоком VD1—VD4 и подается на управляющий электрод симистора VS1. Резистор R1 ограничивает ток управляющего электрода, а переменным резистором R2 регулируют величину управляющего напряжения.
Рис. 6. Временные диаграммы напряжения: а — в сети; б — на управляющем электроде симистора, в — на нагрузке.
Чтобы легче было разобраться в работе прибора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке (рис. 6). После включения устройства в сеть на его вход поступает переменное напряжение 220 В (рис. 6а). Одновременно на управляющий электрод симистора VS1 подается отрицательное напряжение синусоидальной формы (рис. 66). В момент, когда его величина превысит напряжение включения, прибор откроется и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания прибора. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь пилообразную форму (рис. 6в)
Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. При крайнем левом по схеме положении движка переменного резистора R2 нагрузка станет поглощать полные «порции» мощности. Если регулятор R2 повернуть в противоположную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор останется в закрытом состоянии и ток через нагрузку не потечет.
Нетрудно догадаться, что наш прибор регулирует мощность, потребляемую нагрузкой, изменяя тем самым яркость свечения лампы или температуру нагревательного элемента.
В устройстве можно применить следующие элементы. Симистор КУ208 с буквой В или Г. Диодный блок КЦ405 или КЦ407 с любым буквенным индексом, подойдут также четыре полупроводниковых диода серий Д226, Д237. Постоянный резистор — МЛТ-0,25, переменный — СПО-2 или любой другой мощностью не менее 1 Вт. ХР1 — стандартная сетевая вилка, XS1 — розетка. Трансформатор Т1 рассчитан на напряжение вторичной обмотки 12—25 В.
Если подходящего трансформатора нет, изготовьте его самостоятельно. Сердечник из пластин Ш16, толщина набора 20 мм, обмотка I содержит 3300 витков провода ПЭЛ-1 0,1, а обмотка II — 300 витков ПЭЛ-1 0,3.
Тумблер — любой сетевой, предохранитель должен быть рассчитан на максимальный ток нагрузки.
Регулятор собирается в пластмассовом корпусе. На верхней панели крепятся тумблер, переменный резистор, держатель предохранителя и розетка. Трансформатор, диодный блок и симистор устанавливаются на дне корпуса. Симистор необходимо снабдить теплорассеивающим радиатором толщиной 1 — 2 мм и площадью не менее 14 см2. В одной из боковых стенок корпуса просверлите отверстие для сетевого шнура.
Устройство не нуждается в налаживании и при правильном монтаже и исправных деталях начинает работать сразу после включения в сеть.
ПОЛЬЗУЯСЬ РЕГУЛЯТОРОМ, НЕ ЗАБЫВАЙТЕ О МЕРАХ БЕЗОПАСНОСТИ. ВСКРЫВАТЬ КОРПУС МОЖНО, ТОЛЬКО ОТКЛЮЧИВ ПРИБОР ОТ СЕТИ!
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Устройство и принцип работы симистора
Симистор — это полупроводниковый механизм. Он представляет собой трехполюсное приспособление на базе полупроводников. Такое устройство содержит 3 вывода: вывод Т1 и Т2 считаются силовыми электродами и делятся по полярности подсоединения на анод и катод; вывод G считается управляющим электродом либо затвором, даёт возможность реализовывать управление симистором.
- Конструкция и принцип работы
- Виды
- Плюсы и минусы
- Развитие технологий
- Сфера использования
- Ограничения при использовании
- Проверка симисторов
Конструкция и принцип работы
Структура симметричного тиристора складывается из пластинки, состоящей из поочередных слоёв с электропроводами p- и n- вида и из контактов электродов главного и управляющего действия.
Всего в структуре полупроводника находится 5 слоёв p- и n-вида. Область между пластами именуется p-n-переходом, который владеет нелинейной ВАХ с незначительным противодействием в противоположном направлении, где минус — это n-прослойка, а плюс — p-прослойка и высочайшее значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжениях в несколько тысяч вольт.
Во время введения механизма в прямолинейном направлении в работу входит правая половина структуры. Левосторонняя область структуры выключена, она считается для тока с обладанием весьма высоким противодействием.
Характеристики симметричного тиристора динамического и постоянного плана при его воздействии в прямом направлении, при поступлении позитивного управляющего сигнала отвечают аналогичным данным тиристора, работающего в непосредственном направлении.
Как работает симистор? Принцип работы устройства основан на прохождении электросигнала в двух направленностях. Это даёт возможность применять симисторы в качестве электрического реле в различных схемах, где необходимо корректировать нагрузку или проход тока по цепи. Одним из бесспорных превосходств симметричного тиристора считается и тот факт, что для предоставления проходного канала не требуется присутствие постоянного уровня напряжения в управляющем ключе. Нужно только наличие его не выше определённого уровня, в зависимости от использования.
Говоря о видах устройств, необходимо принять тот факт, что это симистор считается одним из типов тиристоров. Если существуют различия по работе, в таком случае и тиристор можно представить своего рода разновидностью симистора. Отличия заключаются в управляющем катоде и в разных принципах работы данных тиристоров.
Импортные устройства обширно представлены на российском рынке. Их главное отличие от российских симисторов заключается в том, что они не требуют заблаговременной настройки в самой схеме. Это даёт возможность экономить детали и место в печатной плате. Как правило, они начинают работать одновременно уже после введения в схему. Необходимо только точно выбрать нужный симистор по всем необходимым данным.
Плюсы и минусы
После того как мы сориентировались, что такое симистор, давайте исследуем плюсы и минусы этого управляющего устройства.
К плюсам причисляют:
- В устройстве отсутствуют механические контакты.
- Продолжительный период эксплуатации, при этом поломки почти не происходят.
- Принцип работы устройств исключает искрение во время эксплуатации даже при наибольших мощностях проходящего тока.
- Низкая стоимость.
Но, как и каждое приспособление, симметричные тиристоры не лишены минусов:
- Существенное тепловыделение во время работы.
- Восприимчивость к электромагнитным помехам и шумам.
- Неумение работать при значительных частотах переменчивого тока.
- Падение напряжения до 2-х вольт в устройстве, пребывающем в открытом состоянии. При этом этот коэффициент не зависит от силы проходящего тока. Этот фактор считается препятствием для использования симисторов в маломощных конструкциях.
В то же время симметричные тиристоры при наибольших токах нагреваются, что потребует использования приспособлений для остывания корпуса. В индустрии встречается охлаждение мощных устройств активным методом — при поддержке вентилятора.
Развитие технологий
Особенностью 4-квадрантных симметричных тиристоров считается их ложное включение, что может послужить причиной к выходу из строя. Это требует использования дополнительной предохранительной цепочки, содержащей разнообразные компоненты.
Относительно недавно были изобретены 3-х-квадрантные приборы, какие обладают нужными достоинствами:
- За счёт снижения числа требуемых компонентов, плата сделалась ещё более малогабаритной.
- Как следствие, понижение потерь усилия и снижение стоимости готового продукта.
- При отсутствии демпфера и дросселя стало возможно применять симметричные тиристоры в цепях с высокой частотой.
А также упрощение схемы разрешило применять 3-х-квадрантный симистор в нагревательных устройствах: подобная система меньше нагревается и не реагирует на находящуюся вокруг температуру.
Сфера использования
Принцип работы и малогабаритные размеры симисторов дают возможность использовать их почти повсюду. В самом начале собственного возникновения механизмы применялись при конструировании сильных трансформаторов и заправочных приборов.
На сегодняшний день с формированием производства маленьких полупроводников тиристоры стали компактнее, что даёт возможность применять их в наиболее разных конструкциях и областях.
Симистор является настолько гибким и многоцелевым механизмом, что благодаря его свойству происходит переключение в проводящее положение запускаемым импульсом с позитивным либо негативным знаком, который не зависит от ключа, выражающего свойства моментальной полярности. По сущности наименования анод и катод для прибора не имеют актуальности.
Симистор используют в качестве твердотельного реле. Для него свойственно небольшое значение отправного тока, необходимого для перегрузки с большими токами. Функции ключа в этом устройстве может исполнять переключатель либо обладающее большой чувствительностью реле и другие контактные пары с током до 50 мА, при этом размер тока перегрузки может ограничиваться только признаками, на которые рассчитан симистор.
Не менее обширно применение симистора в качестве регулятора освещения и управления быстротой верчения электромотора. Схема построена на применении запускающих компонентов, какие формируются RC-фазовращателем, а потенциометр регулирует освещённость, и резистор предназначается для ограничения тока перегрузки. Развитие импульсов производится с поддержкой динистора. Уже после пробоев в динисторе, который происходит в результате разницы потенциалов на конденсаторе, импульс разрядов конденсатора, возникающий моментально, включает симистор.
В индустрии мощные приборы применяются для управления станками, насосами и иным электрооборудованием, в каком месте необходимо плавное изменение протекающего тока. В быту использование симисторов ещё более широко:
- Это почти весь инструмент: от ручной дрели и шуруповерта вплоть до зарядного устройства для автоаккумуляторов.
- Многочисленные домашние электроприборы: пылесосы, вентиляторы, фены и так далее.
- В домашних компрессорных конструкциях — кондиционерах и холодильниках.
- Электронагревательные приборы: камины, духовки, СВЧ печи.
Повсеместное использование приборов стало толчком для исследования диммеров — популярного на сегодняшний день устройства для мягкой регулировки освещения. Принцип работы автоматического диммера основан на применении симистора.
Ограничения при использовании
Симистор прикладывает несколько ограничений при применении, в частности, при индуктивной перегрузке. Ограничения затрагивают скорости перемены напряжения (dV/dt) между анодами симистора и быстроты изменения рабочего тока di/dt.
Действительно, в период перехода симистора с замкнутого положения в проводящее состояние внешней цепью может быть обусловлен значительный ток. В таком случае период моментального падения усилия в выводе симистора не происходит. Таким образом, одновременно будут присутствовать напряжённость и ток, развивающие моментальную мощность, что может достичь существенных величин.
Энергия, растерянная в малом пространстве, активизирует внезапное увеличение температуры р-п переходов. В случае если критическая температура будет завышена, произойдёт разрушение симистора, вызванное излишней скоростью нарастания тока di/dt.
Кроме того, ограничения распространяются на изменения усилия 2-ух категорий: в dV/dt применительно к замкнутому симистору и в открытом симисторе (последнее, кроме того, именуется быстротой переключения).
Чрезмерная быстрота нарастания усилия, вложенного между заключениями А1 и А2 зарытого симистора, может спровоцировать его открытие при нехватке сигнала в управляющем электроде. Это проявление вызывается внутренней ёмкостью симистора. Электроток заряда этой ёмкости может быть необходимым для отпирания симистора.
Однако не это считается главной предпосылкой несвоевременного раскрытия. Максимальная величина dV/dt при переключении симистора, как принцип, очень незначительна, и очень быстрое изменение усилия в выводах симистора в период его запирания может сразу же спровоцировать за собою новое включение. Подобным образом, симистор опять отпирается, в то время как должен закрыться.
