Site Loader

Как проверить полевой транзистор не выпаивая его.

В дополнение к статье [url=]wiki.rom.by/index.php/%D0%9A%D0%B0%D0%BA_%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1…[/url]


Хочу поделиться методом, позволяющим оценить работоспособность мосфета прямо на плате, ничего не отпаивая. Скажу сразу — возможно работает не всегда, но на материнках он мне часто помогал. Также хочу отметить, что для осуществления этого метода нужен мультиметр с колодкой для измерения hfe биполярных транзисторов и без доработки мультиметра, к сожалению, можно проверять только N-канальные транзисторы.
Не могу утверждать его 100% точность, но, по крайней мере он позволяет отсеять живые транзисторы в большинстве случаев.
Итак, на примере IRLML2402, N-канальный мосфет в корпусе SOT-23, маркировка A5Z3S.

Берем дополнительный проводок, втыкаем его в гнездо E (PNP) колодки для измерения hfe, не секрет, что там присутствует постоянное напряжение около +3 В относительно черного провода мультиметра.

Сверившись с даташитом, подключаем мультиметр: красный щуп на исток, а черный щуп на сток, транзистор закрыт, мультиметр показывает падение напряжения на встроенном диоде.

А теперь подаем дополнительным проводом +3В на затвор, транзистор открыт.

Если транзистор веде себя не так — отпаиваем его и проверяем дополнительно.

Таким же способом, в принципе, можно оценивать состояние P-канальных транзисторов, но задача усложняется отсутствием возможности получить напряжение -3В относительно черного провода непосредственно из мультиметра. Приходится цеплять дополнительно батарейку типа CR2032, плюс к черному проводу, минус — на затвор мосфета.

ВложениеРазмер
Рис. 171.74 КБ
Рис. 266.64 КБ
Рис. 378.53 КБ
Рис. 470.71 КБ

Как проверить полевой транзистор? | ROM.by

MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor.

Нижеизложенная методика обеспечивает проверку MOSFET’ов вне схемы. MOSFET должен находиться на непроводящей поверхности. Поверхность MOSFET’а должна быть относительно чистой, т.к. загрязнение поверхности между выводами MOSFET’а может привести к искажению результатов проверки. Также следует обращать внимание на соотношение Vgs(th) и максимального напряжения, выдаваемого мультиметром в режиме проверки диодов.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), мультиметр показывает падение напряжения на внутреннем диоде — 502 мВ, транзистор

закрыт (Рис.4). Далее, не снимая черного щупа, касаемся красным щупом ближнего вывода (G — затвор) (Рис.5) и опять возвращаем его на дальний (S — исток), тестер показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться не 0, а 150…170 мВ): полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения около 500 мВ (Рис.8). Это верно для большинства

N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

Транзистор выполнил всё, что от него требовалось. Диагноз — исправен. Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.

Ссылка по теме.

исследование транзистора с помощью мультиметра

Как проверить мосфетВ современной электронике MOSFET-транзисторы являются одними из самых широко применяемых радиоэлементов. Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности. Но зная принцип работы радиодетали, проверить мосфет мультиметром не так уж и сложно.

Особенности работы MOSFET

Отличие полевого транзистора от классического биполярного состоит в том, что его работа зависит от приложенного напряжения, а не тока. В литературе часто такой радиоэлемент называют МОП-транзистор (метал-оксид-полупроводник) или МДП-транзистор (метал-диэлектрик-полупроводник). В английском варианте его название звучит как мосфет, образованное от MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

Особенности работы MOSFET

Полевые транзисторы являются активными элементами, то есть их работа невозможна без приложения к выводам напряжения. Впервые идея создания прибора, поток носителей заряда в котором управляется величиной приложенного напряжения, была предложена австро-венгерским учёным Юлием Лилиенфельдом. Однако отсутствие технологий создания такого устройства позволило выпустить прототип лишь в 1960 году. С 1977 году мосфеты начали применять при производстве электронно-вычислительных машин, тем самым увеличивая производительность последних.

Различные учёные мира постоянно ведут исследования по улучшению работы электронного прибора, поэтому на сегодняшний день изобретено и внедрено в производство несколько видов полевых транзисторов. Каждый из них обладает своими преимуществами и недостатками, но общий принцип работы у них одинаков.

