Как проверить в розетке все сразу
Очень часто при плановых работах с домашней электрикой или при поиске неисправностей в проводке, возникает необходимость проверки розеток.
Например, требуется выяснить какое там напряжение — повышенное или пониженное? Соответствует ли оно норме в 230 вольт или нет?
Узнать, правильно ли подключены фаза, ноль и земля. И подсоединены ли вообще заземляющий и нулевой проводники? Нет ли в цепи обрыва?
С какой стороны подключена фаза? Также не лишне заранее проверить, будет ли срабатывать УЗО или диффавтомат в щитке, если в эту розетку воткнуть неисправный прибор.
Для всех этих операций требуются разные измерительные приборы — от обычной индикаторной отвертки, до .
Иногда даже приходится раскручивать и разбирать саму розетку. Сделать это без определенных знаний в области электрики решаются не все и предпочитают вызывать профессионалов.
Что можно измерить тестером розеток
Однако есть один девайс, который с легкостью позволит проверить все вышеперечисленные параметры и исправность розетки абсолютно любому человеку, даже очень далекому от закона Ома.
Все что вам нужно сделать — вставить этот чудо прибор в розетку и он вам наглядно предоставит всю информацию. Называется прибор — тестер розеток Habotest HT106D(B) (с током утечки 30мА или 5мА).
Девайс может быть полезен как любителям, так и профессионалам. Например бригадиру, который должен принять объект после окончания ремонта и проверить качественную работу своих специалистов, дабы потом не краснеть перед заказчиками и не возвращаться на переделки.
Представьте, что речь идет о проверке нескольких десяток или даже сотен розеток в многоэтажке. Без такого тестера вы точно этого не сделаете за короткий промежуток времени.
Также он будет полезен и рядовым пользователям. Особенно тем, кто только что купил новый дом или въезжает в новостройку.
Пробежались с приборчиком по розеткам во всех комнатах и сразу же проверили работу электриков.
Это очень компактная штука, которая не займет много места в подсумке электрика или на полке в шкафу. Вот что данный тестер умеет делать:
- показывает текущее напряжение в розетке
- определяет правильность подключения фазного, нулевого и заземляющего проводников L-N-Pe
- есть ли «земля» в розетке
- где находится фаза — справа или слева (только для розеток с наличием заземления!)
- создает искусственный ток утечки в 30мА для проверки работоспособности УЗО и диффавтоматов
Как работает и что означают горящие светодиоды
С передней стороны тестера расположена информационная панель с цифровым табло и индикаторами в верхней части.
Снизу — кнопка для проверки УЗО.
Сзади — полноценная европейская вилка с заземлением.
Если у вас попался другой разъем, например под американский или английский тип розетки, то воспользуйтесь переходником.
Главное, чтобы и переходник имел заземляющий контакт, иначе тестер работать не будет.
Чтобы не таскать с собой инструкцию, на передней панели изображены подсказки, которые обозначают комбинации свечения светодиодных индикаторов.
Для начала проверки, просто вставляете прибор в нужную розетку. Он тут же автоматически запускается и выводит для вас всю необходимую информацию.
Перво-наперво наглядно демонстрируется какое там напряжение. Заявленная погрешность по сравнению с проверенными мультиметрами и вольтметрами всего 2%.
Далее, смотрите на светодиоды и по их свечению определяете, все ли у вас в порядке в розетке с проводами. Если кто не понимает в английских надписях, то обозначают они следующее:
- горят два левых светодиода — с вашей розеткой все в порядке и нет никаких замечаний
Пользуйтесь и включайте приборы без опасений.
- горит один левый светодиод — в розетке отсутствует заземление!
- светится только светодиод посередине — в розетке нет ноля!
- если вообще ничего не горит — где-то в обрыве фаза
Соответственно без фазы тестер и не работает.
- светятся два правых диода — монтажники перепутали местами фазу и землю
- горят два светодиода по краям — перепутаны местами фаза и ноль
Где в розетке фаза и ноль
Прибор изначально рассчитан для европейского типа розеток, где расположение фазы строго регламентировано. Например во Франции (стандарт CEE_7/5), когда розетка имеет заземляющий контакт (штырек) сверху, фаза по правилам должна быть подключена справа.
Точно таким же образом спаяны провода внутри прибора. То есть, если тестер показывает, что все нормально, это значит что фаза в вашей розетке справа, а ноль — слева. Именно такие параметры заложены у тестера в программу.
