способы и приборы. Блок питания Делитель напряжения на индуктивностях
Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?
Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.
Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:
Вариант №1
Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):
Вариант №2
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора.
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Вариант №3
Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).
Итак, схему в студию!
Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.
Итак, что на выходе?
Почти 5.7 Вольт;-), что и требовалось доказать.
Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:
На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.
Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода — ноль и фаза. Это называется однофазной крайне редко используется в частном секторе и многоквартирных домах. Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования — понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики. Именно эти моменты и нужно рассмотреть.
Снижение напряжения с помощью трансформаторов
Самый простой способ — это использовать трансформатор пониженного напряжения, который совершает преобразования. Первичная обмотка содержит большее число витков, чем вторичная. Если есть необходимость снизить напряжение вдвое или втрое, вторичную обмотку можно и не использовать. Первичная обмотка трансформатора используется в качестве индуктивного делителя (если от нее имеются отводы). В бытовой технике используются трансформаторы, со вторичных обмоток которых снимается напряжение 5, 12 или 24 Вольта.
Это наиболее часто используемые значения в современной бытовой технике. 20-30 лет назад большая часть техники питалась напряжением в 9 Вольт. А ламповые телевизоры и усилители требовали наличия постоянного напряжения 150-250 В и переменного для нитей накала 6,3 (некоторые лампы питались от 12,6 В). Поэтому вторичная обмотка трансформаторов содержала такое же количество витков, как и первичная. В современной технике все чаще используются инверторные блоки питания (как на компьютерных БП), в их конструкцию входит трансформатор повышающего типа, он имеет очень маленькие габариты.
Делитель напряжения на индуктивностях
Индуктивность — это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор — это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.
Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:
- U(L1) = U1 * (L1 / (L1 + L2)).
- U(L2) = U1 * (L2 / (L1 + L2)).
В этих формулах L1 и L2 — индуктивности первой и второй катушек, U1 — напряжение питающей сети в Вольтах, U(L1) и U(L2) — падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.
Делитель на конденсаторах
Очень популярная схема, используется для снижения значения питающей сети переменного тока. Применять ее в цепях постоянного тока нельзя, так как конденсатор, по теореме Кирхгофа, в цепи постоянного тока — это разрыв. Другими словами, ток по нему протекать не будет. Но зато при работе в цепи переменного тока конденсатор обладает реактивным сопротивлением, которое и способно погасить напряжение. Схема делителя похожа на ту, которая была описана выше, но вместо индуктивностей используются конденсаторы. Расчет производится по следующим формулам:
- Реактивное сопротивление конденсатора: Х(С) = 1 / (2 * 3,14 *f * C).
- Падение напряжения на С1: U(C1) = (C2 * U) / (C1 + C2).
- Падение напряжения на С2: U(C1) = (C1 * U) / (C1 + C2).
Здесь С1 и С2 — емкости конденсаторов, U — напряжение в питающей сети, f — частота тока.
Делитель на резисторах
Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:
- U(R1) = (R1 * U) / (R1 + R2).
- U(R2) = (R2 * U) / (R1 + R2).
Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.
Практическая схема блока питания: трансформатор
Для выбора питающего трансформатора вам потребуется знать несколько основных данных:
- Мощность потребителей, которые нужно подключать.
- Значение напряжения питающей сети.
- Значение необходимого напряжения во вторичной обмотке.
S = 1,2 * √P1.
А мощность Р1 = Р2 / КПД. Коэффициент полезного действия трансформатора никогда не будет более 0,8 (или 80%). Поэтому при расчете берется максимальное значение — 0,8.
Мощность во вторичной обмотке:
Р2 = U2 * I2.
Эти данные известны по умолчанию, поэтому произвести расчет не составит труда. Вот как понизить напряжение до 12 вольт, используя трансформатор. Но это не все: бытовая техника питается постоянным током, а на выходе вторичной обмотки — переменный. Потребуется совершить еще несколько преобразований.
Схема блока питания: выпрямитель и фильтр
Далее идет преобразование переменного тока в постоянный. Для этого используются полупроводниковые диоды или сборки. Самый простой тип выпрямителя состоит из одного диода. Называется он однополупериодный. Но максимальное распространение получила мостовая схема, которая позволяет не просто выпрямить переменный ток, но и избавиться максимально от пульсаций. Но такая схема преобразователя все равно неполная, так как от переменной составляющей одними полупроводниковыми диодами не избавиться. А понижающие трансформаторы способны преобразовать переменное напряжение в такое же по частоте, но с меньшим значением.
