Site Loader

Содержание

Получение переменного тока: способы и основные определения

Переменный ток – единственный на сегодняшний день способ дешевой передачи электроэнергии на расстояния. Он превосходит постоянный ток по ряду параметров, в том числе и по простоте трансформации. В этой статье мы расскажем, как получают переменный электрический ток в быту и на производстве.

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока – ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX – первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Наверняка вы не знаете:

§46. Получение переменного тока | Электротехника

В промышленности в основном применяют синусоидальный переменный ток, который в отличие от постоянного каждое мгновение изменяет свое значение и периодически направление. Для получения такого тока используют источники электрической энергии, создающие переменную э. д. с, периодически изменяющуюся по величине и направлению; такие источники называются генераторами переменного тока.

Принцип получения переменного тока. Простейшим генератором переменного тока может служить виток, вращающийся в равномерном магнитном поле (рис. 168, а). Пользуясь правилом правой руки, легко определить, что в процессе вращения витка направление э. д.с. е, индуцированной в рабочих участках 1 и 2 витка, непрерывно изменяется (показано стрелками), следовательно, изменяется и направление проходящего по замкнутой цепи тока i.

По закону электромагнитной индукции э. д. с, индуцируемая в витке при вращении его с окружной скоростью ? в магнитном поле с индукцией В,

e = 2lB? sin?,

где

2l — длина двух рабочих частей витка, находящихся в магнитном поле;

? — угол между направлением силовых магнитных линий и направлением движения витка в рассматриваемый момент времени (направлением вектора скорости ?).

При вращении витка с угловой скоростью ? угол ? = ?t, следовательно,

e = 2lBv sin ?t.

Переменный угол ? t называется фазой э. д. с. Величина 2lB ? представляет собой максимальное значение э. д. с. е, которое она принимает при ?t = 90° (когда плоскость витка перпендикулярна силовым магнитным линиям). Обозначив его Eт получим:

е = Ет sin ?t.

Полученная зависимость изменения э. д. с. е от угла ?t или от времени t графически изображается синусоидой (рис. 168,б). Э. д. с, токи и напряжения, изменяющие свои значения и направления по закону синусоиды, называются синусоидальными. Ось, по которой откладывают углы ? t, можно рассматривать как ось времени t.

Рассмотрим несколько отдельных положений витка. В момент времени, соответствующий углу ?t

1 (см. рис. 168, а), когда виток находится в горизонтальном положении, его рабочие участки как бы скользят вдоль силовых магнитных линий, не пересекая их; поэтому в этот момент э. д. с. в них не индуцируется (точка 1 на рис. 168,б). При дальнейшем повороте витка стороны его начнут пересекать магнитные силовые линии. По мере увеличения угла поворота увеличивается и число силовых линий, пересекаемых сторонами витка в единицу времени, и соответственно возрастает индуцированная в витке э. д. с е.

В момент времени, соответствующий углу ?t2, виток пересекает наибольшее число силовых магнитных линий, так как его рабочие участки 1 и 2 движутся перпендикулярно силовым линиям магнитного поля; в этот момент э. д. с. е достигает своего максимального значения Ет (точка 2 на графике). При дальнейшем вращении витка число пересекаемых силовых линий уменьшается и соответственно уменьшается индуцированная в витке э. д. с. В момент времени, соответствующий углу рабочие участки витка опять как бы скользят вдоль магнитных силовых линий, в результате чего э. д. с. е будет равна нулю (точка 3). Затем рабочие участки 1 и 2 витка вновь начинают пересекать магнитные силовые линии, но уже в другом направлении, поэтому в витке появляется э. д. с. противоположного направления. В момент времени, соответствующий углу ?t

4. при вертикальном расположении витка э. д. с. в достигает максимального значения — Ет (точка 4), затем она уменьшается, и в момент времени, соответствующий ?t5, снова становится равной нулю (точка 5). При дальнейшем движении витка с каждым

Рис. 168. Индуцирование синусоидальной э. д. с. (а) и кривая ее изменения (б)

новым оборотом описанный выше процесс индуцирования э. д. с. будет повторяться.

В современных генераторах переменного тока магниты или электромагниты, создающие магнитное поле, обычно располагаются на вращающейся части машины —

роторе, а витки, в которых индуцируется переменная э. д. с,— на неподвижной части генератора — статоре. Однако с точки зрения принципа действия генератора переменного тока безразлично, на какой части машины — роторе или статоре — расположены витки, в которых индуцируется переменная э. д. с.

Работа приемников электрической энергии при переменном токе. Если подключить к генератору переменного тока электрическую лампу (см. рис. 168, а), то нить ее будет периодически накаляться и остывать. Однако если частота изменений переменного тока достаточно велика, то нить лампы не будет успевать охлаждаться и глаз человека не будет улавливать изменений ее накала. Такие же условия имеют место и при работе электродвигателей переменного тока; такой двигатель при работе получает от источника импульсы переменного тока, следующие один за другим с большой частотой, и его ротор будет вращаться с постоянной частотой.

что это и как получить

 

Постоянный электрический ток можно получить от батарейки или другого источника тока. В таком случае мы будем иметь ток, текущий все время в одном направлении от положительного полюса источника к отрицательному. Некоторые электроприборы питаются постоянным током, однако большинство потребляет переменный ток.

Что такое переменный ток

В электрических розетках у нас в квартирах тоже течет переменный ток. Мы знаем, что переменный ток это ток, который регулярно меняет свое направление. То есть в случае переменного тока у нас не будет положительного полюса источника и отрицательного. Как же получают переменный ток?

В самом деле, в нашей стране используют ток частотой 50 Гц, то есть, направление такого тока меняется 50 раз в секунду. Не крутят же на электростанциях с такой скоростью батарейки или иные источники постоянного тока. Очевидно, что ток получают каким-то другим способом. Интересно, каким? Тогда разберемся.

Получение переменного электрического тока возможно благодаря использованию явления электромагнитной индукции. Это явление заключается в том, что при изменении магнитного потока, пронизывающего замкнутый проводящий контур, в контуре возникает электрический ток.

Как получить переменный ток

Помните опыты с вдвиганием и выдвиганием магнита внутрь катушки, подключенной к гальванометру? Гальванометр показывал противоположное значение тока в зависимости от того, куда двигался магнит внутрь или наружу катушки. Вот на этом и основано получение переменного тока в электромеханических индукционных генераторах. Генератор состоит из двух основных частей подвижной и неподвижной.

Неподвижная часть называется статором, а подвижная ротором. Статор представляет собой большой цилиндр, в котором проложены толстые медные провода. Внутри статора вращается ротор, который представляет собой большой магнит, чаще всего это электромагнит. При вращении ротора меняется создаваемое им магнитное поле, и магнитный поток, пронизывающий провода, изменяется. При этом магнит оказывается попеременно повернутым к контуру то одним, то другим полюсом, вследствие чего создаваемый ток периодически меняет свое направление.