Проверка симисторов
Любой, даже наиболее надёжный прибор может выйти из строя. Не исключение и симистор. По этой причине немаловажно понимать, как можно проконтролировать его на работоспособность, для того чтобы осуществить его замену. Для этого можно применять 2 способа.
Первый способ состоит в применении 2-ух аналоговых омметров. Следующие измерения выполняют следующим способом:
- Щупы 1 омметра подсоединяют к катоду и аноду симистора. Будет комфортнее, если щупы закрепить зажимами, для того чтобы они не прыгали. В случае если ввести устройство, сопротивление станет весьма обширно: указатель будет «лежать»;
- Щупы 2 омметра подсоединяют следующим способом: единственный щуп закрепляется на аноде, а другим щупом дотрагиваются до управляющего электрода.
Если соразмерный тиристор исправен, то произойдёт его раскрывание, а противодействие в первом омметре опустится до нескольких ом.
Второй способ контроля предполагает прозвонку мультиметром. Для того чтобы измерения были надёжными, переключатель тестера устанавливается в положение «проверка диодов». Потом измерительные щупы закрепляются в аноде и катоде. В случае со щупами-иглами можно применять переходник с проволоки. В отличие от омметра, мультиметр продемонстрирует противодействие равное 1. Потом тонкой проволокой запираем отрицательный электрод и затвор. Случится отпирание полупроводника, и в экране тестера отобразится реальное противодействие симистора.
Симистор
Симметричный тиристор
Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).
Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.
У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?
Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.
В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).
Вот таким образом симистор изображается на принципиальных схемах.
У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).
А это эквивалентная схема симистора выполненного на двух тиристорах.
Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.
Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.
Как работает симистор?
Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.
Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.
Симисторный регулятор мощности
После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.
Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.
Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.
Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:
По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.
Отсутствие контактов и, как следствие, нет искрения и дребезга.
К недостаткам можно отнести:
Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.
Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.
Основные параметры симистора.
Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.
Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.
В импульсном режиме напряжение точно такое же.
Максимальный ток в открытом состоянии – 5А.
Максимальный ток в импульсном режиме – 10А.
Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
Наименьший импульсный ток – 160 мА.
Открывающее напряжение при токе 300 мА – 2,5 V.
Открывающее напряжение при токе 160 мА – 5 V.
Время включения – 10 мкс.
Время выключения – 150 мкс.
Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).
Оптосимистор.
Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.
Оптосимистор MOC3023
Устройство оптосимистора
Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».
Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.
Симистор принцип работы при коммутации
Существует множество полупроводниковых приборов, применяющихся в электрических цепях и осуществляющих коммутацию. Среди них следует особо отметить симистор, принцип работы которого практически такой же, как и у тиристора. В области электроники симистор, по своей сути, представляет ключ, в конструкции которого содержится анод и катод. Фактически, это два тиристора, подключаемые между собой встречно и параллельно.
Как работает симистор
Когда на катод подается положительное напряжение, поступление тока производится через тиристор, расположенный с левой стороны. Если поток напряжения становится противоположным, начинается работа правого тиристора. Отпирающий сигнал и его направление регулируется с помощью специального полупроводникового слоя. Таким образом, симистор обладает лучшими качествами тиристоров.
Его полупроводники работают попеременно, когда изменяется фаза электротока. Это устройство является универсальным и применяется в цепях с постоянным и переменным током.
Включение симистора осуществляется под действием возрастающей амплитуды напряжения. Когда напряжение снижается, происходит выключение устройства. Благодаря этим свойствам, регулируется нагрузка, степень накаливания и температура в различных приборах освещения и нагрева.
Положительные качества симисторов
Для управления симисторами используются токи различной полярности в четырех режимах работы. Поэтому, нередко симистор используется, как реле или электронный выключатель.
Симистор отличается длительным сроком эксплуатации, низкой стоимостью. В нем отсутствуют излишние звуки и любые ненужные контакты. Однако, данный прибор обладает повышенной чувствительностью к перегреву. При токах с высокой частотой иногда наблюдаются отказы в работе. Механические и электронные помехи могут привести к ложным срабатываниям. Для их предотвращения применяются устройства, имеющие дополнительную защиту, чтобы ограничить скорость, с которой изменяется напряжение.
Существует трехквадрантный симистор, принцип работы которого позволяет избежать самопроизвольного срабатывания. В них сокращены размеры плат и количество элементов. Эти приборы могут стабильно работать даже при очень высокой частоте.
Различные виды симисторов применяются во многих областях. Они являются составной частью электронного управления в промышленной и бытовой технике. Осуществляется диммирование света, когда источники управляются на расстоянии. Это особенно актуально для уличного освещения, театральных сцен и других аналогичных объектов.
Как работает симистор? — Полное иллюстрированное руководство — Умные решения для дома
Симистор — это полупроводниковый компонент, который можно рассматривать как переключатель. Используя слабый сигнал микроконтроллера, вы можете контролировать сетевое напряжение. Однако напрямую это сделать нельзя. Вам нужно промежуточное устройство, чтобы иметь возможность управлять симистором и отделить его от микроконтроллера.
Симистор — основной элемент SSR. Там уже встроены все компоненты для управления и разделения.Если вы хотите использовать его самостоятельно, вам нужно его добавить. Но благодаря этому вы получаете наиболее универсальный способ управления сетью переменного тока и, во многих случаях, лучшее решение, чем EMR или SSR.
Конструкция симистора
Есть мнения, что симисторы — очень сложные устройства. Нет, это не так Я постараюсь разрушить этот миф раз и навсегда. В этой главе мы заглянем внутрь и посмотрим, из чего сделан симистор.
Не хочу углубляться в физику. Я предполагаю, что вас больше интересует, как использовать это в реальном проекте.Не то, как устроены полупроводниковые структуры. Тем не менее, позвольте мне хотя бы немного обрисовать тему, чтобы этот пост был законченным.
Чтобы лучше это объяснить, ответим на вопросы: «что такое…»
Диод
Диод — одно из самых простых полупроводниковых устройств. Он пропускает ток только в одном направлении.
Тиристор (SCR)
Тиристор — это более и менее диод с управляемым затвором. В зависимости от состояния затвора диод ведет себя как классический диод или полностью блокирует ток.
Симистор
Симистор — это, по сути, два тиристора, соединенных спина к спине с общим затвором. Это позволяет управлять током в обоих направлениях.
Симисторывыпускаются в самых разных упаковках. У всех есть три терминала: MT1, MT2, GATE и встроенный радиатор.
Прежде чем куда-либо прикручивать, прочтите документацию! Радиатор можно внутренне подключить к одной из клемм. В этом случае вы должны относиться к нему так, как если бы он находился под высоким напряжением.
Как работает симистор?
Чтобы лучше объяснить, как работает симистор, я подготовил эту простую схему. Это базовая схема, которая позволяет управлять высоким током нагрузки с помощью небольшого тока «затвора» с помощью переключателя. Он может быть небольшим, потому что через него будет протекать очень низкий ток (мА).
Однако! Низкий ток не означает низкое напряжение! Этот переключатель находится под высоким напряжением! Когда он закрыт, через него проходит 230 (или 120) В переменного тока!
Хотя ток может течь в обоих направлениях через терминалы MT1 и MT2, они не взаимозаменяемы .
Чтобы правильно запустить симистор, вы должны подать напряжение на затвор с клеммы MT2. Это тот, на противоположной стороне, к которой нарисованы Врата на символе.
, как и тиристор, имеет интересную особенность. Его можно выключить только тогда, когда ток, протекающий через клеммы, упадет до значения, близкого к нулю.
Из этого следуют две вещи:
- Симистор не подходит для управления постоянным током. В постоянном токе напряжение и, конечно же, ток никогда не опускаются до нуля.Вы можете включить нагрузку, но нет возможности выключить ее.
- Для срабатывания симистора (в том числе и классического SSR) вам понадобится всего лишь короткий импульс. В случае переменного тока вы должны периодически запускать его, потому что напряжение падает до нуля каждые 10 мс (или 8 мс).
Применение симистора
Я представлю вам две версии схемы в зависимости от ваших потребностей. Вы можете использовать простую или более сложную версию.
Простая версия схемы
Если вы хотите просто включить / выключить цепь нагрузки и не собираетесь регулировать мощность, то этой версии вам достаточно.
Как вы, наверное, сразу заметите, эта схема не сильно отличается от внутренней конструкции SSR (статья о SSR). Вы можете рассматривать его как самодельную версию твердотельного реле 🙂
Две вещи, на которые хотелось бы обратить ваше внимание:
- Если вы используете опто-симистор со встроенным детектором пересечения нуля (например, MOC3041), имейте в виду, что, как и в случае с SSR со встроенным ZCD, задержка включения может составлять до 10 мс. (при 50 Гц).
- Если вы хотите контролировать индуктивную нагрузку (например,г., мотор) добавить «Демпфер». Эта схема подавляет внезапное повышение напряжения при выключении симистора. В определенных условиях это может привести к самостоятельному включению симистора. Если у вас есть время и вы хотите узнать больше по этой теме, я рекомендую Примечание по применению от ST.
Более совершенная версия
Теперь мы откроем только самые важные преимущества симистора. Используя эту версию схемы, вы имеете полную свободу выбора типа управления (подробнее об этих типах я напишу в своей статье Как управлять переменным напряжением с помощью микроконтроллера? ).
- Управление ВКЛ / ВЫКЛ — как в простой версии, электромагнитные реле и твердотельные реле.
- Phase Control
- Cycle Control
Чтобы в полной мере использовать возможности симистора, мы должны добавить еще один элемент в нашу схему: наш собственный детектор нулевого пересечения. В отличие от схемы, встроенной в опто-симистор, эта версия является ручной. Он только дает нам информацию о моменте, когда сеть переменного тока достигает нулевого напряжения. Что мы будем с ним делать, это наше дело, у нас полная свобода.
Детектор нулевого пересечения
ZCD необходим для синхронизации момента включения симистора. В случае ON / OFF Control и Cycle Control он всегда будет как можно ближе к нулю. В случае Phase Control нам нужно будет добавить некоторую задержку.
Несколько практических советов
- Вместо оптрона с двумя светодиодами для выпрямления напряжения можно использовать мост Гретца. Подробнее об этих двух методах я писал в статье «Как определить напряжение сети переменного тока с помощью микроконтроллера».
- В идеальном мире момент включения всегда был бы идеально нулевым. К сожалению, мы не живем в этом, поэтому всегда будет некоторая задержка. Свернуть это хорошо, но не стоит сходить с ума 🙂
Как это сделать?
- Увеличение тока на входе оптопары приведет к более быстрому включению светодиода. На схеме это 200 кОм, он ограничивает ток примерно до 1 мА (при 230 В переменного тока). Этого значения достаточно для работы оптопары, но вызывает некоторую задержку.Максимальный ток светодиода вы найдете в документации к конкретной модели. Например, давайте посчитаем, какие значения имели бы резисторы, если бы мы хотели увеличить ток до 10 мА.
Конечно, вы нигде не найдете резистор 23 кОм. В этом случае выберите ближайший, например, 24 кОм. Или вы можете выбрать два резистора и сложить их сопротивление. Использование двух резисторов имеет еще одно преимущество: напряжение и мощность распределяются пропорционально. В моем примере я выберу два резистора по 12 кОм.
Рассчитаем новые значения силы тока и мощности.
Не пропускайте этот шаг. Если вы выберете неправильные резисторы, они сгорят!
Малые резисторы THT или SMD обычно имеют мощность 0,25 Вт. Таким образом, даже при использовании двух средств они должны выдерживать не менее 1,1 Вт каждый. Не забывайте всегда иметь буфер. Я рекомендую вам использовать два резистора по 2Вт.
- Уменьшение подтягивающего резистора на выходе оптопары также приведет к более быстрому отклику. За счет уменьшения тока, протекающего в коллектор, он откроется раньше.Повышение устойчивости, например, к 50 кОм.
- Третий совет касается программной части. Я не знаю, какой микроконтроллер вы используете для этого проекта, но это не имеет значения. Каждый Arduino (ATMega), ESP, STM, PIC, Raspberry Pi выполнит свою работу. Каждый из них может генерировать внешнее прерывание с нарастающим или спадающим фронтом.
До и после изменений график выглядит следующим образом:
Окончательная схема
В этой версии я использовал другой тип Optotriac.Вместо MOC3041 я использовал MOC3021. Он не имеет встроенного блока ZCD. Я позаботился об этом самостоятельно, поэтому мне это не нужно 🙂 Кроме того, если бы я хотел использовать управление фазой, это было бы невозможно. Остальная часть схемы должна быть ясной. Помните, что MT1 и MT2 не взаимозаменяемы!
Преимущества
- Нет движущихся частей (т.е. срок службы почти бесконечен).
- Намного быстрее, чем электромагнитное реле.
- Очень универсальный (можно выбрать любой способ управления).
- При переключении не возникают помехи (если вы все делаете правильно).
- Искры отсутствуют.
- Низкое энергопотребление в цепи управления.
- Не издает звуков.
Недостатки
- Он никогда не открывается полностью (как EMR). Таким образом, у него есть некоторый ток утечки (мкА).
- Более высокое сопротивление, когда симистор закрыт, вызывает его нагрев.
- Работает только с AC.
- Невозможно подключиться напрямую к GPIO.
- Сложнее в использовании, чем SSR и EMR.
Симистор — сводка
Из этой статьи вы узнали, насколько универсальным устройством является симистор.Добавив в свой проект несколько дополнительных компонентов, вы можете настроить его в точном соответствии со своими потребностями. Вы можете использовать его вместо классического реле или выбрать более сложный метод управления, такой как контроль фазы или цикла.
Статьи по теме
Как выбрать микроконтроллер?
Выбор подходящего микроконтроллера для приложения — это не…
Как запрограммировать ESP8266 — с Arduino и без него
Я открыл для себя ESP8266 несколько лет назад.С тех пор я…
Как работает реле? — Полное иллюстрированное руководство
Реле (ЭМИ или электромагнитное реле) представляет собой электромеханический компонент…
Симистор — Как работают диммерные переключатели
В последнем разделе мы видели, что диммерный переключатель быстро включает и выключает световую цепь, чтобы уменьшить энергию, поступающую к переключателю света.Центральным элементом в этой коммутационной схеме является триодный переключатель переменного тока на триоде или симистор на триоде .
Симистор — небольшое полупроводниковое устройство, похожее на диод или транзистор. Подобно транзистору, симистор состоит из различных слоев полупроводникового материала . Сюда входит материал N-типа , который имеет много свободных электронов, и материал P-типа , который имеет много «дырок», куда могут уходить свободные электроны. Чтобы узнать об этих материалах, ознакомьтесь с разделом «Как работают полупроводники».И для демонстрации того, как эти материалы работают в простом транзисторе , см. Как работают усилители.
Вот как материал N-типа и P-типа устроен в симисторе.
Вы можете видеть, что симистор имеет две клеммы, которые подключены к двум концам цепи. Между двумя выводами всегда есть разница в напряжении, но она меняется в зависимости от колебаний переменного тока. То есть, когда ток движется в одну сторону, верхний вывод заряжается положительно, а нижний вывод заряжается отрицательно, а когда ток движется в другую сторону, верхний вывод заряжается отрицательно, а нижний вывод заряжается положительно.
Затвор также подключен к схеме посредством переменного резистора . Этот переменный резистор работает так же, как и переменный резистор в старой конструкции диммерного переключателя, но он не тратит почти так много энергии, генерируя тепло. Вы можете увидеть, как переменный резистор вписывается в схему на схеме ниже.
Так что здесь происходит? В двух словах:
- Симистор действует как переключатель, управляемый напряжением.
- Напряжение на затворе управляет действием переключения.
- Переменный резистор регулирует напряжение на затворе.
В следующем разделе мы рассмотрим этот процесс более подробно.
Конструкция, работа, режимы запуска и их применение
Мы знаем, что однонаправленное устройство, такое как SCR, включает в себя характеристики обратного тока блокировки, поскольку оно останавливает поток тока в состоянии обратного смещения, однако для некоторых приложений этот вид управления током необходим, особенно в цепях переменного тока.Таким образом, это может быть достигнуто с помощью SCR, где соединение двух SCR должно выполняться антипараллельно для управления как положительными, так и отрицательными полупериодами входа. Но это расположение можно изменить с помощью специального полупроводникового устройства, называемого TRIAC, которое используется для достижения двунаправленного управления. Это устройство точно контролирует переменный ток и часто используется для управления скоростью двигателя, устройств управления переменного тока, цепей переменного тока, регуляторов света, систем управления давлением и т. Д.
Что такое TRIAC?
TRIAC (Триод для переменного тока) — полупроводниковое устройство, широко используемое в системах управления питанием и коммутации.Он находит применение в коммутации, фазовом управлении, конструкциях прерывателей, регулировании яркости в лампах, управлении скоростью в вентиляторах, двигателях и т. Д. Система управления мощностью предназначена для управления уровнем распределения переменного или постоянного тока. Такие системы управления мощностью можно использовать для переключения питания на приборы вручную или когда температура или уровень освещенности выходят за пределы заранее установленного уровня.
TRIAC или триод для переменного токаЭто эквивалентно двум тиристорам, соединенным обратно параллельно затворам, соединенным вместе.В результате он функционирует как двунаправленный переключатель, пропускающий ток в обоих направлениях после срабатывания затвора. Это трехконтактное устройство с главным терминалом 1 (MT1), основным терминалом 2 (MT2) и воротами. Клеммы MT1 и MT2 используются для подключения фазовой и нейтральной линий, а затвор используется для подачи запускающего импульса. Ворота могут срабатывать как положительным, так и отрицательным напряжением.
Когда клемма MT2 получает положительное напряжение по отношению к клемме MT1, а затвор получает положительный сигнал триггера, тогда срабатывает левый SCR триггера TRIAC и цепь завершается.Но если полярность напряжения на выводах MT2 и MT1 поменяна местами и на затвор подается отрицательный импульс, то правый тиристор симистора становится проводящим. Когда ток затвора снимается, TRIAC выключается. Таким образом, на затворе должен поддерживаться минимальный ток удержания, чтобы TRIAC оставался проводящим.
Строительство
Конструкция TRIAC показана ниже. Он включает в себя четыре слоя, а также шесть областей легирования. Конструкция его вывода затвора может быть выполнена с помощью омического контакта с использованием двух областей, а именно области P и области N, так что это устройство может активироваться через обе полярности.Несмотря на то, что это двунаправленное устройство, в котором ток и напряжение могут быть указаны с помощью MT1, как ссылка для уменьшения путаницы.
В случае SCR, выводы TRIAC могут быть обозначены MT1 и MT2, как анод и катод, а вывод затвора может быть представлен через «G», как тиристор. Клемма затвора «G» подключена к обеим областям P2 и N4 через металлический контакт и находится близко к клемме MT1.
Подключение MT1 может быть выполнено к обеим областям P2 и N2, тогда как MT2 может быть подключено к областям как P1, так и N3.Следовательно, два терминала, такие как MT1 и MT2, подключены к обеим областям P и N устройства. Таким образом, поток тока между этими двумя выводами может определяться через слои в устройстве.
MT2 подключен к плюсу через открытый затвор по сравнению с MT1 для TRIAC, который подключен в прямом смещении. Таким образом, TRIAC работает в режиме прямой блокировки до тех пор, пока напряжение на TRIAC не станет низким по сравнению с перенапряжением при прямом прерывании. Аналогично, вывод MT2 становится отрицательным, когда TRIAC подключен с обратным смещением относительно вывода MT1 через открытый затвор, тогда это устройство работает в режиме обратной блокировки.TRIAC можно сделать проводящим либо через + ve, либо через отрицательное напряжение на клемме затвора.
Работа TRIAC
Когда приложенное напряжение в TRIAC эквивалентно напряжению пробоя, TRIAC переходит в состояние проводимости. Однако наиболее предпочтительный метод включения TRIAC — это подача либо положительного сигнала затвора, либо отрицательного сигнала затвора.
Если ток на выводе затвора высокий, то для включения симистора требуется меньшее напряжение, и он может переключаться через обе полярности по направлению к сигналу затвора.Работа TRIAC может осуществляться в четырех режимах, таких как следующие.
- Вывод MT2 является положительным по отношению к выводу MT1 через положительную полярность затвора относительно вывода MT1. Клемма
- MT2 является положительной по отношению к клемме MT1 через отрицательную полярность затвора по отношению к MT1. Клемма
- MT2 является отрицательной по отношению к клемме MT1 через отрицательную полярность затвора по отношению к клемме MT1. Клемма
- MT2 является отрицательной по отношению к клемме MT1 через положительную полярность затвора по отношению к клемме MT1.
Mode-1
В этом режиме, как только терминал MT2 находится в положении + ve по отношению к терминалу MT1, текущий поток будет в направлении P1-N1-P2-N2. На протяжении всего этого процесса соединение между слоями, такими как P1-N1 и P2-N2, подключается с прямым смещением, в то время как переход между N1-P2 подключается с обратным смещением. Как только положительный сигнал подается на клемму затвора, соединение между P2-N2 подключается с прямым смещением и происходит пробой.
Режим-2
Если на выводе MT2 установлено + ve, а стробирующий сигнал — -ve, ток будет таким же, как и в первом режиме P1-N1-P2-N2, однако здесь соединение между P2-N2 может быть подключенными в прямом смещении, а носители тока добавляются в слой P2.
Режим-3
Когда клемма MT2 находится в состоянии + ve и -ve, сигнал может быть подан на клемму затвора, тогда поток тока будет в направлении P2-N1-P2-N2.На протяжении всего этого процесса соединение между двумя слоями, такими как P2-N1 и P1-N4, подключается с прямым смещением, в то время как переход между слоями N1-P1 подключается с обратным смещением. Таким образом, этот ТРИАК будет действовать в области отрицательных предубеждений.
Режим-4
Когда клемма MT2 является отрицательной и клемма затвора активируется посредством положительного сигнала, соединение между P2-N2 подключается с пересылкой смещения и несущие тока добавляются, поэтому TRIAC включается.Обычно TRIAC не работает в этом режиме из-за того недостатка, что его нельзя использовать для схем с высоким di / dt.
Чувствительность триггера TRIAC в режимах 2 и 3 высокая. Отрицательный сигнал затвора может использоваться в случае незначительной активирующей способности. Активация режима 1 чувствительна по сравнению с другими режимами, такими как 2 и 3, однако для его активации используется сигнал затвора + ve. Наиболее часто используются режимы 2 и 3.
Работа TRIAC
Показана простая схема применения TRIAC.Как правило, TRIAC имеет три клеммы M1, M2 и затвор. Триак, ламповая нагрузка и напряжение питания подключены последовательно. Когда питание включено в положительном цикле, ток протекает через лампу, резисторы и DIAC (при условии, что на выводе 1 оптопары подаются запускающие импульсы, что приводит к тому, что выводы 4 и 6 начинают проводить) затвор и достигает источника питания, и тогда только лампа светится для этого. полупериод напрямую через клеммы M2 и M1 TRIAC.
В отрицательном полупериоде повторяется то же самое.Таким образом, лампа светится в обоих циклах управляемым образом в зависимости от запускающих импульсов на оптоизоляторе, как показано на графике ниже. Если это подается на двигатель вместо лампы, мощность регулируется, что приводит к регулированию скорости.
Формы сигналов TRIACЗапуск TRIAC
Обычно в TRIAC возможно 4 режима срабатывания:
TRIAC-SYMBOL- Положительное напряжение на MT2 и положительный импульс на затворе
- Положительное напряжение на МТ2 и отрицательный импульс на затворе
- Отрицательное напряжение на МТ2 и положительный импульс на затворе
- Отрицательное напряжение на МТ2 и отрицательный импульс на затворе
Различные типы пакетов TRIAC
Для удобства использования и различных приложений, TRIAC разработаны в различных корпусах, таких как тип штыря / стандартный, тип капсулы / диска и тип шпильки.
Штифт или стандартный тип
Этот вид TRIAC выглядит как крошечная интегральная схема через три терминала, такие как MT1, MT2 и Gate, и радиатор на вершине. Эти ТРИАКИ в основном используются в бытовых электронных приборах. Общие пакеты стандартного типа TRIAC включают TMA36S-L, TMA54S-L, TMA124S-L, TMA84S-L, TMA126S-L, TMA106S-L, TMA206S-L и т. Д.
Тип капсулы / диска
Капсульный тип, в противном случае триаки дискового типа будут иметь форму диска через протяженные провода к клеммам.Эти типы TRIAC обладают высокой допустимой нагрузкой по току и имеют керамическое уплотнение.
Применения капсульного или дискового типа включают быстрое управление двигателем, а также переключение переменного тока. Распространенными корпусами капсульного типа являются KS200A, KS100A, KS500A, KS300A, KS600A, KS1000A, а также KS800A.
Тип шпильки
Штыревой TRIAC в основном используется в приложениях с высокой мощностью, потому что они имеют резьбовое дно, чтобы работать как основные клеммы, и включают в себя две клеммы на ее вершине, которые являются другой основной клеммой, а также клеммой затвора.
Они в основном используются в приложениях управления фазой, таких как схемы освещения, преобразователь, RPS, регулирование скорости и температуры цепей и т. Д. Пакеты шпилек типа TRIAC включают TO-93, TO-118, TO-94, TO-48, ТО-48, РСД7 и ТО-65.
Факторы воздействия
В отличие от SCR, TRIACS требует правильной оптимизации для правильного функционирования. Симисторам присущи недостатки, такие как эффект скорости, эффект люфта и т. Д. Поэтому проектирование схем на основе симистора требует должного внимания.
Эффект скорости сильно влияет на работу TRIAC
Между выводами MT1 и MT2 симистора существует внутренняя емкость. Если на вывод МТ1 подается резко возрастающее напряжение, то это приводит к прорыву напряжения затвора. Это без надобности запускает симистор. Это явление называется эффектом скорости. Эффект скорости обычно возникает из-за переходных процессов в сети, а также из-за высокого пускового тока при включении тяжелых индуктивных нагрузок.Это можно уменьшить, подключив R-C сеть между терминалами MT1 и MT2.
RATE EFFECTСильный люфт в цепях диммера лампы:
Эффект люфта — это серьезный гистерезис управления, который возникает в цепях управления лампой или скоростью, использующих потенциометр для управления током затвора. Когда сопротивление потенциометра увеличивается до максимума, яркость лампы снижается до минимума. Когда горшок перевернут, лампа никогда не включается, пока сопротивление горшка не упадет до минимума.
Причина этого — разряд конденсатора в симисторе. В схемах диммера лампы используется диодный импульсный датчик, чтобы подать импульс запуска на затвор. Поэтому, когда конденсатор внутри симистора разряжается через Diac, возникает эффект люфта. Это можно исправить, используя резистор последовательно с Diac или добавив конденсатор между затвором и выводом MT1 симистора.
Эффект люфтаВлияние RFI на TRIAC
Радиочастотные помехи серьезно влияют на работу симисторов.Когда симистор включает нагрузку, ток нагрузки резко возрастает от нуля до высокого значения в зависимости от напряжения питания и сопротивления нагрузки. Это приводит к генерации импульсов RFI. Сила RFI пропорциональна проводу, соединяющему нагрузку с симистором. Подавитель LC-RFI исправит этот дефект.
VI Характеристики
Характеристика VI TRIAC обсуждается ниже. Эти характеристики относятся к SCR, однако он подходит как для положительного, так и для отрицательного напряжения TRIAC.Его работу можно рассмотреть в четырех квадрантах, которые обсуждаются ниже.
В первом квадранте напряжение на выводе MT2 положительно по сравнению с выводом MT1, а также напряжение на выводе затвора также положительно, чем на первом выводе
Во втором квадранте напряжение на втором выводе, таком как MT2, положительно, чем MT1, и напряжение на выводе затвора отрицательно, чем на выводе 1, таком как MT1.
В третьем квадранте напряжение на выводе 1, таком как MT1, положительно, чем на выводе 2, например, MT2, а напряжение на выводе затвора отрицательное.
В четвертом квадранте напряжение на выводе 2, таком как MT2, отрицательное, чем на выводе 1 MT1, и напряжение на выводе затвора положительное.
Что такое TRIAC Dimming?
Во многих системах освещения важную роль играют диммеры TRIAC. Диммеры в основном используются для регулировки уровня освещения с целью экономии энергии. Когда диммер подключен через светодиодный источник света, экономия энергии может быть довольно значительной.
Наиболее распространенными контроллерами диммирования являются диммеры с отсечкой фазы, известные как диммеры TRIAC.Изготовление светодиодных ламп с использованием диммера TRIAC было довольно сложным в прошлом, но теперь драйверы светодиодов, использующие диммер TRIAC, довольно просто.
ДиммированиеTRIAC в основном работает как переключатель с высокой скоростью, используемый для управления количеством электроэнергии, протекающей через лампочку. Триггер указывает, с какого конца устройство начинает подавать электричество, в основном прерывая сигнал напряжения, прекращая подачу напряжения при полной нагрузке.
После того, как диммер TRIAC используется через светодиодную лампу, необходимо получить драйвер светодиода с регулировкой яркости TRIAC, чтобы убедиться, что устройство является полупроводниковым устройством TRIAC.Эти диммеры в основном предназначены для резистивных нагрузок, поэтому важно получить правильное значение. Если драйвер светодиода ложного затемнения TRIAC может быть получен, свет не будет работать так, как ожидалось, сокращая срок службы светодиода.
TRIAC однонаправленный или двунаправленный?
TRIAC — однонаправленное устройство, поскольку оно может переключать обе половины сигнала переменного тока. Можно проанализировать работу TRIAC, разместив тиристоры вплотную друг к другу. Символ тиристора указывает на то, как работает TRIAC.Снаружи похоже, что тиристоры соединены спина к спине.
TRIAC — идеальное устройство для коммутации переменного тока, поскольку он может регулировать протекание тока через обе пополам чередующейся серии. Тиристор просто управляет ими над половиной ряда. На протяжении оставшейся половины проводимости не происходит, и, следовательно, можно использовать просто половину сигнала.
TRIAC BT136
TRIAC BT136 — это семейство TRIAC, у него текущий ток 6 ампер.Мы уже видели применение TRIAC с использованием BT136 выше.
Характеристики BT136
- Прямой запуск от маломощных драйверов и логических микросхем
- Высокое напряжение блокировки
- Низкий ток удержания для слаботочных нагрузок и минимальных электромагнитных помех при коммутации
- Планар пассивирован для повышения устойчивости к напряжению и надежности
- Чувствительный вентиль
- Срабатывание во всех четырех квадрантах
Приложения BT136:
- Универсальное применение в управлении двигателями
- Коммутатор общего назначения
TRIAC BT139
TRIAC BT139 также относится к семейству TRIAC, его текущая скорость составляет 9 ампер.Основное различие между BT139 и BT136 заключается в скорости тока, а TRIACS BT139 используются для приложений с высокой мощностью.
Особенности BT139 включают следующее.
- Прямой запуск от маломощных драйверов и логики ICS
- Высокое напряжение блокировки
- Планар пассивирован для повышения устойчивости к напряжению и надежности
- Чувствительный вентиль
- Срабатывание во всех четырех квадрантах
Приложения BT139 включают следующее.
- Управление двигателем
- Промышленное и домашнее освещение
- Нагрев и статическое переключение
В чем разница между тиристором и триаком?
Разница между SCR и TRIAC заключается в следующем.
SCR | TRIAC |
Тиристор также известен как SCR или кремниевый управляемый выпрямитель | Триод для переменного тока |
Это однонаправленное устройство | Устройство двустороннее |
SCR или тиристор с четырьмя выводами | Включает три клеммы |
Надежно | Менее надежен |
Тиристор использует радиаторы с носком | Нужен просто один радиатор |
Рейтинг тиристора большой | Рейтинг TRIAC невелик |
SCR может быть запущен через UJT | Может быть запущен через DIAC |
Тиристор используется для управления мощностью постоянного тока | Контролирует питание как переменного, так и постоянного тока |
В тиристоре возможен один режим работы | Включает четыре различных режима работы |
Тиристор работает только в одном квадранте VI характеристики | Работает просто в двух квадрантах. Характеристики VI |
Тиристор можно просто активировать через положительное напряжение затвора. | Может быть активирован через положительное или отрицательное напряжение затвора. |
Обладает высокими токами | Обладает низкотоковыми характеристиками |
Преимущества
К преимуществам TRIAC можно отнести следующее.
- В нем используется радиатор немного большего или немного большего размера, тогда как для SCR необходимо использовать два радиатора небольшого размера.
- Возможен гарантированный пробой в любом направлении, однако для защиты SCR должен использоваться параллельный диод.
- В приложениях постоянного тока тиристор должен подключаться через параллельный диод для защиты от обратного напряжения, тогда как тиристор может работать без диода, потому что возможен безопасный пробой в любом направлении.
- Как только напряжение снизится до нуля, TRIAC будет выключен.
- Может быть активирован через положительную или отрицательную полярность стробирующих сигналов
- Может быть защищен одним предохранителем.
Недостатки
К недостаткам TRIAC можно отнести следующее.
- По сравнению с SCR это ненадежно
- По сравнению с SCR надежность невысока.
- Он будет активироваться в любом направлении, поэтому следует проявлять осторожность при включении цепи.
- Задержка переключения велика
- Рейтинг dv / dt значительно меньше SCR
- TRIAC будет иметь меньшие номиналы по сравнению с выпрямителями с кремниевым управлением.
- Не применяется в приложениях постоянного тока
Применение TRIAC
ТИАКиспользуются во многих приложениях, таких как диммеры, регуляторы скорости для электрических вентиляторов и других электродвигателей, а также в современных компьютеризированных схемах управления многочисленными бытовыми мелкими и крупными бытовыми приборами.Их можно использовать как в цепях переменного, так и в цепях постоянного тока, однако первоначальная конструкция должна была заменить использование двух тиристоров в цепях переменного тока. Существует два семейства TRIAC, которые в основном используются для прикладных целей, это BT136, BT139.
Таким образом, это все об обзоре TRIAC, который известен как триод для переменного тока, конструкции, работы, корпусов, отличий от SCR, преимуществ, недостатков и приложений. Вот вам вопрос, в чем функция SCR?
Фото
ТРИАК | Тиристоры | Учебник по электронике
SCR— это однонаправленные (односторонние) устройства тока, что делает их полезными только для управления постоянным током.Если два тиристора соединены последовательно параллельно, так же, как два диода Шокли были соединены вместе, чтобы сформировать DIAC, у нас есть новое устройство, известное как TRIAC: (рисунок ниже)
Эквивалент TRIAC SCR и условное обозначение TRIAC.
Поскольку отдельные тиристоры более гибкие для использования в усовершенствованных системах управления, они чаще встречаются в схемах, таких как моторные приводы; TRIAC обычно используются в простых приложениях с низким энергопотреблением, например, в бытовых диммерных переключателях.На рисунке ниже показана простая схема регулятора яркости лампы вместе с цепью фазосдвигающего резистора-конденсатора, необходимой для срабатывания после пика.
TRIAC фазорегулятор мощности
TRIAC известны тем, что не стреляют симметрично. Это означает, что они обычно не срабатывают при точно таком же уровне напряжения затвора для одной полярности, что и для другой. Вообще говоря, это нежелательно, потому что асимметричное срабатывание приводит к форме волны тока с большим разнообразием гармонических частот.Формы сигналов, которые симметричны выше и ниже их средних осевых линий, состоят только из гармоник с нечетными номерами. С другой стороны, асимметричные сигналы содержат гармоники с четными номерами (которые также могут сопровождаться или не сопровождаться гармониками с нечетными номерами).
В интересах уменьшения общего содержания гармоник в энергосистемах, чем меньше и менее разнообразны гармоники, тем лучше — это еще одна причина, по которой отдельные тиристоры предпочтительнее триАКов для сложных мощных схем управления.Один из способов сделать форму сигнала тока TRIAC более симметричным — это использовать устройство, внешнее по отношению к TRIAC, для синхронизации запускающего импульса. DIAC, размещенный последовательно с воротами, справляется с этой задачей: (рисунок ниже)
DIAC улучшает симметрию управления
Напряжение переключенияDIAC имеет тенденцию быть гораздо более симметричным (одинаковым в одной полярности, чем в другой), чем пороговые значения напряжения срабатывания TRIAC. Поскольку DIAC предотвращает любой ток затвора до тех пор, пока напряжение запуска не достигнет определенного повторяемого уровня в любом направлении, точка срабатывания TRIAC от одного полупериода к следующему имеет тенденцию быть более согласованной, а форма волны более симметричной сверху и снизу. его осевая линия.
Практически все характеристики и рейтинги SCR одинаково применимы к TRIAC, за исключением того, что TRIAC, конечно, двунаправленные (могут обрабатывать ток в обоих направлениях). Больше нечего сказать об этом устройстве, за исключением важной оговорки, касающейся обозначений клемм.
Из эквивалентной принципиальной схемы, показанной ранее, можно было подумать, что главные клеммы 1 и 2 взаимозаменяемы. Это не так! Хотя полезно представить TRIAC как состоящий из двух SCR, соединенных вместе, на самом деле он построен из единого куска полупроводникового материала, должным образом легированного и многослойного.Фактические рабочие характеристики могут незначительно отличаться от аналогичной модели.
Это становится наиболее очевидным при сравнении двух простых схемотехнических решений, одна из которых работает, а другая — нет. Следующие две схемы представляют собой разновидность схемы регулятора яркости лампы, показанной ранее, фазосдвигающий конденсатор и DIAC удалены для простоты. Хотя полученной схеме не хватает возможности точного управления более сложной версией (с конденсатором и DIAC), она работает: (рисунок ниже)
Эта схема с логическим элементом MT2 действительно работает.
Предположим, мы должны поменять местами два основных терминала TRIAC. Согласно эквивалентной схеме, показанной ранее в этом разделе, замена не должна иметь никакого значения. Схема должна работать: (рисунок ниже)
Если вентиль переключен на MT1, эта схема не работает.
Однако, если эта схема будет построена, обнаружится, что она не работает! Нагрузка не получит питания, симистор вообще не сработает, независимо от того, насколько низкое или высокое значение сопротивления установлено на управляющем резисторе.Ключ к успешному запуску TRIAC — убедиться, что затвор получает ток срабатывания со стороны основного вывода 2 схемы (основной вывод на противоположной стороне символа TRIAC от вывода затвора). Идентификация терминалов MT1 и MT2 должна производиться по артикулу TRIAC со ссылкой на технический паспорт или книгу.
ОБЗОР:
- TRIAC действует так же, как два тиристора, подключенных спина к спине для двунаправленной работы (AC). Элементы управления
- TRIAC чаще встречаются в простых схемах с низким энергопотреблением, чем в сложных схемах большой мощности. В схемах управления большой мощностью, как правило, предпочтение отдается нескольким тиристорам.
- При использовании для управления подачей переменного тока на нагрузку, TRIAC часто сопровождается DIAC, соединенным последовательно с их клеммами затвора. DIAC помогает TRIAC стрелять более симметрично (более последовательно от одной полярности к другой).
- Основные клеммы 1 и 2 на TRIAC не взаимозаменяемы.
- Для успешного запуска TRIAC ток затвора должен поступать со стороны главной клеммы 2 (MT2) схемы!
СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:
Изучены простые схемы управления фазой симистора
В схеме управления фазой симистора симистор включается только для определенных частей полупериодов переменного тока, заставляя нагрузку работать только в течение этого периода формы сигнала переменного тока.Это приводит к контролируемой подаче мощности на нагрузку.
Симисторы широко используются в качестве твердотельной замены реле для переключения мощных нагрузок переменного тока. Однако есть еще одна очень полезная функция симисторов, которая позволяет использовать их в качестве контроллеров мощности для управления данной нагрузкой на желаемых конкретных уровнях мощности.
Это в основном реализуется двумя способами: управление фазой и переключение при нулевом напряжении.
Приложение управления фазой обычно подходит для таких нагрузок, как регуляторы освещенности, электродвигатели, а также методы регулирования напряжения и тока.
Переключение при нулевом напряжении больше подходит для резистивных нагрузок, таких как лампы накаливания, нагреватели, паяльники, гейзеры и т. Д. Хотя ими также можно управлять с помощью метода управления фазой.
Как работает управление фазой симистора
Симистор может быть активирован в любой части приложенного полупериода переменного тока, и он будет продолжать находиться в проводящем режиме только до тех пор, пока полупериод переменного тока не достигнет линии пересечения нуля.
Это означает, что когда симистор срабатывает в начале каждого полупериода переменного тока, симистор по существу включается так же, как переключатель ВКЛ / ВЫКЛ, включенный.
Однако предположим, что если этот сигнал запуска используется где-то на полпути формы сигнала цикла переменного тока, симистору будет разрешено проводить просто в течение оставшегося периода этого полупериода.
И поскольку симистор активируется только на половину периода, он пропорционально снижает мощность, подаваемую на нагрузку, примерно на 50% (рис. 1).
Таким образом, количество мощности нагрузки можно контролировать на любом желаемом уровне, просто изменяя точку срабатывания симистора на форме сигнала фазы переменного тока.Так работает фазовый контроль с помощью симистора.
Применение светорегулятора
Стандартная схема светорегулятора представлена на Рис. 2 ниже. В течение каждого полупериода переменного тока конденсатор 0,1 мкФ заряжается (через сопротивление управляющего потенциометра) до тех пор, пока на его выводах не будет достигнут уровень напряжения 30-32.
Примерно на этом уровне триггерный диод (диак) принудительно срабатывает, заставляя напряжение проходить через триггер через затвор симистора.
Неоновая лампа также может быть использована вместо диака для того же отклика.Время, затрачиваемое конденсатором 0,1 мкФ на зарядку до порога срабатывания диака, зависит от настройки сопротивления регулирующего потенциометра.
Теперь предположим, что если потенциометр настроен на нулевое сопротивление, конденсатор будет мгновенно заряжаться до уровня срабатывания диака, что, в свою очередь, приведет к переходу в проводимость в течение почти всего полупериода переменного тока.
С другой стороны, когда потенциометр настроен на максимальное значение сопротивления, конденсатор может заряжаться до уровня зажигания только до тех пор, пока полупериод почти не достигнет своей конечной точки.Это позволит симистору
проводить только очень короткое время, пока сигнал переменного тока проходит через конец полупериода.
Несмотря на то, что схема диммера, показанная выше, действительно проста и не требует больших затрат, она имеет одно существенное ограничение — она не позволяет плавно регулировать мощность нагрузки от нуля до максимума.
Когда мы вращаем потенциометр, мы можем обнаружить, что ток нагрузки довольно резко возрастает от нуля до некоторых более высоких уровней, из которых только тогда можно было бы плавно управлять на более высоких или низких уровнях.
В случае кратковременного отключения питания переменного тока и снижения яркости лампы ниже этого «скачка» (гистерезиса), лампа остается выключенной даже после окончательного восстановления питания.
Как уменьшить гистерезис
Этот эффект гистерезиса можно было бы существенно снизить, реализовав конструкцию, показанную в схеме на рис. 3 ниже.
Поправка: замените 100 мкФ на 100 мкГн для катушки ВЧ-помех.Эта схема отлично работает в качестве диммера домашнего освещения.Все части могут быть установлены в задней части настенного распределительного щита, и в случае, если нагрузка окажется ниже 200 Вт, симистор может работать независимо от радиатора.
Практически 100% отсутствие гистерезиса необходимо для диммеров, используемых в оркестровых выступлениях и театрах, чтобы обеспечить постоянное управление освещением ламп. Эта функция может быть реализована при работе со схемой, показанной на рис. 4 ниже.
Поправка: замените 100 мкФ на 100 мкГ для катушки ВЧ-помех.Выбор мощности симистора
Лампы накаливания потребляют невероятно большой ток в течение периода, когда нить накала достигает своих рабочих температур.Этот импульсный ток при включении может превышать номинальный ток симистора примерно в 10–12 раз.
К счастью, бытовые лампочки могут достичь своей рабочей температуры всего за пару циклов переменного тока, и этот короткий период высокого тока легко поглощается симистором без каких-либо проблем.
Однако ситуация может быть иной для сценариев театрального освещения, в которых лампам большей мощности требуется гораздо больше времени для достижения своей рабочей температуры. Для такого типа приложений симистор должен иметь номинальную нагрузку как минимум в 5 раз превышающую типичную максимальную нагрузку.
Колебания напряжения в схемах управления фазой симистора
Каждая из схем управления фазой симистора, показанных до сих пор, зависит от напряжения, то есть их выходное напряжение изменяется в ответ на изменения входного напряжения питания. Эта зависимость от напряжения может быть устранена с помощью стабилитрона, который может стабилизировать и поддерживать постоянным напряжение на синхронизирующем конденсаторе (рис. 4).
Эта установка помогает поддерживать практически постоянный выходной сигнал независимо от любых значительных колебаний входного напряжения сети переменного тока.Его регулярно используют в фотографических и других сферах, где очень важен стабильный и фиксированный уровень света.
Управление люминесцентными лампами
Ссылаясь на все схемы управления фазой, описанные до сих пор, можно сказать, что лампами накаливания можно управлять без каких-либо дополнительных изменений существующей системы домашнего освещения.
Регулировка яркости люминесцентных ламп также возможна благодаря такому типу управления фазой симистора. Когда внешняя температура галогенной лампы опускается ниже 2500 градусов C, цикл регенерации галогена перестает работать.
Это может привести к осаждению вольфрамовой нити накала на стенке лампы, что приведет к сокращению срока службы нити и ограничению прохождения света через стекло. Регулировка, которая часто используется вместе с некоторыми схемами, рассмотренными выше, показана на рис. 5
Эта установка включает лампы, когда наступает темнота, и выключает их снова на рассвете. Фотоэлемент должен видеть окружающий свет, но быть защищенным от регулируемой лампы.
Управление скоростью двигателя
Управление фазой симистора также позволяет регулировать скорость электродвигателей. Обычным типом двигателя с последовательной обмоткой можно управлять с помощью схем, очень похожих на те, что используются для регулировки яркости света.
Однако, чтобы гарантировать надежную коммутацию, конденсатор и последовательное сопротивление необходимо подключить параллельно через симистор (рис. 6).
Благодаря этой настройке скорость двигателя может изменяться в ответ на изменения нагрузки и напряжения питания,
Однако для приложений, которые не являются критическими (например, управление скоростью вентилятора), в которых нагрузка фиксирована на любой заданной скорости , схема не потребует никаких изменений.
Скорость двигателя, которая, как правило, при предварительном программировании остается постоянной даже при изменении условий нагрузки, оказывается полезной характеристикой для электроинструментов, лабораторных мешалок, гончарных кругов часовых мастеров и т. Д. ‘SCR обычно включается в полуволновую схему (рис. 7).
Схема работает довольно хорошо в ограниченном диапазоне скоростей двигателя, хотя может быть уязвима для «икоты» на низких скоростях, а правило полуволновой работы запрещает стабилизированную работу намного выше диапазона скоростей 50%.Схема управления фазой с измерением нагрузки, в которой симистор обеспечивает управление от нуля до максимума, показана на рис. 8.
Управление скоростью асинхронного двигателя
Скорость асинхронного двигателя также можно контролировать с помощью симистора, хотя вы можете столкнуться с некоторыми трудностями, в частности если задействованы двигатели с двухфазным или конденсаторным пуском. Обычно асинхронные двигатели могут управляться от полной до половинной скорости, при условии, что они не загружены на 100%.
Температура двигателя может использоваться как довольно надежный эталон.Температура никогда не должна выходить за рамки спецификаций производителя при любой скорости.
Еще раз, может быть применена улучшенная схема регулятора освещенности, показанная на рис. 6 выше, однако нагрузка должна быть подключена в другом месте, как показано пунктирными линиями
Изменение напряжения трансформатора с помощью управления фазой
Схема установлена объясненное выше, может также использоваться для регулирования напряжения внутри обмотки первичной стороны трансформатора, тем самым получая вторичный выходной сигнал с переменной скоростью.
Эта конструкция применялась в различных контроллерах ламп микроскопов. Переменная установка нуля была обеспечена заменой резистора 47 кОм на потенциометр 100 кОм.
Управление нагревательными нагрузками
Различные схемы управления фазой симистора, обсуждавшиеся до сих пор, могут применяться для управления нагрузкой типа нагревателя, хотя контролируемая температура нагрузки может изменяться с изменениями входного переменного напряжения и окружающей температуры. Схема, компенсирующая такие изменяющиеся параметры, показана на рис.10.
Гипотетически эта схема могла бы поддерживать температуру, стабилизированную в пределах 1% от заданной точки, независимо от изменений напряжения сети переменного тока на +/- 10%. Точная общая производительность может определяться структурой и дизайном системы, в которой применяется контроллер.
Эта схема обеспечивает относительное управление, что означает, что общая мощность подается на нагревательную нагрузку, когда нагрузка начинает нагреваться, затем в какой-то промежуточный момент мощность снижается с помощью меры, которая пропорциональна разнице между фактическими значениями. температура груза и предполагаемая температура груза.
Пропорциональный диапазон изменяется с помощью регулятора «усиления». Схема проста, но эффективна, однако имеет один существенный недостаток, который ограничивает ее использование в основном более легкими нагрузками. Эта проблема касается излучения сильных радиопомех из-за прерывания фазы симистора.
Радиочастотные помехи в системах контроля фазы
Все устройства контроля фазы симистора вырабатывают огромное количество радиочастотных помех (радиочастотные помехи или радиопомехи).В основном это происходит на низких и средних частотах.
Радиочастотное излучение сильно улавливается всеми ближайшими средневолновыми радиоприемниками и даже звуковым оборудованием и усилителями, создавая раздражающий громкий звенящий звук.
Этот RFI может также повлиять на оборудование исследовательских лабораторий, особенно на pH-метры, что приведет к непредсказуемой работе компьютеров и других подобных чувствительных электронных устройств.
Возможным средством уменьшения радиопомех является добавление радиочастотного индуктора последовательно с линией питания (обозначенной в схемах как L1).Дроссель подходящего размера можно построить, намотав от 40 до 50 витков суперэмалированной медной проволоки на небольшой ферритовый стержень или любой ферритовый сердечник.
Это может привести к индуктивности прибл. 100 мкГн, в значительной степени подавляющие колебания радиопомех. Для усиленного подавления может быть важным максимально увеличить количество витков до максимально возможного значения или индуктивности до 5 Гн.
Недостаток ВЧ-дросселя
Недостаток схемы управления фазой симистора на основе ВЧ-катушки заключается в том, что мощность нагрузки следует учитывать в зависимости от толщины провода дросселя.Поскольку нагрузка должна быть в киловаттном диапазоне, тогда провод ВЧ дросселя должен быть достаточно толстым, что приведет к значительному увеличению размера катушки и ее громоздкости.
Радиочастотный шум пропорционален мощности нагрузки, поэтому более высокие нагрузки могут вызвать более высокое радиочастотное излучение, требующее более совершенной схемы подавления.
Эта проблема может быть не такой серьезной для индуктивных нагрузок, таких как электродвигатели, поскольку в таких случаях обмотка нагрузки сама ослабляет радиопомехи. Управление фазой симистора также связано с дополнительной проблемой — это коэффициент мощности нагрузки.
Коэффициент мощности нагрузки может иметь отрицательное влияние, и это проблема, к которой регуляторы источника питания относятся очень серьезно.
TRIAC- рабочие и приложения — Силовая электроника
Симистор — это компонент силовой электроники, используемый в цепи переменного тока для переключения. Он может выдерживать высокое напряжение и ток. Это триод для переменного тока. В отличие от SCR, он может работать в обоих циклах переменного тока. Они могут контролировать фазовый угол переменного тока. Эта функция заставляет симистор использовать схему диммера переменного тока, управление двигателем и т. Д.
Введение симистора
Имеет три терминала: mT 1 , mT 2 и гейт. На клеммы mT 1 и mT 2 подключаем питание переменного тока. Применяя стробирующий импульс, мы можем включить его.
Это улучшенная версия SCR, где SCR не может переключаться в обратном направлении, но может. Это можно рассматривать как два тиристора, соединенных параллельно, но в обратном порядке.
Символ симистора
Как видно из символа, симистор кажется, что два тиристора подключены параллельно, но в обратном порядке.Анод первого SCR соединен с катодом второго SCR, а анод второго SCR соединен с катодом первого SCR. Итак, мы не можем маркировать анод и катод для двух выводов симистора. Вместо этого мы обозначаем его mT 1 и mT 2 . Это можно рассматривать как основные клеммы 1 и 2, потому что они подключены к сети.
Симистор рабочий
Важно знать, как работает тиристор (тиристор), прежде чем знать работу симистора. Потому что он работает так же, как и пара SCR, подключенных, как показано.
Мы знаем, что mT 1 и mT 2 подключаются к электросети. Когда mT 1 положительный, а mT 2 отрицательный, тогда левый SCR будет находиться в прямом смещении, и когда мы запускаем вывод затвора, он начинает проводить. В отрицательном цикле будет проводить другой SCR.
Характеристики симистора VI
Это то же самое, что и SCR, так как он работает также при отрицательных напряжениях, поэтому отрицательные характеристики такие же, как и положительные характеристики SCR.
Структура симистора
На приведенном выше рисунке показана конструкция симистора. Полупроводниковые слои вместе образуют две эквивалентные конструкции SCR.
Режимы работы симистора
Имеется четыре режима работы симистора.
1. Когда mT
2 и гейт положительный, чем mT 1В этом режиме ток протекает через P 1 , N 1 , P 2 и N 3 , потому что здесь P 1 -N 1 и P 2 — N 3 переходов являются при прямом смещении и переход N 2 -P 2 в обратном смещении.
2. Когда mT
1 и mT 2 положительны, чем вентильВ этом режиме ток протекает через P 1 , N 1 , N 2 и P 2 (mT 2 до затвора).
3. Когда mT
1 и mT 2 отрицательны, чем вентильВ этом режиме ток протекает через P 2 , N 1 и N 4 .
4. Когда mT
2 и гейт отрицательный, чем mT 1В этой конфигурации ток течет так же, как в третьем условии.
Применение симистора
- Регулировка яркости лампы
- Регулировка скорости вращения вентилятора
- Регулировка фазового угла сигнала переменного тока
Пример схемы переключателя AN
На приведенном ниже рисунке представлена принципиальная электрическая схема цепи переключения симистора и ее график.
Так как напряжение в линии переменного тока становится как отрицательным, так и положительным. Когда мы замыкаем переключатель, клемма затвора подключается либо к положительному, либо к отрицательному напряжению. На основе напряжения запуска затвора и полярности mT 1 , mT 2 он проводит блокировку или проводимость согласно аналогии с двумя SCR.
Применение симистора
Существует множество схем диммера переменного тока для диммирования переменного тока. Но мы увидим и поймем простую схему, в которой используются резистор, конденсатор, диак и симистор.
Концепция диммирования переменного тока
Для слабой мощности переменного тока используется фазовый угол. Управляя фазовым углом, мы можем управлять мощностью некоторых электроприборов.
Контроль фазового угла: введение
Для управления мощностью электроприбора переменного тока мы контролируем фазовый угол источника переменного тока.Для этого мы используем низкочастотный переключатель мощности. Мы запускаем переключатель при разных углах сигнала переменного тока в обоих циклах. Для коммутации мы используем симистор.
На рисунке выше показано графическое представление управления фазовым углом. Теперь мы увидим, как мы можем разработать схему для управления фазовым углом.
Схема диммера переменного тока
Мы можем разработать такую схему, которая может управлять фазовым углом, используя несколько электронных компонентов. Для этой схемы нам понадобится следующий компонент.
- BT136 (симистор)
- DB3 (diac)
- Резистор 4 кОм
- Переменный резистор (0-500 кОм)
- Конденсатор 100 нФ
Подключите все компоненты, как показано ниже.
Изменяя значение переменного резистора, мы можем изменить фазовый угол и, следовательно, мощность.
Прежде чем понять, как работает эта схема, давайте разберемся с функциями всех компонентов в схеме. Уже есть сообщения о резисторе, конденсаторе и симисторе.Теперь давайте разберемся с функцией diac.
Diac: введение
Diac похож на диод для переменного тока. У него нет терминала затвора, как у симистора. Мы включаем его, используя высокое прямое напряжение. Он в основном используется для запуска терминала затвора симистора. Имеет два терминала: mT 1 и mT 2 .
Диак символ
Здесь видно, что у него всего два терминала. Он включается с высоким прямым напряжением. которые мы увидим на графике характеристик diac.
VI характеристики диак
Как видите, по характеристикам он почти такой же, как у симистора. Но, поскольку у него нет клеммы затвора, его прямое блокирующее напряжение фиксировано. Из графика вы можете видеть, что если мы подадим напряжение больше или равное его прямой блокировке, то он включится. После включения он может работать и при более низком напряжении.
Структура диак
Его структура почти такая же, как у симистора, и разница такая же, как всегда, его затвор.
Работа цепи диммера переменного тока
Теперь разберемся, как работает схема диммера переменного тока.
При подаче питания на схему во время положительного цикла конденсатор начинает заряжаться через резистор R и переменный резистор VR. Итак, время зарядки конденсатора зависит от номинала переменного резистора VR. Если значение VR больше, то время зарядки будет больше, а если его значение меньше, то время зарядки будет меньше. Напряжение на конденсаторе будет положительным.Когда напряжение на конденсаторе достигает прямого напряжения блокировки диак, он включается и запускает затвор симистора, и симистор будет проводить.
Т.к. диак работает так же и с отрицательными напряжениями. Таким образом, в отрицательном цикле переменного напряжения конденсатор заряжается отрицательно и по мере приближения к прямому напряжению блокировки диакритического контура включается. Это вызовет срабатывание симистора, и он начнет проводить. Таким образом, мы можем контролировать фазовый угол сигнала переменного тока.
Примечание: — осторожно относитесь к сети переменного тока.Неправильное обращение с ним может привести к смертельным травмам. Всегда надевайте перчатки, прежде чем прикасаться к любому проводу.
Как работает симистор
Оставьте свои комментарии?
Принцип работы схемы TRIAC, конструкция и ее
Just Now Как работает и TRIAC . TRIAC — это полупроводниковый переключатель, который включается с помощью пускового штифта. После включения полупроводникового переключателя ток падает ниже значения удержания.Задерживая точку включения на некоторое время после того, как напряжение пересекает ноль вольт — точку пересечения нуля — можно регулировать напряжение
Расчетное время чтения: 5 минут
Веб-сайт: Efxkits.us
Категория : Используйте слова в предложении
How, Hold
Принципы и схемы симистора— Часть 1 Журнал Nuts & Volts
9 часов назад Симистор Принципы и схемы — Часть 1.Симистор — это управляемый полупроводниковый переключатель мощности переменного тока средней и высокой мощности с полуфиксатором. В этой статье, состоящей из двух частей, объясняются его основные действия и показаны различные способы его использования. Большинство практических схем показывают два набора значений компонентов для использования с обычным домашним / коммерческим 50 Гц или 60 Гц переменного тока
Веб-сайт: Nutsvolts.com
Категория : Использование и в предложении
Высокий
Рабочие и прикладные схемы симисторов Самодельный
3 часа назад Более высокие значения также будут работать , если ваша температура окружающей среды довольно постоянна.Запуск через внешний постоянный ток или существующий переменный ток: Как показано на следующем рисунке, симистор может переключаться либо через внешний источник постоянного тока, такой как аккумулятор или солнечная панель, либо через адаптер переменного / постоянного тока. В качестве альтернативы он также может запускаться от самого существующего источника переменного тока.
Расчетное время чтения: 10 минут
Веб-сайт: Homemade-circuits.com
Категория : Использование и в предложении
Высшее
TRIAC — приложение, работа с приложением
Just Now Слово TRIAC может быть расширено как TRIode для переменного тока.В то время как другие силовые электронные переключатели, такие как MOSFET, IGBT и т. Д., Используются для переключения / управления мощностью постоянного тока, TRIAC используется для управления мощностью переменного тока, потому что после включения TRIAC может проводить в обоих направлениях, позволяя полностью проходить переменному напряжению. как положительный, так и отрицательный цикл.
Веб-сайт: Components101.com
Категория : Использовать в предложении
Простые схемы управления фазой симистора, исследованные в домашних условиях
4 часа назад Исправление: замените 100 мкФ на 100 мкГ для катушки радиочастотных помех .Эта схема отлично работает с в качестве диммера для домашнего освещения. Все части могут быть установлены на задней панели настенного распределительного щита, и в случае, если нагрузка оказывается ниже 200 Вт, Triac может работать без радиатора. .
Расчетное время чтения: 11 минут
Веб-сайт: Homemade-circuits.com
Категория : Используйте слова в предложении
Домашнее хозяйство, случается, как проверить теплоотвод
.
9 часов назад Тестирование симистора с помощью мультиметра. Мультиметром можно проверить исправность симистора . Сначала установите переключатель мультиметра в режим высокого сопротивления (скажем, 100 кОм), затем подключите положительный провод мультиметра к клемме MT1 симистора , а отрицательный провод к клемме MT2 симистора (нет проблем, если вы перевернете Мультиметр покажет высокое сопротивление.
Расчетное время считывания: 4 минуты
Веб-сайт: Circuitstoday.com
Категория : Используйте в предложении
Health, High
Что такое симистор и как он работает. Основы схемотехники. YouTube
3 часа назад Что такое Triac и Как работает It . Основы схемотехники. Симистор — это полупроводниковое устройство, используемое для подключения нагрузки в сети переменного тока. Симистор имеет три электрода:
Веб-сайт: Youtube.com
Категория : Использование и в предложении
How, Has
Симистор, понятное объяснение YouTube
3 часа назад Используя обычную теорию потока через дырку, я показываю поток дырок через сверхпростую схему с симистором .
Веб-сайт: Youtube.com
Категория : Используйте ясно в предложении
Отверстие, отверстия
TRIAC Строительство, работа, режимы срабатывания и их
7 часов назад TRIAC dimming работает как переключатель с высокой скоростью, используемый для управления количеством электроэнергии, протекающей через лампочку. Триггер указывает, с какого конца устройство начинает подавать электричество, в основном прерывая сигнал напряжения, прекращая подачу напряжения при полной нагрузке.
Расчетное время чтения: 9 минут
Веб-сайт: Elprocus.com
Категория : Используйте слова в предложении
High
Триак Как работают диммерные переключатели 9000 Часы как назад Симистор
. В последнем разделе мы увидели, что диммерный переключатель быстро включает и выключает световую цепь, чтобы уменьшить энергию, поступающую к переключателю света. Центральным элементом в этой схеме переключения является триодный переключатель переменного тока или симистор .Симистор — это небольшое полупроводниковое устройство, похожее на…Веб-сайт: Home.howstuffworks.com
Категория : Используйте слова в предложении
ТРИАК: Что это такое? (Определение, работа и приложения
5 часов назад Симистор определяется как трехконтактный переключатель переменного тока, который отличается от других кремниевых выпрямителей в том смысле, что он может проводить в обоих направлениях, т.е. положительный или отрицательный, он будет проводить.Таким образом, это устройство можно использовать в системах переменного тока в качестве выключателя. Это три терминала, четыре уровня
Расчетное время чтения: 5 минут
Веб-сайт: Electrical4u.com
Категория : Используйте слова в предложении
TRIAC Wikipedia
1 час назад TRIAC (триод для переменного тока; также двунаправленный триодный тиристор или двусторонний триодный тиристор [необходима цитата]) представляет собой трехконтактный электронный компонент, который проводит ток в любом направлении при срабатывании триггера.Термин TRIAC — это обобщенный товарный знак. TRIAC — это подмножество тиристоров (аналог реле в том, что небольшое напряжение и ток могут управлять гораздо большим напряжением
Веб-сайт: En.wikipedia.org
Категория : Используйте слова в предложении
Как работают реле и симисторы? Appliance Repair Tech
3 часа назад 1. К симистору должно быть приложено небольшое постоянное напряжение, которое называется напряжением затвора.Так компьютерная плата управляет замыканием симистора . Он выполняет ту же функцию, что и напряжение постоянного тока, питающее электромагнит в реле. 2. Должен быть действующий источник питания переменного тока, подключенный к любой стороне соединения P-N.
Расчетное время чтения: 4 минуты
Веб-сайт: Appliantology.org
Категория : Использовать do в предложении
Как
TRIAC (Триод в AC): Подробная работа и характеристики
3 часа назад Подробная работа TRIAC (триод в переменном токе) объяснена в видео: TRIAC является членом семейства тиристоров и является биполярным устройством. Это двунаправленное устройство (провод
Веб-сайт: Youtube.com
Категория : Использование в предложении
Что такое симистор? YouTube
3 часа назад Что такое Triac , представленное Кэти Найберг для Galco TV. Купите предметы, представленные в этом видео, по телефону 800-337-1720 или посетите: http://www.galco.com/shop/Triacs- Triac
Веб-сайт: Youtube.com
Категория : Используйте в предложении
Http
Что делает TRIAC? Обмен электротехнического стека
4 часа назад Симистор представляет собой структуру, которую можно рассматривать как два переплетенных транзистора.Транзисторы действуют как переключатели. Когда срабатывает симистор (импульс на затворе), включается один транзистор, который, в свою очередь, включает второй транзистор. Затем второй транзистор сохраняет…
Веб-сайт: Electronics.stackexchange.com
Категория : Используйте в предложении
MOC3021 Triac drive Распиновка оптоизолятора, работа, примеры
7 часов назад MOC3021 Поставляется со встроенным светодиодом и транзистором на основе TRIAC , активирующим свет.Эта оптопара обеспечивает защиту от ВЫСОКИХ резистивных и индуктивных нагрузок. Он имеет возможность пропускать ток до 1А. Оптопара MOC3021 работает на основе IR и поддерживает любой ток, протекающий в цепи. The
Веб-сайт: Microcontrollerslab.com
Категория : Используйте диск в предложении
High, имеет
Все о TRIAC Dimming для светодиодов InStyle LED
2 часа назад A TRIAC control для светодиодов работает , регулируя интенсивность света: при срабатывании переключателя пропускается меньше энергии и лампа гаснет.Что такое приемник TRIAC ? Приемник TRIAC использует те же концепции, что и более простой тиристор. Это чувствительный вентиль с блокирующим напряжением 200 В.
Веб-сайт: Instyleled.co.uk
Категория : Используйте в предложении
Управление симистором с помощью фототриака Примечание по применению
1 час назад Симистор (на рис. иммунный T835-8FP). Этот конденсатор нельзя оставлять в покое: если срабатывает силовой Triac , когда напряжение конденсатора близко к пиковому переменному напряжению, через Triac внезапно проходит сильный импульсный ток.Это нанесет вред надежности устройства и может даже повредить его, если…
Веб-сайт: St.com
Категория : используйте в предложении
Высоко, сильно, вредно
Введение в TRIAC и TRIAC Диммер Utmel
Just Now Компоненты TRIAC в основном используются в цепях управления переменного тока, таких как регулирование температуры, управление освещением, взрывозащищенные переключатели переменного тока, а также схема управления двигателем TRIAC и схема коммутации.IV Как установить TRIAC . Для TRIAC с малой нагрузкой или короткой продолжительностью тока (менее 1 секунды) он может работать в свободном пространстве.
Расчетное время чтения: 8 минут
Веб-сайт: Utmel.com
Категория : Использовать в предложении
Как
DIAC и TRIAC
работают, различияи их применение 8 часов назад Преимущества TRIAC заключаются в том, что может работать через полярность импульсов + Ve, а также -Ve.Для защиты используется один предохранитель. Безопасная поломка возможна в обоих направлениях. Недостатки DIAC в том, что это маломощное устройство, в котором отсутствует терминал управления. К недостаткам TRIAC можно отнести ненадежность.
Расчетное время чтения: 9 минут
Веб-сайт: Elprocus.com
Категория : Использование и в предложении
Как работает симисторный диммер? — AnswersToAll
2 часа назад Как работает симистор диммер ? Диммер-декодер TRIAC , согласно National Semiconductor, определяет угол затемнения выпрямленного переменного тока.Затем LM3450 декодирует угол затемнения, фильтрует его и преобразует линию в форму волны импульсной модуляции с частотой 500 Гц, способной правильно регулировать яркость светодиода.
Веб-сайт: Answerstoall.com
Категория : Используйте a в предложении
How, Hz
Basic TriacSCR Projects Circuits Tutorial
2 часа назад A triacctional -терминальный сдвоенный тиристорный (SCR) переключатель. Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.Симистор изготавливается путем объединения двух тиристоров в обратном параллельном соединении.
Веб-сайт: Bristolwatch.com
Категория : Используйте слова в предложении
Тиристоры и триаки: поддержание важного тока
3 часа назад На этот раз дизайнер выбирает TRIAC с более низкий максимальный заданный ток удержания, I H. Небольшой высокоимпедансный двигатель (рис. 4), кажется, работает без проблем.Однако мотор предназначен для установки на уличное оборудование. Устанавливается летом и работает, хорошо. Но зимой возникает описанная выше неисправность. Что произошло?
Веб-сайт: St.com
Категория : Использование и в предложении
Удержание, высокое, однако, произошло
Симисторные схемы и схемотехника »Примечания к электронике
2 часа назад Симистор регулируемая мощность или диммерная цепь.Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке. Это форма схемы, которая широко используется в схемах для диммеров лампы накаливания в домашних условиях. К сожалению, эта простая схема не подходит для светодиодов
Расчетное время чтения: 8 минут
Веб-сайт: Electronics-notes.com
Категория : Используйте слова в предложении
Variac vs Triac Gear Page
6 часов назад 26 января 2017 г.№18. Джефф Геринг сказал: Triac (диммер) схемы типа работают , стробируя форму приложенного напряжения. Вместо гладкой синусоиды с уменьшенной амплитудой, которую вы получили бы от вариакта, теперь вы получаете действительно нарезанную форму волны, которая содержит множество неприятных гармонических составляющих.
Веб-сайт: Thegearpage.net
Категория : Используйте слова в предложении
Harmonic
Ac Может ли симистор работать с MT1 и затвор реверсирован
8 часов назад С Triac приводы водяной насос переменного тока, это никак нельзя было пропустить, если бы не работал с первого дня.Неисправность этой платы заключается в том, что симистор закорочен между контактами 1 и 3. Двигатель водяного насоса рассчитан примерно на 60 Вт при 230 В переменного тока (261 мА), а BT136 — это чувствительное затворное устройство, которое срабатывает примерно при 5 мА.
Веб-сайт: Electronics.stackexchange.com
Категория : использовать в предложении
Есть, имеет
Простая схема регулятора яркости лампы / вентилятора с использованием симистора
2 часа назад Т его Схема простейшего регулятора яркости лампы или вентилятора.Схема основана на принципе управления мощностью с помощью Triac . Схема работает , изменяя угол включения Triac . С этим связаны резисторы R1, R2 и конденсатор C2. Угол открытия можно изменять, изменяя значение любого из этих компонентов.
Веб-сайт: Circuitstoday.com
Категория : Используйте в предложении
His
Можно ли использовать симистор для работы в постоянном токе Forum for Electronics
2 часа назад В конечном итоге, TRIAC — это трехконтактное электронное устройство, которое работает как переключатель для сигналов переменного тока.С небольшим током, подаваемым на GATE (также может быть источником постоянного тока), он обеспечивает относительно высокий переменный ток между клеммами T1 и T2.
Веб-сайт: Edaboard.com
Категория : Использовать в предложении
High
Как проверить TRIAC с помощью инструментов для установки мультиметра
5 часов назад Знакомство с Triac : TRIAC = TRIode для переменного тока. TRIAC — это 5-слойный силовой полупроводниковый прибор с 3 выводами.Он имеет пару тиристоров с фазовым регулированием, подключенных обратно параллельно к одной микросхеме. Это двунаправленное устройство, что означает, что оно может проводить ток в обоих направлениях. Пошаговая процедура тестирования симистора :
Расчетное время чтения: 1 мин.
Веб-сайт: Instrumentationtools.com
Категория : использовать в предложении
43 Имеет
Что такое DIAC: конструкция, работа и применение в9 часов назад Что такое DIAC: конструкция, работа и применение в запуске TRIAC .DIAC — это полупроводниковый прибор с тремя слоями и двумя переходами. Слово DIAC состоит из двух частей: DI и AC. DI обозначает диод (или два, например, Di, Tri, Quad, Penta и т. Д.), А AC обозначает переменный ток. DIAC является аббревиатурой диода для
Расчетное время чтения: 5 минут
Веб-сайт: Circuitdigest.com
Категория : Использование и в предложении
Как у вас
проверить DIAC?6 часов назад Как работает симистор схема ? Теперь мы знаем, что « симистор » — это 4-слойное, PNPN в положительном направлении и NPNP в отрицательном направлении, трехконтактное двунаправленное устройство, которое блокирует ток в его состоянии «ВЫКЛ.», Действуя как переключатель разомкнутой цепи. , но в отличие от обычного тиристора, симистор может проводить ток через
Веб-сайт: Findanyanswer.com
Категория : Используйте do в предложении
Как
[решено] Симистор не включается. Любая помощь? Forum
7 часов назад Люминесцентные лампы не работают с симистором переключатели без более сложной схемы управления затвором . Низкий коэффициент мощности реактивной нагрузки люминесцентных ламп вызывает немедленное отключение симистора после срабатывания триггера. Симисторы отключают проводимость, когда ток проходит через ноль.Срабатывание происходит при повышении уровня напряжения.
Веб-сайт: Edaboard.com
Категория : Используйте в предложении
Happen
Схема работы диммерных переключателей HowStuffWorks
9 часов назад Зоны истощения образуются снова, и снова образуются зоны истощения. Triac теряет свою проводимость до тех пор, пока на затворе не появится повышающее напряжение. Эта система работает очень хорошо, но создает странную проблему: она имеет тенденцию вызывать характерное жужжание в лампочке.В следующем разделе мы узнаем, почему это так.
Расчетное время чтения: 4 минуты
Веб-сайт: Home.howstuffworks.com
Категория : Используйте слова в предложении
Как работает Diac? Ответы
6 часов назад В обоих случаях симистор diac / не имеет смысла для подачи переменного тока в постоянный, но хорошо работает в регуляторе переменного напряжения, таком как диммер лампы или регулятор скорости двигателя.
Веб-сайт: Answers.com
Категория : используйте в предложении
DIAC: Что это такое? (Применение и принцип работы
4 часа назад Они также все еще работают , когда происходит лавинный пробой. Применение DIAC. Основное применение DIAC — его использование в цепи запуска TRIAC . DIAC подключается к клемме затвора из TRIAC . Когда напряжение на затворе падает ниже заданного значения, напряжение затвора будет равно нулю, и, следовательно, TRIAC будет выключен.
Веб-сайт: Electrical4u.com
Категория : Используйте слова в предложении
Отсюда
Ac Как запустить симистор с помощью постоянного тока? Электрооборудование
4 часа назад С помощью симистора я могу уменьшить нагрузку за счет отключения фазы, а реле требует больше тока. Этот симистор opto работает с током 10 мА. Реле должно быть не менее 30. Если требуется только переключение ВКЛ / ВЫКЛ, тогда да. Реле было бы проще. Но ОП специально просил симистор .\ $ \ endgroup \ $ —
Веб-сайт: Electronics.stackexchange.com
Категория : Используйте в предложении
Симистор BTA316 не выключается Электротехника
5 часов назад Техническое объяснение: Симистор работает с переменным током и затвор подает импульсы напряжения на контроллер.