Электролитические конденсаторы используются в блоках питания в качестве фильтров. По теореме Кирхгофа, такой конденсатор в цепи переменного тока является проводником, а при работе с постоянным — разрывом. Поэтому постоянная составляющая будет протекать беспрепятственно, а переменная замкнется сама на себя, следовательно, не пройдет дальше этого фильтра. Простота и надежность — это именно то, что характеризует такие фильтры. Также могут применяться сопротивления и индуктивности для сглаживания пульсаций. Подобные конструкции используются даже в автомобильных генераторах.
Стабилизация напряжения
Вы узнали, как понизить напряжение до нужного уровня. Теперь его нужно стабилизировать. Для этого используются специальные приборы — стабилитроны, которые изготовлены из полупроводниковых компонентов. Они устанавливаются на выходе блока питания постоянного тока. Принцип работы заключается в том, что полупроводник способен пропустить определенное напряжение, излишек преобразуется в тепло и отдается посредством радиатора в атмосферу. Другими словами, если на выходе БП 15 вольт, а установлен стабилизатор на 12 В, то он пропустит именно столько, сколько нужно. А разница в 3 В пойдет на нагрев элемента (закон сохранения энергии действует).
Заключение
Совершенно другая конструкция — это стабилизатор напряжения понижающий, он делает несколько преобразований. Сначала напряжение сети преобразуется в постоянное с большой частотой (до 50 000 Гц). Оно стабилизируется и подается на импульсный трансформатор. Далее происходит обратное преобразование до рабочего напряжения (сетевого или меньшего по значению). Благодаря использованию электронных ключей (тиристоров) постоянное напряжение преобразуется в переменное с необходимой частотой (в сетях нашей страны — 50 Гц).
Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…
Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.
Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.
Блок питания 3 — 24в
Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.
Схема блока питания на 1,5 в
Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.
Схема регулируемого блока питания от 1,5 до 12,5 в
Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.
Схема блока питания с фиксированным выходным напряжением
Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.
Схема блока питания мощностью 20 Ватт с защитой
Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения. ..
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.
Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.
Самодельный блок питания на 3.3v
Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.
Трансформаторный блок питания на КТ808
У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.
При условии правильного монтажа, просадка выходного напряжения не превышает 0. 1 вольта
Блок питания на 1000в, 2000в, 3000в
Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.
В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.
Еще по теме
Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Ремонт и доработка китайского блока питания для питания адаптера.
Как решить проблему повышенного (пониженного) напряжения в бытовой сети?
Главная
Обзоры и советы
Статьи
Как решить проблему повышенного (пониженного) напряжения в бытовой сети?
Номинальное напряжение однофазной бытовой сети – 220 В. Допускается незначительное отклонение напряжения от номинального значения — +/- 5%. То есть если напряжение в бытовой сети находятся в пределах 210-230 В, то оно считается нормальным и не оказывает негативного влияния на работу бытовых электроприборов, включаемых в сеть. Но если напряжение бытовой сети выходит за эти рамки, то оно считается ненормальным и большинство электроприборов, включаемых в бытовую сеть, в лучшем случае могут работать некорректно, в худшем – могут выйти из строя.
Если напряжение в бытовой сети на порядок выше допустимого максимального значения, то оно считается повышенным, если ниже минимально допустимого уровня – соответственно пониженным. Иногда отклонение напряжения в электрической сети может быть обусловлено временным режимом работы электрической сети. Например, на период ремонта одной из понижающих подстанций 10/0,4 кВ, когда значительная часть потребителей была переведена на питание от другой понижающей подстанции, что привело к некоторому снижению напряжения в бытовой сети в связи с тем, что увеличилась суммарная нагрузка на трансформаторы понижающей подстанции. В данном случае пониженное напряжение бытовой сети – это временное явление и после ремонта подстанции и перевода на нее нагрузки, напряжение в сети нормализуется. Если же пониженное (повышенное) напряжение в бытовой сети не обусловлено изменениями режима работы электрической сети, и оно находится в данных пределах достаточно долгое время, то данный вопрос необходимо решать. Как решить проблему пониженного (повышенного) напряжения бытовой сети? Ниже постараемся ответить на данный вопрос. Для того чтобы решить данный вопрос, необходимо, прежде всего определить причину понижения или повышения напряжения в электрической сети. Для снижения потерь, электрическая энергия передается на высоком напряжении. Далее напряжение понижается до значений, которое является рабочим для тех или иных потребителей. Электрические сети, питающие жилые дома, квартиры, различные учреждения имеют номинальное напряжение 220/380 В. Для того чтобы обеспечить данное значение напряжения в электрической сети, на электрических распределительных подстанциях осуществляется понижение напряжения при помощи понижающих трансформаторов (автотрансформаторов). На подстанциях 110 кВ напряжение понижается до значений 35 или 10 (6) кВ; на подстанциях 35 кВ до значений 10 (6) кВ; и уже на подстанциях 10 (6) кВ напряжение понижается до значений 220/380 В. Для регулировки напряжения на трансформаторах предусматриваются устройства РПН и ПБВ. Переключением данных устройств обеспечивается необходимое значение напряжение в электрической сети того или иного класса напряжения.