Для вращения ротора используют механическую энергию. Это может быть или тепловая энергия, как например, на дизельных и угольных электростанциях, либо же энергия воды и ветра, как например, на гидроэлектростанциях и ветряках. Так механическая энергия преобразуется в электрическую и подается потребителю.

Нетрудно догадаться, что получение электричества с помощью воды и ветра является намного более выгодным делом, чем, если на это приходится тратить топливо. К тому же такой процесс экологически намного чище. Поэтому задачей человека в наше время является максимальный переход на получение электроэнергии от возобновляемых источников.

Это поможет как снизить стоимость электричества для конкретного потребителя, то есть для нас с вами, так и сохранить природную чистоту. Такая потребность становится все более очевидной в последнее время.

Нужна помощь в учебе?



Предыдущая тема: Явление электромагнитной индукции: опыт Фарадея, выводы
Следующая тема:&nbsp&nbsp&nbspЭлектромагнитное поле: меняющиеся магнитные и электрические поля

Получение переменного тока: теория, основные способы

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала; 
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и  потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Получение переменного тока — Основы электроники

Мы с вами узнали, что такое переменный ток, теперь я вам хочу рассказать, как получить переменный синусоидальный ток.

Возьмем проводник, согнутый в виде рамки и будем вращать его в равномерном магнитном поле (рисунок 1). При вращении рамки магнитный поток, охватываемый ею, будет изменяться, следовательно, в рамке возникнет ЭДС индук­ции.

Пусть рамка вращается с равномерной скоростью. Мы уже знаем, что величина ЭДС, индуктированной в рамке, будет тем больше, чем быстрее будет изменяться число маг­нитных силовых линий, охватываемых рамкой, или иначе, чем большее число магнитных силовых линий будут пересекать стороны рамки в единицу времени (например в одну секунду).

Примем за начальное то положение рамки, когда она охва­тывает наибольшее число магнитных силовых линий, т. е. когда плоскость ее перпендикулярна направлению магнитного потока. На рисунке 1 это положение отмечено цифрой 1.

Рисунок 1. Получение синусоидального переменного тока. а — ряд последовательных положений рамки в магнитном поле; б -график переменного тока (синусоида).

В начале вращения рамки ее стороны будут скользить почти вдоль магнитных силовых линий, пересекая очень малое число их, то есть магнитный поток, проходящий через рамку, будет изменяться очень медленно, следовательно, и наводимая этим изменением потока ЭДС индукции будет невелика.

По мере приближения рамки, к положению 2, когда плос­кость ее становится параллельной силовым линиям, количе­ство пересекаемых рамкой силовых линий возрастает (при по­стоянной скорости вращения рамки) а, следовательно, воз­растает и индуктируемая в ней ЭДС.

Когда рамка пройдет положение 2, действующая в рамке ЭДС начнет постепенно убывать и станет равной нулю, когда рамка сделает полоборота (положение 3). Затем ЭДС будет снова возрастать, но уже в обратном направлении, так как теперь стороны рамки будут пересекать магнитные силовые ли­нии в противоположном направлении. В момент, когда рамка займет положение 4, т. е. сделает три четверти оборота, ЭДС будет наибольшей, после чего она начнет снова убывать и сде­лается равной нулю в тот момент, когда рамка завершит пол­ный оборот (положение 5).

При дальнейшем вращении рамки все явления будут по­вторяться в прежнем порядке. Так как ЭДС в рамке непре­рывно изменяется по величине и, кроме того, два раза в тече­ние каждого оборота изменяет свое направление, то и ток, вы­зываемый ею в рамке, будет также изменяться и по величине и по направлению.

Условимся изображать изменение переменной ЭДС, наво­димой в рамке при вращении ее в магнитном поле, таким об­разом, что по горизонтальной прямой линии (оси) слева направо будем откладывать в каком-нибудь масштабе угол поворота рамки или время, протекшее от начала поворота, а вверх и вниз (по вертикали) будем откладывать те ЭДС, которые наводятся в рамке при данном угле ее поворота. Вверх будем откладывать ЭДС одного направления, а вниз— ЭДС другого направления. В результате такого построения получим график изменения ЭДС в зависимости от угла по­ворота рамки или, что то же самое, в зависимости от времени, так как рамка вращается с постоянной скоростью. Кривая эта, изображенная на рисунке 1б, очень часто встречается в электро­технике и носит название синусоиды.

Итак, мы видим, что при равномерном вращении рамки в равномерном магнитном поле в ней индуктируется переменная ЭДС, изменяющаяся по периодическому закону, выражае­мому синусоидой; ЭДС и токи, изменяющиеся по такому за­кону, называются синусоидальными, а весь описанный процес будет иметь название получение переменного синусоидального тока.

Свяжем мысленно с вращающейся рамкой стрелку, укреп­ленную на одной оси с рамкой (рисунок 2а). Направим на вра­щающуюся стрелку пучок параллельных световых лучей так, как это изображено на рисунке 2б, а с другой стороны стрелки поставим экран (например лист бумаги). Электродвижущая сила, индуктируемая в рамке, в каждый данный момент бу­дет пропорциональна длине тени, отбрасываемой стрелкой на экран. Длина тени в начальный момент, когда стрелка нахо­дится в горизонтальном положении, т. е. острием направлена в сторону экрана, будет равна нулю.

Рисунок 2. Модель синусоидального колебания. а -вместе с рамкой вращается стрелка; б -кончик тени от стрелки совершает синусоидальные колебания.

При вращении стрелки в направлении, указанном на рисунке, ее тень начнет удлиняться, вытягиваясь вверх. Сначала удлинение тени будет происходить быстро, но по мере при­ближения стрелки к вертикальному положению оно замедлит­ся и, наконец, совеем прекратится, когда длина тени сделается равной длине стрелки. После этого тень будет укорачиваться, сначала медленно, а затем все быстрее и быстрее и, наконец, сделается равной нулю в тот момент, когда стрелка, совершив полоборота, займет горизонтальное положение. В то время, когда стрелка будет совершать следующую половину оборота, ее тень совершит такое же удлинение и укорочение, как и прежде, с той лишь разницей, что удлиняться она теперь будет не вверх, а вниз.

При каждом обороте стрелки ее тень будет совершать одно полное колебание.

Колебания тени вращающейся стрелки дают полную карти­ну изменения скорости движения электронов в проводнике при синусоидальном переменном токе. Скорость свободных элек­тронов в проводнике сначала невелика, затем электроны начи­нают двигаться все быстрее и быстрее (сила тока увеличивает­ся). В некоторый момент скорость электронов достигает своей максимальной величины (сила тока максимальна), после чего электроны постепенно замедляют свое движение и, наконец, совсем останавливаются (сила тока равна нулю).

Однако, практически электроны не делают остановки, так как они тотчас же начинают движение в обратном направле­нии (ток изменяет свое направление) с постепенно увеличи­вающейся скоростью (сила тока растет) и т. д.