В нашей стране расположение ноля и фазы в розетках не прописано в ПУЭ и каждый электрик при подключении, делает это по своему усмотрению. Хотя там тоже нужно придерживаться определенных правил.
Существует даже межгосударственный стандарт 7396.1-89 (МЭК 83-75) «Соединители электрические штепсельные бытового и аналогичного значения». В нем указано, где должна находиться фаза на некоторых типах однофазных розеток и вилок.
Но мало кто считает данный МЭК обязательным и ориентируется по нему. Скачать и ознакомиться с МЭК можно .
Если тестер у вас показывает неправильное расположение фазы, то стоит его перевернуть и воткнуть обратно, показания светодиодов изменятся и прибор будет считать, что с розеткой все нормально.
Недостатки тестера
При определении положения фазы будьте внимательны, все эти индикаторы дают верные показания только при наличии земли в розетке. Если у вас проводка в доме выполнена двухжильным кабелем фаза-ноль, то переворачивайте прибор хоть сколько раз, он все равно будет показывать только то, что у вас нет земли.
Заземляющего контакта в сети не будет и сравнивать ему будет не с чем. Здесь придется воспользоваться старой доброй индикаторной отверткой.
Однако стоит вам «занулиться», и на «табло» тут же выскочит неправильное расположение фазы. Хотя занулять заземляющие контакты в розетках крайне не рекомендуется. Почему, читайте в отдельной статье.
Еще из недостатков можно отметить тот факт, что тестер не определяет реверс ноля и земли. Бывает такое, что электрики путают их местами.
При этом проводник Pe подключают на один из рабочих контактов розетки, а ноль — на заземляющий штырек. В этом случае при включении любого аппарата с заземлением будет срабатывать УЗО, хотя тестер покажет, что все в порядке.
Как быстро определить, где у вас ноль, а где земля, читайте ниже.
- если горят все три светодиода — фаза присутствует как на своем месте, так и на месте заземления. При этом сама земля в обрыве.
Чтобы проверить УЗО, просто нажимаете кнопку снизу. По инструкции, держать ее нажатой можно не более 3-х секунд. На встроенном резисторе в этот момент выделяет мощность порядка 7,5Вт.
Диффавтомат или узо в электрощитке при нажатии кнопки, тут же должны отключиться от искусственно созданного тока утечки. Только обратите внимание — для такой проверки у вас в электропроводке опять же должен присутствовать провод заземления Pe.
Включите тестер без земли и нажатие на кнопку ничего не даст.
Держать постоянно прибор включенным в розетку не рекомендуется. Время непрерывной работы подобных девайсов — не более 2-х минут.
Внутри тестера имеется встроенный предохранитель. Чтобы до него добраться, следует снять наклейку и открутить четыре винтика по углам.
Так что имейте в виду, если табло перестало показывать напряжение, а светодиоды потухли, то имеет смысл залезть во внутрь и проверить эту защиту.
Аналоги тестера розеток Duwi и КВТ — что лучше?
Есть подобные тестеры и у других производителей. Например duwi или КВТ MS686ODR.
Однако в них отсутствует возможность проверки напряжения. Розетки испытываются аналогичным образом.
Втыкаете тестер и по мигающим индикаторам получаете интересующую вас информацию. Благо на этих тестерах все написано по-русски и ничего переводить не нужно.
Вот например, проверка переноски.
Как видите, мигает средний светодиод. А это значит, что в переноске нет заземления. Такая картина к сожалению встречается сплошь и рядом. Поэтому при выборе удлинителей будьте крайне внимательны.
К сожалению, функционал подобных девайсов от КВТ и других производителей немного урезан и в них не хватает табло с показаниями напряжения. А это пожалуй главное, что интересует рядового потребителя.
Ознакомиться с адекватной ценой и заказать себе такой чудо тестер Habotest можно у наших китайских товарищей отсюда.
Инструкция по эксплуатации тестера (на английском)
Немного отзывов
//youtu.be/AHzHfCLNURg
Источник
« Предыдущая запись
Следующая запись »
Новые статьи
- 18. 11. 2020
- 14. 11. 2020
- 09. 11. 2020
- 02. 11. 2020
- 26. 10. 2020
Популярное
- 28388
- 27067
- 21884
- 17064
- 16550
Продолжая просмотр сайта вы соглашаетесь с Политикой конфиденциальности.