Понижение напряжения при помощи понижающих трансформаторов
Понижение напряжения при помощи понижающих трансформаторов Если проблема повышенного (пониженного) напряжения наблюдается на нескольких подстанциях, которые питаются от одного источника, например, районной подстанции, то регулировка напряжения осуществляется на данной подстанции. Если проблема отклонения напряжения от номинальных значений наблюдается на отдельных участках электрической сети, питающихся от одной понижающей подстанции 10 (6)/0,4 кВ, то напряжение необходимо регулировать на данной подстанции. Для решения данной проблемы необходимо обратиться в энергоснабжающую компанию вашего района (РЭС, ПЭС и т.д.). Работники данной организации, осуществляющие оперативное обслуживание понижающих подстанций, должны определить проблему пониженного или повышенного напряжения и устранить ее.
Для решения данной проблемы необходимо обратиться в энергоснабжающую компанию
Для решения данной проблемы необходимо обратиться в энергоснабжающую компанию Возможно, также причиной понижения или повышения напряжения может быть неравномерное распределение нагрузки по фазам электрической сети. Например, на одной фазе напряжение пониженное, на двух других фазах электрической сети – повышенное. В таком случае решение проблемы несоответствия напряжения сводится к правильному распределению однофазных потребителей по фазам электрической сети. Также одной из наиболее распространенных причин понижения или повышения напряжения бытовой сети является сезонное изменение нагрузки. Например, в период низких температур нагрузка бытовой электрической сети увеличивается, что приводит к падению напряжения в сети. Это особенно актуально для тех районов, где основным источником обогрева жилья в период низких температур являются электрические обогреватели. При этом летом, когда значительно снижается нагрузка бытовых электроприборов (в большей степени за счет отключения электрических обогревателей), напряжение в бытовой сети повышается выше номинального значения. В данном случае для нормализации напряжения, работники энергоснабжающих компаний должны несколько раз в год, в зависимости от сезона, осуществлять регулирования напряжения на трансформаторных подстанциях (при помощи устройств РПН, ПБВ). Очень часто, когда нагрузка потребителей большая и трансформаторы работают в режиме перегрузки, регулировкой напряжения на трансформаторах не решить проблему. В таком случае проблема решается установкой более мощных трансформаторов на понижающих подстанций или установкой дополнительного трансформатора, на который переключается некоторая часть потребителей в период повышения нагрузки потребителей бытовой электрической сети. Также следует отметить, что значение напряжения зависит от расстояния от источника до потребителя. По мере удаления от источника происходит некоторое падение напряжения. Как правило, напряжение в бытовой электрической сети регулируется таким образом, чтобы обеспечить номинальное значение в средней части электрической сети. Таким образом, в непосредственной близости к источнику (понижающей подстанции) у потребителей наблюдается некоторое повышение напряжение, а в конце линии – уменьшение напряжения. Если длина линий сети 380/220 В сравнительно небольшая, то проблем с регулировкой напряжения не возникает. Значение напряжения во всех участках электрической сети находятся в пределах допустимых значений. В том случае, если линия бытовой сети протяженная, то у некоторых потребителей: тех, которые находятся близко к источнику питания или наоборот далеко от него, возникает проблема повышенного (пониженного) напряжения бытовой сети. Также следует отметить, что проблема значительного падения напряжения в электрических сетях проявляется из-за неудовлетворительного состояния электрических сетей, простыми словами — изношенность линий электропередач. Для решения данной проблемы в быту применяют стабилизаторы напряжения. Существует достаточно много различных стабилизаторов напряжения, применяемых в быту, которые классифицируются по таким параметрам: диапазон изменения рабочего (входного) напряжения, количество фаз, номинальная мощность подключаемой нагрузки, точность, быстродействие.
Применение стабилизаторов напряжения
Применение стабилизаторов напряжения Следует отметить, что стабилизаторы напряжения, помимо нормализации значения напряжения бытовой сети решают такую проблему, как скачки напряжения, которые также являются признаками некачественного электроснабжения. Таким образом, стабилизаторы напряжения продлевают срок службы большинства типов ламп, различных электронных устройств и других бытовых электроприборов, для которых скачки напряжения могут привести к выходу их из строя. Стабилизаторы напряжения, по сути, предназначены для нормализации напряжения в случае незначительного отклонения и для сравнительно небольшой нагрузки. Есть также стабилизаторы напряжения, которые характеризуются достаточно широким диапазоном входного напряжения. Но, чем выше данный диапазон и номинальная мощность, тем больше габаритные размеры стабилизатора напряжения и выше его стоимость. Если отклонения значения напряжения существенные и нагрузка подключаемых электроприборов большая, то целесообразнее для нормализации напряжения применять понижающие (повышающие) трансформаторы. Во-первых, они значительно дешевле и имеют меньшие габаритные размеры. Единственный недостаток применения данных трансформаторов – сложность подключения, выбора, расчета требуемых номинальных параметров. Если стабилизатор напряжения с легкость можно включить в сеть самостоятельно, то для подключения трансформатора не обойтись без специалиста. Следует отметить, что при использовании повышающего (понижающего) трансформатора в быту, необходимо в обязательном порядке предусмотреть защиту от возможных перенапряжений. Для этой цели используются бытовые реле напряжения, устанавливаемые на вводе в электрическом распределительном щитке квартиры. На реле напряжения устанавливается требуемая уставка минимального и максимального напряжения и, в случае ее отклонения, данный защитный аппарат размыкает электрическую цепь, тем самым защищая бытовые электроприборы, включенные в сеть от выхода из строя по причине значительного отклонения напряжения от допустимых значений.
Напряжение— Уменьшить 6 вольт до 5 вольт?
спросил
Изменено 3 года, 11 месяцев назад
Просмотрено 2к раз
\$\начало группы\$
Хочу установить радиоприемник Siriusxm в старинный автомобиль с 6-вольтовой системой. В адаптере питания приемника Sirius на 12 вольт указано, что выходное напряжение составляет 5 вольт. Если я подключу приемник напрямую к 6-вольтовой системе, не сожжет ли этот дополнительный вольт приемник со временем? Если да, то какое устройство можно подключить, чтобы понизить напряжение до 5 вольт? Читал тут про диоды и SEPIC для этого, но не разбираясь в электронике, не понимаю куда идти. Может ли кто-нибудь посоветовать мне, как конкретно это сделать? Любые рекомендации о том, что я должен купить, чтобы включить источник, если он известен, будут оценены.
- напряжение
- резисторы
- диоды
\$\конечная группа\$
9
\$\начало группы\$
Во-первых, вы должны знать, какой ток потребляет ваше устройство. Лично я бы использовал DC-DC с низким падением напряжения или простой LDO, если ток не слишком велик. Есть еще вариант, использовать диоды.
Вариант A: Купите через Интернет или создайте собственный понижающий преобразователь постоянного тока с малым падением напряжения, который будет удерживать рассеиваемую мощность для тока на вашем устройстве.
Вариант B: Используйте LM1117 5.0V, если ваш ток не превышает 1A и вы можете иметь 6.3V на входе.
Вариант C: Используйте последовательно диоды 1N4007 и 1N4148 (одно направление), где 1N4007 вызовет падение на ~0,7 В, а 1N4148 вызовет падение на ~0,3 В.
Вариант D: если ток мал, можно использовать просто резистор напряжения с правильным коэффициентом!
\$\конечная группа\$
4
\$\начало группы\$
Самый простой и дешевый способ понизить небольшое напряжение — это использовать диод, прямое падение напряжения составляет около 0,7 В, поэтому он идеально подходит для снижения небольшого напряжения, я надеюсь, что это поможет, и он не должен сгореть. с 1 дополнительным вольтом должен быть допуск 20%, но если вы хотите получить его точно, я бы рекомендовал использовать диоды. РЕДАКТИРОВАТЬ (При использовании диода всегда проверяйте падение напряжения в паспорте, так как оно может варьироваться)
\$\конечная группа\$
1
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
. 9Напряжение 0000 — Какой резистор мне нужен, чтобы превратить ток 6 вольт в ток 5 вольт?Задай вопрос
спросил
Изменено 2 года, 7 месяцев назад
Просмотрено 256 раз
\$\начало группы\$
Я пытаюсь модифицировать пистолет ECS-10 Modulus Nerf Gun, включив в него лазерный прицел, а так как лазер, который я использую, работает на 5 вольт, а батарея на 4 AA, какой резистор мне следует использовать для преобразования питания?
- напряжение
- резисторы
\$\конечная группа\$
5
\$\начало группы\$
Поскольку текущая потребность лазера неизвестна, лучше понизить напряжение с помощью диода 1N4007, он снижает напряжение на 0,7 В до 1,0 В в зависимости от тока, потребляемого лазером.