Виды и конструкция

Транзисторы с управляющим p-n переходомРазделяют мосфеты на две группы. В зависимости от вида управляющего электрода они могут быть: с p-n переходом и изолированным затвором. В последнее время первого вида элементы начинают использовать всё реже. Транзисторы с управляющим p-n переходом конструктивно представляют собой полупроводниковое основание, основными носителями заряда которого могут быть как дырки (p-тип) так и электроны (n-тип).

На концах основания выполняются выводы, называемые сток и исток. К этим контактам подключается управляемая часть схемы. Управление же прибором происходит через третий вывод транзистора (затвор), образованный путём соединения с основанием проводника обратной проводимости. Таким образом, p-n транзистор имеет три вывода:

  1. Исток — вход, через который поступают основные носители энергии.
  2. Сток — выход устройства, через который уходят основные носители энергии.
  3. Затвор — вывод управляющий прохождением зарядов через прибор.

В зависимости от типа проводимости управляющего электрода такие мосфеты делятся на n и p типа.

Радиоэлемент с изолированным затвором устроен иначе. Его затвор отделён от основания слоем диэлектрика. При изготовлении прибора используется полупроводник, обладающий высоким удельным сопротивлением. Его называют подложкой или затвором. На нём создаются две зоны с обратным типом проводимости — сток и исток. Таким образом, получается три области. Расстояние между управляемыми электродами очень мало, а отделяемый от них затвор покрывается слоем диэлектрика порядка 0,1 микрометра. Обычно в качестве диэлектрика используется соединение SiO2.

Радиоэлемент с изолированным затвором

В зависимости от способа изготовления устройства с изолированным контактом разделяют на два типа: обеднённые и обогащённые. Первые выпускаются только n-типа и могут иметь два затвора, а вторые бывают как n, так и p-типа.

Обогащённого типа устройства называются транзисторами с индуцированным каналом. В них управляемые контакты не связаны проводящим слоем. Поэтому ток на стоке появляется только при приложении определённой разности потенциалов к затвору относительно истока. Обеднённые транзисторы в своей конструкции содержат встроенный канал, из-за чего транзистор реагирует на напряжение как положительной, так и отрицательной полярности.

Характеристики радиоэлемента

На схемах и в литературе принято обозначать мосфет латинскими буквами VT, после которых идёт его порядковый номер в схеме. Графически полевой элемент изображается кругом, в середине которого рисуются прямые линии, обозначающие путь прохождения тока. На выводе затвора указывается в виде стрелки тип проводимости. Затвор, сток и исток подписываются соответственно буквами латинского алфавита — S, D, G.

Полевые устройства характеризуются множеством параметров. Но среди основных выделяют следующие характеристики:

  1. Напряжение между управляемыми электродами. Показывает величину напряжения, которое может выдержать транзистор без ухудшения своих параметров. То есть практически это максимальное напряжение источника питания, на работу с которым рассчитан транзистор.
  2. Характеристики радиоэлементаСила тока стока. Обычно указывается максимальное значение для определённой величины постоянного напряжения, приложенного к затвору — истоку.
  3. Импеданс канала сток-исток в открытом состоянии. Чем это значение будет больше, тем хуже работает транзистор, так как на сопротивлении возникают потери энергии, и увеличивается нагрев мосфета.
  4. Мощность рассеивания. Зависит от температуры окружающей среды. Этот параметр изображается в виде характеристики, показывающей зависимость мощности от температуры.
  5. Уровень насыщения канала исток-затвор. Обозначает граничную величину разности потенциалов, при преодолении которой ток через канал не проходит.
  6. Порог включения. Это минимальное напряжение, которое необходимо приложить к транзистору для открытия его проводящего канала.
  7. Ёмкость затвора. Существенный недостаток полевых транзисторов связан именно с этим параметром. Так, из-за паразитной ёмкости ограничивается применение устройств в высокочастотных цепях, снижая скорость переключения режимов работы.

Важно также знать, что мосфеты чувствительны к статическому электричеству, особенно это касается приборов с изолированным затвором. Поэтому проводя проверку полевого транзистора мультиметром, следует надеть на обе руки антистатические браслеты, при этом также не стоит надевать на себя шерстяную одежду.

Принцип работы

Суть работы радиоэлемента с изолированным затвором заключается в управлении величиной тока, проходящего через него, с помощью изменения разности потенциалов. Когда к истоку и затвору прикладывается напряжение, то в приборе образуется электрическое поле поперечное приложенному. Это поле увеличивает число свободных носителей заряда в приповерхностном слое.

Принцип работы транзистора

Из-за этого возле диэлектрика начинает скапливаться значительное количество носителей заряда, в результате чего формируется зона проводимости. Через эту область начинает протекать ток, то есть между управляемыми выводами. При снятии напряжения с открытого затвора проводимость исчезнет, и течение тока прекратится.

Немного другие процессы происходят в работе полевого транзистора с p-n переходом. Если на этот переход подаётся напряжение обратное основным носителям заряда, его область начинает расширяться. Увеличение перехода приводит к сужению толщины проводящего канала, а значит, увеличению сопротивления. В результате проходящий между стоком и истоком ток уменьшается. Таким образом, изменяя уровень напряжения, изменяется и сила тока, проходящая через транзистор.

Способы измерения

Для измерения параметров полевых транзисторов применяются специализированные приборы. В основе их работы лежит использование микроконтроллера и встроенного генератора. Сигнал определённого вида подаётся на контакты транзистора, в результате чего изменяется. С помощью встроенного анализатора устройство оценивает эти изменения и преобразует данные в удобную для восприятия информацию. Вся суть пользования таким измерителем сводится к установлению мосфета в специальные контактные площадки и нажатии кнопки запуск.

Способы измерения полевых транзисторов

В быту же радиолюбителями часто применяются самодельные устройства. Так, простейшего вида приспособление из нескольких элементов позволяет измерить сопротивление каналов. Для этого используется: вольтметр, автомобильная лампочка, источник напряжения и резистор номиналом около 100 Ом. Собрав такую схему, можно без труда измерить Rds радиоэлемента, тем самым проверить мосфет на работоспособность.

Но проще всего и быстрее для диагностики радиоэлемента использовать мультиметр. С его помощью несложно проверить мосфет на способность работы в ключевом режиме. И если по результатам проверки он нормально открывается и закрывается, то вероятность его исправности очень велика.

Транзистор с управляющим электродом

Для лучшего понимания процесса проверки мосфета его можно представить в виде эквивалентной схемы как треугольник. Две стороны такого треугольника представляют собой два диода, а третья — резистор. При этом точка соединения диодов считается затвором, а соединение их с резистором — стоком и истоком.

Представив эквивалентную схему, можно приступить к проверке элемента. Для примера удобно рассмотреть один из типов проводимости, например, n-тип:

  1. Измерение сопротивление канала. Для этого с помощью переключателя выбора измерений мультиметр устанавливается в режим проверки сопротивления. Предел измерения выбирается около двух мегом. Щупами прибора касаются стока и истока транзистора. В результате на экране мультиметра появится число равное сопротивлению перехода. После меняется полярность щупов, и снова измеряется сопротивление. При исправном мосфете эти значения должны быть примерно одинаковыми. Такое подключение на эквивалентной схеме соответствует положению, когда измерялась бы величина сопротивления резистора.
  2. Проверка перехода затвор-исток. Для этого мультиметр переключается в режим прозвонки диодов. Измерительным проводом, подключённым к плюсу тестера, прикасаются к затвору, а минусовым — к истоку. Итогом такого действия будет измерение мультиметром падения напряжения на открытом переходе. Его значение должно составлять примерно 600–700 милливольт. На следующем этапе изменяется полярность приложенных проводов. Если мосфет исправен, тестер покажет бесконечность. Это будет обозначать, что переход закрыт.
  3. Исследование перехода сток-затвор. Мультиметр оставляется в режиме прозвонки диодов. Но положительным щупом прикасаются к затвору, а отрицательным к стоку. В этом случае тестер должен показать падение напряжения на переходе порядка 600–700 милливольт. При смене полярности в случае работоспособности транзистора тестер покажет бесконечность.

Транзистор с управляющим электродом

Если все три пункта выполнились правильно, мосфет считается работоспособным. Проверка радиоэлемента другого типа осуществляется аналогично, только изменяется полярность подключению щупов.