Начертим окружность, внутри которой наметим несколько положений радиуса, занимаемых им при равномерном движе­нии его конца по окружности. На рисунке 3 показано 24 после­довательных положения радиуса, занимаемых им через каж­дые 15° поворота. Справа от этой окружности проведем гори­зонтальную линию на высоте центра окружности. Разделим горизонтальную координатную ось также на 24 части, каждая из которых будет соответствовать 15° окружности.

Рисунок 3. Построение грфика синусоидального переменного тока. Окружность и горизонтальная ось координат разделены на одинаковое число частей.

Из каждой отмеченной точки на горизонтальной оси прове­дем вертикальную линию, равную проекции радиуса на вертикальный диаметр или длине тени при данном угле поворо­та. Соединим плавной кривой концы всех вертикальных ли­ний. Эта кривая и будет синусоидой.

Вращающийся радиус, употребляемый при построении си­нусоиды, называется радиусом-вектором.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Переменный ток: получение и применение

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят – постоянный ток одной амплитуды.

Создание переменного тока

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть – замалчивает работы с переменным током. Подобно Георгу Ому, ученый – талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Диполь антенна Герца

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда – противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы – неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

Получение переменного тока кратко. Получение переменного электрического тока

Постоянный электрический ток можно получить от батарейки или другого источника тока. В таком случае мы будем иметь ток, текущий все время в одном направлении от положительного полюса источника к отрицательному. Некоторые электроприборы питаются постоянным током, однако большинство потребляет переменный ток.

Что такое переменный ток

В электрических розетках у нас в квартирах тоже течет переменный ток. Мы знаем, что переменный ток это ток, который регулярно меняет свое направление. То есть в случае переменного тока у нас не будет положительного полюса источника и отрицательного. Как же получают переменный ток?

В самом деле, в нашей стране используют ток частотой 50 Гц, то есть, направление такого тока меняется 50 раз в секунду. Не крутят же на электростанциях с такой скоростью батарейки или иные источники постоянного тока. Очевидно, что ток получают каким-то другим способом. Интересно, каким? Тогда разберемся.

Получение переменного электрического тока возможно благодаря использованию явления электромагнитной индукции . Это явление заключается в том, что при изменении магнитного потока, пронизывающего замкнутый проводящий контур, в контуре возникает электрический ток.

Как получить переменный ток

Помните опыты с вдвиганием и выдвиганием магнита внутрь катушки, подключенной к гальванометру? Гальванометр показывал противоположное значение тока в зависимости от того, куда двигался магнит внутрь или наружу катушки. Вот на этом и основано получение переменного тока в электромеханических индукционных генераторах. Генератор состоит из двух основных частей подвижной и неподвижной.

Неподвижная часть называется статором, а подвижная ротором. Статор представляет собой большой цилиндр, в котором проложены толстые медные провода. Внутри статора вращается ротор, который представляет собой большой магнит, чаще всего это электромагнит. При вращении ротора меняется создаваемое им магнитное поле, и магнитный поток, пронизывающий провода, изменяется. При этом магнит оказывается попеременно повернутым к контуру то одним, то другим полюсом, вследствие чего создаваемый ток периодически меняет свое направление.

Для вращения ротора используют механическую энергию . Это может быть или тепловая энергия, как например, на дизельных и угольных электростанциях, либо же энергия воды и ветра, как например, на гидроэлектростанциях и ветряках. Так механическая энергия преобразуется в электрическую и подается потребителю.

Нетрудно догадаться, что получение электричества с помощью воды и ветра является намного более выгодным делом, чем, если на это приходится тратить топливо. К тому же такой процесс экологически намного чище. Поэтому задачей человека в наше время является максимальный переход на получение электроэнергии от возобновляемых источников.

Рассмотрим ещё раз получение индукционного тока в катушке с помощью перемещения относительно неё постоянного магнита (см. рис. 119, а). Но теперь будем периодически двигать магнит вверх и вниз в течение нескольких секунд. Мы увидим, что при этом стрелка гальванометра отклоняется от нулевого деления то в одну, то в другую сторону. Это говорит о том, что модуль силы индукционного тока в катушке и направление этого тока периодически меняются.

  • Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током

В осветительной сети наших домов и во многих отраслях промышленности используется именно переменный ток.

В настоящее время для получения переменного тока используют в основном электромеханические индукционные генераторы, т. е. устройства, в которых механическая энергия преобразуется в электрическую. Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции.

Генератор переменного тока: а — внешний вид; б — общий вид на электростанции вместе с паровой турбиной, приводящей ротор генератора во вращение

В § 39 рассматривался пример получения индукционного тока в плоском контуре при вращении внутри него магнита (см. рис. 121, б). На этом принципе и работает электромеханический генератор переменного тока. Неподвижная часть генератора, аналогичная контуру, называется статором, а вращающаяся, т. е. магнит, -ротором. В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.

Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и пр.). Во внутренней его части прорезаются пазы, в которые витками укладывается толстый медный провод. В витках и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока.

Магнитное поле создаётся ротором (рис. 131, а). Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Ток к этой обмотке подводится через щётки и кольца от постороннего источника постоянного тока.

Рис. 131. Схема генератора переменного тока

На рисунке 131, б приведена схема генератора переменного тока. Штрихами показано примерное расположение линий индукции магнитного поля ротора. При вращении ротора какой-либо внешней механической силой создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.

На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.

На рисунке 132, а изображён внешний вид мощного гидрогенератора, а на рисунке 132, б схематично показано его устройство, где цифрой 1 обозначен статор, цифрой 2 — ротор, а цифрой 3 — водяная турбина.


Рис. 132. Внешний вид и устройство мощного гидрогенератора

Ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.

Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Это означает, что на протяжении 1 с ток 50 раз течёт в одну сторону и 50 раз в другую. В некоторых странах (например, США) стандартная частота переменного тока равна 60 Гц.

Сила тока, вырабатываемого генераторами переменного тока, меняется со временем по гармоническому закону (т. е. по закону синуса или косинуса). На рисунке 133 показан график изменения силы тока i со временем t.

Рис. 133. График зависимости силы переменного тока от времени

Для передачи электроэнергии от электростанций в места её потребления служат линии электропередачи (ЛЭП). Чем дальше от электростанции находится потребитель тока, тем больше энергии Q тратится на нагревание проводов и тем меньше доходит до потребителя:

E потребляемая = E генерируемая — Q

Уменьшение потерь электроэнергии при её передаче от электростанций к потребителям является важной задачей экономики.

Из закона Джоуля-Ленца (Q = I 2 Rt) следует, что уменьшить потери можно за счёт уменьшения сопротивления R проводов и силы тока I в них (что более эффективно, поскольку при уменьшении I в n раз Q уменьшается в n 2 раз).

Сопротивление проводов будет тем меньше, чем больше площадь S их поперечного сечения и чем меньше удельное сопротивление ρ металла, из которого они изготовлены (так как R = ρl/S). Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением. Увеличивать толщину проводов экономически невыгодно (ввиду увеличения расхода металла) и неудобно (из-за трудностей при их подвеске).

Поэтому существенного снижения потерь Q можно добиться только за счёт уменьшения силы тока I. Но при этом необходимо во столько же раз увеличить получаемое от генератора напряжение U, чтобы не снижать мощность тока Р (так как Р = UI 1). Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, предназначенного для увеличения или уменьшения переменного напряжения и силы тока.

Павел Николаевич Яблочков (1847-1894)
Русский электротехник и изобретатель. Изобрёл дуговую лампу («свеча Яблочкова»), сконструировал первый генератор переменного тока, трансформатор, сделал изобретения в области электрических машин и химических источников тока

Трансформатор был изобретён в 1876 г. русским учёным Павлом Николаевичем Яблочковым. В основе его работы лежит явление электромагнитной индукции. На рисунке 134, а показан внешний вид трансформатора, а на рисунке 134, б схематично изображены его основные части. Обратите внимание на то, что число витков в обмотках различно: в данном случае N 2 > N 1 . Протекающий в первичной обмотке переменный ток создаёт (главным образом в сердечнике) переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле. В результате действия этого поля на концах вторичной обмотки возникает переменное напряжение U 2 .


Рис. 134. Внешний вид и схема устройства повышающего трансформатора

Величина U 2 определяется из соотношения:

Значит, при N 2 > N 1 трансформатор будет повышающим (так как U 2 > U 1), а при N 2

Теперь вернёмся к вопросу о передаче электроэнергии от электростанции к месту её потребления. Напряжение, вырабатываемое генератором, обычно не превышает 25 кВ. А для оптимальной передачи электроэнергии на большие расстояния требуется напряжение порядка сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, где напряжение повышается до нескольких сотен киловольт (в большинстве случаев оно не превышает 750 кВ), и под таким напряжением подаётся в ЛЭП. Поскольку такое высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 или 220 В, а затем — на предприятия или в жилые дома.


Трансформаторы нашли широкое применение в быту. Например, при подзарядке сотового телефона имеющийся в зарядном устройстве трансформатор понижает напряжение, полученное из осветительной сети и равное 220 В, до 5,5 В, пригодного для телефона. В телевизоре имеется несколько трансформаторов (как понижающих, так и повышающих), поскольку для питания различных его узлов требуется напряжение от 1,5 В до 25 кВ.

Вопросы

  1. Какой электрический ток называется переменным? С помощью какого простого опыта его можно получить?
  2. Где используют переменный электрический ток?
  3. Расскажите об устройстве и принципе действия промышленного генератора.
  4. Чем приводится во вращение ротор генератора на тепловой электростанции; на гидроэлектростанции?
  5. Почему в гидрогенераторах используют многополюсные роторы?
  6. По какому физическому закону можно определить потери электроэнергии в ЛЭП и за счёт чего их можно уменьшить?
  7. Для чего при уменьшении силы тока во столько же раз повышают его напряжение перед подачей в ЛЭП?
  8. Расскажите об устройстве, принципе действия и применении трансформатора.

Упражнение 39

  1. Электростанции России вырабатывают переменный ток частотой 50 Гц. Определите период этого тока.
  2. По графику (см. рис. 133) определите период, частоту и амплитуду колебаний силы тока i.

1 V, I — так называемые действующие значения напряжения и силы переменного тока. Они равны соответственно напряжению и силе постоянного тока, выделяющего в проводнике ежесекундно столько же тепла, что и переменный ток. Действующие значения напряжения и силы переменного тока в √2 раз меньше амплитудных.

Получение переменного тока

Для получения переменного тока промышленной частоты (50 гц ) на электрических станциях установлены электромашинные син­хронные генераторы переменного тока. В этих машинах, как и в генераторах неизменного тока, употребляется явление электромаг­нитной индукции. Средством генератора переменного тока ме­ханическая энергия, сообщаемая первичным движком (паро­вой либо гидравлической турбиной), преобразуется в электриче­скую энергию переменного тока.

Синхронный генератор (рис. 1) состоит из недвижной ча­сти 1 — статора и вращающейся части 2 — ротора .

Статор собирается из листовой электротехнической стали. Он имеет форму полого цилиндра. В пазах (каналообразных впадинах), изготовленных повдоль внутренней поверхности статора, уложены изолированные проводники, соединенные меж собой и образующие обмотку переменного тока статора.


Рис. 1 Схема устройства генератора переменного тока

Ротор представляет собой электромагнит, возбуждаемый по­стоянным током . Этот ток возбуждения подается в обмотку рото­ра через медные кольца, укрепленные на валу ротора. По коль­цам скользят недвижные щетки, соединенные проводами с возбудителем — маленьким относительно генератором по­стоянного тока.


Рис. 2 Неявнополюсный ротор турбогенератора

Конструкция ротора находится в зависимости от рабочей скорости вращения на которую рассчитан генератор. Для быстроходных генераторов, вращаемых паровыми турбинами (турбогенераторы), роторы из­готовляются неявнополюсными (рис.2). Для тихоходных генераторов, вращаемых гидравлическими турбинами (гидроге­нераторы) роторы изготовляются явнополюсными (рис.3).

Простой по устройству неявнополюсный ротор (3000 и. 1500 об/мин) представляет собой громоздкую железную поковку (см. рис. 2), в круговых пазах которой укрепляются металли­ческими клиньями проводники обмотки возбуждения.

Рис. 3 Явнополюсный ротор

Магнитный поток ротора проходит через тело ротора, два воздушных промежутка меж статором и ротором и сердечник, статора (см. рис. 1). При вращении ротора этот магнитный по­ток Ф пересекает проводники статора и индуктирует в их пере­менную э. д. с. Потому что магнитный поток в воздушном зазоре на­правлен перпендикулярно к проводникам обмотки статора, та согласно закону электрической индукции в каждом из этих проводников при вращении потока индуктируется э. д. с.

е = BLV

где B — магнитная индукция в пазе , где находится данный про­водник;

L — активная длина проводника , т. е. длина той части про­водника, которая находится в магнитном поле; V- окружная скорость, т. е. скорость движения магнитного потока по отношению к проводнику .

Почти всегда окружная скорость генератора поддер­живается неизменной (v = const) и потому что длина L тоже постоян­на, то изменение э. д. с. е при вращении ротора вызывается толь­ко переменами магнитной индукции B повдоль окружности рото­ра. Если эта индукция распределена повдоль окружности ротора синусоидально (В = В m sin а), то э. д. с. меняется во времени тоже синусоидально (е = Е m sin wt) Это событие исполь­зуется при построении генераторов переменного тока для того, чтоб получать от их синусоидальное напряжение.

Одному обороту двухполюсного ротора соответствует один период переменной э. д. е., индуктируемой в проводниках обмот­ки статора . Если же статор имеет р пар полюсов, то поворот ро­тора на угол, занимаемый одной парой полюсов, обуславливает один период конфигурации э. д. с. В данном случае одному обороту ротора соответствует р периодов переменной э. д. с. Ротор делает n об/мин; как следует, за минуту переменная э. д. с. генератора будет иметь p n периодов. Число периодов за секунду генератора переменного тока, т. е. частота его переменной э. д. е., будет в 60 раз меньше:

Но генератор должен давать переменный ток стандартной часто­ты f = 50 гц. При всем этом условии p n = 3000 .

Таким макаром, наибольшая скорость, которую может иметь генератор переменного тока промышленной частоты, соответ­ствует одной паре полюсов p = 1. При этой скорости n = 3000 об/мин работают вышеупомянутые турбогенераторы. Вы­годно строить машины с большей допустимой скоростью, так как при одной и той же мощности, чем быстроходнее машина, тем меньше ее вес и габариты.

Но скорость гидрогенератора определяется скоростью движе­ния воды, потому при постройке гидростанции на реках с мед­ленным течением приходится пичкать роторы гидрогенераторов огромным числом полюсов. К примеру, генераторы Днепровской гидростанции им. Ленина делают 83,3 об/мин, а их роторы имеют по 72 полюса (т. е. p = 36).

Теперь я вам хочу рассказать, как получить переменный синусоидальный ток .

Возьмем проводник, согнутый в виде рамки и будем вращать его в равномерном магнитном поле (рисунок 1). При вращении рамки магнитный поток, охватываемый ею, будет изменяться, следовательно, в рамке возникнет ЭДС индук­ции .

Пусть рамка вращается с равномерной скоростью. Мы уже знаем, что величина ЭДС, индуктированной в рамке, будет тем больше, чем быстрее будет изменяться число маг­нитных силовых линий, охватываемых рамкой, или иначе, чем большее число магнитных силовых линий будут пересекать стороны рамки в единицу времени (например в одну секунду).

Примем за начальное то положение рамки, когда она охва­тывает наибольшее число магнитных силовых линий, т. е. когда плоскость ее перпендикулярна направлению магнитного потока. На рисунке 1 это положение отмечено цифрой 1 .

Рисунок 1. Получение синусоидального переменного тока. а — ряд последовательных положений рамки в магнитном поле; б -график переменного тока (синусоида).

В начале вращения рамки ее стороны будут скользить почти вдоль магнитных силовых линий, пересекая очень малое число их, то есть магнитный поток, проходящий через рамку, будет изменяться очень медленно, следовательно, и наводимая этим изменением потока ЭДС индукции будет невелика.

По мере приближения рамки, к положению 2 , когда плос­кость ее становится параллельной силовым линиям, количе­ство пересекаемых рамкой силовых линий возрастает (при по­стоянной скорости вращения рамки) а, следовательно, воз­растает и индуктируемая в ней ЭДС.

Когда рамка пройдет положение 2 , действующая в рамке ЭДС начнет постепенно убывать и станет равной нулю, когда рамка сделает полоборота (положение 3 ). Затем ЭДС будет снова возрастать, но уже в обратном направлении, так как теперь стороны рамки будут пересекать магнитные силовые ли­нии в противоположном направлении. В момент, когда рамка займет положение 4 , т. е. сделает три четверти оборота, ЭДС будет наибольшей, после чего она начнет снова убывать и сде­лается равной нулю в тот момент, когда рамка завершит пол­ный оборот (положение 5 ).

При дальнейшем вращении рамки все явления будут по­вторяться в прежнем порядке. Так как ЭДС в рамке непре­рывно изменяется по величине и, кроме того, два раза в тече­ние каждого оборота изменяет свое направление, то и ток, вы­зываемый ею в рамке, будет также изменяться и по величине и по направлению.

Условимся изображать изменение переменной ЭДС, наво­димой в рамке при вращении ее в магнитном поле, таким об­разом, что по горизонтальной прямой линии (оси) слева направо будем откладывать в каком-нибудь масштабе угол поворота рамки или время, протекшее от начала поворота, а вверх и вниз (по вертикали) будем откладывать те ЭДС, которые наводятся в рамке при данном угле ее поворота. Вверх будем откладывать ЭДС одного направления, а вниз- ЭДС другого направления. В результате такого построения получим график изменения ЭДС в зависимости от угла по­ворота рамки или, что то же самое, в зависимости от времени, так как рамка вращается с постоянной скоростью. Кривая эта, изображенная на рисунке 1б, очень часто встречается в электро­технике и носит название синусоиды .

Итак, мы видим, что при равномерном вращении рамки в равномерном магнитном поле в ней индуктируется переменная ЭДС, изменяющаяся по периодическому закону, выражае­мому синусоидой; ЭДС и токи, изменяющиеся по такому за­кону, называются синусоидальными , а весь описанный процес будет иметь название получение переменного синусоидального тока .

Свяжем мысленно с вращающейся рамкой стрелку, укреп­ленную на одной оси с рамкой (рисунок 2а). Направим на вра­щающуюся стрелку пучок параллельных световых лучей так, как это изображено на рисунке 2б, а с другой стороны стрелки поставим экран (например лист бумаги). Электродвижущая сила, индуктируемая в рамке, в каждый данный момент бу­дет пропорциональна длине тени, отбрасываемой стрелкой на экран. Длина тени в начальный момент, когда стрелка нахо­дится в горизонтальном положении, т. е. острием направлена в сторону экрана, будет равна нулю.


Рисунок 2. Модель синусоидального колебания. а -вместе с рамкой вращается стрелка; б -кончик тени от стрелки совершает синусоидальные колебания.

При вращении стрелки в направлении, указанном на рисунке, ее тень начнет удлиняться, вытягиваясь вверх. Сначала удлинение тени будет происходить быстро, но по мере при­ближения стрелки к вертикальному положению оно замедлит­ся и, наконец, совеем прекратится, когда длина тени сделается равной длине стрелки. После этого тень будет укорачиваться, сначала медленно, а затем все быстрее и быстрее и, наконец, сделается равной нулю в тот момент, когда стрелка, совершив полоборота, займет горизонтальное положение. В то время, когда стрелка будет совершать следующую половину оборота, ее тень совершит такое же удлинение и укорочение, как и прежде, с той лишь разницей, что удлиняться она теперь будет не вверх, а вниз.

При каждом обороте стрелки ее тень будет совершать одно полное колебание.

Колебания тени вращающейся стрелки дают полную карти­ну изменения скорости движения электронов в проводнике при синусоидальном переменном токе. Скорость свободных элек­тронов в проводнике сначала невелика, затем электроны начи­нают двигаться все быстрее и быстрее (сила тока увеличивает­ся). В некоторый момент скорость электронов достигает своей максимальной величины (сила тока максимальна), после чего электроны постепенно замедляют свое движение и, наконец, совсем останавливаются (сила тока равна нулю).

Однако, практически электроны не делают остановки, так как они тотчас же начинают движение в обратном направле­нии (ток изменяет свое направление) с постепенно увеличи­вающейся скоростью (сила тока растет) и т. д.

Начертим окружность, внутри которой наметим несколько положений радиуса, занимаемых им при равномерном движе­нии его конца по окружности. На рисунке 3 показано 24 после­довательных положения радиуса, занимаемых им через каж­дые 15° поворота. Справа от этой окружности проведем гори­зонтальную линию на высоте центра окружности. Разделим горизонтальную координатную ось также на 24 части, каждая из которых будет соответствовать 15° окружности.


Рисунок 3. Построение грфика синусоидального переменного тока. Окружность и горизонтальная ось координат разделены на одинаковое число частей.

Из каждой отмеченной точки на горизонтальной оси прове­дем вертикальную линию, равную проекции радиуса на вертикальный диаметр или длине тени при данном угле поворо­та. Соединим плавной кривой концы всех вертикальных ли­ний. Эта кривая и будет синусоидой.

Вращающийся радиус, употребляемый при построении си­нусоиды, называется радиусом-вектором .

Получение переменного электрического тока Постоянный электрический ток можно получить от батарейки или другого источника тока. В таком случае мы будем иметь ток, текущий все время в одном направлении от положительного полюса источника к отрицательному. Некоторые электроприборы питаются постоянным током, однако большинство потребляет переменный ток. Что такое переменный токВ электрических розетках у нас в квартирах тоже течет переменный ток. Мы знаем, что переменный ток это ток, который регулярно меняет свое направление. То есть в случае переменного тока у нас не будет положительного полюса источника и отрицательного. Как же получают переменный ток?В самом деле, в нашей стране используют ток частотой 50 Гц, то есть, направление такого тока меняется 50 раз в секунду. Не крутят же на электростанциях с такой скоростью батарейки или иные источники постоянного тока. Очевидно, что ток получают каким-то другим способом. Интересно, каким? Тогда разберемся.Получение переменного электрического тока возможно благодаря использованию явления электромагнитной индукции. Это явление заключается в том, что при изменении магнитного потока, пронизывающего замкнутый проводящий контур, в контуре возникает электрический ток. Как получить переменный токПомните опыты с вдвиганием и выдвиганием магнита внутрь катушки, подключенной к гальванометру? Гальванометр показывал противоположное значение тока в зависимости от того, куда двигался магнит внутрь или наружу катушки. Вот на этом и основано получение переменного тока в электромеханических индукционных генераторах. Генератор состоит из двух основных частей подвижной и неподвижной.Неподвижная часть называется статором, а подвижная ротором. Статор представляет собой большой цилиндр, в котором проложены толстые медные провода. Внутри статора вращается ротор, который представляет собой большой магнит, чаще всего это электромагнит. При вращении ротора меняется создаваемое им магнитное поле, и магнитный поток, пронизывающий провода, изменяется. При этом магнит оказывается попеременно повернутым к контуру то одним, то другим полюсом, вследствие чего создаваемый ток периодически меняет свое направление.Для вращения ротора используют механическую энергию. Это может быть или тепловая энергия, как например, на дизельных и угольных электростанциях, либо же энергия воды и ветра, как например, на гидроэлектростанциях и ветряках. Так механическая энергия преобразуется в электрическую и подается потребителю. Нетрудно догадаться, что получение электричества с помощью воды и ветра является намного более выгодным делом, чем, если на это приходится тратить топливо. К тому же такой процесс экологически намного чище. Поэтому задачей человека в наше время является максимальный переход на получение электроэнергии от возобновляемых источников.Это поможет как снизить стоимость электричества для конкретного потребителя, то есть для нас с вами, так и сохранить природную чистоту. Такая потребность становится все более очевидной в последнее время.

Что такое переменный ток (AC)? | Базовая теория переменного тока

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), которое представляет собой электричество, текущее в постоянном направлении и / или имеющее напряжение с постоянной полярностью.

DC — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества.Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени.

Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.

В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток, чтобы произвести желаемое тепло (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.

Чтобы объяснить, почему это так, необходимы некоторые базовые знания об AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.

Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока : Рисунок ниже

Работа генератора

Обратите внимание на то, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.

При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока.

В генераторе постоянного тока катушка с проводом установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.

Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Работа генератора постоянного тока

Генератор, показанный выше, будет производить два импульса напряжения за один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками.

Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.

Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях.

В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. на валу, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть.

Существует эффект электромагнетизма, известный как взаимной индукции , при котором две или более катушек провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой.Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании в таком виде это устройство известно как трансформатор :

.

Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обмотанной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.

Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки, умноженный на соотношение первичных и вторичных витков. Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:

Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное отношение обмотки изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:

Редукторная передача увеличивает крутящий момент и снижает скорость.Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже.

При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток. для промышленности, бизнеса или потребительского использования.

Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистемы для чего-либо, кроме использования на близком расстоянии (в пределах нескольких миль максимум).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током.Поскольку явление взаимной индуктивности зависит от изменяющихся магнитных полей, а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.

Конечно, постоянный ток может прерываться (генерироваться импульсами) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но импульсный постоянный ток не так уж отличается от переменного тока.

Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

ОБЗОР:

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателей переменного и постоянного тока
  • очень точно соответствует принципам конструкции соответствующих генераторов.
  • Трансформатор представляет собой пару взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой. Часто количество витков в каждой катушке устанавливается для создания увеличения или уменьшения напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = первичный ток (первичные витки / вторичные витки)

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Переменный ток (AC) vs.Постоянный ток (DC)

Пораженный громом!

Откуда австралийская рок-группа AC / DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменном токе (AC), напротив, периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить свой проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный ток. Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства для передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление.В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее.Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, показывающая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду в трубах вперед и назад (наш «переменный» ток).Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Формы сигналов

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени. Уравнение справа от знака равенства описывает, как напряжение изменяется с течением времени.

V P — амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, что означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

— это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз конкретная форма волны (в данном случае один цикл нашей синусоидальной волны — подъем и спад) происходит в течение одной секунды.

t — наша независимая переменная: время (измеряется в секундах). По мере того, как меняется время, наша форма волны меняется.

φ описывает фазу синусоидальной волны. Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Часто бывает полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может питать электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Создание постоянного тока

постоянного тока можно создать несколькими способами:

  • Генератор переменного тока, оборудованный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой еще раз, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. В действительности батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Практически все проекты электроники и запчасти для продажи на SparkFun работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который преобразуется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .

AC против

постоянного тока Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередач было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Кампания по выявлению мазков Эдисона

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток более опасен, чем постоянный ток. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проходила во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены дисплеем. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса в Ниагарском водопаде, 1896 г. (Изображение любезно предоставлено teslasociety.com)

Westinghouse выиграла контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало начали использовать переменный ток. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) может использоваться специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С таким пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие учебные пособия, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

Что такое переменный ток?

ОСНОВНЫЕ ЗНАНИЯ — ПЕРЕМЕННЫЙ ТОК Что такое переменный ток?

Автор / Редактор: Люк Джеймс / Erika Granath

Переменный ток (AC) — это электрический ток, который периодически меняет свое направление, в отличие от постоянного тока (DC), который течет только в одном направлении, которое не может меняться спорадически.

Связанные компании

Переменный ток (AC) — это электрический ток, который периодически меняет направление, в отличие от постоянного тока (DC), который течет только в одном направлении.

Большинство студентов, изучающих электротехнику и смежные предметы, начинают свое обучение с изучения постоянного тока (DC). Это потому, что большая часть цифровой электроники, которую построят эти студенты, будет использовать постоянный ток. Однако важно понимать переменные токи (AC) и их концепции, потому что он имеет множество полезных свойств и вариантов использования.

Как вырабатывается переменный ток

Переменный ток (зеленая кривая). Горизонтальная ось измеряет время; по вертикали, току или напряжению.

(Источник: Public Domain)

Хотя постоянный ток, однонаправленный поток электрического заряда, возможно, является одной из самых простых концепций электротехники, это не единственный «тип» используемого электричества. И переменный, и постоянный ток описывают типы тока, протекающего в цепи.Многие источники электричества, в первую очередь электромеханические генераторы, вырабатывают переменный ток с напряжениями, которые меняют полярность, меняя полярность с положительной на отрицательную с течением времени. Генератор также может использоваться для преднамеренной генерации переменного тока.

В генераторе переменного тока проволочная петля быстро раскручивается внутри магнитного поля. Это создает электрический ток по проводу. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются.Этот ток может периодически менять направление, и напряжение в цепи переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Переменный ток бывает нескольких форм, если напряжение и ток переменные. Если цепь переменного тока подключена к осциллографу и ее напряжение отображается в зависимости от времени, вы, вероятно, увидите несколько различных форм сигнала, таких как синусоидальный, квадратный и треугольный — синусоидальный сигнал является наиболее распространенной формой сигнала, а переменный ток в большинстве зданий, подключенных к электросети. имеют колебательное напряжение в форме синусоиды.

Основной доклад на PCIM Digital Days 2021

Не пропустите ключевой доклад «HVDC Grid Challenges Locks and Opportunities» от Седдика Бача, научного директора программы, SuperGrid Institute, на PCIM Digital Days с 3 по 7 мая 2021 года.

Откройте для себя вся программа!

Применение переменного тока

Переменный ток чаще всего используется в зданиях, подключенных к электросети, таких как дома и офисы. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно легко.При высоком напряжении более 110 кВ при передаче энергии теряется меньше энергии. При более высоких напряжениях генерируются более низкие токи, а более низкие токи выделяют меньше тепла в линии электропередачи из-за более низкого уровня сопротивления. Это означает меньшие потери энергии в виде тепла. Переменный ток можно легко преобразовать в высокое напряжение и из него с помощью трансформаторов.

Переменный ток можно легко преобразовать в высокое напряжение и из него с помощью трансформаторов.

(Источник: Science ABC)

Переменный ток также отлично подходит для использования в электродвигателях, потому что двигатели и генераторы — одно и то же устройство.Единственная разница между генератором и двигателем заключается в том, что двигатель преобразует электрическую энергию в механическую. Эти двигатели используются во всех видах бытовой техники, например, в холодильниках, стиральных и посудомоечных машинах. Хотя генераторы и двигатели великолепны, наиболее полезным применением переменного тока, возможно, являются трансформаторы.

Эффект электромагнетизма (известный как «взаимная индукция»), когда две или более катушек провода размещаются так, что изменяющееся магнитное поле в одной катушке индуцирует напряжение в другой, можно использовать для создания устройства, называемого трансформатором. .Если есть две взаимно индуктивные катушки и одна питается переменным током, переменное напряжение будет создано в другой катушке.

Вот где переменный ток становится очень полезным.

Основное применение трансформатора — это повышение или понижение напряжения с катушки с питанием на катушку без питания. Это обеспечивает переменному току преимущество над постоянным током в области распределения мощности, потому что, как упоминалось выше, передача электроэнергии на большие расстояния намного эффективнее при более высоких повышенных напряжениях и меньших пониженных токах.Прежде чем попасть в розетки, напряжение снова понижается, а ток снова повышается.

Этот тип трансформаторной техники сделал распределение электроэнергии на большие расстояния эффективным и практичным. Без трансформаторов было бы слишком дорого строить энергосистемы в их нынешнем виде на большие расстояния. А поскольку взаимная индуктивность зависит от изменения магнитных полей, трансформаторы работают только с переменным током.

Следуйте за нами в LinkedIn

Вам понравилось читать эту статью? Тогда подпишитесь на нас в LinkedIn и будьте в курсе последних событий в отрасли, продуктов и приложений, инструментов и программного обеспечения, а также исследований и разработок.

Следуйте за нами здесь!

(ID: 46380228)

Как это работает Jameco Electronics

Меган Тунг

Переменный ток (AC) — это когда электрический заряд периодически меняет направление. Для сравнения, постоянный ток (DC) — это когда электрический заряд течет только в одном направлении. В США направление тока меняется на противоположное с частотой 60 Гц (циклов в секунду). Наиболее распространенная форма волны переменного тока — это синусоидальная волна; хотя прямоугольные и треугольные волны — это другие формы сигналов для переменного тока.


Особый тип электрического генератора, называемый генератором переменного тока, предназначен для выработки переменного тока. Генератор работает так: вращающиеся магниты, известные как ротор, и проводник, намотанный катушками на железный сердечник, называемый статором. Когда статор совершает полный оборот, в статоре индуцируется электродвижущая сила в виде тока, создавая переменное напряжение. Электропитание переменного тока используется для подачи питания в дома, офисные здания и т. Д. Электропитание переменного тока также может использоваться для питания электродвигателей, таких как посудомоечные машины и холодильники.
Генерация и транспортировка переменного тока на большие расстояния относительно просты. Энергетические компании посылают очень высокое напряжение, чтобы передавать электроэнергию на большие расстояния. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов. Несколько трансформаторов используются для безопасной передачи нужного количества переменного тока от электростанций в дома.

Во-первых, электричество вырабатывается огромными генераторами с помощью ветра, угля, природного газа или воды. Затем переменный ток проходит через трансформаторы, чтобы увеличить напряжение, чтобы энергия передавалась на большие расстояния.Электрический заряд проходит по высоковольтным линиям электропередачи. Затем он достигает подстанции, где напряжение понижается, чтобы его можно было отправить по линиям электропередачи меньшего размера. Заряд проходит по распределительным линиям в район, где трансформаторы меньшего размера снова снижают напряжение, чтобы сделать электроэнергию безопасной для использования в домах. Затем мощность подключается к дому, где она проходит через счетчик, который измеряет, сколько энергии использует дом. Ток проходит через сервисную панель, где автоматические выключатели / предохранители защищают провода от перегрузки.Затем электричество проходит по проводам к розеткам и переключается в доме.