Как определить фазу и ноль без приборов
В розетке пропал ноль. Можно ли протянуть провод от соседней?
Головная боль любого электрика — пропадание нуля. При его отсутствии все потребители окажутся без электричества. Нулевой провод появляется от средней точки обмоток высоковольтного трансформатора, соединенных в звезду. Эту точку разводят на все шкафы и щитки, а также от этой точки тянется шина заземления. Нулевой провод наиболее важен для безопасности электрооборудования. 0,5=311 В.
Синусоида напряжения говорит, что среднее значение напряжения 220 В, пиковое значение 311 В. Измерения ведутся относительно нулевой оси абсцисс.
Форма кривой между двумя фазами также является синусоидой. Среднее значение линейного напряжения 380 В, а пиковое 536 В.
На взгляд простого обывателя непонятно почему при пропадении нуля, напряжение в сети должно возрасти. Логика подсказывает совсем обратное — полное пропадение напряжения. И действительно, если отключить нулевой провод на вашу квартиру, то свет потухнет и ничего страшного с оборудованием не случится. Но здесь речь идет о обрыве нуля на подстанции или на распределительных поэтажных квартирных щитах.
Разматывать клубок начнем с самого начала — счетчика активной энергии. На первый взгляд — стандартный прибор, но здесь есть подводный камень. В счетчике есть две обмотки — напряжения, включаемая между фазой и нулем, и тока, включаемую в разрыв фазы. Напряжение между точками А и В — 220 В, полностью падающие на обмотке напряжения.
При обрыве нуля, фаза протечет через обмотку напряжения и потечет к потребителю. Если потребитель возьмет индикатор и ткнет в розетку, то обнаружит сразу две фазы, но при этом вольтметр покажет стабильный ноль. Возможно, от данной информации у многих мозг закипит, но здесь ничего волшебного нет. Все дело в счетчике.
При обрыве фазы все более логично — нигде ничего наблюдаться не будет.
Теперь о главном. При обрыве нуля до счетчиков, которые запитывают две и более квартир возникает интересный процесс.
Способы для трехжильной проводки
В этом случае третьим проводом будет заземление. Фаза без труда находится пробником (как это сделать было описано выше). Чтобы найти ноль и землю, для их определения следует воспользоваться мультиметром или тестером.
Порядок действий должен быть следующим:
- при помощи пробника определяем фазу;
- измеряем напряжение между фазой и оставшимися двумя проводами;
- разность потенциалов между нулем и фазой будет в районе 220В, напряжение между землей и фазой будет меньше этого значения.
Собственно, имея мультиметр, можно определить землю, ноль и фазу без индикатора напряжения. Расскажем, как это сделать, пользуясь моделью M820D.
Особенности определения фазы и нуля
В двухпроводной сети
Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:
- Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
- Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.
В трехпроводной сети
Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.
Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:
- Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
- Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
- Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
- Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.
Как использовать прибор?
Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.
Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:
- Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
- На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.
Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.
Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).
У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.
Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.
Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.
Индикаторы-пробники для поиска фазы и ноля
Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.
На неоновой лампочке
Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.
Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.
Светодиодный индикатор-пробник
Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.
Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.
Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!
Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.
Как самому сделать индикатор-пробник для поиска фазы и ноля на неоновой лампочке
При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.
Для этого нужно к одному из выводов любой , даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.
Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.
Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.
При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться .
Что такое фаза и ноль в электричестве для новичка
Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.
Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.
Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.
Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.
Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений. Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую. Провод фазы по правилам обозначается в коричневый, белый или черный цвет.
Обозначение фазы и нуля буквы. Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.
Подручный метод определения фазы и ноля
Для осуществления данного варианта нам не понадобится абсолютно никакое дополнительной оборудование, только резистор 1 Мом и 1 клубень сырого картофеля.
У многих возможно сейчас появилось недоумение на лице, но этот способ неоднократно проверялся и он действительно работает.
Вам понадобится 2 провода длиной 1 метра, можно использовать медный 1-жильный провод для проводки.
Разрежьте картофелину пополам, один конец присоедините к водопроводной трубе, а другой воткните в картошку. Теперь возьмите другой провод и воткните в картофель на расстоянии 0.5 см от 2 провода. Другой его конец вставьте в розетку и следует подождать 2 минуты.
Фазный провод выдаст себя легко, крахмал на срезе начнет пениться. Такой способ довольно простой, поэтому его каждый сможет использовать в домашних условиях. Желаем вам успехов!
Почему индикатор светится при прикосновении к нулевому проводу
Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.
Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.
При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.
Определение принадлежности проводов без приборов
Для того чтобы избежать неприятных последствий, необходимо узнать, где и какой провод расположен. Обычно используется индикаторная отвертка, но при её отсутствии проблема может разрешиться другими способами.
Чаще всего принадлежность проводов, в том числе определение фазы, устанавливается визуально, путем изучения цветной маркировки. Если прокладка линий выполнялась квалифицированными специалистами, они обязательно используют стандарт IEC 60446-2004. В соответствии с этим нормативом, нулевой провод маркируется синим или голубым цветом, заземление – желто-зеленым, а фазный – коричневым или другим нейтральным цветом. Самое главное, чтобы расцветка фазы полностью отличалась от нуля и заземления. Рассмотреть маркировку можно внутри распределительной коробки, а также в местах подключений.
Если нет приборов – указателей напряжения, существует вариант проверить сеть с использованием контрольки, состоящей из патрона с лампой накаливания и подключенными проводами. Конец одного из проводников соприкасается с металлическими трубами системы отопления, а другой проводник касается проверяемого участка. Если лампочка загорелась, значит в этом месте есть фаза. Данный способ считается опасным, так как вероятность получения электротравмы очень велика.
Безопаснее всего определить фазу и ноль индикаторной отверткой, с помощью которой выполнить все необходимые проверки сетевых параметров.
Как найти фазу и ноль с помощью контрольки электрика
Контролька электрика на лампочке накаливания
Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.
Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.
Контролька электрика на светодиоде
Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.
Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.
Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.
Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.
Поиск фазы при наличии нулевого и заземляющего проводников
Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.
Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.
Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.
Поиск фазы и нуля контролькой
Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током. Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки
При прикосновении к фазному проводу лампочка засветит
Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.
Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.
В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.
Типы индикаторов напряжения: однополюсные и двухполюсные устройства
Современная промышленность выпускает большое количество различных индикаторов. Определенной стандартной классификации их не существует. По особенностям технического устройства приборы можно разделить на однополюсные и двухполюсные, а также выделяют пассивные и активные изделия. В разделе речь пойдет о классификации по первому признаку.
Однополюсные индикаторы. К данному виду относятся простейшие устройства, схема конструкции которых описана выше: в основе – жало и неоновая лампа для индикации. Более совершенные однополюсные приборы имеют светодиодную лампу, питание от батареек, звуковой сигнал – дополнительно к свечению лампы. По принципу работы такие индикаторы идентичны простейшим устройствам, но появляется возможность прозвонки проводов.
Наиболее продвинутые однополюсные модели имеют сложное устройство, хотя принцип работы сохраняется. Дополнительно к уже перечисленным функциям у них добавляется способность определения обрыва скрытых проводов, находящихся под слоем штукатурки.
Двухполюсный вид индикаторных отверток отличается тем, что имеет не один, а два корпуса. Каждый выполнен из диэлектрического материала, имеет подсветку – неоновую или светодиодную лампу. Некоторые устройства оснащены звуковым сигналом. Два корпуса соединяются проводом, длина которого обычно не превышает 1 м, оба имеют жало. Такие приборы считаются профессиональными, применяются для проверки присутствия тока между двумя контактами. Среди двухполюсных есть модели, которые определяют не только наличие напряжения, но и его величину.
Двухполюсный вид индикаторных отверток характеризуется наличием двух корпусов
Пассивные индикаторы напряжения и тока: особенности функционирования
Вторым признаком классификации индикаторов является их деление на активные и пассивные устройства. В основу положены функциональные особенности инструментов. К пассивным следует отнести приборы, отличающиеся такими характеристиками:
- Несложные. Однополюсные, состоят из одного корпуса с размещенными в нем элементами.
- Ограниченный функционал. Единственное, что показывает индикаторная отвертка такого типа, – есть ли напряжение в определенной точке электроцепи.
- Непрофессиональный инструмент. Чаще применяется в быту, для электриков неприемлем в силу отсутствия возможностей обеспечить необходимое обследование состояния электропроводящих кабелей.
Преимущество данных индикаторов состоит в том, что при определении наличия напряжения не нужен ноль, его роль выполняет человек, в руках у которого оказывается отвертка-индикатор. Особенность ее устройства заключается еще и в том, что резистор, в силу значительной сопротивляемости, не определяет наличия напряжения ниже 50 вольт.
Понять, как найти фазу индикаторной отверткой подобного типа, труда не представляет. Жалом следует коснуться проводника, а рукой нажать на пластину на корпусе устройства. При наличии напряжения неоновая лампочка засветится.
Пассивные индикаторы напряжения и тока определяют только то, есть ли напряжение в определенной точке электроцепи
Характеристики активных отверток-индикаторов напряжения
Активные индикаторы имеют более сложное устройство. Внутри корпуса находится схема, которая функционирует несколько иначе, чем у пассивных приборов. Такое устройство является более чувствительным. Светодиодный индикатор напряжения реагирует не только на наличие тока, но и на электромагнитное поле, которое обязательно образуется вокруг проводника.
Активные индикаторы имеют следующие технические характеристики:
- Наличие собственного источника питания. Внутри корпуса имеется батарейка, которая приводит в активное состояние внутреннее устройство.
- Светодиод вместо неоновой лампы.
Как пользоваться индикаторной отверткой со светодиодом? Если одной рукой взяться за жало, а второй коснуться пластины на корпусе, светодиодная лампа отреагирует – засветится. Эта функциональная возможность активно применяется при прозвонке проводов.
Активные индикаторы имеют собственный источник питания
Как проверить, нагревается ли провод с помощью мультиметра (В 6 ШАГОВ)
Если вы собираетесь работать с электрическими цепями или просто хотите понять, как они работают, горячий или находящийся под напряжением провод является одним из самых важные элементы, на которые следует обратить внимание.
Горячий провод — это провод, через который постоянно проходит электрический ток.
Немногие знают, как его идентифицировать, а с проводами одного цвета это становится еще сложнее.
К счастью, вы попали по адресу.
Мы объясняем весь процесс, как проверить, горячий ли провод с помощью мультиметра.
Давайте начнем.
Как проверить, горячий ли провод с помощью мультиметра
Установите мультиметр на диапазон 250 В переменного тока, поместите красный щуп на один из проводов и поместите черный щуп на землю. Если провод горячий, мультиметр показывает либо 120, либо 240 вольт, в зависимости от выходной мощности.
Процесс довольно прост, но это еще не все.
- Средства защиты от износа
При проверке провода на наличие горячего напряжения вы определенно ожидаете, что по нему будет проходить ток.
Быть пораженным электрическим током — это то, чего вы не хотите, поэтому наденьте защитную резину или изолирующие перчатки, прежде чем попасть в нее.
Вы также надеваете защитные очки на случай возникновения искр, держите руки на пластиковой или резиновой части щупов мультиметра и следите за тем, чтобы провода не касались друг друга.
Как новичок, вы тренируетесь с обесточенными проводами, чтобы избежать ошибок.
- Установите мультиметр на диапазон 250 В переменного тока
В ваших бытовых приборах используется переменный ток (переменное напряжение), и вы устанавливаете мультиметр на самый высокий диапазон, чтобы получить наиболее точные показания.
Диапазон 250 В переменного тока является оптимальным, так как максимальное напряжение, которое вы ожидаете получить от бытовой техники и электрических розеток, составляет 240 В.
- Открытое отверстие
Чтобы проверить, какой из проводов в розетке горячий, нужно открыть розетку.
Просто удалите все винты, скрепляющие детали, и вытащите провода.
Обычно в розетке имеется три провода: провод под напряжением, нейтраль и провод заземления.
- Размещение щупов на проводах
Обычно только провод под напряжением или горячий провод удерживает ток, когда он открыт, и это делает весь тест еще проще.
Поместите красный (положительный) щуп на один провод, а черный (отрицательный) щуп на массу.
- Оценка результатов
После того, как вы расположите щупы, вы проверяете показания мультиметра.
Если мультиметр показывает 120 В (с проводами для освещения) или 240 В (с розетками для крупных бытовых приборов), то этот провод горячий или находится под напряжением.
Помните, что горячий провод — это тот, на котором находится красный щуп, когда вы получаете это показание.
Черный щуп остается заземленным.
Другие провода (нейтральный и заземляющий) показывают показания нулевого тока.
Используйте бумагу или малярную ленту, чтобы пометить провод под напряжением, чтобы в будущем его было легко идентифицировать.
Вот видео, в котором показано, как именно мультиметром определить горячий провод:
Если мультиметр не показал показания, возможно проблема с проводами. У нас есть статья о поиске проводов мультиметром.
Есть и другие способы определить, какой из проводов горячий.
Использование бесконтактного тестера напряжения
Более простой и безопасный способ определить, какой из проводов горячий, — использовать бесконтактный тестер напряжения.
Бесконтактный тестер напряжения представляет собой устройство, которое загорается при контакте с электрическим током. Он не должен контактировать с оголенным проводом.
Чтобы проверить, находится ли провод под напряжением, просто поместите наконечник бесконтактного тестера напряжения на провод или выходное отверстие.
Если загорается красный индикатор (или любой другой индикатор в зависимости от модели), значит этот провод или порт перегрелись.
Некоторые бесконтактные тестеры напряжения дополнительно предназначены для подачи звуковых сигналов при приближении к источнику напряжения.
Хотя это устройство безопаснее в использовании, мультиметр является универсальным средством для проверки других электрических компонентов.
Вы можете дополнительно использовать мультиметр, чтобы проверить, какой провод является нейтральным, а какой — заземленным.
Использование цветовых кодов
Еще один способ определить, какой провод горячий, — использовать цветовые коды.
Хотя этот метод является самым простым, он не так точен и эффективен, как другие методы.
Это связано с тем, что в разных странах используются разные цветовые коды проводов, и иногда все провода могут быть одного цвета.
В приведенной ниже таблице указаны общие цветовые коды для вашей страны.
Однофазная линия представляет собой провод под напряжением или под напряжением.
Как видите, цветовые коды не универсальны и полностью полагаться на них нельзя.
Заключение
Определение того, какой из ваших проводов горячий, является одной из самых простых процедур.
Соблюдая осторожность, вы просто используете мультиметр для проверки показаний напряжения.
Если это было полезно, вы можете ознакомиться с нашими статьями о тестировании других электрических компонентов с помощью мультиметра.
Часто задаваемые вопросы
Какой провод горячий, если оба провода одного цвета?
Горячий провод показывает показания мультиметра при проверке. Вы проверяете, поместив красный щуп на провод и поместив черный щуп на землю, чтобы получить показания 120 В переменного тока или 240 В переменного тока.
Как проверить заземление провода под напряжением?
Чтобы проверить заземление горячего провода, вам понадобится мультиметр. Поместите красный щуп на один провод и поместите черный щуп на землю. Горячий провод показывает показания 120 В переменного тока или 240 В переменного тока.
Как с помощью мультиметра убедиться, что питание отключено?
Установите мультиметр на самый высокий диапазон переменного напряжения, поместите красный щуп на провод, а черный щуп на землю. Если ваше питание отключено, мультиметр не показывает никаких показаний напряжения.
Используйте компоненты последовательности, чтобы убедиться, что ваше реле не отключено из-за неправильного чередования фаз • Valence Electrical Training Services
Знаете ли вы, что реле, подключенное или настроенное с неправильным чередованием фаз, может отключить его функции более высокого уровня? Знаете ли вы, что неправильное чередование фаз может сделать тестирование реле бесполезным? Знаете ли вы, что можно быстро и легко определить правильность вращения фаз с помощью компонентов последовательности без сложных вычислений, обычно связанных с компонентами последовательности?
Вы можете успешно тестировать релейные элементы, использующие направленное управление (например, направленный максимальный ток (67) или полный импеданс (21) в идеальных условиях тестирования. Однако эти элементы НЕ будут работать, если чередование фаз энергосистемы не соответствует настройкам реле. Это означает, что вы должны убедиться в правильности чередования фаз при выполнении онлайн- и офлайн-тестирования измерителя.
Вы должны понять всю справочную информацию, которую мы рассмотрели в следующих сообщениях, прежде чем читать дальше:
В следующей таблице представлены значения, полученные для проверки трехфазного симметричного автономного счетчика в реле SEL-351 с помощью мегомметра или RTS.
Тест-набор | Реле | Величина | Угол |
Канал напряжения V1 | ВА | 69,28 В | 0° |
Канал напряжения V2 | ВБ | 69,28 В | 120° |
Канал напряжения V3 | ВК | 69,28 В | 240° |
Канал тока I1 | ИА | 0° | |
Канал тока I2 | ИБ | 1. 000А | 120° |
Канал тока I3 | ИЦ | 1.000А | 240° |
Реле подключено к ТТ 300:5 и ТТ 35:1. Все ли правильно в следующем измерительном тесте?
Вот что известно на данный момент:
- Результаты измерения не равны нулю, это означает, что аналого-цифровые преобразователи реле работают.
- Настройки коэффициента трансформации ТТ и ТН в реле правильные (обратите внимание, что нам не нужно смотреть на фактические настройки, чтобы определить это). Мы подаем 1 А на все три фазы, и реле сообщает примерно о 60 А. Погрешность в наихудшем случае составляет -0,355%, что соответствует соотношению CT 60:1. Реле сообщает примерно 2,42 кВ во всех трех фазах с максимальной процентной ошибкой -0,07%, что соответствует коэффициенту PT.
- Реле смотрит в правильном направлении, потому что токи и напряжения совпадают по фазе.
- Реле запрограммировано с НЕПРАВИЛЬНЫМ чередованием фаз, поскольку компоненты последовательности показывают 0 % прямой последовательности, 100 % обратной последовательности и 0 % нулевой последовательности.
Глядя на фазовые углы в отчете об измерениях, вы не узнаете, правильно ли чередование фаз. Глядя на ватты, вы не говорите о правильности чередования фаз на современном цифровом реле (раньше это был хороший тест в 90, но не больше). Вы должны понимать некоторые простые принципы работы компонентов последовательности, чтобы убедиться, что реле подключено и запрограммировано на поиск правильного чередования фаз.
Вы, вероятно, хотите начать бежать к холмам прямо сейчас, потому что, если вы когда-либо сидели на уроке по компонентам последовательности, это могло быть самой запутанной (или скучной) концепцией, которую вы когда-либо видели, и задавались вопросом, почему она применима к вам. . Я обещаю, что вам НЕ нужно выполнять математические вычисления компонентов последовательности, чтобы понять некоторые основные принципы, которые сделают вас лучшим тестировщиком реле.
Основные принципы работы с компонентами последовательности
Компоненты последовательности могут быть трудны для понимания, поскольку они были созданы математиком примерно в 1918 году для «упрощения» анализа неисправностей для инженеров. Типичный урок по компонентам последовательности включает сложную математику, операторы чередования фаз и эквивалентные схемы для расчета трех компонентов последовательности, которые НЕЛЬЗЯ измерить. Преподаватели и учебники обычно используют такие термины, как:
.- Компоненты прямой последовательности вращаются в прямой последовательности.
- Компоненты обратной последовательности вращаются в обратной последовательности фаз.
- Компоненты нулевой последовательности не вращаются.
Вы можете прочитать раздел «Компоненты последовательности» в «Руководстве по тестированию реле: принципы и практика» , чтобы изучить базовую математику компонентов последовательности, или прочитать любой учебник по электротехнике, чтобы копнуть глубже. Нам нужно только понять некоторые основные правила, чтобы использовать компоненты последовательности в наших измерительных тестах.
100% Положительная последовательность может произойти только в том случае, если эти три утверждения о системе питания верны:
- Значения напряжения/тока/импеданса для всех трех фаз одинаковы.
- Три фазы отстоят друг от друга на 120°.
- Последовательность фаз правильная.
100% обратная последовательность может произойти только в том случае, если эти три утверждения о системе питания верны:
- Значения напряжения/тока/импеданса для всех трех фаз одинаковы.
- Три фазы отстоят друг от друга на 120°.
- Последовательность фаз обратная.
Нулевая последовательность всегда будет равна нулю, если система не разбалансирована из-за замыкания на землю или проблемы с одной фазой.
Поиск компонентов последовательности в отчете об измерениях
Описания фаз обычно выглядят примерно так: A-B-C, R-S-T или 1-2-3. Компоненты последовательности используют символы 1-2-0 после единиц, которые они представляют. Если вы посмотрите в нижней части отчета об измерениях, вы увидите символы:
.- 3I2 = Ток обратной последовательности, умноженный на три = 3xI2 = I2x3
- 3I0 = Ток нулевой последовательности, умноженный на три = 3xI0 = I0x3
- В1 = напряжение прямой последовательности
- В2 = напряжение обратной последовательности
- 3V0 = напряжение нулевой последовательности, умноженное на три = 3xI0 = I0x3
Устранение неполадок чередования фаз во время тестов счетчиков
Теперь, когда вы знаете символы и шаблоны, которые нужно искать, вы можете видеть, что I1 и V1 по существу равны нулю.
Компоненты нулевой последовательности (3I0 и 3V0) по существу равны нулю и создаются небольшими, но неотъемлемыми неточностями тестовой установки и реле, используемыми во время теста (ничто не идеально, даже несмотря на то, что тестировщики реле часто ищут совершенства в своих результатах). ). Обычно это хороший знак, потому что вы должны видеть значительные компоненты нулевой последовательности только во время замыканий на землю или однофазных проблем.
Компоненты обратной последовательности (3I2 и V2) равны 100 % введенных пофазных напряжений (2,424 кВ) и токов (1790,593/3 = 59,86А). Этот шаблон может существовать только в том случае, если верно одно из следующих условий:
- Ваш тестовый набор вводит неправильную последовательность фаз во время теста
- Перепутаны две фазы между источником (испытательной установкой или системой питания) и реле
- Система питания имеет неправильную последовательность фаз
- Реле запрограммировано с неправильной последовательностью фаз
В этом случае мы должны посмотреть на векторную диаграмму тестового набора, чтобы убедиться, что тестовый набор экспортирует правильное чередование фаз. Заметьте, я не говорил вам смотреть на значения фазового угла. Трудно отслеживать системы углов, когда вы используете наборы тестов и программное обеспечение, которые используют разные системы фазовых углов. Векторные диаграммы универсальны. На следующей диаграмме фазового угла из тестового набора показано вращение ABC.
Реле измеряет правильное чередование фаз, поэтому проводка между тестовым комплектом и реле, вероятно, не пересекается.
Мы не можем сказать, соответствует ли настройка реле системе питания, пока не проведем тест счетчика в процессе эксплуатации. Мы можем сравнить последовательность фаз на чертежах с нашей векторной диаграммой тестового набора, чтобы убедиться, что мы соблюдаем ожидаемое чередование фаз системы.
Единственная оставшаяся возможность — настройка реле. Мы можем поискать в руководстве «чередование фаз» или «последовательность фаз», чтобы найти правильную настройку. Правильной настройкой является PHROT в группе глобальных настроек реле SEL, как показано на снимке экрана руководства ниже.
Если поискать в настройках реле PHROT, то обнаружим, что оно настроено на ACB, что не соответствует указанному вращению ABC.
Теперь, когда мы знаем, в чем проблема, мы можем связаться с инженером-проектировщиком, чтобы указать на проблему. Ваше электронное письмо может содержать что-то вроде: «Мы обнаружили, что применяемая настройка реле PHROT = ACB. На чертежах площадки указано, что фактическое вращение системы — ABC. Должен ли этот параметр быть ABC? Предоставьте обновленные настройки или разрешите изменить настройку на ABC, если это применимо».
Если изменение настройки одобрено, мы можем изменить настройку на ABC и выполнить еще один тест счетчика с теми же значениями:
Тест-набор | Реле | Величина | Угол |
Канал напряжения V1 | ВА | 69,28 В | 0° |
Канал напряжения V2 | ВБ | 69,28 В | 120° |
Канал напряжения V3 | ВК | 69,28 В | 240° |
Канал тока I1 | ИА | 1. 000А | 0° |
Канал тока I2 | ИБ | 1.000А | 120° |
Канал тока I3 | ИЦ | 1.000А | 240° |
Шаблон для этого измерительного теста:
- V1, VA, I1 и IA = 0 градусов, V2, VB, I2 и IB = отставание A/1 на 120°, а также V3, VC, I3 и IC = отставание 1/A на 240°. Тестовый набор вводит ABC, а реле получает ABC. Токи и напряжения совпадают по фазе.
- I1 и V1 = 100 %, 3I2 и V2 = 0 % и 3I0 и 3V0 = 0 %. Чередование фаз реле установлено правильно.
Это шаблон, который вы должны искать во время каждого теста метра.
Помните, что проверки расходомера в процессе эксплуатации так же важны, как и все проверки реле в автономном режиме, поскольку реле может быть отключено, если:
- Проводка или настройки меняют местами чередование фаз и отключают реле
- Реле смотрит в обратном направлении из-за ошибок проектирования, ошибок проводки или неправильной полярности ТТ.