Site Loader

Содержание

Как проверить оптрон мультиметром не выпаивая

Рассуждения весьма общие, но вопросы появляются достаточно часто, поэтому – почему бы и нет, почему бы не затронуть самые вершки?

Берем очень условный кусочек схемы с очень условной оптопарой, но, тем не менее, в большинстве случаев эта схема или соответствует действительности, или близка к ней:

Может быть питание не 5 вольт, а 3,3 (что последнее время чаще), может быть другого типа оптопара – что уже реже.

Тем не менее, рассмотрим то, что есть.

Имеем: оптопара DA, разъем, через который она соединена со схемой XT, балластное сопротивление светодиода R1 и резистор оттяжки сигнала на питание R2. Ну, и некуда деваться – землю и питание.

Питание в большинстве случаев сейчас 3,3 В, но особой роли в данном случае это не играет.

В этом случае мы имеем на светодиоде –напряжение порядка 1,2-2 В, остальное упадет на балластном резисторе R1.

На коллекторе фототранзистора – в зависимости от того, освещен его переход или нет, то бишь – открыта шторка или закрыта:

    Шторка открыта – имеем напряжение, близкое к 0, на практике – не больше 0,2-0,5 В.

Шторка закрыта – имеем 5 В через сопротивление оттяжки R2.

Почему может не работать? А почему угодно. Наиболее слабое место – разъем.

Допустим, обрыв верхнего по рисунку контакта – не будет тока через светодиод (и падения напряжения на нем – тоже, что сразу будет видно любым, даже самым дешевым тестером), фототранзистор будет всегда закрыт, на его коллекторе будет всегда напряжение +5 (+3,3) В, как ни дергай флажком.

То же самое – при обрыве в схеме R1, но редко…

Обрыв среднего по рисунку контакта – на коллекторе фототранзистора ничего не будет. Хоть он закрыт – тогда вообще контакт в воздухе, хоть открыт – тока через него все равно нет, поэтому он тоже висит в воздухе, да даже если и будет что то чеорз какие то утечки – грязи в принтерах и копирах обычно хватает – все равно на коллекторе фототранзистора будет ноль.

Вне зависимости от положения шторки.

Обрыв нижнего по схеме контакта – нет земли на оптроне.

На двух остальных контактах оптрона будет +5 (+3,3) В – на светодиоде мы просто будем измерять напряжение питания через резистор, номинал у него небольшой, поэтому питание и увидим, на коллекторе фототрнзистора – то же самое: даже если он открыт, цепи нет – провод оборван.

Более редкая штука, но все таки иногда случающаяся – неисправность оптопары.

Если напряжение на светодиоде в норме – то есть в пределах 1,2-2 В, то он, скорее всего, исправен.

При нулевом напряжении – пробит (не встречал), при напряжении питания – в обрыве.

Неисправен фототранзистор – или пробит (напряжение на коллекторе – 0), или в обрыве – напряжение равно питанию.

При грязном зазоре оптопары – там есть щель как у светодиода, так и фототранзистора – напряжение будет всегда, как при закрытом зазоре то есть равно (или близко) напряжению питания.

В принципе, если что не ясно или хочется дополнить и/или исправить – милости просим, написано все быстро, шустро, и не очень внимательно…

Этот пробник, предназначен для проверки большого количества видов оптопар: оптотранзисторов, оптотиристоров, оптосимисторов, опторезисторов, а также микросхемы таймера NE555, отечественным аналогом которой является микросхема 1006ВИ1


Модифицированный вариант пробника для проверки оптронов

Сигнал с третьего вывода микросхемы 555 через резистор R9 поступает на один вход диодного моста VDS1, при условии, что к контактам Анод и Катод подсоединен рабочий излучающий элемент оптопары, в таком случае через диодный мост потечет ток, и будет мигать светодиод HL3, при условии что фотоприемник исправен, будет открываться VT1 и загораться HL3, который будет проводить ток, HL4 при этом будет моргать

Данный принцип можно использовать для проверки практически любого оптрона:

Около 570 мили вольт должен показать мультиметр, если оптрон исправен в режиме прозвонки диода, т.к в этом режиме с щупов тестера поступает около 2 вольт, но этого напряжения не достаточно для открытия транзистора, но как только мы подадим питание на светодиод, он откроется и мы увидим на дисплее напряжение которое падает на открытом транзисторе.

Описываемое ниже устройство покажет не только исправность таких популярных оптронов как PC817, 4N3x, 6N135, 6N136 и 6N137, но и их скорость срабатывания. Основа схемы микроконтроллер серии ATMEGA48 или ATMEGA88. Проверяемые компоненты можно подключать и отключать прямо во включенный прибор. Результат проверки покажут светодиоды. Так элемент ERROR светится при отсутствии подключенных оптопар или их неработоспособности. Если элемент исправен, то загорится светодиод OK. Одновременно с ним загорится один или несколько светодиодов TIME, соответствующих скорости срабатывания. Так, для самой медленной оптопары, PC817, будет светится только один светодиод – TIME PC817, соответствующий ее скорости. Для быстрых 6N137 будут гореть все четыре светодиода. Если это не так, то оптопара не соответствует данному параметру. Значения шкалы скорости PC817 – 4N3x – 6N135 – 6N137 соотносятся как 1:10:100:900.

Фьюзы микроконтроллера для прошивки: EXT =$FF, HIGH=$CD, LOW =$E2.

Печатную плату и прошивку можно скачать по ссылке выше.

Основной составляющей частью современной радиоэлектронной аппаратуры являются импульсные источники питания. Стабилизированное напряжение вторичной цепи источника питания зависит в целом от эффективности схематического решения первичной цепи, работы задающего генератора, как правило, выполненного на микросхеме. Не маловажную роль в работе источника питания выполняет оптопара, т.е .

ПРОБНИК ДЛЯ ПРОВЕРКИ ОПТОПАР

В последнее время мне приходится по работе, почти каждый день заниматься ремонтами ЖК телевизоров, в маленькой частной мастерской.  Тема эта достаточно рентабельная, и если заниматься преимущественно блоками питания и инверторами, не слишком сложная. Как известно, питается ЖК телевизор, как практически и вся современная электронная техника, от импульсного блока питания. Последний же, содержит в своем составе деталь, под названием оптрон или оптопара. Деталь эта предназначена для гальванической развязки цепей, что часто бывает необходимо в целях безопасности для работы схемы устройства. В составе этой детали находятся, обычные светодиод и фототранзистор. Как же оптрон работает? Упрощенно говоря, это можно описать, как что-то типа своего рода маломощного электронного реле, с контактами на замыкание. Далее приведена схема оптопары:

Схема оптопары

А вот тоже самое, но уже со странички официального даташита:

Распиновка оптопары

Ниже приведена информация из даташита, в более полном варианте:

Корпус оптопары

Оптроны часто выпускается в корпусе Dip, по крайней мере те, которые используются в импульсных блоках питания, и имеют 4 ножки.

Оптопара на фото

Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Проверка оптрона

Как можно проверить оптрон? Например так, как на следующей схеме:

Схема проверки оптрона

В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом. Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары. Пробежался по схемам в инете, и нашел следующее:

Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:

Устройство для проверки оптопары с интернета

Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно — это же не наш метод :-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию :-).

Звуковой пробник — схема

У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.

Простой звуковой пробник

Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.

Внутренности и детали

Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.

Контактные пластины из текстолита

Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.

Прищепка от гарнитуры

Дело было за малым, подпаять провода. и закрепить пластинки на клипсе с помощью термоклея. Получилось снова колхозно, как без этого), но на удивление крепко.

Пинцет для измерения самодельный

Провода были взяты, от разъемов подключения к материнской плате, корпусных кнопок системного блока, и светодиодов индикации. Единственный нюанс, на схеме у меня на один из щупов от мультиметра, подключаемых к пробнику посажена земля, сделайте ее контакт, если будете повторять, обязательно напротив земли питания светодиода оптрона, во избежания очень быстрого разряда батареи, при замыкании плюса питания, на минус батареи. Схемку распиновки пинцета, рисовать думаю будет лишнее, все понятно и так без труда.

Окончательный вид пробника оптронов

Так выглядит готовое устройство, причем сохранившее свой функционал звукового пробника, путем подключения через стандартные гнезда, щупов от мультиметра. Первые испытания показали, что 40 ом в открытом состоянии фототранзистора между выводами эмиттер – коллектор, для такого пробника, несколько многовато. Звук пробника был приглушен, и светодиод светил не очень ярко. Хотя для индикации работоспособности оптрона, этого было уже достаточно. Но ведь мы к полумерам не привыкли). В свое время собирал расширенный вариант, схемы этого звукового пробника, где обеспечено измерение при сопротивлении между щупами, до 650 Ом. Схему расширенного варианта привожу ниже:

Схема 2 — звуковой пробник

Данная схема отличается от оригинала, только наличием еще одного транзистора, и резистора в его базовой цепи. Печатную плату расширенной версии пробника, привел на рисунке ниже, она будут прикреплена в архиве.

Печатная плата на звуковой пробник

Данный пробник показал себя при проверке, достаточно удобным в работе, даже в таком, как есть варианте, после проведения на днях апгрейда, недостаток с тихим звучанием, и тусклым свечением светодиода, наверняка будет устранен. Всем удачных ремонтов! AKV.

   Форум

   Форум по обсуждению материала ПРОБНИК ДЛЯ ПРОВЕРКИ ОПТОПАР

El 817 оптрон как проверить

Оптопара проверяется так: ВЫПАЯТЬ ОБЯЗ . !

1. там где точка (анод светодиода) ставишь + мультиметра (в режиме проверка диодов)
Там где ее нет(катод светодиода) – мультика
На экране от 700ом до примерно 1300ом может быть Это нормально

Дата: 03.09.2015 // 0 Комментариев

Состоит оптрон из двух основных частей (фотоизлучателя и фотоприемника) заключенных в общий корпус. Это устройство применяется для гальванической развязки блоков, между которыми существует большая разница потенциалов и т.п.

Как проверить оптрон мультиметром?

Взять и просто проверить оптрон мультиметром не получиться. Для самой простой проверки оптрона необходимо подать напряжение на его вход (согласно схеме), а выход уже проверять мультиметром в режиме проверки диода.

Как проверить оптрон — устройство для проверки оптрона

Для более удобной проверки оптрона можно использовать более интересную схему. Включает она в себя с минимум компонентов, а сборка ее занимает не более получаса.

Питание оптрона производиться через светодиод, который загорится, если исправный фотоизлучатель. Второй светодиод загорится, если исправный фотоприемник, через который течет ток к светодиоду.

Для наглядности второй вариант схемы был собран из элементов, которые были под руками. Роль подопытного играет оптопара PC817.

Роль гнезда для подключения оптрона выполняют остатки COM кабеля. Но лучше для таких целей использовать гнезда под микросхемы, тогда подключения оптрона станет более удобным.

Питание схемы осуществляется с помощью старого USB шнура. В общем, схема работает исправно сразу, и не требует дополнительной наладки. Если горят оба светодиода, тогда оптрон можно считать рабочим.

У многих возникнет вопрос, а если пробит выход оптрона, тогда же тоже будут светиться оба светодиода! В таком случае яркость второго светодиода будет значительно выше, это визуально очень хорошо будет видно.

Описание, характеристики , Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон ) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе

PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли реле -RS триггера с фиксацией состояний, а во второй генератор периодических сигналов. И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431 Описание и проверка здесь

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара ( Оптрон ) PC817

Краткие характеристики:

Максимальное напряжение изоляции вход-выход5000 В
50 мАМаксимальная рассеиваемая на коллекторе мощность150 мВтМаксимальная пропускаемая частота80 кГц-30°C..+100°CТип корпусаDIP-4
  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 — сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую ;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

SCS- 8

Третий вариант схемы

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция:

Как видно из фото деталь развернута не по ключу.

Используя которую можно очень быстро проверить деталь. За свою практику ремонтов конечно не часто , но я сталкивался с неработающими оптопарами и раньше мне приходилось заморачиваться над проверкой детали когда иногда бывало заходил в тупик во время сложного ремонта.

Конечный вариант — все очень просто.

Похожие статьи по теме:

PC817 эксперименты с оптопарой

Оптрон PC817 в режиме тиристора или самая простая схема проверки.

Генератор на оптроне. На примере PC817.

Кому лень читать

Еще более простой способ проверки оптрона PC817

Понятно что использование китайского тестера для проверки оптопары не самый простой , точнее простой но не самый дешевый метод. Такой прибор не во всех есть в хозяйстве.

Поэтому предлагаю вашему вниманию более простой , а главное дешевый тестер оптронов.

Он состоит из двух кнопок , двух резисторов , светодиода и панельки ( сокета ) под микросхему.

Оптопара pc817 схема включения, характеристики и datasheet

Проверка мультиметром

Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры

Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность

Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Аналогично выполняется проверка стабилитрона мультиметром в режиме проверки диодов. В этом случае в прямом направлении на экране высветится падение напряжения в районе 400-600 мВ. В обратном либо I, левой части экрана либо .0L, либо какой-то другой знак который говорит о «бесконечности» в измерениях.

На рисунке снизу представлена методика проверки мультиметром.

Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.

Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Технология оптоэлектронных реле International Rectifier

Оптоэлектронное реле International Rectifier, структура которого представлена на рисунке 1, включает в себя три основных функциональных узла: управляющую цепь, матрицу фотогальванических ячеек и выходной ключ.

Рис. 1. Структурная схема оптоэлектронного реле

Управляющая цепь содержит светодиод, преобразующий протекающий через него ток в инфракрасное излучение. Инфракрасный свет, пройдя некоторое расстояние в корпусе реле, попадает на матрицу фотогальванических ячеек, каждая из которых преобразует попадающий на нее свет в напряжение, которое, в свою очередь, управляет элементом, замыкающим выходной ключ.

Если ток через цепь управления не протекает, то светодиод не излучает свет, фотогальваническая матрица не формирует напряжение и выходной ключ размыкает цепь коммутации.

В оптореле переменного тока в качестве выходного ключа используется симистор. Характерной особенностью приборов данного типа является то, что размыкание выходного ключа происходит в тот момент, когда напряжение в коммутируемой цепи проходит через ноль. Поэтому применение реле на симисторах в цепях постоянного тока весьма затруднительно.

В оптореле постоянного тока в качестве выходного ключа используется одиночный биполярный или МОП-транзистор.

В универсальных оптореле (коммутирующих как постоянный, так и переменный ток) в качестве ключа используется пара МОП- или IGBT-транзисторов, соединенных истоками.

В линейке International Rectifier отсутствуют оптоэлектронные реле на симисторах. В отличие от симисторных, ключи на МОП-транзисторах характеризуются практически линейной зависимостью падения напряжения на открытом ключе от тока в нагрузке (IL) или, другими словами, постоянством сопротивления замкнутого ключа. В качестве выходного ключа используются или полевые МОП-транзисторы, выполненные по технологии HEXFET (запатентованной International Rectifier), или биполярные транзисторы с изолированным затвором — IGBT. Сдвоенные МОП-транзисторы, используемые в универсальных оптореле, получили название BOSFET.

Как проверить исправность резистора мультиметром

Для начала нужно узнать номинальные данные элемента. Если надпись на нем читается, то необходимо воспользоваться ею. Если нет – нужно обратиться к принципиальной схеме устройства. На ней указывается порядковый номер детали и ее номинальные данные. Например, надпись «R22» на печатной плате означает, что это резистор (R), и порядковый номер его среди резисторов принципиальной схемы – 22-й. Элементы на схеме нумеруют слева направо и сверху вниз, так удобнее искать необходимую деталь. Найдя номер R22 рядом с условным обозначением резистора, мы найдем под ним его номинальные данные.

Иногда параметры деталей указываются не на схеме, а на спецификации к ней. Она выполняется в виде таблицы с перечнем всех элементов устройства. В одной из граф указываются порядковые номера по схеме, в другой – номинальные данные.

Теперь, когда известна величина, на которую можно ориентироваться, можно приступать к проверке резистора мультиметром. Переводим прибор в режим измерения сопротивления, выбрав предел таким образом, чтобы ожидаемая величина была меньше его. Перед измерением неплохо проверить исправность проводов мультиметра: при замыкании их накоротко прибор должен показать ноль.

При измерениях величин, равных десяткам килом и выше, необходимо исключить влияние на результаты сопротивления тела человека. Оно тоже имеет определенное значение, и прибор его покажет. Если держать одновременно обеими руками щупы прибора и проверяемый элемент за выводы, то получатся искаженные результаты. Лучше проводить измерение, положив элемент на стол, или держать один из выводов с подключенным щупом в руке, а другим щупом прикасаться к противоположному контакту на весу.

Получив значение сопротивления, нужно сравнить его с номинальным, учитывая величину допуска. Если данные измерений не попадают в этот диапазон, элемент неисправен. Обычно при выходе из строя резистора мультиметр показывает обрыв (сопротивление равно бесконечности). Для того, чтобы в этом окончательно убедиться и исключить ошибки, переключайте пределы измерения прибора до максимального, повторяя измерения. Если он все-таки выдаст вам значение, отличное от бесконечности, то перепроверьте еще раз, те ли номинальные данные имеет проверяемая деталь и не ошиблись ли вы с коэффициентом (например, не заметили приставку «кило»).

Если сопротивление детали в норме, а сомнения все же остались или вы зашли в тупик в процессе поиска неисправности, попробуйте поставить такой же новый, заведомо исправный резистор на место сомнительного элемента. Иногда обрывы происходят при определенном положении выводов детали, и в процессе измерения она может показаться исправной. Такой дефект редко, но встречается. Если при установке нового резистора от него пойдет легкий дымок, и он начнет обугливаться, немедленно отключите питание устройства. Если вы не ошиблись с номиналом, то дело не в резисторе, ищите неисправную деталь в его цепи или где-то рядом.

Оцените статью:

Как проверить оптопару в блоке питания

Рассуждения весьма общие, но вопросы появляются достаточно часто, поэтому – почему бы и нет, почему бы не затронуть самые вершки?

Берем очень условный кусочек схемы с очень условной оптопарой, но, тем не менее, в большинстве случаев эта схема или соответствует действительности, или близка к ней:

Может быть питание не 5 вольт, а 3,3 (что последнее время чаще), может быть другого типа оптопара – что уже реже.

Тем не менее, рассмотрим то, что есть.

Имеем: оптопара DA, разъем, через который она соединена со схемой XT, балластное сопротивление светодиода R1 и резистор оттяжки сигнала на питание R2. Ну, и некуда деваться – землю и питание.

Питание в большинстве случаев сейчас 3,3 В, но особой роли в данном случае это не играет.

В этом случае мы имеем на светодиоде –напряжение порядка 1,2-2 В, остальное упадет на балластном резисторе R1.

На коллекторе фототранзистора – в зависимости от того, освещен его переход или нет, то бишь – открыта шторка или закрыта:

    Шторка открыта – имеем напряжение, близкое к 0, на практике – не больше 0,2-0,5 В.

Шторка закрыта – имеем 5 В через сопротивление оттяжки R2.

Почему может не работать? А почему угодно. Наиболее слабое место – разъем.

Допустим, обрыв верхнего по рисунку контакта – не будет тока через светодиод (и падения напряжения на нем – тоже, что сразу будет видно любым, даже самым дешевым тестером), фототранзистор будет всегда закрыт, на его коллекторе будет всегда напряжение +5 (+3,3) В, как ни дергай флажком.

То же самое – при обрыве в схеме R1, но редко…

Обрыв среднего по рисунку контакта – на коллекторе фототранзистора ничего не будет. Хоть он закрыт – тогда вообще контакт в воздухе, хоть открыт – тока через него все равно нет, поэтому он тоже висит в воздухе, да даже если и будет что то чеорз какие то утечки – грязи в принтерах и копирах обычно хватает – все равно на коллекторе фототранзистора будет ноль.

Вне зависимости от положения шторки.

Обрыв нижнего по схеме контакта – нет земли на оптроне.

На двух остальных контактах оптрона будет +5 (+3,3) В – на светодиоде мы просто будем измерять напряжение питания через резистор, номинал у него небольшой, поэтому питание и увидим, на коллекторе фототрнзистора – то же самое: даже если он открыт, цепи нет – провод оборван.

Более редкая штука, но все таки иногда случающаяся – неисправность оптопары.

Если напряжение на светодиоде в норме – то есть в пределах 1,2-2 В, то он, скорее всего, исправен.

При нулевом напряжении – пробит (не встречал), при напряжении питания – в обрыве.

Неисправен фототранзистор – или пробит (напряжение на коллекторе – 0), или в обрыве – напряжение равно питанию.

При грязном зазоре оптопары – там есть щель как у светодиода, так и фототранзистора – напряжение будет всегда, как при закрытом зазоре то есть равно (или близко) напряжению питания.

В принципе, если что не ясно или хочется дополнить и/или исправить – милости просим, написано все быстро, шустро, и не очень внимательно…

Мне кажется, что транзисторный оптрон PC817 самый распространенный хотя бы потому, что он стоит практически в каждом импульсном блоке питания для гальванической развязки цепи обратной связи.

Корпус достаточно компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, многие другие производители электронных компонентом выпускают аналоги. И при ремонте электронной аппаратуры можно наткнутся именно на аналог:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются его полные аналоги:

  • PC827 — сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

PC817 схема включения

Для PC817 схема включения стандартная как для любого транзисторного оптрона: на входе нужно ограничивать ток — например с помощью резистора, на выходетакже не стоит превышать ток.

Но дешевле использовать несколько PC817 вместо многоканального аналога.

PC817 характеристики

  • Прямой ток — 50 мА;
  • Пиковый прямой ток — 1 А;
  • Обратное напряжение — 6 В;
  • Рассеяние мощности — 70 мВт.
  • Напряжение коллектор-эмиттер — 35 В;
  • Напряжение эмиттер-коллектор — 6 В;
  • Ток коллектора — 50 мА;
  • Мощность рассеяния коллектора — 150 мВт.

Есть ещё важный параметр — коэффициент передачи по току (CTR) измеряемый в %. В оптопаре PC817 он определяется буквой после основного кода, также как и большинстве других оптопар и других полупроводниковых приборов.

№ моделиМетка коэффициентаCTR (%)
PC817AA80 — 160
PC817BB130 — 260
PC817CC200 — 400
PC817DD300 — 600
PC8*7ABA или B80 — 260
PC8*7BCB или C130 — 400
PC8*7CDC или D200 — 600
PC8*7ACA,B или C80 — 400
PC8*7BDB,C или D130 — 600
PC8*7ADA,B,C или D80 — 600
PC8*7A,B,C,D или без метки50 — 600

тестер оптопар

На многих форумах можно прочитать, что раз деталь такая дешевая, то и проверять её не стоит, а просто меняем и все. У меня против этого мнения следующие доводы: все равно нужно узнать сгорела оптопара или нет, потому что это поможет понять, что ещё могло сгореть, да и новый оптрон может оказаться бракованным.
Проверить оптопару можно прозвонив тестером светодиод и проверить на короткое замыкание транзистор, потом пропустить через светодиод ток и посмотреть, что транзистор открылся.

Но проще всего соорудить простейший тестер оптопар, для него понадобятся только:

  • Два светодиода,
  • Две кнопки,
  • Два резистора.

Светодиоды подойдут на ток 5-20 мА и напряжение около 2-х вольт, R1, R2 — 300 Ом.

Питается тестер от USB порта получая от него 5 В, но можно питать тестер и от 3-х или 4-х батареек AA. Можно питать и от батарейки 9 В или 12 В или источника питания, вот только тогда нужно будет пересчитать сопротивления резисторов R1, R2.

42 thoughts on “ Оптрон PC817 схема включения, характеристики ”

PC817 datasheet на русском.

а принцип работы?

Принцип работы оптрона не сложный: когда через встроенный светодиод пропускаем электрический ток, светодиод начинает светиться, свет попадает на встроенный фототранзистор и открывает его.
Получается когда ток протекает через входной диод, то и выходной транзистор открыт. Ну и противоположный случай, когда ток через входной диод не протекает, то и выходной транзистор закрыт.
Ну и изюмика оптических приборов, в том что с помощью них можно гальванически развязать развязать части электрической схемы.

Ну, не только в импульсных блоках питания. Оптрон разрабатывался для электрической рязвязки силовых и управляющих цепей. Поэтому наибольшее распространение получил в промышленной автоматике. Не встречал ни одного автоматического станка (а перевидал много), где бы их не было. В основном попадались Сименсовские, практически во всех европейских. Реже — NEC, во всех японских.
Но и в любительской практике применение можно найти, было бы желание, ведь вещь хорошая и полезная.

Оптрон PC817 в основном используется для передачи аналоговых сигналов, а вот для логических используют PC3H7.

Биполярные транзисторы (фото в том числе), из-за крутизны и начальной нелинейности характеристик, только и хороши для обработки дискретных, логических или импульсных сигналов. Как ключи — они идеальны, а вот аналоговые сигналы… Для хорошей работы с аналоговыми сигналами лучше использовать их униполярных братьев. Особенно К-МОП, с изолированным затвором и высоким входным сопротивлением. Помимо линейных выходных характеристик, они еще и на форму входного, слабого сигнала не оказывают влияния.

Тестер для оптопар актуален для промышленных масштабов. В домашних условиях я использую два тестера. PC817 хорошо использовать для гальванической развязки, в слаботочных цепях, например при работе с контролерами.

Тестер оптопар актуален если постоянно заниматься ремонтом: для пассивных компонентов, диодов и транзисторов есть тестер Маркуса.

Два тестера не у всех есть, проще собрать эту схему.

Специализированные приставки для проверки элементов для меня не удобны. Я рекомендую приставку к осцилографу, которая позволяет смотреть параметры и оценивать их номинал. Можно смотреть ВАХ диодов, транзисторов. Оценивать номинал резисторов и конденсаторов. Схема проста. В старых журналов радио. Просьба к автору этих статей рассмотреть и описать эту приставку. Считаю будет пользоваться статья спросом.

Знаю такую приставку: характериограф транзисторов. Очень хорошее устройство для изучения принципов работы полупроводниковых приборов. Например можно подогреть транзистор и посмотреть как меняется напряжение пробоя или плывет ВАХ.
Кстати такие приставки имеют и промышленные аналоги, которые используются для контроля на производствах полупроводниковых приборов.

А любая приставка к осциллографу, все-равно будет специализированной ) Это хороший осциллограф — вещь универсальная. Если два луча и максимально-широкий диапазон измерений. Промышленные характериографы тоже довольно специализированы, кстати. Поэтому, на любом предприятии, имеется отдел метрологии, а там, в лаборатории… сказочное оснащение рабочих мест, всеми видами приборов, по несколько модификаций каждого. Я к тому, что Универсального Измерительного прибора, как такового, не существует пока.

Не могу не согласится. По прибору на каждый тип компонентов слишком круто для домашней лаборатории. Но характериограф лучше делать как приставку к компьютеру, возможности шире.

На днях чинил зарядное устройство от Нокии, в него попала вода и понижающий трансформатор стал пробивать током. Выходной каскад на 13001 сгорел, но PC817 на удивление остался цел и невредим. Оптроны я тестирую на исправность обычным советским тестером, включенном в режим измерения сопротивлений, и регулируемым блоком питания на 12 вольт с нагрузочным резистором около килоома включенном в цепь светодиода оптрона. Пока такой метод ни разу не подводил.

Я правильно понимаю, что при подачи напряжения 1.3В на вход 1-2 то на выходе 3-4 мы получим сопротивление 0 Ом ? Или я не верно уловил принцип работы этого оптрона ?

Грубо говоря да. Корректней: при пропускании тока через светодиод (1-2), транзистор открывается (3-4).
Обычно вход оптопары подключают к источнику напряжения через токоограничивающий резистор, при этом на нем и падают эти 1,3В. А на выходе оптопары биполярный транзистор и выходная вольт-амперная характеристика нелинейна, поэтому некорректно говрить о сопротивлении. Правильнее говрить что падение напряжения коллектор-эмиттер снижается примерно до 0,6В.

Фактически данная оптопара это два отдельных полупроводниковых прибора: светодиод и транзистор которые поместили в один корпус. И если разобраться по вольт-амперным характеристикам как работает светодиод и биполярный транзистор, то будет легко понять как работает оптрон.

на излучающем диоде 1.1 вольт
падение напряжения коллектор-эмиттер у насыщеного транзистора jоптопары может быть и 50 миллиВольт

Просьба пояснить по подробней про коэффициент передачи по току (CTR) измеряемый в %.Если я правильно понял то это когда светодиод работает в начале ВАХ. и транзистор не полностью открывается.

Не кто не подскажет название опто пары или фототранзистора на 8 ампер ( коллекторный ток ).

8 амперные если и есть, то уже промышленного применения. Будет проще найти и дешевле сделать схему из обычного оптрона и биполярного или MosFET транзистора.

Если оптрон не для схемы, а грубо говоря коммутировать чайник, то стоит посмотреть на оптореле (твердотельные реле): solid-state-relays.
Выбирайте по параметрам, кроме тока ещё нужно напряжение знать и то в какой схеме будет работать опторазвязка.

Ищи оптронв серии ТО-10 итли ТО12,5. Цифра указывает максимальный ток. Вторая цифра в обозначении-обратное напряжение. В Митино такого добра навалом, есть и в «Чип и Дип»

Объясните не грамотному. Нажимаю кнопку закрыто — ни чего не горит. Кнопку открыто — горят оба диода. Это значит исправный? или как?

Для исправного (и правильно включенного) отптрона в тестере оптронов, при нажатии кнопки «Открыт», должен гореть только светодиод «Открыт». А при нажатии кнопки «Закрыт», должен гореть только светодиод «Закрыт».

Ваш случай какой-то странный, не понимаю как так может работать эта схема. Вы точно не перепутали полярность светодиода HL1?

Да нет, полярности он не перепутал и два светодиода могут гореть в «полнакала» если нажать кнопку S1 при неисправном оптроне или отсутствии такового. Это обусловлено небольшим сопротивлением R2. Но, в таком случае, при нажатии S2 — HL2 тоже должен светится, причем ярко. А раз он не светится, значит шунтируется чем-то, вставленным в проверочные клемы… причем, чем-то, что отпирается управляющим током. Что это за «инвертирующий оптрон» сказать сложно, я таких не знаю — ни исправных, ни неисправных.

Ваш тестер оптопар не работает!
Фуфло.
Попробуйте из схемы изъять оптопару и светодиоды как горели при нажатии кнопок тка и будут гореть.

TLP781 вот такие ещё попадаются

Подскажите! что это? По форме:стоячий вертикально,прямоугольный,как транзистор,но имеет 4 ножки.Также в корпусе ,в верхней части,отверстие для радиатора.Подписан KLA78.Это даташит,но что и где его найти?поисковик интернета выдаёт информацию на иностр.языках.

Скорее всего аналог 78R05, продвинутая версия обычного 7805 с отдельной ногой для включения и пониженной до 1V минимальной разницей между входом и выходом.

как в схеме проверить оптрон?

Я не совсем понял эту радость вокруг оптронов. Почему бы не использовать MOSFET? Судя по функциональности, это одно и то же, только через 3 ножки.

в случае с MOSFET не будет гальванической развязки

Здравствуйте! EL817C- CT817C какая разница! И подойдет ли EL817C на замену CT817C !

Здравствуйте ЕL817C И CT817C одно и тоже….

Здравствуйте, не очень понял про коэффициент передачи по току (CTR).
Можно ли заменить 817В на 817С ?

Чем больше этот коэффициент, тем больший выходной ток мы получим, при одинаковом входном.
Про замену наверняка ничего сказать нельзя, надо смотреть схему, пробовать менять, возможно придется корректировать нагрузочный резистор.

что за пара pc890 ?

какой мощности резисторы ставить?

Оптроны предназначены для гальванической развязки. Это их назначение, функция и смысл. Но о параметрах того, для чего они предназначены, никто ни гу-гу…

Для подачи напряжения на выводы 1-2 оптопары РС817В есть 5 вольт. Какой по номиналу нужно ставить ограничительный резистор, чтобы не спалить светодиод?

А подскажите плиз 🙏 на кой он нужен в блоке питания? Для того чтобы при высокой нагрузке отключать блок? Или как не могу понять принцип работы оптотрона ясен но для чего он там?

Не только для изолирования высокой стороны от низкой он предназначен. Но и чтобы совместить два модуля с разной полярность по питанию и др.

Оптопара проверяется так: ВЫПАЯТЬ ОБЯЗ . !
1. там где точка (анод светодиода) ставишь + мультиметра (в режиме проверка диодов)
Там где ее нет(катод светодиода) – мультика
На экране от 700ом до примерно 1300ом может быть Это нормально

Схемы приборов для проверки оптопар. Оптопара PC817 принцип работы и очень простая проверка

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300…500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200…500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Потребовался простой способ проверки оптронов. Не часто я с ними «общаюсь», но бывают моменты, когда надо определить — виноват ли оптрон?.. Для этих целей сделал очень простой пробник. «Конструкция выходного часа».

Внешний вид пробника:

Схема данного пробника очень проста:

Теория:
Оптроны(оптопары) стоят практически в каждом импульсном блоке питания для гальванической развязки цепи обратной связи. В составе оптрона находятся обычный светодиод и фототранзистор. Упрощенно говоря, это, своего рода, маломощное электронное реле, с контактами на замыкание.

Принцип работы оптрона: Когда через встроенный светодиод проходит электрический ток, светодиод (в оптроне) начинает светиться, свет попадает на встроенный фототранзистор и открывает его.

Оптроны часто выпускается в корпусе Dip
Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Суть проверки: Фототранзистор, при попадании на него света от внутреннего светодиода,
переходит в открытое состояние, а сопротивление его — резко уменьшится (с очень большого сопротивления, до примерно 30-50 Ом.).

Практика:
Единственным минусом данного пробника является то, что для проверки необходимо выпаять оптрон и установить в держатель согласно ключу(у меня роль напоминалки является кнопка тестирования — она смещена в сторону, и ключ оптрона должен смотреть на кнопку).
Далее, при нажатии кнопки, (если оптрон цел), оба светодиода загорятся: Правый будет сигнализировать о том, что светодиод оптрона рабочий(цепь не разорвана), а левый сигнализировать о работоспособности фототранзистора(цепь не разорвана).


(Держатель у меня был только DIP-6 и пришлось залить неиспользуемые контакты термоклеем.)

Для окончательного тестирования, необходимо перевернуть оптрон «не по ключу» и проверить уже в таком виде — оба светодиода не должны гореть. Если же горят оба или один из них, то это говорит нам о коротком замыкании в оптроне.

Рекомендую такой пробник в качестве первого, для начинающих радиолюбителей, которым необходимо проверять оптроны раз в полгода, год)
Существуют и более современные схемы с логикой и сигнализацией о «выходе из параметров», но такие нужны для очень узкого круга людей.

Советую посмотреть у себя в «закромах», так выйдет дешевле, да и время на ожидание доставки не потратите. Можно выпаять из плат.

Добавить в избранное Понравилось +73 +105

ЖК телевизоров, в маленькой частной мастерской. Тема эта достаточно рентабельная, и если заниматься преимущественно блоками питания и инверторами, не слишком сложная. Как известно, питается ЖК телевизор, как практически и вся современная электронная техника, от импульсного блока питания. Последний же, содержит в своем составе деталь, под названием . Деталь эта предназначена для гальванической развязки цепей, что часто бывает необходимо в целях безопасности для работы схемы устройства. В составе этой детали находятся, обычные светодиод и фототранзистор. Как же оптрон работает? Упрощенно говоря, это можно описать, как что-то типа своего рода маломощного , с контактами на замыкание. Далее приведена схема оптопары:

Схема оптопары

А вот тоже самое, но уже со странички официального даташита:

Распиновка оптопары

Ниже приведена информация из даташита, в более полном варианте:

Корпус оптопары

Оптроны часто выпускается в корпусе Dip, по крайней мере те, которые используются в импульсных блоках питания, и имеют 4 ножки.

Оптопара на фото

Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.

Проверка оптрона

Как можно проверить оптрон? Например так, как на следующей схеме:

Схема проверки оптрона

В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом. Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары. Пробежался по схемам в инете, и нашел следующее:

Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:

Устройство для проверки оптопары с интернета

Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно — это же не наш метод:-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию:-).

Звуковой пробник — схема

У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.

Простой звуковой пробник

Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.

Внутренности и детали

Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.

Контактные пластины из текстолита

Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.

Прищепка от гарнитуры

Дело было за малым, подпаять провода. и закрепить пластинки на клипсе с помощью термоклея. Получилось снова колхозно, как без этого), но на удивление крепко.

Пинцет для измерения самодельный

Провода были взяты, от разъемов подключения к материнской плате, корпусных кнопок системного блока, и светодиодов индикации. Единственный нюанс, на схеме у меня на один из щупов от мультиметра, подключаемых к пробнику посажена земля, сделайте ее контакт, если будете повторять, обязательно напротив земли питания светодиода оптрона, во избежания очень быстрого разряда батареи, при замыкании плюса питания, на минус батареи. Схемку распиновки пинцета, рисовать думаю будет лишнее, все понятно и так без труда.

Окончательный вид пробника оптронов

Так выглядит готовое устройство, причем сохранившее свой функционал звукового пробника, путем подключения через стандартные гнезда, щупов от мультиметра. Первые испытания показали, что 40 ом в открытом состоянии фототранзистора между выводами эмиттер — коллектор, для такого пробника, несколько многовато. Звук пробника был приглушен, и светодиод светил не очень ярко. Хотя для индикации работоспособности оптрона, этого было уже достаточно. Но ведь мы к полумерам не привыкли). В свое время собирал расширенный вариант, схемы этого звукового пробника, где обеспечено измерение при сопротивлении между щупами, до 650 Ом. Схему расширенного варианта привожу ниже:

Схема 2 — звуковой пробник

Данная схема отличается от оригинала, только наличием еще одного транзистора, и резистора в его базовой цепи. Печатную плату расширенной версии пробника, привел на рисунке ниже, она будут прикреплена в архиве .

Печатная плата на звуковой пробник

Данный пробник показал себя при проверке, достаточно удобным в работе, даже в таком, как есть варианте, после проведения на днях апгрейда, недостаток с тихим звучанием, и тусклым свечением светодиода, наверняка будет устранен. Всем удачных ремонтов! AKV .

Обсудить статью ПРОБНИК ДЛЯ ПРОВЕРКИ ОПТОПАР

Тестер для проверки оптопар

Выход из строя оптопары — ситуация хоть и редкая, но случающаяся. Поэтому, распаивая на запчасти телевизор, не будет лишним проверить PC817 на исправность, чтобы не искать потом причину, по которой свежеспаянный блок питания не работает. Можно также проверить пришедшие с Aliexpress оптроны, причём не только на брак, но и на соответствие параметрам. Помимо пустышек, могут встретиться экземпляры с перевёрнутой маркировкой, а более быстрые оптопары на деле могут оказаться медленными.

Описываемое здесь устройство поможет определить как исправность распространённых оптронов PC817, 4N3x, 6N135-6N137, так и их скорость. Оно выполнено на микроконтроллере ATMEGA48, который может быть заменён на ATMEGA88. Проверяемые детали можно подключать и отключать прямо во включенный тестер. Результат проверки отображается светодиодами. Светодиод ERROR светится при отсутствии подключенных оптронов или их неисправности. Если оптрон, будучи установленным в своё гнездо, окажется исправным, то загорится соответствующий ему светодиод OK. Одновременно с этим загорится один или несколько светодиодов TIME, соответствующих скорости. Так, для самого медленного, PC817, будет гореть только один светодиод — TIME PC817, соответствующий его скорости. Для быстрых 6N137 будут светиться все 4 светодиода скорости. Если это не так, то оптрон не соответствует данному параметру. Значения шкалы скорости PC817 — 4N3x — 6N135 — 6N137 соотносятся как 1:10:100:900.

Схема тестера для проверки оптопар очень простая:


нажми для увеличения
Мы развели печатную плату под питание через micro-USB разъём. Для проверяемых деталей можно установить цанговые или обычные DIP-панельки. За неимением таковых мы установили просто цанги.


Фьюзы микроконтроллера для прошивки: EXT =$FF, HIGH=$CD, LOW =$E2.

Печатная плата (Eagle) + прошивка (hex).

Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 — сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция.

Как проверить микросхему на работоспособность мультиметром не выпаивая

Статья для начинающих радиолюбителей. В ней приводятся примеры проверки основных радиодеталей, используемых в радиоэлектронной аппаратуре (резисторы, конденсаторы, трансформаторы, катушки индуктивности, дроссели, диоды и транзисторы) с помощью мультиметра или обычного стрелочного омметра. Резисторы Постоянный резистор проверяется мультиметром, включенным в режим омметра. Полученный результат надо сравнить с номинальным значением сопротивления, указанным на корпусе резистора и на принципиальной […]

Способы проверки

Существует несколько способов, позволяющих проверить микросхему на работоспособность.

Внешний осмотр

Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.

Проверка работоспособности с помощью мультиметра

Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.

Выявление нарушений в работе выходов

Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.

Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.

Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.

Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.

Способы проверки

Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.

Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:

  1. Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
  2. Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
  3. Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.

Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.

Влияние разновидности микросхем

Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.

Например:

  1. Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
  2. Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
  3. Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.

Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.

Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.

Работоспособность транзисторов

Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:

  1. Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
  2. Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
  3. Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.

Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.

Конденсаторы, резисторы и диоды

Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.

Чтобы узнать, работает ли резистор схемы, необходимо определить его сопротивление. Значение этой характеристики должно быть больше нуля, однако не являться бесконечно большим. Если при проверке на дисплее прибора отображается не ноль и не бесконечность, значит, резистор работает корректно.

Не отличается особой сложностью и процесс проверки диодов. Сначала нужно определить сопротивление между катодом и анодом в одной последовательности, а затем, поменяв местоположение черного и красного щупов прибора, в другой. Об исправности диода будет говорить стремление отображаемого на экране числа к бесконечности в одном из этих двух случаев и нахождение его на отметке в несколько единиц — в другом.

Индуктивность, тиристор и стабилитрон

Проверяя микросхему на наличие неисправностей, возможно, придется также использовать мультиметр на катушке с током. Если где-то ее провод оборван, то прибор обязательно даст об этом знать. Главное, конечно, правильно его применить.

Все, что необходимо сделать для проверки катушки — замерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не каждый из имеющихся сегодня в продаже мультиметров может проверять индуктивность. Если нужно определить, является ли исправным такой элемент микросхемы, как тиристор, то следует выполнить следующие действия:

  1. Сначала соединить красный щуп с анодом, а черный, соответственно, с катодом. Сразу после этого на экране прибора появится информация о том, что сопротивление стремится к бесконечности.
  2. Выполнить соединение управляющего электрода с анодом и смотреть за тем, как значение сопротивления будет падать от бесконечности до нескольких единиц.
  3. Как только процесс падения завершится, можно отсоединять друг от друга анод и электрод. В результате этого отображаемое на экране мультиметра сопротивление должно остаться прежним, то есть равным нескольким Ом.

Если при проверке все будет именно так, значит, тиристор работает правильно, никаких неисправностей у него нет.

Чтобы проверить стабилитрон, нужно его анод соединить с резистором, а затем включить ток и постепенно поднимать его. На экране прибора должен отображаться постепенный рост напряжения. Через некоторое время этот показатель останавливается в какой-то точке и прекращает увеличиваться, даже если проверяющий по-прежнему увеличивает его посредством блока питания. Если рост напряжения прекратился, значит, проверяемый элемент микросхемы работает правильно.

Проверка микросхемы на исправность — это процесс, который требует серьезного подхода. Иногда можно обойтись без специального прибора и попробовать обнаружить дефекты визуально, используя для этого, например, увеличительное стекло.

Неисправности стабилизаторов

Наиболее важными характеристиками стабилизаторов, которые подлежат контролю, являются номинальное входное и выходное напряжение, ток нагрузки, степень стабилизации, величина пульсации, температура внутренних компонентов. Для полноценной диагностики этих параметров необходимо специальное оборудование. Особенно сложным считается тестирование устройств на симисторных ключах. Оно требует наличия точной схемы и специализированных измерительных приборов, включая осциллограф.

Рассмотрим некоторые распространенные проблемы стабилизаторов:

  • В релейных устройствах чаще всего выходят из строя реле, которые отвечают за переключение обмоток трансформатора. Также иногда перегорает катушка.
  • Перегревается трансформатор без серьезной нагрузки. Эта проблема возникает из-за межвиткового короткого замыкания или замыкания в переключателях.
  • Перегрев сервоприводного стабилизатора. Он может происходить вследствие замыкания соседних витков из-за загрязнения контактных площадок. Чтобы не допустить этого, устройства необходимо периодически разбирать и чистить.
  • Перегорание одного из электронных компонентов. Оно может происходить из-за замыканий, перегрузок, чрезмерно высокой температуры.

П О П У Л Я Р Н О Е:
  • Цветомузыка для начинающих

Простая цветомузыка своими руками

через LPT порт компьютера

Ранее мы рассматривали вариант цветомузыки «Бегущие огни» на одной недорогой логической микросхеме-счётчике К176ИЕ12. Ниже представлена простая цветомузыка для начинающих без микросхем и транзисторов. Она представляет из себя простейшую  конструкцию из светодиодов и резисторов,  соединенных последовательно.

Подробнее…

Болезнь стиральных машин или как почистить стиральную машину автомат.

К сожалению, ничто не вечно, и стиральные машины не являются исключением. В большинстве случаев они ломаются по причине образования накипи. Это самая большая болезнь стиральных машин. Однако, как и все, эта проблема также имеет своё решение, и если вы задаетесь вопросом о том, как почистить стиральную машину автомат, то данная статья для Вас. Подробнее…

Всё о косе

Большинство людей, содержащих скот в приусадебных хозяйствах пользуются ручной косой. Без основных, выработанных веками «крестьянских хитростей» пользования традиционным сельскохозяйственным орудием косой не обойтись и современному косарю. Подробнее…

Популярность: 22 996 просм.

PC817 характеристики

  • Прямой ток — 50 мА;
  • Пиковый прямой ток — 1 А;
  • Обратное напряжение — 6 В;
  • Рассеяние мощности — 70 мВт.
  • Напряжение коллектор-эмиттер — 35 В;
  • Напряжение эмиттер-коллектор — 6 В;
  • Ток коллектора — 50 мА;
  • Мощность рассеяния коллектора — 150 мВт.

Есть ещё важный параметр — коэффициент передачи по току (CTR) измеряемый в %. В оптопаре PC817 он определяется буквой после основного кода, также как и большинстве других оптопар и других полупроводниковых приборов.

№ моделиМетка коэффициентаCTR (%)
PC817AA80 — 160
PC817BB130 — 260
PC817CC200 — 400
PC817DD300 — 600
PC8*7ABA или B80 — 260
PC8*7BCB или C130 — 400
PC8*7CDC или D200 — 600
PC8*7ACA,B или C80 — 400
PC8*7BDB,C или D130 — 600
PC8*7ADA,B,C или D80 — 600
PC8*7A,B,C,D или без метки50 — 600

Что такое резистор и его основные признаки работоспособности

Цифровые мультиметры имеют много полезных функций. Одна из вещей, на которую способны цифровые мультиметры – это тестирование компонентов. Эта статья покажет вам, как использовать цифровой мультиметр для тестирования резистора.

Резисторы, как правило, представляют собой 2 клеммных компонента, основной целью которых является ограничение тока для других компонентов. Происходит падение напряжения между двумя клеммами и сопротивление можно рассчитать по закону Ома R = V / I; где R = сопротивление, V = напряжение и I = ток.

Виды встречающихся неисправностей

Чаще всего встречается такое:

  • ошибочная или неправильная маркировка резисторов
  • обрыв токоведущей поверхности резистора
  • отслоение металлического колпачка от поверхности резистивного слоя
  • обрыв цепи из-за чрезмерного температурного перегрева
  • окисление выводов резистора
  • короткое замыкание между выводами pезистоpа

Для того, чтобы диагностировать и предупредить их и используется мультиметр.

Блок

(Как правило, блок — это простая схема, часто из одной микросхемы с обвязкой)

  1. Правильность прихода линий интерфейсов
    • UART Rx-Tx — перекрещено у “ведомых” (Эта легендарная ошибка заслужила отдельной строки, хотя в пункте проверяются все интерфейсы)
  2. Правильность подачи питаний (Питание нужного номинала, земля приходит на землю, аналоговые питания к аналоговым и т.д.)
  3. Для любых микросхем — проверить по Datasheet: (Здесь чаще всего апеллируем к типовой схеме включения)
    • Назначение
    • FT (толерантность к 5В и другим напряжениям у ног контроллера)
    • Другое (плохой пункт)
  4. На каждом листе — перечень используемых питаний, максимальное потребление по ним (используется для обобщения требований к питаниям в устройстве)
  5. Обозначение классов цепей для выделения специфических мест (например, развязка)

тестер оптопар

На многих форумах можно прочитать, что раз деталь такая дешевая, то и проверять её не стоит, а просто меняем и все. У меня против этого мнения следующие доводы: все равно нужно узнать сгорела оптопара или нет, потому что это поможет понять, что ещё могло сгореть, да и новый оптрон может оказаться бракованным. Проверить оптопару можно прозвонив тестером светодиод и проверить на короткое замыкание транзистор, потом пропустить через светодиод ток и посмотреть, что транзистор открылся.

Но проще всего соорудить простейший тестер оптопар, для него понадобятся только:

  • Два светодиода,
  • Две кнопки,
  • Два резистора.

Светодиоды подойдут на ток 5-20 мА и напряжение около 2-х вольт, R1, R2 — 300 Ом.

Питается тестер от USB порта получая от него 5 В, но можно питать тестер и от 3-х или 4-х батареек AA. Можно питать и от батарейки 9 В или 12 В или источника питания, вот только тогда нужно будет пересчитать сопротивления резисторов R1, R2.

42 thoughts on “ Оптрон PC817 схема включения, характеристики ”

Как проверить оптрон — устройство для проверки оптрона

Для более удобной проверки оптрона можно использовать более интересную схему. Включает она в себя с минимум компонентов, а сборка ее занимает не более получаса.

Питание оптрона производиться через светодиод, который загорится, если исправный фотоизлучатель. Второй светодиод загорится, если исправный фотоприемник, через который течет ток к светодиоду.

Для наглядности второй вариант схемы был собран из элементов, которые были под руками. Роль подопытного играет оптопара PC817.

Роль гнезда для подключения оптрона выполняют остатки COM кабеля. Но лучше для таких целей использовать гнезда под микросхемы, тогда подключения оптрона станет более удобным.

Питание схемы осуществляется с помощью старого USB шнура. В общем, схема работает исправно сразу, и не требует дополнительной наладки. Если горят оба светодиода, тогда оптрон можно считать рабочим.

У многих возникнет вопрос, а если пробит выход оптрона, тогда же тоже будут светиться оба светодиода! В таком случае яркость второго светодиода будет значительно выше, это визуально очень хорошо будет видно.

Индуктивность и тиристоры

Проверка катушки на обрыв осуществляется замером ее сопротивления мультиметром. Элемент считается исправным, если сопротивление меньше бесконечности. Надо заметить, что не все мультиметры способны проверять индуктивность.

Проверка тиристора происходит следующим образом. Прикладываем красный щуп к аноду, а черный – к катоду. В окошке мультиметра должно отобразиться бесконечное сопротивление.

После этого управляющий электрод соединяем с анодом, наблюдая за падением сопротивления на дисплее мультиметра до сотен Ом. Управляющий электрод открепляем от анода – сопротивление тиристора не должно измениться. Так ведет себя полностью исправный тиристор.

Проверка посадочных мест

  1. Наличие списка новых (обновлённых) посадочных мест. При повторной проверке список должен быть новый. (Принцип тот же, что и для УГО)
  2. Сверка посадочного места с описанием в Datasheet
    • Порядок расположения выводов
    • Количество
    • Расстояния
    • Форма площадок
    • Шелкография 0.2, первая ножка круг толщина 0.5, диаметр 0.25 (оформление — это важно)
    • Наличие 3D модели, совпадение ножек, шелкографии с ней (3D модели позволяют дополнительно проверить правильность посадочного места, участвуют в проработке и проверке конструкции, помогают получить красивые рендеры плат)

Стабилитроны, шлейфы/разъемы

Для тестирования стабилитрона понадобится блок питания, резистор и мультиметр. Соединяем резистор с анодом стабилитрона, через блок питания подаем напряжение на резистор и катод стабилитрона, плавно поднимая его.

На дисплее мультиметра, подключенного к выводам стабилитрона, мы можем наблюдать плавный рост уровня напряжение. В определенный момент напряжение перестает расти, независимо от того, увеличиваем ли мы его блоком питания. Такой стабилитрон считается исправным.

Для проверки шлейфов необходимо прозвонить контакты мультиметром. Каждый контакт с одной стороны должен звониться с контактом с другой стороны в режиме «прозвонки». В случае если один и тот же контакт звонится сразу с несколькими – в шлейфе/разъеме короткое замыкание. Если не звонится ни с одним – обрыв.

Иногда неисправность элементов можно определить визуально. Для этого придется внимательно осмотреть микросхему под лупой. Наличие трещин, потемнений, нарушений контактов может говорить о поломке.

Правила проектирования

  1. Толщина слоя металлизации (В настройках стека всё должно соответствовать реальности)
  2. Соответствие правил проектирования технологическим нормам для выбранных толщин платы и металла (минимальные зазор/проводник, отверстия)
  3. Наличие специфических норм для классов цепей, выделенных на схеме (зазоры до высоких напряжений, минимальные толщины проводников и т.д.)
  4. Отступы от не металлизированных отверстий на внутренних слоях (отличаются от обычного зазора)
  5. Просмотреть все правила (Все правила просматриваются одно за другим, поиск всего необычного)
  6. DRC настройки (проверка, включены ли нужные проверки в DRC)
  7. DRC (Рецензент запускает DRC, при непрохождении — проверка прекращается)

Сигналы

(Этот блок описывает последовательность, да и то не полно)

  1. Clocks
  2. Дифф-пары
  3. Быстрые сигналы
  4. Общие

Введение оптопары и методика тестирования оптопары

Основное содержание этой статьи:

1. Описание оптрона

2.Как работает оптопара

3.Каковы функции оптрона

4. Какими методами можно проверить оптрон

5.Разработка оптопары

Описание оптопары

Фотоэлектрические продукты — незаменимое устройство в нашей современной жизни. Это приносит много удобств в нашу жизнь. Фотоэлектрические продукты нельзя нормально использовать без оптоэлектронных устройств.

Оптопары — довольно важное оптоэлектронное устройство. Jotrin Electronics расскажет вам, что такое оптрон

Оптопары (сокращенно OC) также известны как оптоизоляторы или оптопары.Это устройство, которое передает электрические сигналы через свет. Обычно излучатель света (инфракрасный светодиодный светодиод) и фоторецептор (светочувствительная полупроводниковая трубка) упаковываются в один и тот же корпус. Когда электрический сигнал подается на входной конец, светоизлучающее устройство излучает свет. После получения света светоприемное устройство генерирует световой ток, который течет с выходного конца, тем самым реализуя «электроопто-электрическое» преобразование.

Он может эффективно защитить схему и провод, так что оптический сигнал и электрический сигнал не мешают друг другу, и каждый выполняет свою работу.Это обеспечивает нормальную и упорядоченную работу блока питания и источника света. Оптопары имеют хорошую электрическую изоляцию и помехоустойчивость. Есть много типов оптопар, которые распространены в повседневной жизни, такие как фотодиоды, триоды, фоторезисторы и тиристоры с регулируемым светом. Это очень хорошие оптопары.

Как работает оптопара?

Оптопара использует свет как среду для передачи электрических сигналов.Он хорошо изолирует входные и выходные электрические сигналы, поэтому широко используется в различных схемах и в настоящее время стал одним из самых универсальных и универсальных оптоэлектронных устройств. Оптопары обычно состоят из трех частей: светового излучения, приема света и усиления сигнала.

В части излучения (источник света) света, управляемой постоянным током, переменным током или импульсным источником питания, светоизлучающий диод преобразует электрическую энергию в световую энергию, чтобы излучать свет определенной длины волны в условиях прямого напряжения, и часть усиления сигнала и источник света.

Излучаемый свет принимается фотодетектором и генерирует фототок. После дальнейшего усиления выход завершает электрооптико-электрическое преобразование, тем самым действуя как вход, выход и изоляция. Среди фотоприемников используется фотосенсор.

Обратное напряжение прикладывается к PN-переходу, и преобразование световой энергии в электрическую осуществляется по принципу большого обратного сопротивления при световом облучении.Поскольку вход и выход оптопары изолированы друг от друга, а передача электрического сигнала является однонаправленной, он обладает хорошей электрической изоляцией и защитой от помех. Следовательно, он может значительно улучшить отношение сигнал / шум как элемент развязки терминала в долгосрочной передаче информации. В компьютерной цифровой связи и управлении в реальном времени в качестве устройства интерфейса изоляции сигнала можно значительно повысить надежность работы компьютера. Поскольку вход оптопары представляет собой элемент с низким сопротивлением, работающий в текущем режиме, он обладает высокой способностью подавления синфазного сигнала.

Каковы функции оптопары?

Применение оптопары очень обширно. Jotrin Electronics Limited считает, что роль оптопары можно резюмировать в шести аспектах:

(1) Применение в логических схемах

Оптопара может представлять собой множество логических схем, поскольку характеристики защиты от помех и характеристики изоляции лучше, чем у транзистора, поэтому сформирована логическая схема, которая является более надежной.

(2) Применение в качестве твердотельного выключателя

В схеме переключения часто требуется, чтобы цепь управления и переключатель имели хорошую гальваническую развязку, чего трудно добиться для обычного электронного переключателя, но легко реализовать с помощью оптопары.

(3) Применение в цепи запуска

Оптопара используется в бистабильной выходной цепи.Поскольку светоизлучающие диоды могут быть соответственно подключены последовательно к двум схемам эмиттера, проблемы выхода и изоляции нагрузки могут быть эффективно решены.

(4) Применение в схемах импульсных усилителей

Оптопары используются в цифровых схемах для усиления импульсных сигналов.

(5) Применения в линейных цепях

Линейные оптопары используются в линейных цепях с высокой линейностью и отличной гальванической развязкой.

(6) Приложения для особых случаев

Оптопары также могут использоваться для управления высоким напряжением, замены трансформаторов, контактных реле, аналого-цифровых схем и многих других приложений.

Какие есть методы проверки оптопары?

Качество оптопары можно определить, измерив прямое и обратное сопротивление его внутреннего диода и триода. Jotrin Electronics Limited сообщит вам, что существуют следующие надежные методы обнаружения:

1.Метод сравнения

Удалите подозрительную оптопару, с помощью мультиметра измерьте значения прямого и обратного сопротивления ее внутреннего диода и транзистора, сравнив их с измеренным значением хорошего аналога оптопары. Если разница сопротивлений велика, оптрон будет поврежден.

2. Метод обнаружения цифрового мультиметра

Ниже в качестве примера показано обнаружение оптопары PC111, чтобы проиллюстрировать метод обнаружения цифрового мультиметра.Схема обнаружения показана на рисунке ниже. При тестировании подключите анод 1 и катод 2 диода оптопары к гнездам c и e hFE цифрового мультиметра.

В это время цифровой мультиметр следует поместить в блок NPN; затем оптопару следует подключить к коллектору фототранзистора. c 5-футовый мультиметр с подключенной стрелкой, черная настольная ручка, эмиттер e 4-футовая красная настольная ручка и шкала мультиметра стрелочного типа в R&T; 1к шестерня.Таким образом, состояние оптопары можно определить по углу отклонения стрелки мультиметра, который фактически является изменением фототока. Чем больше угол отклонения указателя вправо, тем выше эффективность фотоэлектрического преобразования оптопары, т. Е. Выше коэффициент передачи, и наоборот. Если руки не двигаются, оптрон поврежден.

3. Метод оценки фотоэлектрического эффекта

Мы по-прежнему берем в качестве примера обнаружение оптопары PC111, схема обнаружения показана на рисунке ниже.

При переводе мультиметра в положение электрического блока 1k две ручки стола соответственно подключаются к выходным клеммам 4 и 3 оптопары; затем используйте последовательно батарею 1,5 В и резистор 50-100 Ом, положительный вывод батареи Подключите вывод 1 PC111 и подключите отрицательный вывод к выводу 2 или положительный вывод к выводу 1. Наблюдая за отклонением подключенного указателя. к выходу мультиметра. Если стрелка качается, оптопара в порядке.Если он не раскачивается, оптопара повреждена. Чем больше угол поворота стрелки мультиметра, тем выше чувствительность фотоэлектрического преобразования.

Развитие оптопары

Оптопары имеют преимущества небольшого размера, длительного срока службы, сильной помехоустойчивости, изоляции между выходом и входом, односторонней передачи сигналов и т. Д., Они широко используются в цифровых схемах.Кроме того, уровень использования оптронов с каждым годом все еще резко увеличивается. Помимо самой оптопары, другой важной причиной является то, что в каждом программном контроллере используется от 20 до 30 или более оптронов. Оптопары имеют широкое рыночное пространство. Качество оптопары — проблема, которая больше всего беспокоит всех пользователей. Jotrin Electronics Limited предлагает современные программируемые источники питания, цифровые мультиметры и осциллографы. Он может точно измерять соотношение ввода-вывода оптопар, предоставляя вам больше высококачественных оптопар.

Как проверить оптрон — AntiMath

Оптопара или оптоизолятор — это устройство, которое содержит светодиод ( LED ) и фотодатчик (фотодетектор, такой как фоторезистор, фотодиод, фототранзистор и т. Д.). Назначение оптопары — передавать сигналы от одной цепи к другой, сохраняя при этом их гальваническую развязку.

Здесь я хочу показать вам, как проверить, работает ли оптрон. Поэтому для демонстрации я выбрал одну из наиболее часто используемых оптопар (PC123 — 4 контакта), но вы можете использовать тот же принцип для всех оптопар (примечание: сначала сверьтесь с таблицей данных).

Шаг 1

Используя схему справа, определите контакты; сначала анод и катод светодиода (в данном случае контакты 1 и 2 ), а затем с помощью омметра, установленного в области «X1 Ом», измерьте между контактами 1 и 2, и вы должны получить одно показание. в одну сторону и нет чтения в обратном (точно так же, как вы проверяете диод).Если вы получаете значение в любом случае или вообще не получаете значение, значит, проблема со светодиодом, и вам следует найти другую оптопару.

Шаг 2

Если светодиод исправен, то мы должны проверить фототранзистор, вы можете измерить его омметром, как светодиод между контактами 3 и 4 (эмиттер и коллектор), и вы должны получить высокое значение сопротивления в обоих направлениях, если фототранзистор исправен. хороший. Если вы вообще не получите показания, это, вероятно, связано с тем, что большинство фототранзисторов имеют такое высокое сопротивление между эмиттером и коллектором, что омметр не может измерить; в этом случае вы можете подключить два омметра последовательно, увеличив область измерения; … Хотя я думаю, что у большинства нет двух счетчиков, поэтому я рекомендую «эмпирический» метод, предполагая, что у вас есть источник питания с регулируемым постоянным током.

«Эмпирический» метод

Подключите омметр (X1 кОм или X10 кОм) между эмиттером и коллектором (3 и 4) следующим образом: красный щуп к коллектору и черный щуп к эмиттеру. Теперь подключите резистор на несколько сотен Ом (~ 300 Ом) последовательно с анодом светодиода, после этого включите источник питания и начните увеличивать напряжение с 0 до 2… 3 вольт, и вы должны увидеть на экране омметром, как уменьшается выходное сопротивление при увеличении входного напряжения и наоборот.

Что такое оптопара и как она работает

Меган Тунг

Оптопара (также называемая оптоизолятором) — это полупроводниковое устройство, которое позволяет передавать электрический сигнал между двумя изолированными цепями. В оптроне используются две части: светодиод, излучающий инфракрасный свет, и светочувствительное устройство, которое обнаруживает свет от светодиода. Обе части содержатся в черном ящике со контактами для подключения. Входная цепь принимает входящий сигнал, будь то сигнал переменного или постоянного тока, и использует сигнал для включения светодиода.

Фотодатчик — это выходная цепь, которая обнаруживает свет, и, в зависимости от типа выходной цепи, выход будет переменным или постоянным током. Сначала ток подается на оптопару, благодаря чему светодиод излучает инфракрасный свет, пропорциональный току, протекающему через устройство. Когда свет попадает на фотодатчик, проходит ток, и он включается. Когда ток, протекающий через светодиод, прерывается, ИК-луч отключается, в результате чего фотодатчик перестает проводить.

Существует четыре конфигурации оптопар, разница заключается в используемом светочувствительном устройстве.Фототранзистор и Photo-Darlington обычно используются в цепях постоянного тока, а Photo-SCR и Photo-TRIAC используются для управления цепями переменного тока. В оптопаре на фототранзисторе транзистор может быть либо PNP, либо NPN. Транзистор Дарлингтона представляет собой пару из двух транзисторов, в которой один транзистор управляет базой другого транзистора. Транзистор Дарлингтона обеспечивает высокий коэффициент усиления.

Термины оптопара и оптоизолятор часто используются как синонимы, но между ними есть небольшая разница.Отличительным фактором является ожидаемая разница напряжений между входом и выходом. Оптопара используется для передачи аналоговой или цифровой информации между цепями при сохранении гальванической развязки при потенциалах до 5000 вольт. Оптоизолятор используется для передачи аналоговой или цифровой информации между цепями, где разность потенциалов превышает 5000 вольт.

Оптопара может эффективно:


  • Устранение электрических помех из сигналов
  • Изолируйте низковольтные устройства от высоковольтных цепей.Устройство способно избежать сбоев из-за скачков напряжения (например, из-за передачи радиочастоты, ударов молнии и скачков напряжения в источнике питания)
  • Разрешить использование небольших цифровых сигналов для управления более высокими напряжениями переменного тока.

Меган Тунг — летний стажер в Jameco Electronics , посещает Калифорнийский университет в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Фото: учебные пособия по электронике и Autodesk.

Зачем использовать оптопары в электронике?

Оптопары не только защищают чувствительные схемы, но и позволяют инженеру разрабатывать различные аппаратные приложения. Оптопары позволяют избежать больших затрат на замену компонентов, защищая их. Однако оптопары сложнее предохранителей. Оптопары также позволяют удобно управлять соединением между двумя цепями, подключая и отключая их через оптрон. Оптопары широко используются в электронике, электротехнике и системах связи.

Как защитить чувствительные цепи от высокого напряжения

Оптопары

часто используются для подавления обратной ЭДС, шума и электрических скачков, попадающих в цепь MCU. Оптопары создают безопасное соединение между высоковольтным оборудованием и микроконтроллерами с помощью полной электрической изоляции. В случае, если цепь высокого напряжения вызывает скачок напряжения, скачок напряжения сохраняется только на выходной стороне оптопары, а цепь на входной стороне остается безопасной и незатронутой, поскольку обе стороны электрически изолированы.Оптопары также называют фотодиодами, оптоизоляторами, оптопарами и оптическими изоляторами.

Стандартная оптопара, такая как PC817, поддерживает напряжение изоляции входа-выхода до 5 кВ. [i] Большинство электронных компонентов работают при напряжении ниже 10 В, и если в систему попадает импульс молнии, он может вызвать напряжение до 10 кВ, чего достаточно, чтобы сразу поджечь электронные компоненты. Некоторые коммерческие оптопары могут выдерживать до 10 кВ изоляционного напряжения входа-выхода, которое используется для защиты от ударов молнии.[ii]

Замена сгоревших компонентов на печатной плате (PCB) может быть очень неудобной. Однако оптопары можно использовать для защиты дорогих компонентов. В случае неисправности оптопара сгорает и остальная часть цепи не пострадает. Оптопары не припаиваются непосредственно к цепи; вместо этого они помещаются в гнездо для интегрированного чипа (IC), поэтому их всегда можно легко заменить в случае сгорания.

Для подробного объяснения внутренней работы оптопары и того, как создать свою собственную оптопару с использованием светодиода и фотодиода, см. Предыдущий пост под названием «Защита микроконтроллера: создайте свой собственный оптрон».

Почему уровни земли на входе и выходе оптопары не соединены?

Цепи со стороны входа / выхода оптопары должны быть защищены от возможных рисков с обеих сторон. Хотя термин «напряжение на уровне земли» звучит так, как будто оно всегда равно 0 В, это не всегда так. Уровень земли источника 5 В и источника 220 В переменного тока может сильно отличаться; напряжение заземления, наблюдаемое источником 5 В, не обязательно должно быть таким же, как напряжение 220 В переменного тока.В таких случаях подключение заземляющих плоскостей от разных источников может быть опасным. Даже если напряжение 220 В переменного тока понижается и выпрямляется до 5 В постоянного тока, все же не рекомендуется подключать уровень земли с обеих сторон друг к другу. Это может вызвать электрические сбои, поэтому уровни заземления обеих сторон ввода / вывода оптопары всегда остаются электрически отключенными. Для получения подробной информации о том, как общие точки и их пути обычно связаны, прочитайте статью Билла Швебера «Как должны быть связаны друг с другом земли и общие земли?»

Согласование импеданса: решение проблем с помощью оптопар

Во многих цепях связи важно установить согласованные импедансы между несколькими компонентами.Несоответствие может привести к неправильному результату. Однако оптопары могут использоваться для передачи сигнала без необходимости согласования импеданса с обеих сторон, поэтому оптопары широко используются в высокоскоростном телекоммуникационном оборудовании. По словам Джанет Хит, «В идеальном мире энергия сигнала, выходящая из штыря, должна проходить по дорожкам печатной платы и полностью поглощаться нагрузкой. Однако, если энергия не полностью поглощается нагрузкой (приемником), остаточная энергия может отражаться обратно через дорожку печатной платы, достигая исходного источника энергии на выходном контакте (драйвере).«[Iii] Оптопары на основе фотодиодов, такие как оптопара Toshiba TLP2719, могут поддерживать скорость передачи сигнала до 1 Мбит / с. Скоростные оптопары имеют скорость передачи данных до 50 Мбит / с. [Iv]

Использование оптронов для определения перехода через ноль источников переменного тока

Обнаружение перехода через нуль в сети переменного тока важно во многих приложениях. Например, типичная система коррекции коэффициента мощности измеряет разницу углов между реальной мощностью и реактивной мощностью (обе составляющие общей мощности).Разница между реальной и реактивной мощностью измеряется путем отслеживания так называемого «перехода через ноль» волн напряжения и тока. «Переход через нуль» — это термин, обычно используемый в электронике, акустике, математике и обработке изображений. Нулевое пересечение обозначает место, где форма волны пересекает ее координатную ось (то есть, если вы изобразили форму волны). Пересечение нуля также указывает, когда форма волны, выраженная в виде математической функции, изменится с положительного на отрицательный и обратно. Обратите внимание, что некоторые схемы проверки частоты работают по принципу отслеживания переходов через ноль в сигналах источника переменного тока.[v]

Оптопары

могут использоваться для определения перехода через нуль в сети переменного тока. Время отклика оптопары составляет всего наносекунды; он быстро включается и выключается при переходе через ноль. Используя выпрямитель и фильтр в сети переменного тока, цифровые сигналы могут быть получены от оптопары. [Vi] Используя RC-фильтры, форму выходного сигнала можно изменять по мере необходимости.

Рисунок 1: Принципиальная схема контроля сети переменного тока с помощью оптопары. Входной сигнал переменного тока выпрямляется и фильтруется перед подачей сигнала на IRED оптопары.(Источник: ON Semiconductor)

Коммутационные аппараты с оптопарами

Оптопары

используются в качестве надежного барьера между цифровым выходом микроконтроллера и внешними компонентами, которые необходимо контролировать.

Рисунок 2: Принципиальная схема, показывающая соединение между микроконтроллером PIC16F877A (U2) и оптопарой PC817C (U1). Оптопара используется для переключения светодиода (D1). Транзисторы и реле могут использоваться для переключения нагрузок со сравнительно высокими напряжениями. (Источник: Автор)

Цифровой выход микроконтроллера на рисунке 3 инициирует сигнал 5 В постоянного тока (цифровой), который используется для переключения IRED в оптроне (U1).Выходные контакты микроконтроллера и IRED в оптроне могут поддерживать ограниченный ток; поэтому рекомендуется использовать резистор ограничения тока между выходом микроконтроллера и входом оптопары. Когда IRED включается, инфракрасный свет падает на фототранзистор, который приводит в действие (возбуждает) фототранзистор, после чего между контактами коллектора и эмиттера начинает течь ток. Коллектор и эмиттер фототранзистора поддерживают ограниченный ток.Если необходимо управлять устройством с более высокими характеристиками тока, то можно использовать транзистор для усиления выхода оптопары.

Заземление коммутирующего устройства не связано с общей землей в цепи микроконтроллера, так как это может привести к утечке шума в сторону микроконтроллера.

Считывание входных сигналов с помощью оптопар

Оптопары

могут использоваться для безопасного считывания уровней логического 0 и логической 1 от любого источника.Например, напряжения от бестрансформаторного источника питания могут содержать шум. В таких ситуациях, если входной сигнал напрямую связан с микроконтроллером, шум входящего сигнала может повлиять на работу микроконтроллера. Точно так же, если вход микроконтроллера случайно подвергается воздействию скачка напряжения, микроконтроллер немедленно разрушается (т. Е. Горит или «выпускает волшебный дым»). Однако использование оптопары между микроконтроллером и входным сигналом похоже на страховой полис и может предотвратить такие несчастные случаи.[vii]

Рисунок 3: Принципиальная схема, показывающая соединение между микроконтроллером Microchip PIC16F877A (U2 выше) и оптопарой PC817C (U1 выше). Оптопара используется для считывания цифрового сигнала. (Источник: Автор)

Заключение

Оптопары

не только защищают чувствительные схемы, но и позволяют инженерам разрабатывать различные аппаратные приложения. Использование оптопары значительно снижает затраты на замену компонентов и позволяет удобно контролировать соединение между двумя цепями путем подключения / отключения оптопары.Оптопары широко используются в электронных, электрических и коммуникационных системах.

[i] http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/pc817xnnsz_e.pdf

[ii] https://en.wikipedia.org/wiki/Opto-isolator

[iii] (Хит, 2018)

[iv] https://www.mouser.com/Optoelectronics/Optocouplers-Photocouplers/High-Speed-Optocouplers/_/N-6zsft/

[v] https://ieeexplore.ieee.org/abstract/document/6717944

[vi] https: // www.onsemi.com/pub/Collateral/AN-3001.pdf.pdf

[vii] https://hackaday.com/2018/05/09/optocouplers-defending-your-microcontroller-midi-and-a-hot-tip-for-speed/

MASSO G3 Замена поврежденных оптопар

ИНФОРМАЦИЯ: Эта страница предназначена только для MASSO G3 и MASSO G3 Touch.

  • Входы — Opto от 1 до 8, от 10 до 24: LTV-816 или KB817
  • Вход THC — Opto 9: SFH615A-2
  • Spindle Encoder Input , 26 и 27: SFH615A-2
  • Входы MPG — Opto 28 до 38: LTV-816 или KB817
  • Выходы шпинделя CW и CCW — Opto 39 и 40: LTV-816 или KB817

ИНФОРМАЦИЯ: Поврежденные оптопары можно приобрести у одного из следующих поставщиков, щелкните ссылку ниже, чтобы перейти непосредственно на страницу заказа запчастей:

Digi-Key: Оптопара LTV-816

Newark Element 14: Оптопара KB817

Mouser Electronics: Оптопара LTV-816

  • Удалите все провода, подключенные к входу, который вы хотите проверить.
  • Перейдите к экрану F1 и проследите за логическим состоянием предполагаемого входа.Он будет показывать HIGH или LOW в зависимости от того, инвертирован вход или нет.
  • Проверьте оптопару, подключив положительный вывод источника питания MASSO через резистор 5,6 кОм ко входу, который вы хотите проверить.
  • На экране F1 вы должны увидеть изменение входа с LOW на HIGH или с HIGH на LOW.
  • Если вход переходит из одного состояния в другое, оптопара в порядке и не требует замены.
  • Отсоедините все провода, подключенные ко входам энкодера.
  • Перейти к экрану F1.
  • Проверьте оптопару, подключив положительный вывод источника питания MASSO через резистор 5,6 кОм к выбранному входу энкодера.
  • Вход Encoder-A вы увидите, что вход Signal-A MASSO изменится с LOW на HIGH.
  • Вход Encoder-B, вы увидите, что вход Signal-B MASSO изменится с LOW на HIGH.
  • Encoder-Z input вы увидите, что индексный вход MASSO изменится с LOW на HIGH.
  • Если вход переходит из одного состояния в другое, оптопара в порядке и не требует замены.
  • Если один из них неисправен, замените только эту оптопару. НИЗКИЙ случайно. Если вы видите, что они мерцают, значит, оптопары исправны и не нуждаются в замене.
  • Используйте переключатель подвесной оси и вращайте оси X, Y, Z, A и B, и вы увидите, что соответствующий вход выбора оси изменяется с LOW на HIGH при выборе каждой из них.При изменении входов их замена не требуется. Если одна из них неисправна, замените только эту оптопару.
  • Используйте переключатель Pendant Resolution для выбора между 1,10 и 100, и вы увидите, что входы разрешения 1, 2 и 3 меняются с LOW на HIGH по мере их выбора. При изменении входов их замена не требуется. Если один из них неисправен, замените только эту оптопару
  • Оптрон №: 38, который используется для сигнала экстренной остановки.
  • Удалите провод, подключенный к Estop 2.
  • Перейдите к экрану F1 и убедитесь, что вход Estop показывает LOW и не инвертирован.
  • Проверьте оптопару, подключив + ve источника питания MASSO через резистор 5,6 кОм ко входу EStop2.
  • На экране F1 вы должны увидеть изменение входа с LOW на HIGH.
  • Если вход переходит из одного состояния в другое, оптопара в порядке и не требует замены.

Тестирование выхода CW

  • Отсоедините провода от клемм 4 и 5 управления шпинделем
  • Перейдите к экрану F1 и убедитесь, что выход CW не инвертирован.Если это так, снимите инверт и не забудьте надеть его снова, когда закончите тестирование.
  • Перейдите к экрану F2 и выключите шпиндель
  • Используйте цифровой мультиметр для проверки целостности цепи 2K
  • Подключите один провод мультиметра к клемме 4, а другой провод к клемме 5 блока управления шпинделем
  • Вы должны прочитать «Нет». непрерывность на вашем мультиметре.
  • Поменяйте местами провода глюкометра, и на вашем глюкометре все равно не должно быть показаний целостности цепи.
  • Если вы получаете показания целостности цепи при любой полярности измерителя, значит, оптопара неисправна и требует замены.
  • Перейдите к экрану F2 и установите шпиндель в положение CW, щелкнув кнопку Spindle CW на экране
  • Вы должны показать 200 Ом или меньше на вашем измерителе
  • Если вы не получаете показания непрерывности, переверните провода вашего измерителя и повторите тест поскольку это выход с учетом полярности.
  • Если вы по-прежнему не получаете 200 Ом или меньше, когда шпиндель включен, оптопара неисправна и требует замены.

Проверка выхода против часовой стрелки

  • Отсоедините провода от клемм управления шпинделем 6 и 7
  • Перейдите к экрану F1 и убедитесь, что выход против часовой стрелки не инвертирован.Если это так, снимите инверт и не забудьте надеть его снова, когда закончите тестирование. 0 непрерывность на вашем мультиметре.
  • Поменяйте местами провода глюкометра, и на вашем глюкометре все равно не должно быть показаний целостности цепи.
  • Если вы получаете показания целостности цепи при любой полярности измерителя, значит, оптопара неисправна и требует замены.
  • Перейдите к экрану F2 и установите шпиндель в положение против часовой стрелки, щелкнув кнопку шпинделя против часовой стрелки на экране
  • Вы должны показать 200 Ом или меньше на вашем измерителе
  • Если вы не получаете показания непрерывности, переверните провода вашего измерителя и повторите тест поскольку это выход с учетом полярности.
  • Если вы по-прежнему не получаете 200 Ом или меньше, когда шпиндель включен, оптопара неисправна и требует замены.

ПРЕДУПРЕЖДЕНИЕ: Перед заменой оптопары убедитесь, что вы отключили питание MASSO и соблюдаете стандартные меры антистатической защиты.

ВНИМАНИЕ: Убедитесь, что вы соблюдаете правильную ориентацию оптопары при замене, поскольку они чувствительны к полярности.

  • Соблюдайте полярность оптопары. Сделайте фото, если не уверены. На каждой оптопаре есть точка, обозначающая штырь 1
  • С помощью подходящей пары длинногубцев или пинцета аккуратно извлеките неисправную оптопару из гнезда. Он должен выйти легко.
  • Вставьте новую оптопару на место, пока она не встанет правильно.Убедитесь, что все контакты находятся в гнезде.
  • Протестируйте, чтобы убедиться, что теперь он работает.

Советы по питанию № 81: Убедитесь, что ваша оптопара правильно смещена

В изолированных источниках питания оптопары пропускают сигнал обратной связи через границу изоляции. Оптопары содержат как светодиод (LED), так и фотодетектор. Ток, протекающий через светодиод, приводит к пропорциональному току, протекающему в фотодетекторе. Коэффициент передачи тока (CTR) — это коэффициент усиления тока от светодиода к фотодетектору, и обычно он имеет очень широкий допуск.При проектировании изолированной сети обратной связи необходимо учитывать допуски оптопары и всех других компонентов, определяющих усиление большого сигнала. Игнорирование этой задачи может легко привести к возврату после того, как ваш продукт будет запущен в производство.

Схема изолированной сети обратной связи, показанная на рис. 1 , является наиболее распространенной реализацией. TL431 от TI содержит как усилитель ошибки, так и опорный сигнал. Резисторный делитель R3 и R5 и внутреннее опорное напряжение TL431 устанавливают выходное напряжение.Сеть обратной связи управляет мощностью, подаваемой на выход источника питания, путем изменения напряжения на выводе обратной связи контроллера широтно-импульсной модуляции (ШИМ). Когда V OUT смещается выше, катод TL431 пропускает больше тока через оптопару, которая опускает штырь обратной связи ниже. Когда V OUT смещается ниже, катод TL431 управляет меньшим током от оптопары, позволяя контакту обратной связи перемещаться выше.

Надлежащая конструкция должна гарантировать, что эта схема способна управлять выводом обратной связи контроллера во всем динамическом рабочем диапазоне, учитывая наихудшие допуски всех основных переменных.


Рисунок 1 Эта схема обычно генерирует сигнал обратной связи в изолированных источниках питания.

Первым шагом является определение динамического рабочего диапазона вывода обратной связи в контроллере. Все контроллеры разные, поэтому эта задача требует некоторого исследования таблицы данных. В качестве примера предположим, что вы используете UCC2897A для управления активным преобразователем с ограничением тока на выходе на 12 В. Чтение «Подробных описаний выводов» в таблице данных UCC2897A показывает, что напряжение 2.5 В на выводе обратной связи приводит к нулевому рабочему циклу, а напряжение обратной связи 4,5 В приводит к максимальному рабочему циклу. UCC2897A также обеспечивает опорное напряжение 5 В, которое можно использовать для смещения фотодетектора оптопары через R6 на рис. 1 . Это задание имеет минимальное значение 4,75 В и максимальное значение 5,25 В. Уравнения 1 и 2 рассчитывают требуемый диапазон тока через фотодетектор оптопары, предполагая, что вы используете резистор 1 кОм с допуском 1% для R6:

Ваша схема должна выдерживать ток R6 в диапазоне от 0.От 25 мА до 2,78 мА. За счет резистора R2 на катоде TL431 повышается напряжение до достаточно высокого уровня, что исключает протекание тока в светодиодах оптопары. Таким образом, конструкция схемы гарантирует минимальный ток R6, и вам нужно только позаботиться о том, чтобы обеспечить максимальный ток R6.

Второй шаг — вычислить CTR оптопары для наихудшего случая. Оптопары с «817» в номере детали предлагаются многими производителями, которые по выводам совместимы друг с другом; в каждом номере детали используется другой префикс. В таблице 1 показаны примеры 817 устройств с различными диапазонами CTR, обозначенных однобуквенным суффиксом в номере детали. Этот диапазон CTR не включает влияние температуры и тока смещения. Диаграммы из таблицы данных оптопары, воссозданной в рис. 2 и 3 , суммируют влияние температуры и тока смещения.

Таблица 1 Оптопары доступны с различными диапазонами CTR

Предположим, что вы ожидаете, что ваш источник питания будет работать при температуре окружающей среды от –40 ° C до 85 ° C.Из , рис. 2 , вы знаете, что вам нужно умножить минимальный CTR примерно на коэффициент 0,7 при 85 ° C. Если вы выберете «A» версию 817, ваш минимальный CRT теперь может быть всего 56%. Разделив результат уравнения 1 на 0,56, вы узнаете, что вам может потребоваться не менее 4,96 мА тока светодиода, не считая влияния тока смещения. Из рисунка 3 видно, что влияние тока смещения при 4,96 мА незначительно.


Рис. 2 CTR оптопары зависит от температуры.


Рисунок 3 CTR оптопары зависит от тока смещения.

Третий и последний шаг — установить значение R1, чтобы гарантировать, что TL431 может в достаточной степени управлять оптопарой во всех условиях. Минимальное катодное напряжение TL431 составляет 2,5 В, а прямое падение светодиода оптопары может достигать 1,0 В. Уравнение 3 вычисляет максимальное значение R1, чтобы гарантировать регулирование:

Использование значения R1 более 1,7 кОм в этом источнике питания может помешать TL431 выдавать достаточный ток светодиода для поддержания регулирования.Если оптопара испытывает нехватку тока, выходное напряжение будет продолжать расти до тех пор, пока через оптопару не пройдет надлежащий ток светодиода. Это приводит к возникновению перенапряжения на выходе, что более вероятно при более высоких температурах.

Подобные проблемы с допусками часто проскакивают на этапе проектирования. Предварительная партия блоков питания может легко пройти все тесты, и проблема обнаружится только позже, когда покупатель вернет товар. Выполнение простой процедуры проектирования, представленной здесь, поможет вашей компании сэкономить деньги и порадовать клиентов.

Чтобы узнать больше о Power Tips, посетите серию блогов TI Power Tips на Power House.

Об авторе

Брайан Кинг (Brian King) — инженер по приложениям в группе Texas Instruments Power и старший член технического персонала. Брайан является членом IEEE и имеет степени бакалавра и магистра в области электротехники в Университете Арканзаса. Вы можете связаться с Брайаном по адресу.

Статьи по теме :

Как сделать схему тестера оптопары в домашних условиях

Что такое тестер оптопары?

Оптопара — это простой электронный компонент, который используется для соединения отдельных цепей посредством светочувствительного оптического интерфейса.Оптопара или оптоизолятор состоит из излучателя света, ИК-светодиода и светочувствительного приемника, который может быть одним фотодиодом, фототранзистором, фоторезистором, фото-тиристором или фототриаком. Тестеры оптопары используются для проверки работоспособности любого приемника оптопары. Это простая, полезная и недорогая схема, которая помогает определить работоспособность оптопары. Итак, в этом уроке. мы собираемся пройти пошаговый процесс создания схемы тестера оптопары для оптопары общего назначения PC817.

PC817 IC содержит ИК-светодиод, оптически связанный с фототранзистором. Он упакован в 4-контактный DIP-разъем, доступен с опцией с широким шагом выводов и опцией SMT в форме крыла чайки. По сути, этот корпус IC состоит из ИК-светодиода и фототранзистора внутри него. Когда на ИС подается питание, лучи от ИК-светодиода попадают на основание фототранзистора и позволяют ему проводить.

JLCPCB — ведущая компания по производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо испытывали (качество, цена, обслуживание и время).Мы настоятельно рекомендуем заказывать печатные платы в JLCPCB, все, что вам нужно сделать, это просто загрузить файл Gerber и загрузить его на веб-сайт JLCPCB после создания учетной записи, как указано в видео выше, посетите их веб-сайт, чтобы узнать больше! .

Компоненты оборудования

Для сборки этого проекта вам потребуются следующие детали.

Распиновка оптопары PC817

Полезные шаги

1) Припаяйте две пары по 2 штекерных разъема на плате veroboard.

Чтобы купить печатные платы на заказ по удивительно низким ценам 2 доллара за 5 печатных плат, посетите: www.jlcpcb.com

2) Подключите последовательно сопротивление 1 кОм между двумя парами штекерных разъемов.

3) Припаяйте кнопку последовательно с гнездовыми разъемами.

4) Припаяйте плюсовую клемму светодиода к выходному гнезду и отрицательную клемму к заземлению цепи.

5) Подключите батарею 4 В постоянного тока к цепи.

6) Поместите микросхему оптопары в гнездовые разъемы.Включите питание и проверьте цепь.

Принципиальная схема тестера оптопары

Рабочее объяснение

Эта схема в основном используется для проверки работоспособности любой 4-контактной ИС оптопары. Чтобы выполнить проверку функциональности, поместите ИС в гнездовые разъемы так, чтобы эмиттер фототранзистора и анодные контакты ИК-светодиода ИС были подключены к заземлению схемы, в то время как катод ИК-светодиода и коллекторный контакт фототранзистора микросхемы IC подключается к 4V VCC.

Теперь подключите цепь к источнику питания. Если при нажатии кнопки светится светодиод, подключенный к выводу эмиттера, это означает, что ИС оптопары функционирует нормально. Если светодиод не светится, это означает, что необходимо заменить микросхему.

Приложения

  • Эту схему можно использовать для функционального тестирования любой 4-контактной ИС оптопары.

Чтобы купить печатные платы на заказ по удивительно низким ценам 2 доллара за 5 печатных плат, посетите: www.jlcpcb.com

См. Также: Как сделать считыватель карт RFID без использования Arduino | Как сделать электронные цифровые часы с помощью AT89C2051 | Как сделать простой предварительный усилитель низких частот с использованием транзистора 2n2222

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *