Как проверить резистор на работоспособность мультиметром
Резистор или постоянное сопротивление – это одновременно самый простой и распространённый элемент в электрических схемах, его устанавливают во всех устройствах. Но, несмотря на свою простоту, при нарушении режимов работы или тепловых условий он может сгореть. Отсюда возникает вопрос, как проверить резистор на работоспособность мультиметром. Технология проверки исправности в домашних условиях будет изложена в этой статье.
Алгоритм поиска неисправности
Визуальный осмотр
Любой ремонт начинается с внешнего осмотра платы. Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов. Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.
Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:
- Обрыв.
- Короткое замыкание.
- Несоответствие номиналу.
Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:
Проверка резистора на обрыв
Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом – десятки кОм. А 100 кОм уже не каждая прозвонка осилит.
Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв.
Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром. Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.
Проверка короткого замыкания
Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.
Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:
- Измерить омметром, прозвонкой или другим прибором участок цепи.
- Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
- Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
- Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
- Проверить результаты работы на наличие КЗ.
Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:
Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.
На видео ниже наглядно показывается, как проверить резистор мультиметром:
Определяем номинал резистора
У советских сопротивлений номинал был указан буквенно-цифровым способом. У современных выводных резисторах номинал зашифрован цветовыми полосами. Чтобы заменить сопротивление после проверки на исправность, нужно расшифровать маркировку сгоревшего.
Для определения маркировки по цветным полоскам есть масса бесплатных приложений на андроид. Раньше использовались таблицы и специальные приспособления.
Можно сделать вот такую шпаргалку для проверки:
Вырезаете цветные круги, прокалываете их по центру и соединяете, самый большой назад, маленький – спереди. Совмещая круги, вы определяете сопротивление элемента.
Кстати на современных керамических резисторах тоже используется явная маркировка с указанием сопротивления и мощности элемента.
Если вести речь об SMD элементах – здесь всё достаточно просто. Допустим маркировка «123»:
12 * 103 = 12000 Ом = 12 кОм
Встречаются и другие маркировки из 1, 2, 3 и 4 символов.
Если деталь сгорела так, что маркировку вообще не видно, стоит попробовать потереть её пальцем или ластиком, если это не помогло – у нас есть три варианта:
- Искать на схеме электрической принципиальной.
- В некоторых схемах есть несколько одинаковых цепей, в таком случае можно проверить номинал детали на соседнем каскаде. Пример: подтягивающие резисторы на кнопках у микроконтроллеров, ограничительные сопротивления индикаторов.
- Замерить сопротивление уцелевшего участка.
О первых двух способах добавить нечего, давайте узнаем, как проверить сопротивление сгоревшего резистора.
Начнем с того, что нужно очистить покрытие детали. После этого включите на мультиметре режим измерения сопротивления, он обычно подписан «Ohm» или «Ω».
Если вам повезло, и отгорел участок непосредственно возле вывода, просто замерьте сопротивление на концах резистивного слоя.
В примере как на фото можно замерить сопротивление резистивного слоя или определить по цвету маркировочных полос, здесь они не покрыты копотью – удачное стечение обстоятельств.
Ну а если вам не повезло и часть резистивного слоя выгорела – остаётся замерить небольшой участок и умножить результат на количество таких участков по всей длине сопротивления. Т.е. на картинке вы видите, что щупы подключаются к кусочку равному 1/5 от общей длины:
Тогда полное сопротивление равно:
Rизмеренное*5=Rноминальное
Такая проверка позволяет получить результат близкий к реальному номиналу сгоревшего элемента. Этот метод подробно описан в видео:
Как проверить переменный резистор и потенциометр
Чтобы понять, в чем заключается проверка потенциометра, давайте рассмотрим его структуру. Переменный резистор от потенциометра отличается тем, что первый регулируется отверткой, а второй рукояткой.
Потенциометр – это деталь с тремя ножками. Он состоит из ползунка и резистивного слоя. Ползунок скользит по резистивному слою. Крайние ножки – это концы резистивного слоя, а средняя соединена с ползунком.
Чтобы узнать полное сопротивление потенциометра, нужно замерить сопротивление между крайними ножками. А если проверить сопротивление между одной из крайних ножек и центральной – вы узнаете текущее сопротивление на движке относительно одного из краёв.
Но самая частая неисправность такого резистора – это не отгорание концов, а износ резистивного слоя. Из-за этого сопротивление изменяется неправильно, возможна потеря контакта в определенных участках, тогда сопротивление подскакивает до бесконечности (разрыв цепи). Когда движок занимает то положение, в котором контакт ползунка с покрытием вновь появляется – сопротивление вновь становится «правильным». Эту проблему вы могли замечать, когда регулировали громкость на старых колонках или усилителе. Проявляется проблема в том, что при вращении ручки периодически в колонках раздаются щелчки или громкие стуки.
Вообще проверку плавности хода потенциометра нагляднее проводить аналоговым мультиметром со стрелкой, т.к. на цифровом экране вы просто можете не заметить дефекта.
Потенциометры могут быть сдвоенными, иногда их называют «стерео потенциометры», тогда у них 6 выводов, логика проверки такая же.
На видео ниже наглядно показывается, как проверить потенциометр мультиметром:
Методы проверки резисторов просты, но для получения нормального результата проверки нужен мультиметр или омметр с несколькими пределами измерений. С его помощью вы сможете померить еще и напряжение, ток, емкость, частоту и другие величины в зависимости от модели вашего прибора. Это основной инструмент мастера по ремонту электроники. Сопротивления иногда выходят из строя при внешней целостности, иногда уходят от номинального значения сопротивления. Проверка нужна для определения соответствия деталей номиналам, а также чтобы убедится рабочий или нет элемент. На практике способы проверки могут отличаться от описанных, хотя принцип тот же, всё зависит от ситуации.
Полезное по теме:
маркировка деталей, этапы тестирования, прозвонка позистора
Любая электрическая цепь имеет в себе сопротивление. Поэтому в радиотехнике самым часто встречающимся элементом является резистор. При ремонте электрических приборов важно уметь тестировать такие детали. Необходимо знать, как проверить резистор мультиметром, не выпаивая элемент. Деталь чаще всего выходит из строя, если токопроводящий слой выгорает или нарушается его связь с хомутиком.
Порядок тестирования
Резисторы могут иметь различный вид, но у стандартных моделей присутствует линейная ВАХ. Проверка устройства состоит из трех этапов:
- Осмотр внешнего состояния прибора.
- Тестирование детали на обрыв.
- Сравнение показателей с номиналом.
Два первых пункта не составляют труда при выполнении, а с последним этапом проверки резистора мультиметром могут возникнуть трудности. Проблема заключается в определении номинального значения сопротивления. С принципиальной схемой узнать показатель несложно. Но многие современные приборы не снабжены сопутствующей документацией с техническими характеристиками. В этом случае можно определить значение номинала при помощи маркировки.
Мультиметры могут быть цифровыми и стрелочными. Последние работают без дополнительного питания, наподобие микроамперметра. Делители напряжения переключаются вместе с шунтами в определенные режимы для измерения. Цифровые модели отображают на дисплее различие между полученной величиной и эталоном. Этот тип приборов нуждается в источнике питания, который обеспечивает точность замеров, снижающуюся при разрядке батареи. Эти устройства применяются для определения состояния радиодеталей.
Типы маркировок
На советских компонентах значение номинала указывалось прямо на корпусе. В этом случае расшифровка была не нужна. Но при нарушении целостности детали, обгорании краски прочитать текст было проблематично или вовсе невозможно. Уточнить номинал можно было по принципиальной схеме, входящей в комплектацию любого бытового прибора.
Современные компоненты имеют цветовое обозначение, включающее 3−6 колец различных оттенков. Такое решение позволяет определить номинальный показатель, даже если элемент значительно поврежден. Этот момент особенно актуален при частом отсутствии принципиальной схемы у прибора.
ГОСТ 175–72 устанавливает четкие нормативы по цифровому и цветовому обозначению компонентов. Полосы располагаются рядом с одним из выводов и читаются слева направо. Цвета могут быть следующими:
- серебристый;
- золотой;
- черный;
- коричневый;
- красный;
- оранжевый;
- желтый;
- зеленый;
- синий;
- фиолетовый;
- серый;
- белый.
Допуск определяет отклонение значения серии от номинала, при котором компонент может работать. Если расчет схемы был произведен правильно, то эта величина должна учитываться, в другом случае наладка осуществляется после сборки детали.
Многие китайские производители, стараясь существенно снизить цену продукции, не устанавливают значение допуска. В результате элемент продолжает работу, пока его запас прочности не превысит предел. Если разница между номиналом и полученным показателем превышает допуск, то элемент требует обязательной замены.
Резисторы с наименьшим допустимым значением до 10% имеют 5 колец. Первые три обозначают коэффициент сопротивления, измеряемый в Ом. Четвертое соответствует множителю, а пятое — величине допуска. Приборы с отклонением больше 10% маркированы 4 полосами. Разметка аналогична предыдущему варианту, но отсутствует показатель допуска.
При максимальном отклонении в 20% резисторы отмечаются 3 кольцами. На первые два отводится значение сопротивления, а третье выступает множителем. Редко встречаются элементы с 6 полосами. Последним кольцом в них отмечается коэффициент изменения при температурных колебаниях. Он определяет сопротивление при нагреве корпуса резистора. Расшифровку цветовой маркировки удобно проводить при помощи онлайн-калькуляторов, которые подсчитывают номинал после введения необходимых данных.
Элементы для навесной установки, такие как диод, smd резистор или конденсатор, имеют малый размер, и нанести на них всю нужную информацию просто невозможно. Поэтому для их маркировки применяются зашифрованные цифровые обозначения. Обычно на корпусе указываются три цифры, две из них определяют значение, а множителем выступает последняя.
Наружная диагностика
Прежде чем проверить позистор мультиметром, его нужно осмотреть и проверить визуально на исправность. Корпус должен быть цельным, без трещин и сколов на поверхности, а выводы — иметь надежное крепление.
Если резистор неисправен, то его корпус будет обгоревшим полностью или кольцевидными очагами. Потемневшая поверхность не всегда является признаком поломки, она свидетельствует о нагреве при эпизодическом превышении допустимой мощности. Внутренний обрыв невозможно распознать по внешнему виду элемента.
Проверка на номинал и обрыв
На этом этапе тестирования проверяется соответствие полученного значения допуску и номиналу. Показатель не должен выходить за предел, заданный переключателем на приборе. Диапазон устанавливается со значением, немного превышающим номинал. Проверить сопротивление резистора мультиметром можно следующим образом:
- К гнездам с маркировкой V Ω mA и COM подключаются щупы (причем к первому подсоединяется положительный красный, а ко второму — отрицательный черный).
- Проводится проверка работоспособности проводов. Для этого они замыкаются между собой. Тестер должен выдать значение равное или близкое к нулю. Малые величины определяются путем вычета из показаний устройства. Отличное от нуля значение часто получается при недостаточном заряде батареи.
- Щупы подносятся к выводам проверяемой детали. Если на приборе — бесконечный показатель сопротивления (на дисплее отображается «1»), то присутствует обрыв в резисторе.
- Полученные данные сопоставляются с номинальным значением (допуск также нужно учитывать). Совпадение данных говорит об исправности детали. Показания также могут незначительно отличаться из-за погрешности самого устройства, особенно при замере без выпаивания.
В процессе тестирования не следует касаться щупов руками (это частая ошибка новичков). У тела человека также имеется сопротивление и при замерах показателей резистора в килоомах результаты проверки могут исказиться.
Работа с переменным резистором
Процесс тестирования переменного элемента во многом похож на работу со стандартными моделями. Он включает следующие этапы:
- Проводится замер путем подключения щупов на крайние ножки. Полученный показатель сравнивается с номиналом.
- Один щуп подсоединяется к центральной ножке, а другой — к оставшейся свободной.
- Подстроечная ручка поворачивается. Показания устройства должны находиться в пределах зоны от 0 до полученной на первом этапе величины.
Можно также проводить измерения без установки предельного значения. Режим омметра позволяет задавать любые значения диапазона. Такая настройка не повредит тестер. При отображении на дисплее «1» (бесконечности) нужно повышать порог до появления нужного результата.
Обследование детали без выпаивания
Тестирование резистора на плате возможно только для низкоомных компонентов. Если их номинал превышает 80−100 Ом, то на значение могут исказить другие элементы. Чтобы отключить деталь от остальных, необходимо освободить одну ножку. Такая проверка проводится в редких случаях. Перед работой нужно проверить присутствие на схеме шунтирующих цепей. На итоговые показатели особенно сильно воздействуют полупроводниковые элементы.
Для тестирования часто используется метод прозвонки. Обозначение переключателя этого режима — диод с сигналом. Проверяемые детали должны иметь границу срабатывания не больше 50−70 Ом, иначе получится слабый сигнал, который будет сложно различить. При сопротивлении ниже предельной границы устройство будет издавать писк через динамик. Чтобы прозвонить резистор мультиметром, нужно выбрать точки схемы щупами и создать между ними напряжение. Для корректной работы прибору требуется достаточное питание.
Работать с мультиметром довольно просто, если разобраться в правилах установки предельных значений и измерения сопротивления. Нужно также уметь использовать переключатели тестера и щупы. Процесс значительно облегчается, если есть в наличии принципиальная схема, входящая в комплектацию к бытовым приборам.
Как проверить резисторы. Обучающее видео
Как проверить резисторы. Обучающее видеоЗдравствуйте!
В новой серии видеороликов мы разберем все виды электронных компонентов, расскажем, что они из себя представляют, зачем нужны и как с ними работать. Изучение будет происходит от самых простых пассивных элементов — резисторов, конденсаторов и индуктивностей, до относительно сложных активных деталей: транзисторов, тиристоров и других заумных названий.
Начнем с самой популярной в мире радиоэлектроники штуки – резистора. Узнаем, какая бывает цветовая маркировка резисторов, какие существуют виды и как проверить резистор.
Резистор — наиболее универсальный и часто используемый компонент. Его можно найти в любой схеме, независимо от ее сложности. Принцип работы у него простой, а вот применений множество.
Резистор имеет определенное сопротивление — это его основная характеристика. Что первое приходит в голову при понимании «сопротивления»? Правильно, что-то чему-то сопротивляется. Резистор дает сопротивление силе тока — он его ограничивает, контролирует, не дает стать слишком большим и неуправляемым. Это и есть самое частое применение — резистор ограничивает ток в цепи. Чем больше сопротивление резистора, тем сильнее он сопротивляется проходящему через него току, и тем меньше этот ток становится.
Все резисторы делятся на постоянные и переменные. Сначала пройдемся по постоянным.
Одной из главных характеристик резистора есть его максимальная рассеиваемая мощность. Этот параметр показывает, какую мощность резистор может «поглотить», рассеять на себе. Стандартные выводные резисторы существуют такой мощности: 0.125, 0.25, 0.5, 1, 2, и 3 Вт. Более мощные резисторы (5, 10 и больше ватт) обычно идут в керамическом (цементном) корпусе. Есть еще SMD-резисторы, которые имеют свою рассеиваемую мощность в зависимости от типоразмера. Самые большие, 2512, рассеивают до 1 Вт.
Определить сопротивление резистора можно несколькими способами. Самый очевидный — измерить его мультиметром. Если прикоснуться щупами к двум сторонам резистора — мультиметр покажет точное значение его сопротивления. Но есть несколько уловок.
Например, на резисторах советского производства значение указано цифрами и буквами. Иногда оно написано целиком, как здесь — 10 Ом. Если стоит просто цифра — это тоже значение в омах. 300 — 300 Ом. Если после цифры стоит буква, это указание величины (размерности). Например, 2R, или 2R0 — это два ома, 2K — два килоома, 2М — два мегаома. Если сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой. 2R2 — 2.2 Ома, 10К5 — 10.5 килоом.
На современных резисторах нанесена цветовая маркировка, где каждый цвет отвечает за определенную цифру в номинале. Узнать сопротивление таких резисторов можно при помощи таблиц, которые можно найти в интернете, или с помощью специального приложения на телефон, что очень облегчает задачу. Попробуем на примере одного резистора. Выставляем нужные цвета в приложении, и нам показывается точное значение сопротивления. Цветовая маркировка резисторов позволяет узнать номинал резистора прямо на плате без его выпаивания, с любого ракурса осмотра.
На мощных цементных резисторах обычно пишут мощность резистора и само значение сопротивления в явном виде.
Маркировка SMD-резисторов тоже довольно простая: все цифры, кроме последней — это значение сопротивления, а последняя цифра означает, сколько раз это число нужно умножить на 10. Например, 220 — 22 Ома.
Переменные резисторы, или потенциометры, позволяют изменять свое сопротивление при помощи поворота ручки. Они делятся на однооборотные, многооборотные и подстроечные, а также моно и стерео. Большинство переменных резисторов рассчитано на маленькую мощность, в пределах 0.1-0.2 Ватта. Многооборотистые резисторы следующего типа, как правило, могут рассеять 1-2 Ватта.
Также переменные резисторы различаются графиком изменения сопротивления:
- A — логарифм, в них сопротивление изменяется по логарифмическому графику;
- B — линейная, где сопротивление изменяется плавно, по прямой;
- С — обратный логарифм, действует как обычный логарифм, только в обратную сторону.
Для того, чтобы проверить резистор можно просто измерить его сопротивление. Если мультиметр показывает результат, существенно отличающийся от номинала элемента, или не показывает вообще ничего (бесконечное сопротивление), значит резистор неисправен. И наоборот.
Небольшое задание. Давайте применим полученные знания на практике и попробуем решить простую задачку.
У нас есть светодиод. Максимальный ток, который стандартный светодиод выдерживает, равен 20 миллиамперам. Обычно этот ток достигается при напряжении около 3 вольт. Но у нас нет блока питания на 3 вольта! Что же делать?
Хотя светодиод – это полупроводник со сложным перечнем характеристик, но в данном примере мы задачу упростим и посчитаем его за простую пассивную нагрузку (резистор). Если при 3 вольтах через светодиод проходит 20 мА, по закону Ома его сопротивление (R = U / I, или 3 / 0.02) – 150 Ом. Что будет, если мы захотим включить его в розетку? Снова-таки, по закону Ома получается, что при 220 вольтах через сопротивление 150 Ом пройдет ток (I = U / R, или 220 / 150) целых 1.46 Ампер! А наш светодиод выдерживает всего 20 миллампер — в 70 раз меньше. От такой большой силы тока он сразу же испортится.
А теперь посчитаем, при каком сопротивлении и напряжении 220 Вольт в цепи будет ток 20 мА. Используем закон Ома, (R = U / I, или 220 / 0.02). Вышло значение 11 кОм. Готово! Если мы подключим светодиод через резистор 11 кОм, наш ток ограничится до 20 мА, которые нужны светодиоду.
Рассчитать, какую мощность будет рассеивать резистор в этом случае, достаточно легко по тому же закону Ома. Через резистор номиналом 11 кОм течет сила тока, равная 0.02 Ампера. Мощность, которая на нем рассеивается, равна (P = I2R, или (0.02)2 х 11000) = 4.4 Вт. Значит, ближайший нужный нам резистор — мощностью 5 Вт.
Вот и все! Мы разобрались с основными видами резисторов, а заодно поняли, как можно узнать о его работоспособности.
В следующей части будем следовать дальше по перечню электронных компонентов, и на очереди у нас проверка конденсаторов.
А если вам необходимы резисторы, или вы нашли в видео то, что давно искали — просмотрите наш полный каталог резисторов.
Все актуальные ценовые предложения, акции и специальные цены вы можете первыми узнавать на канале Electronoff в Telegram
Как проверить резистор мультиметром: особенности проверки, прозвонка на исправность термистора и позистора
Основные этапы тестирования
Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:
- внешний осмотр;
- радиодеталь тестируется на обрыв;
- осуществляется проверка соответствия номиналу.
Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.
Полезные проверке резисторов режимы мультиметра
Новички считают: лишено смысла мерить сопротивление проводника при прозвонке, проще зафиксировать обрыв, короткое замыкание. Вопрос тривиальный, дадим ответ: дело вкуса или удобства ситуации. Вообще говоря, при прозвонке диода падение напряжение в прямом направлении известно. Номинал, формируемый неидеальностью тестера плюс известное значение, прибавляемое материалом (кремний, германий). На клеммах присутствует некий уровень напряжения, начиная сотнями милливольт, заканчивая единицами вольта, пользуясь помощью которого проводятся измерения параметров.
Касаемо нелинейных элементов (диодов, транзисторов) знание недокументированных сведений позволит на вольт-амперной характеристике отыскать соответствующую точку, проверить, соответствуют ли эмпирические (измеренные) числа теоретическим (справочные). Выполненный аудит позволит оценить исправность диода. Известный номинал делает доступным проводить необычные операции оценки:
- Собственная емкость. Импеданс резистора не чисто активный за малым исключением. Выбор элементов цепей высокой частотой (мегагерцы, гигагерцы) учитывает особенность. Сопротивление реактивной части напрямую определено круговой частотой, определяемой формулой ω = 2Пf (П = 3,14 – число Пи, f – частота, Гц). Понятно, сложно одним мультиметром обойтись, формирует постоянное напряжение измерений. Реактивная (мнимая) часть импеданса становится нулем, согласно формулам Z = R + i (ωL – 1/ωC), где L – собственная индуктивность резистора, С – емкость. Внимательный читатель заметит: на фиксированной частоте индуктивная и емкостная составляющие уравновешиваются взаимно, импеданс Z станет чисто активным. Резонансная частота резистора, лучше будет изделие работать. Таким образом, нет правила, чем меньше емкость, индуктивность радиоэлемента, тем лучше, действует закон золотой середины. Определить границу не сложно: ω = √LC – известная формула.
- Собственная индуктивность. Прославленные МЛТ резисторы, частый гость аппаратуры, на высоких частотах неприменимы. Керамическое основание наматывается высокоомной жилой (константан, манганин, нихром). Образуется, форменная индуктивность. Отличие ограничено материалом сердечника. Причем типичными формулами, зная количество витков, индуктивность резистора вычислим, заручившись помощью стандартных методик.
Опишем процесс работы. Первый взгляд представляет задачу неразрешимой. Многим невдомек: тестер неспособен обработать напрямую параметры высокочастотных цепей. Зафиксирован некий верхний предел, выше которого мультиметр безбожно врет.
Контакты мультиметра
Решая проблему, радиолюбители предлагают спаять специальную схему, сформированную несколькими пассивными элементами, посредством которой ведутся измерения. Плата выступит мостиком между измеряемым переменным напряжением и щупом. Работы проводятся на соответствующем диапазоне напряжений (обозначается тильдой ~ и буквой U). Схема невероятно проста. Давайте кратко обсудим вопросы, тревожащие начинающих:
- Зачем нужна приставка мультиметру. Прибор перестанет врать, смущенный высокими частотами. Сможете работать с широким кругом электроники. Собираемся провести тест измерения импеданса резистора. Понадобится цепь переменного высокочастотного тока.
- Где взять землю для этой схемы. Значок горизонтальной черты украшает лицевую панель тестера, даст ответ на вопрос. Схема требует наличия красного, черного щупов, профи тривиальные аспекты пропускают. Электрически соедините землю. Черный щуп мультиметра – горизонтальная черточка электрической схемы.
- Отсутствуют диоды КД522Б, необходимы варианты замены. Граничная частота радиоэлементов составляет 100 МГц. Подберем аналоги, руководствуясь очевидным соображением: новый элемент пригоден быть составной частью импульсных цепей. Поставьте 1N4148 (импортный эквивалент).
- Назначение косых черточки схемы, пересекающих резисторы. Максимальная рассеиваемая мощность. Две косые черты соответствуют 0,125 Вт. Посчитать параметр можно просто – ток резистора помножите на приложенное напряжение. Параметр вряд ли сыграет великую роль, входное сопротивление мультиметра традиционное высокое (1 МОм). Сравните: сопротивление изоляции цепи не менее 20 МОм. Ток потребления будет низким, мощности резисторы рассеивают мало (закон Джоуля-Ленца).
- Принцип действия приставки. Простейший интегратор. Будет брать высокочастотные импульсы, формируя постоянное напряжение. Номиналы резисторов образуют делитель, служа целям согласования с входным сопротивлением тестера. Приготовьтесь подбирать опытным путем. Проще найти высокочастотный генератор с регулируемой амплитудой, выполняя проверку.
- Единицы указания номиналов емкости, резисторов. По-умолчанию конденсаторы маркируются пФ. Приставка включает радиоэлементы 68 пФ. Резисторы 2 МОм, 180 кОм.
- Процесс измерения.
Особенности измерения сопротивления резистора мультиметром
Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.
Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.
Цифровой тестер для проверки резисторов
Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.
Виды маркировок
На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.
Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск
Таблица кодов для прецизионных резисторов
Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 |
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 |
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 |
04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 |
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 |
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 |
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 |
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 |
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 |
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 |
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 |
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 |
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 |
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 |
15 | 140 | 31 | 205 | 47 | 301 | 63 | 443 | 79 | 649 | 95 | 953 |
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Цветовое обозначение
Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.
Рис. 2. Пример цветовой маркировки
Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.
Маркировка SMD элементов
Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.
Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.
В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.
Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.
Как определить исправность СМД-резисторов
SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.
Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.
Резистор поверхностного монтажа можно проверить мультиметром, путём его полного выпаивания из схемы, при этом оставив припаянным один из концов на плате и приподняв другой при помощи пинцета. После этого проводится измерение.
Внешний осмотр
Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.
Яркий пример того, как может сгореть резистор
Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.
Определение при помощи мультиметра
Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.
Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.
Какие установить настройки
Прежде чем снимать показания мультиметромом, необходимо убедиться в том, что его аккумуляторы заряжены. Режим нужно выбрать соответствующий «прозвону» электропроводки, концы щупов мыкают (соприкасают) друг с другом. Прибор будет издавать звуки, по громкости которых можно определить, насколько пригодна его батарейка.
В зависимости от модификации прибора режим прозвона может обозначаться разными символами – встречается колокольчик, точка со скобками (радиоволны). При проверке электрических цепей или радиодеталей мультиметр издает определенные звуки, «звонит», отсюда и сленговое название данной операции.
Для того чтобы проверить резистор с помощью мультиметра, нужно поставить переключатель прибора в положение, соответствующее номинальному сопротивлению элемента, который вы собираетесь проверять. Значения нанесены на переднюю панель устройства, можно различить их градацию по диапазонам. Нужно правильно выбрать диапазон, иначе величина сопротивления не совпадет, и результат проверки не будет достоверным. Например, при сопротивлении 1 кОм прибор нужно ставить в режим Ω – 20 кОм.
Для того чтобы проверить радиодеталь, щупы прибора подносят к ее выводам вне зависимости от того, соблюдена полярность или нет.
Проверка на обрыв
Действия производятся в следующем порядке:
- Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».
Рис. 5. Установка режима (1) и подключение щупов (2 и 3) - Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).
Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.
- Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.
Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.
Как прозвонить резистор
Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.
Режим прозвонки
Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.
Проверка на номинал
Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.
Алгоритм наших действий следующий:
- Подключаем щупы, так как на предыдущем тестировании.
- Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К».
Рисунок 6. Диапазоны измерения сопротивления (отмечены красным) - Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.
Полярность резистора
Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может. Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации.
Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет. Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.
Маркировка номиналов
Измерение собственных индуктивности, емкости резистора
Будем предполагать вначале, имеем необходимые средства измерения. Тогда порядок действий установлен:
- Берем генератор первой частоты. Например, 15 МГц. Параллельно сопротивлению включается переменная емкость (целая батарея). Номиналы конденсаторов (паразитной резистора, подобранной пользователем) складываются. Суммарная емкость образована переменной, собственной (резистора). Сформирован параллельный колебательный контур.
- Последовательно включаем чисто активную нагрузку. Другой резистор схожего номинала. Выполненная мера формирует делитель напряжения. Дальнейшей регуляцией будем пытаться получить резонанс. Чтобы зарегистрировать факт достижения схемой заданного состояния, нужно обязательно собрать делитель.
- Путем подбора номинала переменной емкости добиваемся резонанса системы. Крутим туда-сюда, тестером измеряем напряжение колебательного контура, вставив описанную выше приставку. Минимальная разница потенциалов указывает точку резонанса.
- Запомним номинал переменной емкости. Традиционно присутствует ручка регулятора, шкала отсутствует. Посмотреть показания невозможно. Схему разберите, сохраняя настройки, измерьте номинал. Проще всего использовать мультиметр, снабженный соответствующей шкалой (F). В противном случае потребуется ряд косвенных замеров. Отдельная тема.
- Повторяем опыт, беря другую частоту. Получая заметную разницу регистрируемых показаний. Величина расхождения характеризует полученный номинал переменной емкости. Цифры должны отличаться (обеспечение минимальной погрешности). Попытались, потерпели неудачу? Напрашивается вывод: собственной емкостью резистора пренебрежем в указанных условиях (очень мала). Индуктивность находим, пользуясь типичной формулой резонанса цепи: ω2= 1 / LC.
Маркировка резисторов
Начинаем расчет, руководствуясь следующими соображениями: квадрат круговой частоты генератора (радиочастота, помноженная на два числа Пи) обратно пропорционален произведению собственной индуктивности конденсатора и сумме паразитной, переменной емкостей. Проведя измерение двух разных частот (допустим, 15, 7 МГц), можно получить два результата. Важны номиналы переменных емкостей. Если по формуле поделить квадраты круговых частот, получим: квадрат отношения обычных частот соотносится только с частным от емкостей, индуктивности сократятся.
Что такое допуск, и насколько он важен?
Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.
Проверка сопротивления постоянного резистора
После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.
Как проверяют сопротивление резистора
При обрыве цепи на экране горит «1».
Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.
Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.
СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.
Как тестировать переменный резистор?
Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.
Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)
Алгоритм следующий:
- Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
- Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
- Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.
Как проверить резистор мультиметром, не выпаивая на плате
Без демонтажа эти детали можно проверять при сравнительно небольших номинальных значениях электрического сопротивления (80-120 Ом). Предполагается, что в этом диапазоне влиянием других элементов схемы можно пренебречь. В действительности, следует уточнять возможность измерений без существенных искажений.
Если шунтирующие цепи не позволяют обеспечить необходимую точность, придется выпаять хотя бы одну ножку. Альтернативное решение – разрезают дорожку печатной платы. Впоследствии устраняют соответствующие повреждения.
В публикации показано, как прозвонить резистор с применением разных методик. Оптимальный вариант выбирают с учетом:
- уровня повреждений;
- особенностей мультиметров;
- условий работы.
В любом случае следует применить меры, предотвращающие искажение измеряемых параметров. Аккуратное обращение с паяльником и вспомогательными инструментами поможет сохранить в целостности исправные детали.
Применение таблиц
Современные схемы вообще могут не включать номинал резистора. Чтобы узнать исходные данные, требуется воспользоваться таблицей с характеристиками распространенных сопротивлений. На плате элемент может иметь собственное обозначение, например, R18. Нужно найти позицию в таблице с аналогичным буквенным и цифирным значением. Там будет виден тип резистора, его номинальное сопротивление, отклонения, которые считаются допустимыми. Помогает цветовая маркировка, присутствующая на корпусе детали, поэтому желательно научится ею пользоваться.
Обратите внимание, что если предел Ом выставлен, ваше собственное тело может повлиять на неточность результата. Для того чтобы такой проблемы не было, при работе не касайтесь металлических частей схемы и щупов прибора.
Ручки мультиметра должны быть изготовлены из пластика, кроме этого, их можно обмотать изолентой. Зная, как правильно пользоваться мультиметром, вы без труда сможете проверить на исправность любую радиодеталь, и затратить на это всего пару минут.
Видео: как проверить резистор мультиметром
Источники
- https://www.asutpp.ru/kak-proverit-rezistor-multimetrom-na-ispravnost.html
- https://ElectroInfo.net/praktika/kak-proverit-rezistor-multimetrom.html
- https://www.RadioElementy.ru/articles/kak-proverit-rezistor-multimetrom/
- https://pochini.guru/sovety-mastera/kak-proverit-rezistor
- https://EvoSnab.ru/instrument/test/proverka-rezistora-multimetrom
- https://rusenergetics.ru/instrumenty/kak-proverit-rezistor-multimetrom
- https://amperof.ru/sovety-elektrika/kak-proverit-rezistor-multimetrom.html
Как проверить резистор
К наиболее часто встречающимся неисправностям непроволочных резисторов относятся: частичное или полное выгорание токопроводящего слоя и нарушение электрического контакта этого слоя с хомутиком. Обе эти причины ведут к изменению номинальной величины сопротивления, что может быть выявлено с помощью омметра. Если параллельно проверяемому резистору включены другие элементы, при измерении номинала резистор отпаивают. Резистор считается неисправным, если величина сопротивления имеет отклонение от номинала более чем на 25 %. На неисправность резистора указывают изменяющиеся показания измерительного прибора при незначительных покачиваниях его выводов. Как правило, неисправные проволочные резисторы не ремонтируются, а заменяются исправными. Перед заменой следует выяснить причину, приведшую к выходу резистора ив строя, и устранить ее. При отсутствии исправного резистора, соответствующего параметрам вышедшего из строя, последний может быть составлен из нескольких резисторов, соединенных параллельно или последовательно для достижения нужного номинала.
Неисправности переменных непроволочных резисторов в большинстве случаев обусловлены отсутствием надежного контакта между скользящим контактом и токопроводящим слоем (загрязнением, деформацией скользящего контакта или токопроводящего слоя), а также заниженной величины сопротивления изоляции между металлическим корпусом резистора и выводами.
Переменные проволочные резисторы реже выходят из строя. Причинами их неисправности могут быть: плохой контакт между проволокой и подвижным контактом или обрыв токопроводящего элемента. Эти неисправности легко выявляются с помощью омметра. В исправном резисторе отклонение номинальной величины сопротивления не должно превышать 15—20 %. Начальная величина сопротивления резистора должна быть не более 10 Ом для резисторов с номиналом сопротивления до 15 кОм и 50 Ом для резисторов с номиналом сопротивления выше 15 кОм. Сопротивление изоляции между корпусом и выводами не должно быть менее 200 кОм.
У исправных резисторов ход подвижного контакта по токопроводящему элементу должен быть плавным, без разрывов цепи. Выявленные неисправности можно устранить некоторым увеличением давления в месте контакта, пайкой или сваркой оборванного элемента в проволочных резисторах. Если ремонт не дает желаемого результата, неисправный резистор заменяют другим, предварительно проверенным.
В этом видео показано как проверить резистор мультиметром:
Добавить комментарий
Как проверить резистор мультиметром. — Заметки строителя
Как проверить резистор.
Резисторы регулируют напряжение, проходящий через электрическую цепь. Резисторы — это сопротивление или импеданс в электрической цепи, резистор понижает силу тока, идущего через него. Сопротивления используют для регулировки сигнала и защиты приборов от избыточного тока в сети. Для выполнения таких функции резистор должно иметь необходимый номинал сопротивления и быть полностью исправным. Ниже будет описано, как можно проверить резистор на исправность.
Шаги
Отключите питание от цепи где находится резистор
Рисунок 1. Выключить от сети
Демонтируйте резистор из цепи.
Измерять резистор из не отключенной цепи будет неверно, потому как он даст ложные показания так как будет иметь часть сопротивления этой цепи.
Отключите один контакт сопротивления от цепи. Отсоединить можно любой контакт резистор так как это не имеет значения. Для отсоединения может потребоваться паяльник, нужно будет расплавить один из контактов и потянуть пинцетом за резистор, но в некоторых случаях можно и без паяльника просто потянуть за контакт, и он сам выйдет из платы. При необходимости паяльник можно купить в любом хозяйственном магазине.
Рисунок 2. Паяльник
Посмотрите на резистор.
Если вы видите, что резистор потемнел или обуглился, значить он уже повреждён и скорее всего неисправен. В таком случае необходима замена резистора.
Рисунок 3. Сгоревший резистор
Проверьте сопротивление резистора. На сопротивление должно напечатано значение резистора. Если сопротивление маленькое тогда на них будут просто разноцветные полоски, это и будет обозначение. Таблица обозначения приведена ниже.
Рисунок 4. Таблица обозначений резисторов.
Определите допуск отклонения резистора. Каждый резистор имеет отклонения от тех данных которые указаны на нем. Допустимое отклонение варьируется в пределах 10% например если сопротивление резистора 100 ом то отклонения будут не ниже 90ом и не выше 110ом такое отклонение в пределах нормы.
Подготовьте мультиметр для замера сопротивления.
Мультиметр можно приобрести в магазинах электротоваров.
- Убедитесь в том, что мультиметр полностью работоспособен.
Выставите переключатель мультиметра так, чтобы максимальное значение немного превышало сопротивление. Например, вам нужно измерить сопротивление резистора на котором обозначение 820 ом, в таком случае поставьте диапазон измерений на 1000 ом.
Рисунок 5. Переключатель замера.
Как замерить сопротивление.
Поднесите 2 щупа мультиметра к двум контактам резистора. Резисторы полярности не имеют так что подносить можно к любым контактам.
Рисунок 6. Замер сопротивления
- Определите сопротивление. Посмотрите на дисплей мультиметра. При замере сопротивления резистора примите во внимание его допустимое отклонение.
- Замена нерабочего резистора. Если сопротивление превысило допустимые значение, то просто уберите его или сразу выбросите. Новые резисторы можно купить в магазинах радиотоваров.
- Подключите в цепь рабочий резистор. Если вы до этого выпаивали его, расплавьте контакты и ваяйте его в цепь. Если вы просто вынули, тогда просто вставьте его.
Как проверить резистор мультиметром
Проверить неисправность резисторов можно как внешним осмотром, так и проверкой сопротивления резистора мультиметром. Резистор представляет собой электронный элемент с нанесенным слоем графита в виде спирали. Этот графитовый слой элемента может подгорать частично или полностью выгорать.
В этом случае его сопротивление значительно вырастает и становится близким к бесконечности. При механических воздействиях возможен обрыв контакта графитовой дорожки с контактной площадкой вывода резистора.
Проверка резисторов на плате не выпаиваяПоиск неисправного элемента обычно начинают с полупроводниковых приборов – это транзисторы, диоды, тиристоры, оптроны и т. д., так как они менее надежны, чем резисторы, проверку мультиметром которых проводят последними. Перед тем как проверить резистор мультиметром проводят его визуальный осмотр. Если на корпусе элемента образовалось почернение или потемнение, то это говорит о том, что сопротивление перегревалось из-за тока превышающего мощность резистора.
Все номиналы резисторов имеют ряд мощностей от 0,125 Вт до нескольких десятков и даже сотен Вт. Следовательно, сопротивление одного номинала и разной мощности, рассчитаны на разные рабочие токи. Если сопротивление с почерневшим корпусом, тогда нужно неисправность искать в соседних компонентах платы, которые стали виновником перегрузки резистора.
Также перед проверкой мультиметром пинцетом осторожно покачивают вывода элемента. Если вывод шатается, то это говорит об их обрыве. Такое сопротивление требует замены. Для правильной оценки величины сопротивления мультиметром, его батарейки не должны быть разряжены. Чтобы оценить их пригодность, достаточно выставить режим звуковой прозвонки и замкнуть щупы тестера.
Если батарейки в норме, звуковая сигнализация будет достаточно громкой. Перед проверкой величины сопротивления компонента, нужно выставить необходимые пределы сопротивления на приборе которым будут проводиться измерения, и замкнуть щупы. На дисплее должен высветиться ноль. Если измерение проводится в режиме Ω (Ом), тогда дисплей покажет сопротивление шнуров прибора, которое нужно вычесть из показаний при измерении сопротивления элемента.
Типы резисторовДля достоверности измерений, не нужно касаться металлических концов щупов руками. Перед тем как проверить резистор мультиметром, вывода сопротивления очищают от окиси. При проверке учитывают также процент допуска номинала сопротивления. Например, вы тестируете резистор 1 Ком с допуском ±10%, при исправном элементе дисплей должен отобразить значение 0,9 Ком – 1,1 Ком. При других значениях сопротивления можно считать, что данный элемент неисправен.
Таблица номиналов сопротивлений по цветным полосам на резистореЕсли резистор находится в составе электрической цепи на плате, тогда один его конец нужно отсоединить или отпаять, т. к. компоненты электрической схемы вносят значительные искажения в измерения. Также перед тестированием любых компонентов электронной платы, в том числе и резисторов, нужно отключать напряжение питания, если только вы не измеряете режим работы компонентов электронной схемы на печатной плате. Все вышесказанное относится и к проволочным сопротивлениям и резисторам поверхностного монтажа SMD.
Как проверить резистор мультиметром не выпаивая
Проверить величину сопротивления резистора на плате, не выпаивая, не получится, так как другие элементы схемы имеют свое сопротивление и исказят показания. Поэтому при измерении необходимо отпаивать один вывод элемента. Это касается и SMD резисторов. Однако если нет возможности отпаять вывод без повреждения контактной площадки, можно аккуратно острым ножом обрезать дорожку печатной платы в нескольких миллиметрах от вывода элемента.
После проверки мультиметром обрезанную дорожку запаивают. Этим методом пользуются при тестировании без выводных SMD резисторов. Один конец этих элементов не отпаяешь, чтобы полностью снять их с платы нужно иметь два паяльника или специальный фен для пайки. Для проверки переменного резистор мультиметром, его полностью выпаривают из платы. Тестируют переменный резистор (потенциометр) между постоянным и переменным (ползунком) выводами.
Плавно перемещая средний вывод, наблюдают за показаниями прибора. При исправном переменном потенциометре показания меняются плавно, без бросков и разрывов. Затем те же замеры проводят между другим постоянным выводом и ползунком. Переменные потенциометры удобно проверять на стрелочном тестере, прослеживая за плавным перемещением стрелки прибора.
Как проверить мобильный резистор с помощью цифрового мультиметра
Вы задаетесь вопросом обо всех частях вашего мобильного телефона и о том, что заставляет его работать? Ну, есть детали уровня микросхемы или компоненты электроники. Несколько примеров этих компонентов: катушка, диод, конденсатор, регулятор, транзистор, резистор и многие другие. Когда вам нужно проверить или отремонтировать мобильное устройство, важно знать об этих мелких деталях.
Но мы не будем говорить обо всех мелких деталях — только об одной.Это резистор или подвижный резистор. Я также покажу вам, как проверить мобильный резистор с помощью цифрового мультиметра и многое другое.
Что такое мобильный резистор?
Мобильный резистор состоит из компонентов с двумя выводами, которые предназначены для ограничения тока в других частях или компонентах. Между двумя выводами происходит падение напряжения. Вы можете рассчитать или измерить сопротивление, используя закон Ома: R = V / I. Здесь:
«R» означает сопротивление
«В» означает напряжение
«I» означает Текущий
Хорошо, формула у вас есть, но как проверить подвижный резистор? Это просто.Отсюда цифровой мультиметр поможет вам измерить сопротивление.
Мультиметрыиспользуют тот же принцип при измерении сопротивления. (Этот принцип также применим даже к аналоговым мультиметрам.) Другое испытательное оборудование также использует основной принцип:
Идея состоит в том, что цифровой мультиметр или цифровой мультиметр подает напряжение на щупы, которые заставляют ток течь к предмету, в котором измеряется сопротивление. Используя мультиметр, вы не только проверяете подвижный резистор, но и определяете сопротивление на его щупах.
Обратите внимание: : Помимо проверки мобильного резистора с помощью мультиметра, вы также можете проверить, исправен ли резистор. Это не все. Мультиметры также могут проверить, есть ли в компонентах обрыв или короткое замыкание.
Как проверить мобильный резистор с помощью цифрового мультиметра?
Цифровые мультиметрыудобны в качестве измерительных инструментов для проверки подвижного резистора. Например, вам легче и быстрее измерить сопротивление резистора.Почему? В отличие от аналоговых мультиметров вам не нужно обнулять цифровой мультиметр.
Цифровой мультиметр обеспечивает прямое считывание измерения сопротивления. Итак, давайте поговорим о том, как проверить мобильный резистор с помощью цифрового мультиметра, выполнив следующие простые шаги:
- Возьмите мобильный резистор, который вы бы проверили.
- Вставьте щупы измерительного прибора в правые гнезда. (Большинство цифровых мультиметров имеют несколько гнезд для датчиков.) Вставьте датчики и правильно поместите их в требуемые гнезда.Разъемы помечены как COM для Common, и есть знак Ом. Вы также можете увидеть гнездо для измерения напряжения.
- Включите мультиметр.
- Вы выбираете необходимый диапазон для измерения. Правильный диапазон дает вам наилучшие показания, которые вы можете получить от тестового глюкометра.
Обратите внимание: : На переключателе тестового прибора указано максимальное значение сопротивления. Выберите тот, при котором расчетное значение сопротивления ниже, но близко к максимальному диапазону.Таким образом вы сможете получить точное значение сопротивления.
- Вы проводите испытание или измерение, прикладывая щупы к подвижному резистору. При необходимости вы можете отрегулировать диапазон.
- После проверки подвижного резистора выключите цифровой мультиметр для экономии батареек. Не забудьте установить переключатель функций в высокое положение. Почему? Таким образом, мультиметр не будет поврежден.
Советы по безопасности при проверке мобильного резистора мультиметром
Если вы профессионал или новичок в использовании цифрового мультиметра, не забывайте соблюдать меры предосторожности.Мультиметр — надежное устройство для проверки мобильного резистора, потому что он дает вам точные показания.
Но если вы не будете следовать правильным инструкциям при использовании тестового глюкометра, это может привести к неточным показаниям. В худшем случае мультиметр может сломаться, если вы не используете его правильно. Итак, вот полезные советы, которые следует помнить при проверке мобильного резистора с помощью тестового прибора.
Проверить сопротивление, если компоненты резистора не подключены к цепи
Опытные техники и электрики советуют не измерять сопротивление подвижного резистора, когда он подключен к цепи.Правильный способ — проверить резистор, когда его нет в цепи. Если вы сделаете внутрисхемное измерение, это повлияет на компоненты резистора. Кроме того, вы не получите точных показаний, если резистор включен в цепь.
Выключить мультиметр при замере подвижного резистора
В качестве правила безопасности не забывайте выключать тестер при проверке резистора. Мультиметр выйдет из строя, если во время тестирования включить резистор.Кроме того, любой ток, протекающий внутри счетчика, может повлиять на показания.
Проверка путей утечки при испытании подвижного резистора
Знаете ли вы, что путь утечки ваших пальцев может повлиять на показания мультиметра? Если вы проверяете сопротивление, путь утечки заметен. (Путь утечки может добавить небольшое измерение, например несколько МОм.
К счастью, уровни сопротивления в большинстве мультиметров низкие, поэтому не беспокойтесь о путях утечки.Но когда вы используете цифровой мультиметр, все по-другому. (В специализированных измерительных приборах часто используется высокое напряжение, поэтому рекомендуется проверять путь утечки.)
Если вы хотите сэкономить, вы можете купить резисторы в различных упаковках в магазинах электронных компонентов или в универмагах. Лучше покупать цифровой мультиметр, чем аналоговый, из-за его простоты использования и точных показаний.
Помните : с помощью цифрового мультиметра легко и удобно проверить мобильный резистор.Вы можете получить точные показания на экране дисплея измерителя, если это не повлияет на его компоненты. (См. Советы по безопасности выше.) Но в некоторых случаях измерить сопротивление резистора непросто из-за высокого сопротивления.
Подводя итоги…
Теперь, когда вы знаете, как проверить подвижный резистор с помощью цифрового мультиметра, вы можете безопасно и правильно опробовать эту процедуру. Не забудьте проверить детали цифрового мультиметра перед его использованием, чтобы получить наилучшие результаты измерений.
Следуйте правильным процедурам, проверяя мобильный резистор с помощью мультиметра, чтобы гарантировать успешные результаты. Вы не столкнетесь с трудностями при проверке резистора, если будете часто помнить советы по безопасности. Кроме того, попросите совета у экспертов, потому что они могут помочь вам эффективно протестировать мобильный резистор.
Итак, приходите и проверьте свой мобильный резистор с помощью цифрового мультиметра!
Как найти значение сгоревшего резистора (четырьмя удобными методами)
Определить значение сгоревшего резистора четырьмя простыми методамиВ случае поиска и устранения неисправностей, ремонта и проектирования электрических и электронных схем или поврежденных печатных плат мы может столкнуться с этой проблемой, когда нам потребуется заменить поврежденный конденсатор, диод, резисторы и т. д.В случае резисторов, мы можем найти значения сгоревших резисторов с помощью этих четырех удобных методов, указанных ниже.
Метод 1
- Зачистите внешнее покрытие.
- Очистите перегоревшую часть резистора.
- Измерьте сопротивление от одного конца резистора до поврежденного участка.
- Снова измерьте сопротивление от поврежденного участка до другого конца резистора.
- Сложите эти два значения сопротивлений.
- Это приблизительное значение сгоревшего резистора.
- Просто добавьте небольшое значение сопротивления для поврежденного участка, то есть предположим, что значение сгоревшего резистора было 1 кОм, но у вас есть 970 Ом. Так что просто добавьте 30 Ом, и у вас будет 1 кОм.
Связанное сообщение: Как проверить конденсатор 6 простыми методами
Метод 2
Этот метод также можно использовать для определения номинала сгоревшего резистора (ов) (также может быть применяется на подключенных резисторах в цепи), если вы не знаете о цветовой кодировке сопротивления.
- Подключите резистор к мультиметру и измерьте падение напряжения на сгоревшем резисторе.
- Теперь измерьте ток, протекающий в резисторе.
- Умножьте оба значения, и вы получите мощность резистора (поскольку P = VI, т.е. закон Ома).
- Эта мощность должна быть меньше мощности заменяемого резистора.
Метод 3
Этот метод можно было бы использовать лучше, если бы вы знали ожидаемое выходное напряжение схемы и у вас есть набор резисторов, имеющих ту же мощность, что и сгоревший резистор.Выполните этот метод, если вы не знаете номинал резистора.
- Начните с большого значения сопротивления и временно подключите этот резистор вместо сгоревшего резистора.
- Измерьте ожидаемое выходное напряжение цепи. Если вы получили то же напряжение, что и ожидаемое, значит, вы это сделали.
- Если вы не знаете ожидаемого напряжения, продолжайте уменьшать номинал резистора, пока не будете удовлетворены работой схемы, для которой она была разработана.
Связанное сообщение: Как проверить реле? Проверка реле SSR и катушек
Метод 4
Другой метод, который не всегда выполняется, заключается в том, что значения резисторов уже напечатаны на печатной плате. В случае сгоревшего резистора просто посмотрите на печатную плату (PCB) и найдите номинал резистора, напечатанный на ней. В противном случае вы можете использовать описанные выше методы (1-3).
Поделитесь с друзьями и близкими, если вам понравилось читать эту статью о , определяющей значение сгоревшего резистора.
Связанное сообщение: Как проверить диод с помощью цифрового и аналогового мультиметра 4 способа.
Сообщите нам в комментарии ниже, если вам известен дополнительный метод определения стоимости сгоревших резисторов.
Связанные сообщения
Как читать цветовые коды резисторов
Считывание цветовых кодов резисторов становится проще, если вы понимаете значение и математические расчеты каждой полосы, используемой для обозначения значения сопротивления, допуска, а иногда даже температурного коэффициента.Мы создали простую диаграмму, чтобы объяснить вам цветовую кодировку резисторов.
Резисторыдоступны в различных номиналах, формах и физических размерах. Практически все резисторы с выводами с номинальной мощностью до одного ватта имеют рисунок из цветных полос, который используется для обозначения значения сопротивления, допуска, а иногда даже температурного коэффициента. На корпусе резистора может быть от трех до шести цветных полос, причем четыре полосы являются наиболее распространенным вариантом.Первые несколько полос всегда представляют собой цифры в значении сопротивления. Затем вы найдете полосу множителя, чтобы обозначить перемещение десятичной дроби вправо или влево. Последние полосы представляют собой допуск и температурный коэффициент.
Самый популярный комплект резисторов Arrow | Купить сейчас
Посмотреть связанный продукт
Давайте взглянем на таблицу цветовых кодов ниже и сразу же рассмотрим несколько примеров:
Скачать диаграмму.
Трех- или четырехполосные резисторы
Первые две полосы всегда обозначают первые две цифры значения сопротивления в Ом. На трех- или четырехполосном резисторе третья полоса представляет собой умножитель. Этот множитель в основном сдвинет десятичный разряд, чтобы изменить ваше значение с мегаом на миллиом и в любом другом месте. Четвертая цветная полоса обозначает толерантность. Имейте в виду, что если эта полоса отсутствует и вы смотрите на трехполосный резистор, допуск по умолчанию составляет ± 20%.
Пяти- или шестиполосный резистор
Резисторы с высокой точностью имеют дополнительную цветовую полосу для обозначения третьей значащей цифры. Если ваш резистор имеет пять или шесть цветных полос, третья полоса становится этой дополнительной цифрой вместе с полосами один и два. Все остальное смещается вправо, в результате чего четвертая цветная полоса становится множителем, а пятая — допуском. Шестиполосный резистор — это, по сути, пятиполосный резистор с дополнительным кольцом, указывающим надежность или характеристику температурного коэффициента (ppm / K).Например, если взять коричневый, наиболее распространенный цвет шестой полосы, каждое изменение температуры на 10 ° C изменяет значение сопротивления на 0,1%.
Общий цветовой код резистора Вопросы:
Как мне узнать, с какого конца резистора начинать чтение?
— Многие резисторы имеют некоторые цветные полосы, сгруппированные ближе друг к другу или сгруппированные к одному концу. Держите резистор с этими сгруппированными полосами слева от вас. Всегда считывайте резисторы слева направо.
— Резисторы никогда не начинаются с металлической полосы слева.Если у вас есть резистор с золотой или серебряной полосой на одном конце, у вас есть резистор с допуском 5% или 10%. Поместите резистор с этой полосой справа и снова прочитайте свой резистор слева направо.
— Значения базового резистора варьируются от 0,1 Ом до 10 МОм. Обладая этими знаниями, поймите, что на четырехполосном резисторе третий цвет всегда будет синим (106) или меньше, а на пятиполосном резисторе четвертый цвет всегда будет зеленым (105) или меньше.
Почему в моем высоковольтном резисторе не используются цвета металлик?
Золото и серебро заменены желтым и серым в высоковольтных резисторах, чтобы предотвратить попадание металлических частиц во внешнее покрытие.
Что такое резистор нулевым сопротивлением?
Резисторы с нулевым сопротивлением, легко распознаваемые по одной черной полосе, в основном представляют собой перемычки, используемые для соединения дорожек на печатной плате. Они упакованы как резисторы, поэтому то же автоматическое оборудование, которое используется для установки резисторов, также может быть использовано для их размещения на печатной плате. Такая конструкция исключает необходимость в отдельной машине для установки перемычки.
Есть ли необычный способ запомнить порядок цветов на диаграмме?
Хотя в Интернете есть несколько мнемоник, которые помогут вам запомнить порядок цветов для таблицы цветовых кодов резисторов, некоторые из них более приятны, чем другие.Другой способ сохранить цветовую диаграмму в памяти — представить черный цвет как отсутствие цвета, поэтому он равен «0», а белый — это комбинация всех цветов, так что это наивысшее значение, «9». В середине цветовой таблицы вы найдете стандартные цвета радуги в порядке от номеров от 2 до 7, поэтому в игру вступает ваш детский акроним ROY-G-BIV, за вычетом цвета индиго. Просто помните, что коричневый цвет соответствует черному и красному, как цифра «1», а серый — между фиолетовым и белым, как цифра «8», и вы поняли!
Что такое диапазон «надежности»?
Резисторы, рекомендованные военными, часто включают дополнительную полосу на четырехполосных резисторах, чтобы указать надежность или частоту отказов (%) на 1000 часов работы.Это редко используется в коммерческой электронике.
История резистора
Резисторы являются основным компонентом электрических цепей. Первые ученые пришли к пониманию концепции сопротивления вскоре после того, как они провели тесты, чтобы определить результаты прохождения электричества через все виды материалов, и впоследствии обнаружили электрический ток. В то время как медь, золото и алюминий оказались отличными проводниками с низким сопротивлением, воздух, слюда и керамика считались резисторами из-за их способности значительно ограничивать поток электрического тока.Хотя люди в этой отрасли знали об их фундаментальных возможностях в течение десятилетий, надежный резистор в том виде, в каком мы знаем его сегодня, появился только в 1961 году, когда Отис Бойкин создал недорогой и надежный резистор, который позволял передавать точное количество электричества. компонент. Благодаря его открытиям резисторы стали менее подвержены воздействию экстремальных температур и ударов, и, наконец, стало возможным их экономичное производство. Когда военные США, IBM и многие производители бытовой электроники разместили заказы на новый резистор Бойкина, они стали использоваться во всем, от бытовой техники и компьютеров до управляемых ракет.
Резисторы широко используются в современной электронике. Как пассивные устройства они рассеивают мощность, но никогда не обеспечивают ее. У них есть много применений в схемах, таких как, например, регулирование потока тока на светодиоды или управление величиной напряжения, достигающего активного устройства, такого как транзистор. Резисторы могут использоваться для оконечной нагрузки линии передачи и предотвращения отражений или в качестве подтягивающего или понижающего резистора на GPIO микроконтроллера для повышения стабильности системы. Совместное использование резистора и конденсатора может создать источник синхронизации, необходимый для световых мигалок или электронных схем сирены.«Последовательное соединение» резисторов, соединенных последовательно, может создать делитель напряжения, полезный для компонентов, которым необходимо работать при меньшем напряжении, чем напряжение, подаваемое на вход.
Теперь, когда вы знаете основы резисторов и приемы считывания их цветовых кодов, выходите и поразите всех своих друзей!
Хотите узнать больше? Посмотрите наше видео о том, как снижение номинальных характеристик резистора влияет на вашу конструкцию, а также ознакомьтесь с законом Ома и основами резисторной технологии.
Популярные резисторы
Посмотреть связанный продукт
Посмотреть связанный продукт
Посмотреть связанный продукт
Цветовые коды резисторов | УЧИТЬ.PARALLAX.COM
Резисторы препятствуют прохождению электрического тока. Каждый из них имеет значение, показывающее, насколько сильно он сопротивляется току. Единицей измерения этого значения является ом, часто обозначаемый греческой буквой омега: Ω.
Цветные полосы на резисторе могут рассказать вам все, что вам нужно знать о его величине и допуске, если вы понимаете, как их читать. Порядок расположения цветов очень важен, и каждое значение резистора имеет свою уникальную комбинацию.
Вот пример, который показывает, как таблицу и резистор, показанные выше, можно использовать для определения номинала резистора, доказав, что желто-фиолетово-коричневый действительно составляет 470 Ом:
- Первая полоса желтого цвета, что означает, что самой левой цифрой является 4.
- Вторая полоса фиолетового цвета, что означает, что следующая цифра — 7.
- Третья полоса коричневая. Поскольку коричневый равен 1, это означает прибавление одного нуля справа от первых двух цифр.
Желто-фиолетовый-коричневый = 4-7-0 = 470 Ом.
Хотя первые две полосы довольно просты, третья и четвертая полосы могут потребовать более подробного объяснения.
Значения резисторов могут быть очень большими, и часто не хватает места для использования полосы для каждой цифры. Чтобы обойти это, третья полоса указывает, что после первых двух цифр следует добавить определенное количество нулей, чтобы получить полное значение резистора. В приведенном выше примере третья полоса коричневая, что означает, что справа от первых двух цифр следует добавить один ноль.
Если вы хотите углубиться в математику, эта третья полоса официально называется множителем . Цвет полосы определяет степень 10, на которую нужно умножить первые две цифры резистора. Например, оранжевая третья полоса с числовым значением 3 будет означать множитель 10 3 , хотя вы также можете думать об этом как о том, что вам нужно «наклеить 3 нуля на конце».
Пример:
- Резистор коричнево-черно-оранжевый.
- Коричневый = 1, черный = 0, оранжевый множитель = 10 3
- 10 x 10 3 = 10000, что совпадает с 10 + три нуля = 10000.
Обратите внимание, что, как бы вы ни думали об этом, результат будет таким же.
Четвертая цветная полоса указывает на допуск резистора . Допуск — это процент ошибки в сопротивлении резистора, или насколько больше или меньше вы можете ожидать, что фактическое измеренное сопротивление резистора будет отличаться от его заявленного сопротивления.Полоса допуска для золота составляет 5%, серебро — 10%, а отсутствие полосы вообще означает допуск 20%.
Например:
- Резистор 220 Ом имеет серебряную полосу допуска.
- Допуск = значение резистора x значение диапазона допуска = 220 Ом x 10% = 22 Ом
- Заявленное сопротивление 220 Ом +/- 22 Ом означает, что фактическое значение резистора может находиться в диапазоне от 242 Ом до 198 Ом.
Некоторые проекты требуют, чтобы ваши измерения были более точными, чем другие, и по этой причине диапазон допуска полезен для определения того, какой резистор даст вам более точное показание сопротивления.Чем меньше процент допуска, тем выше точность ваших измерений.
Как сделать измеритель сопротивления Arduino
ПОДКЛЮЧЕНИЕ ОМОМЕРАСхема очень проста. Все, что вам нужно, это Arduino, резистор, который вы хотите измерить, и еще один резистор с известным значением. Мы установим делитель напряжения с известными и неизвестными резисторами и измерим напряжение между ними с помощью Arduino. Затем запустим программу, которая рассчитает сопротивление по закону Ома.
Сначала подключите схему следующим образом:
Введите значение вашего известного резистора (в Ом) в строке 5 приведенного выше кода. В моем случае я использую известный резистор номиналом 1 кОм (1000 Ом). Следовательно, моя строка 5 должна выглядеть так: float R1 = 1000; .
Программа настраивает аналоговый вывод A0 для считывания напряжения между известным резистором и неизвестным резистором. Вы можете использовать любой другой аналоговый вывод, просто измените номер вывода в , строка 1, и подключите схему соответствующим образом.
Когда вы откроете монитор последовательного порта, вы увидите, что значения сопротивления печатаются один раз в секунду. Будет два значения: R2 и Vout.
- R2 : сопротивление неизвестного резистора в Ом.
- Vout : падение напряжения на неизвестном резисторе.
Один читатель заметил, что он хотел бы отображать измерения сопротивления на ЖК-дисплее. Это легко сделать. Сначала вы захотите прочитать наше руководство по настройке ЖК-дисплея на Arduino.Это покажет вам, как все соединить.
НАСКОЛЬКО ЭТО ТОЧНО?Вот показания, которые я получил с «неизвестным» резистором на 200 Ом:
Значения довольно точные, это всего лишь ошибка 1,6%.
Однако вот показания, которые я получил при измерении «неизвестного» резистора 220 кОм:
Ошибка здесь больше 100%.
Это потому, что я все еще использовал резистор сопротивлением 1 кОм. Точность омметра будет плохой, если номинал известного резистора намного меньше или больше, чем сопротивление неизвестного резистора.
Проблема легко решается с помощью известного резистора, который по номиналу ближе к неизвестному резистору. После того, как я заменил известный резистор 1 кОм на резистор 100 кОм, точность измерений значительно улучшилась.
Не забудьте изменить строку 5 в приведенном выше коде (с плавающей запятой R1 = 1000) на значение вашего нового известного резистора.
Это значения, которые я получил с тем же «неизвестным» резистором 220 кОм и известным резистором 100 кОм:
Наконец, все известные резисторы имеют ошибку 1.6-200%. Но мы можем легко измерить резисторы без мультиметра.
Как проверить конденсатор без демонтажа [в цепи]
Эй! надеюсь, у вас все хорошо.
Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты перегорают и требуют замены.
Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы.А иногда перенапряжение их выгорает.
Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор вскрываются, и вы можете найти их на плате за секунды.
Однако это не относится к конденсатору.
В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.
Но что, если тебе не повезло?
Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим.Таким образом, вам нужно снять весь конденсатор с платы, проверить каждый, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.
Не волнуйтесь.
В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.
Надеюсь, вам понравится эта статья.
Проверить конденсатор, не снимая его
Давай посмотрим правде в глаза.
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.
Почему?
- Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним.Таким образом, вы получаете эквивалентное значение, а не фактическое.
- Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.
Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.
Итак, как я могу проверить эту суку?
Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).
Таким образом, лучшее решение для тестирования конденсатора без его фактического демонтажа — это использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.
В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.
Измеритель СОЭ
Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.
Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.
У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.
Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.
Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший ли конденсатор или плохой.
Как проверить конденсатор с помощью измерителя ESR?
Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.
- Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительной информации всегда разряжайте конденсатор перед измерением любого его параметра.
- Разряд конденсатора может производиться закорачивая его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
- Включите измеритель СОЭ и закоротите его провода, пока на экране не появится 0. Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
- Подключите красный провод измерителя ESR к положительному, а черный — к отрицательному выводу тестируемого конденсатора.
- Запишите показания измерителя СОЭ.
- Сравните показание с таблицей на корпусе измерителя СОЭ. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
- Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.
В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.
Кроме того, хороший конденсатор будет измерять почти как короткое замыкание, а все другие части, соединенные параллельно с ним, будут иметь минимальное влияние на конечное измерение. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.
Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.
Просто найдите это.
Я рекомендую и мне нравится этот измеритель СОЭ (ссылка на продукт) . Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его.
Интеллектуальный пинцет
Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но, на мой взгляд, умный пинцет (ссылка на Amazon) — это весело и замечательный инструмент для вашей лаборатории.
Настоящая проблема умных пинцетов в том, что они дорогие. Когда я в последний раз проверял, его цена была около 300 долларов. Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.
Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.
Визуально неисправный конденсатор
Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.
Плохой электролитический конденсатор проглатывает верхнюю часть, вы видите такой в цепи; просто замените его, не теряя времени на тестирование.
Значение емкости может быть в хорошем диапазоне, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.
Заключение
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.
Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR).Это значение измеряется измерителем СОЭ.
Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.
Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.
Ну вот и все. Теперь, если такой читатель, как я, сначала прочтет заключение. Вы это читаете. Пора перейти к началу.Но вы читатель, зашедший так далеко. Надеюсь, вам понравилось.
Спасибо и хорошо проводите время.
Другие полезные сообщения
Как проверить, правильно ли работает терминирование CAN
Хорошо известно, по крайней мере, в сообществе CAN, что каждая сеть CAN и CAN FD должна быть завершена резистором 120 Ом на каждом конце шины. Дополнительную информацию можно найти в разделе «Зачем использовать резистор?» И о том, как добиться максимального качества сигнала в техническом документе «Использование согласования для обеспечения рецессивной передачи битов», но редко обсуждается, как проверить, правильно ли он работает.Хорошая новость в том, что с правильным оборудованием это относительно просто!
Чтобы проверить терминирование вашей сети, отключите 9-контактный разъем D-sub интерфейса CAN от сети и измерьте сопротивление через кабель, поместив цифровой мультиметр / омметр между контактами 2 и 7. Убедитесь, что все узлы CAN, например контроллер мотора, все еще прикреплены, но отключены. Если ваше оконечное сопротивление правильное, вы должны показывать приблизительно 60 Ом (два резистора 120 Ом, включенные параллельно, дают сопротивление 60 Ом).Если вы прочитали другое значение, продолжайте тестирование следующим образом:
1. Проверить наличие 10 кОм между CANH и землей, включая источник питания. Этот тест лучше всего проводить без какой-либо CAN-связи по CAN-шине, и он выявит любые короткие пути между CANH и окружающей средой.
2. Проверить наличие 10 кОм между CANL и землей, включая источник питания. Опять же, сделайте это без связи по шине CAN.
3. Если проблема не исчезла, подключите осциллограф к сигналу CANH, который должен показывать уровень сигнала 2,5 В во время фазы холостого хода, при этом напряжение увеличивается до 4 В для доминирующих битов и падает обратно до 2,5 В. для рецессивных бит. Форма насадок должна быть красивой и квадратной, без звона на передних и задних кромках.
а. Если уровень холостого хода отличается от 2,5 В, это может быть связано с плохим общим заземлением.
г. Если CANH зафиксирован на определенном уровне, это может быть связано с коротким замыканием на другие электрические цепи.
г. Если блоки не имеют общего заземления, произойдет смещение напряжения, пропорциональное смещению заземления.
г. Если есть шум от земли, это измерение может быть невозможно. Дифференциальный датчик необходим для получения напряжения на CANH относительно CANL. Обратите внимание, CAN может работать нормально, даже если уровень шума земли превышает 40 В от пика до пика с частотой от 0 до 500 МГц.
e. Все звонки вызваны несоответствием импеданса, основной причиной которого является падение линии от основной шины CAN к блокам CAN. Как правило, импеданс устройства составляет 100 кОм, что приводит к 100% отражению энергии обратно в основную шину CAN с задержкой из-за задержки распространения в отводной линии. Эта энергия вернется обратно в основную шину CAN с нулевым фазовым сдвигом. В качестве альтернативы фильтр ЭМС может вызвать фазовый сдвиг отраженной энергии.
4. Следующим шагом является подключение осциллографа к сигналу CANL, который также должен показывать уровень сигнала 2,5 В во время фазы холостого хода, при этом напряжение снижается до 1 В для доминирующих битов и поднимается обратно до 2,5 В для рецессивных битов. . Форма насадок должна быть красивой и квадратной, без звона на передних и задних кромках. Все остальные результаты аналогичны по причине CANH, как указано выше.
5. Если имеется сильный шум земли, необходимо использовать дифференциальный пробник для отображения разности сигналов между CANH и CANL.Осциллограф должен показывать 0 вольт во время фазы холостого хода, с повышением напряжения до 1 вольт для доминирующих битов и падением до 0 вольт для рецессивных битов. Форма насадок должна быть красивой и квадратной, без звона на передних и задних кромках.