Мосфет с изолированным затвором

Мосфет с изолированным затворомТакой вида транзистора имеет в своём корпусе встроенный диод, располагающийся между истоком и стоком, поэтому первоначально на исправность проверяется именно он. Для его проверки мультиметр переключается в режим проверки диодов, а его щупы подключаются к стоку и истоку. В прямом направлении прибор должен показать падение напряжения, а в случае смены полярности — бесконечность.

Основная проверка транзистора заключается в имитации его работы в режиме ключа. В случае радиоэлемента n-типа его диагностика осуществляется следующим образом:

  1. Мультиметр переключается на проверку диодов.
  2. Щупом, подключённым к минусу, дотрагиваются до истока, а к плюсу — до затвора.
  3. Плюсовой провод переносится к стоку. Если мосфет рабочий, то сопротивление перехода будет очень низким, то есть канал станет открытым.
  4. Далее, положительный щуп подключается к истоку, а отрицательный — к затвору. После этих действий транзистор закроется.

По результатам измерения делается вывод о работоспособности элемента. Таким образом, соблюдая последовательность приведённых действий, можно проверить мосфет любого типа на работоспособность с помощью мультиметра.

Проверка MOSFET транзистора / Блог им. woodman / Radistor.ru

MOSFET транзисторы в последнее время все больше и больше набирают популярность. Они могут послужить хорошей заменой реле и биполярным транзисторам.

Чтобы сэкономить деньги и не бегать лишний раз в магазин, MOSFET транзисторы можно выпаять из нерабочей материнской платы или какого-нибудь модуля управления.

Но как проверить работоспособность этих радиокомпонетов?
Для этого нам потребуется всего один прибор — тестер.
У каждого радиолюбителя (даже начинающего) он обязательно должен быть!

В подавляющем большинстве тестеров есть режим «прозвонки», совмещенный с проверкой падения напряжения диодов.
Вот в этот режим мы и переводим тестер.

Теперь посмотрим на схему N-канального MOSFET транзистора.

В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
Тестером можно подтвердить наличие этого диода.

0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».

А теперь можно проверить и затвор.
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.

Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив сток-исток.

Тестер покажет почти нулевое сопротивление.

Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!

Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.

Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.

P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.

Что такое мосфеты? | Te4h

Мосфет (MOSFET) — это полупроводниковый полевой транзистор с оксидом металла (metal oxide semiconductor field effect transistor). В мире ПК эти электрические компоненты находятся на материнской плате настольного компьютера или ноутбука, а также на блоке питания.

В этой небольшой статье мы попытаемся разобраться что такое мосфеты (mosfet), а также выясним где они используются.

Содержание статьи:

Мосфеты на материнской плате

На ПК мосфеты образуют VRM (модуль регулятора напряжения), который контролирует, сколько напряжения получают комплектующие на материнской плате, такие как процессор или видеокарта.

Процессоры и видеокарты, имеют строгое рабочее напряжение, и VRM не допускает его превышения. Мосфеты важны для работы VRM и влияют на количество тепла, выделяемого VRM во время работы. Мосфеты могут довольно сильно нагреется, если вы используете мощную видеокарту. Радиатор материнской платы охлаждает мосфеты и, следовательно, VRM. Помимо обеспечения стабильности и безопасности всей системы в целом, охлаждение мосфетов важно для любого разгона.

Как они работают?

Мосфеты напоминают выключатели, которые включаются и выключаются по сигналу интегральной микросхемы (ИС), называемой ШИМ-чипом/контроллером. Мосфеты быстро включаются и выключаются, что позволяет пропускать большой ток короткими очередями. Это, наряду с другими частями VRM, управляет напряжением, посылаемым на другие комплектующие.

Для охлаждения мосфетов во время экстремальных разгонов, энтузиасты часто используют водяное охлаждение.

Мосфеты и блоки питания

Мосфеты делают то же самое и в блоках питания. Они используются в преобразователях и цепях регуляторов для коммутации в импульсных источниках питания (SMPS).

В SMPS энергия извлекается из розетки перед ее разбиением на небольшие пакеты, а мосфеты работают переключателями. Затем эти пакеты передаются через конденсаторы, индукторы и другие электрические компоненты, способные накапливать энергию. В конце концов, пакеты сливаются в один для получения стабильного электропитания.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *