Что такое PN переход, принцип работы
В этой статье мы узнаем об одной из самых важных концепций полупроводниковой электроники, а именно о PN-переходе. Когда говорят о полупроводниковых устройствах, таких как диоды, транзисторы и другие, в основе этого лежит PN переход. Немногие полупроводниковые устройства, такие как, например, фотопроводники, обычно формируются путем легирования примесей одного типа. Но это ограниченный сценарий, и для большинства полупроводниковых устройств требуются оба типа легирования.
PN-переход в основном формируется путем введения (так называемого легирования) акцепторных примесей на одной стороне полупроводникового кристалла, в то время как другая сторона легирована донорными примесями. Интерфейс между этими двумя областями называется PN-переходом.
Полезные статьи:
Основные характеристики диодов, виды, параметры
Светодтодное освещение, основные темины и характеристики
Все статьи
Основы полупроводниковой электроники
Электропроводность полупроводника, например кремния или германия, зависит от концентрации электрических носителей в зоне проводимости. Свойства проводимости зависят от количества примесей, присутствующих в процессе легирования.
Проводимость кремния увеличивается в 10 3 при комнатной температуре за счет добавления 1 атома бора на 10 5 атомов кремния.
Полупроводник N-типа создается путем легирования кристалла кремния пятивалентной примесью, такой как сурьма, а полупроводник P-типа формируется путем легирования кристалла кремния трехвалентной примесью, такой как бор, в крошечной концентрации.
И сурьма, и бор являются основными полупроводниковыми примесями, используемыми в процессе легирования; поэтому их называют «металлоидами». По отдельности полупроводники N-типа и P-типа электрически нейтральны.
Как образуется PN-переход?
PN-переход создается в отдельном кристалле полупроводника путем легирования одной стороны кристалла атомами акцепторной примеси, создавая его как P-тип, а также легирования противоположной стороны атомами донорной примеси, создавая его как N-тип. Область, где сходятся P-тип и N-тип, называется PN-переходом.
В этой области электроны в материале N-типа рассеивают переход и объединяются с дырками в материале P-типа. Область материала P-типа, которая находится рядом с переходом в полупроводнике, принимает отрицательный заряд по той причине, что электроны притягиваются дырками.
Когда электроны уходят из области N-типа, он принимает положительный заряд. Следовательно, на стыке существует склонность свободных электронов диффундировать в область P-типа, а дырок — в область N-типа, и этот процесс называется диффузией.
Тонкий слой, зажатый между этими двумя областями, обедненный основными носителями, называется областью истощения. Состояние равновесия PN-перехода определяется как состояние, в котором PN-переход остается без приложенного к нему внешнего электрического потенциала.
Это также может быть дополнительно определено как состояние смещения нулевого напряжения. Ширина обедненной области невероятно мала, обычно несколько тысяч миллиметров, ток через диод может не течь.
PN-переход при приложении потенциала
Отмечаются разные свойства в зависимости от ширины области истощения. Если на таком расстоянии приложен положительный потенциал, область типа P становится положительной, и, следовательно, тип N становится отрицательным, дырки перемещаются в сторону отрицательного напряжения.
В равной степени электроны движутся к положительному напряжению и перепрыгивают через слой обеднения. Плотность заряда P-типа в обедненной области укомплектована отрицательно заряженными акцепторными ионами, в результате чего плотность заряда N-типа становится положительной.
Потенциальный барьер представляет собой перегородку носителей заряда в середине PN-перехода. Этот потенциальный барьер должен преодолеваться за счет внешнего источника электрического потенциала, чтобы PN-переход проводил электрический ток.
Формирование перехода и потенциального барьера в полупроводниковом диоде происходит на протяжении всего производственного процесса полупроводникового диода с PN переходом. Степень потенциального барьера может зависеть от материалов, используемых при производстве диодов с PN переходом.
Полупроводниковый диод с кремниевым PN переходом имеет превосходную величину потенциального барьера, чем германиевые диоды.
PN переход
PN-переход создается путем вставки как P-типа, так и N-типа в один и тот же полупроводниковый кристалл. Большинство носителей заряда в P-типе — это положительно заряженные дырки, а в N-типе — отрицательно заряженные электроны.
Общий заряд с обеих сторон PN-перехода должен быть одинаковым и противоположным, чтобы поддерживать состояние нейтрального заряда вокруг перехода из-за пары электрон-дырка. Слой между P-типом и N-типом, где носители заряда дублируются несколько раз, отмечен как область истощения.
В состоянии равновесия на PN-переходе отсутствует проводимость. Проводимость PN-перехода включает диффузию основных носителей заряда и дрейф неосновных носителей заряда. Проведение электрического тока в PN-переходе физически связано как с зоной проводимости, так и с валентной зоной.
После подключения внешней батареи поток электронов происходит в зоне проводимости, а поток дырок в валентной.
В состоянии равновесия смещения при нулевом напряжении меньшая концентрация дырок и электронов будет дрейфовать просто под влиянием электрического поля E. Диффузия основных носителей заряда должна пересечь потенциальный барьер VB PN-перехода, образованного в результате истощения.
Это должно означать, что основные носители заряда N-типа и P-типа должны по крайней мере достичь энергии qVB электрон-вольт (эВ), прежде чем преодолеют барьер и диффундируют в область P-типа или N-типа.
Сдвиг электронов от N-стороны PN-перехода к дыркам, аннигилированным на P-стороне PN-перехода, создает напряжение потенциального барьера. Значение барьерного напряжения близко к 0,6–0,7 В в кремнии, 0,3 В в германии и варьируется в зависимости от уровней легирования в различных полупроводниках.
Блоки полупроводников P-типа и N-типа в контакте друг с другом не имеют эксплуатационных свойств. Внешний источник напряжения должен пересечь потенциальный барьер, чтобы PN-переход проводил электричество. Если источник потенциала подключен таким образом, что положительный вывод подключен к стороне P, а отрицательный вывод подключен к стороне N.
Отрицательный вывод обеспечивает электронам N-типа диффузию в направлении обедненного слоя. В равной степени положительный вывод удаляет электроны в P-типе, создавая дыры, которые диффундируют к области истощения.
Если аккумуляторная батарея имеют достаточную мощность, чтобы преодолеть барьерное напряжение, тогда большинство носителей заряда от N-типа и P-типа объединяются и истощают переход. В результате большее количество носителей заряда воспроизводится и течет в сторону обедненной области, пока приложенный потенциал превышает потенциальный барьер.
Таким образом, основной ток заряда проходит по направлению к переходу. Во время этого подхода, когда ток проходит благодаря основным носителям заряда, PN-переход считается смещенным в прямом направлении.
Если клеммы батареи перевернуты, то большинство носителей заряда N-типа притягиваются к положительной клемме от PN-перехода, а отверстия притягиваются к отрицательной клемме вдали от PN-перехода.
Ширина обедненного слоя увеличивается с приложенным потенциалом, в результате рекомбинация носителей заряда в обедненном слое не происходит. Следовательно, не происходит проведения электрического тока. При таком подходе считается, что PN-переход имеет обратное смещение.
Встроенный потенциал соединения PN
Основные носители заряда в области N-типа (электроны) могут пересекать переход, чтобы рекомбинировать с основными носителями заряда в области P-типа (дырками). В результате отрицательный статический объемный заряд накапливается в области P-типа, т.к атомы трехвалентной примеси бора имеют статический отрицательный заряд. Они высвобождают положительно заряженную дырку в валентной зоне.
А в области N-типа по схожим причинам образуется положительный объемный заряд, который называется зоной объемного заряда или зоной истощения. Поскольку в этом небольшом объеме имеется мощное электрическое поле, плотность свободных носителей заряда незначительна в состоянии теплового равновесия.
Если полупроводники P-типа и N-типа приближаются, возможный потенциальный барьер возникает в обедненном слое. Фактически, статические объемные заряды накапливаются на границах PN-перехода, положительные заряды в области N-типа и отрицательные заряды в области P-типа. Они создают электрическое поле в диапазоне от N-типа до P-типа, что предотвращает диффузия и добавленная рекомбинация электронов и дырок.
Диффузия останавливается образованием внутреннего электрического поля. В результате существования этого двойного слоя зарядов по обе стороны от PN-перехода, потенциальный барьер резко меняется в пределах зоны истощения, и разность потенциалов Vd, называемая диффузионным потенциалом или встроенным потенциалом, достигает значимых значений.
Электростатический потенциал постоянен по всему кристаллу вместе с зоной пространственного заряда, поскольку учитывает не только электрическое поле, но и концентрацию носителей заряда.
Встроенный потенциал (диффузионный) пропорционален разнице энергий Ферми двух неограниченных полупроводников:
E = (1 / q) * {E Fp — E Fn } = (kT / q) ln {[N A N D ] / n i 2 }
Где
- E — напряжение перехода нулевого смещения
- (kT / q) тепловое напряжение 26 мВ при комнатной температуре.
- N A и N B — примесные концентрации акцепторных и донорных атомов.
- n — собственная концентрация.
Встроенный потенциал или потенциал перехода полупроводника равен потенциалу в обедненной области в состоянии теплового равновесия. Поскольку тепловое равновесие подразумевает, что энергия Ферми постоянна во всем устройстве PN-диода.
Таким образом, энергии Ферми зоны проводимости и валентной зоны смещены вверх или вниз и демонстрируют плавное отклонение в области обедненного слоя. В результате существует разность электростатической потенциальной энергии, показывающая между областями P-типа и N-типа, равная qV
Внешний потенциал, необходимый для преодоления потенциала перехода, зависит от рабочей температуры, а также от типа полупроводника. Даже если к полупроводнику не приложен внешний потенциал, существует некоторый барьерный потенциал из-за электронно-дырочной пары.
PN-переход сформирован на отдельном полупроводнике, а электрические контакты проложены вокруг поверхности полупроводника, чтобы обеспечить электрическое соединение для внешнего источника питания. В результате конечное устройство называется диодом с PN переходом или сигнальным диодом.
Каталог светильников ФОКУС
p-n переход | Электрикам
p-n (пэ-эн) переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.
Всего есть два типа полупроводников это p и n типа. В n — типе основными носителями заряда являются электроны, а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.
Что бы разобраться как работает p-n переход надо изучить его составляющие то есть полупроводник p — типа и n — типа.
Полупроводники p и n типа изготавливаются на основе монокристаллического кремния, имеющего очень высокую степень чистоты, поэтому малейшие примеси (менее 0,001%) существенным образом изменяют его электрофизические свойства.
В полупроводнике n типа основными носителями заряда являются электроны. Для получения их используют донорные примеси, которые вводятся в кремний, — фосфор, сурьма, мышьяк.
В полупроводнике p типа основными носителями заряда являются положительно заряженные дырки.
Полупроводник n — типа (электронной проводимости)
Примесный атом фосфора обычно замещает основной атом в узлах кристаллической решетки. При этом четыре валентных электрона атома фосфора вступают в связь с четырьмя валентными электронами соседних четырех атомов кремния, образуя устойчивую оболочку из восьми электронов. Пятый валентный электрон атома фосфора оказывается слабо связанным со своим атомом и под действием внешних сил (тепловые колебания решетки, внешнее электрическое поле) легко становится свободным, создавая повышенную концентрацию свободных электронов. Кристалл приобретает электронную проводимость или проводимость n-типа. При этом атом фосфора, лишенный электрона, жестко связан с кристаллической решеткой кремния положительным зарядом, а электрон является подвижным отрицательным зарядом. При отсутствии действия внешних сил они компенсируют друг друга, т. е. в кремнии n-типа количество свободных электронов проводимости определяется количеством введенных донорных атомов примеси.
Полупроводник p — типа (дырочной проводимости)
Атом алюминия, имеющий только три валентных электрона, не может самостоятельно создать устойчивую восьмиэлектронную оболочку с соседними атомами кремния, так как для этого ему необходим еще один электрон, который он отбирает у одного из атомов кремния, находящегося поблизости. Атом кремния, лишенный электрона, имеет положительный заряд и, так как он может захватить электрон соседнего атома кремния, его можно считать подвижным положительным зарядом, не связанным с кристаллической решеткой, называемым дыркой. Атом алюминия, захвативший электрон, становится отрицательно заряженным центром, жестко связанным с кристаллической решеткой.
Страницы: 1 2
16.11.2013
Полупроводниковые приборы
Силовая преобразовательная техника
Перекресток P-N
Перекресток P-NОдним из важнейших ключей к твердотельной электронике является природа P-N перехода. Когда материалы p-типа и n-типа соприкасаются друг с другом, соединение ведет себя совершенно иначе, чем любой из материалов по отдельности. В частности, ток будет легко течь в одном направлении (прямое смещение), но не в другом (обратное смещение), создавая базовый диод. Это необратимое поведение возникает из-за природы процесса переноса заряда в двух типах материалов. Незаштрихованные кружки слева от соединения вверху обозначают «дыры» или недостаток электронов в решетке, которые могут действовать как носители положительного заряда.
| Индекс Концепции полупроводников Полупроводники для электроники | ||||||||||||||||||||||||||||||||||||||
|