Для некоторых устройств потребуется адаптер переменного тока, который будет использовать другой трансформатор для преобразования электрических токов, получаемых от электрической розетки, в более низкий переменный ток, который может использовать электронное устройство. Количество трансформаторов, через которые должен пройти ток, зависит от максимальной силы тока, которую может выдержать электронное устройство.

Вам также может быть интересно прочитать: Как работает трансформатор


Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Кредиты на фото: Солнечные школы

Электричество переменного тока (AC), Рон Куртус

SfC На главную> Физика> Электричество>

Рона Куртуса (от 13 февраля 2016 г.)

Электроэнергия переменного тока — это тип электричества, обычно используемый в домах и на предприятиях по всему миру.

В то время как электричество постоянного тока (DC) течет в одном направлении по проводу, электричество переменного тока меняет свое направление в возвратно-поступательном движении. Направление меняется от 50 до 60 раз в секунду, в зависимости от электросистемы страны.

Электричество переменного тока создается генератором переменного тока, который определяет частоту.

Особенностью электричества переменного тока является то, что напряжение можно легко изменить, что делает его более подходящим для передачи на большие расстояния, чем электричество постоянного тока.Но также переменный ток может использовать конденсаторы и катушки индуктивности в электронных схемах, что позволяет использовать их в широком диапазоне.

Примечание : Обычно мы говорим AC , электричество , а не просто AC, так как это также сокращение для кондиционирования воздуха. Чтобы избежать недоразумений, нужно быть точным в науке.

Вопросы, которые могут у вас возникнуть:

  • В чем разница между электричеством переменного и постоянного тока?
  • Почему мы используем переменный ток вместо постоянного?
  • Каковы преимущества электроэнергии переменного тока?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Разница между электричеством переменного и постоянного тока

Электроны имеют отрицательный (-) электрический заряд. Поскольку противоположные заряды притягиваются, они будут двигаться к области, состоящей из положительных (+) зарядов. Это движение облегчается в электрическом проводнике, таком как металлический провод.

Электроны движутся прямо с электричеством постоянного тока

При использовании электричества постоянного тока подключение провода от отрицательной (-) клеммы батареи к положительной (+) клемме заставит отрицательно заряженные электроны устремиться через провод к положительно заряженной стороне.То же самое происходит с генератором постоянного тока, где движение спирального провода через магнитное поле выталкивает электроны из одного вывода и притягивает электроны к другому выводу.

Переменные направления электронов в переменном токе

В случае генератора переменного тока несколько иная конфигурация чередует двухтактное соединение каждой клеммы генератора. Таким образом, электричество в проводе ненадолго движется в одном направлении, а затем меняет свое направление на противоположное, когда якорь генератора находится в другом положении.

Эта иллюстрация дает представление о том, как электроны движутся по проводу в электричестве переменного тока. Конечно, оба конца провода идут к генератору переменного тока или источнику питания.

Извините, у вас должен быть активирован JavaScript, чтобы использовать эту Flash-анимацию.

Переменный ток движения электронов в проводе

Заряд на концах провода чередуется с отрицательного (-) и положительного (+). Если заряд отрицательный (-), это отталкивает отрицательно заряженные электроны от этого вывода.Если заряд положительный (+), электроны притягиваются в этом направлении.

Скорость изменения

Электроэнергия переменного тока попеременно меняет направление 50 или 60 раз в секунду, в зависимости от электрической системы страны. Это называется частотой и обозначается как 50 Гц (50 Гц) или 60 Гц (60 Гц).

(Дополнительную информацию см. В разделе «Напряжения и частоты переменного тока во всем мире».)

Лампочки

Многие электрические устройства, такие как лампочки, требуют только движения электронов.Их не волнует, текут ли электроны по проводу или просто движутся туда-сюда. Таким образом, лампочка может работать как от переменного, так и от постоянного тока.

AC периодический ход

Регулярное возвратно-поступательное движение электронов в проводе при питании от электричества переменного тока представляет собой периодическое движение, подобное движению маятника.

(Для получения дополнительной информации см. Периодическое движение и Маятник.)

Из-за этого периодического движения электронов напряжение и ток имеют синусоидальную форму, чередующуюся между положительным (+) и отрицательным (-), при измерении с помощью вольтметра или мультиметра.

Форма волны изменяется от положительной до отрицательной во времени

Скорость прохождения пиков напряжения или тока через заданную точку — это частота переменного тока.

Преимущества переменного тока

Есть явные преимущества переменного тока перед электричеством постоянного тока. Способность легко преобразовывать напряжения — основная причина, по которой мы используем в наших домах переменный ток вместо постоянного.

Трансформирующие напряжения

Основное преимущество переменного тока перед электричеством постоянного тока состоит в том, что напряжения переменного тока могут быть легко преобразованы в более высокие или более низкие уровни напряжения, в то время как это трудно сделать с напряжениями постоянного тока.

Поскольку высокие напряжения более эффективны для передачи электричества на большие расстояния, электричество переменного тока имеет преимущество перед постоянным током. Это связано с тем, что высокое напряжение от электростанции можно легко снизить до более безопасного напряжения для использования в доме.

Изменение напряжения осуществляется с помощью трансформатора . Это устройство использует свойства электромагнитов переменного тока для изменения напряжений.

(Дополнительную информацию см. В разделе «Трансформаторы переменного тока».)

Цепи настройки

Электричество переменного тока

также позволяет использовать конденсатор и индуктор в электрической или электронной цепи.Эти устройства могут влиять на то, как переменный ток проходит через цепь. Они эффективны только с электричеством переменного тока.

Комбинация конденсатора, катушки индуктивности и резистора используется в качестве тюнера в радиоприемниках и телевизорах. Без этих устройств настройка на разные станции была бы очень сложной.

Сводка

Обычно мы используем электричество переменного тока для питания наших телевизоров, светильников и компьютеров. В электричестве переменного тока ток меняется по направлению. Было доказано, что электричество переменного тока лучше для снабжения электроэнергией, чем постоянный ток, в первую очередь потому, что напряжения можно преобразовывать.AC также позволяет использовать другие устройства, открывая широкий спектр приложений.


Электрифицировать общество, применяя свои знания в области науки


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайтов

Элементы переменного тока — Учебный сайт по основам электроники

Переменный ток — Обзор AC

Электроэнергетические ресурсы постоянного и переменного тока

Физические ресурсы

Книги

Книги по основам электричества с самым высоким рейтингом

Книги по электричеству переменного тока с самым высоким рейтингом

SciLinks

Этот урок выбран программой SciLinks, службой Национальной ассоциации преподавателей естественных наук.


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте. Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/ac.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Физические темы

Электричество переменного тока (AC)

Зависимость переменного тока от постоянного

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения.Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления.Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для V задается следующим образом: [latex] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке: переменное напряжение определяется как

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В — напряжение в момент времени t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменного тока равно

.

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I — это ток в момент времени t , а I 0 = V 0 / R — пиковый ток. { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Установление соединений: домашний эксперимент — AC / DC Lights

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас интересует средняя мощность, а не ее колебания — например, 60-ваттная лампочка в вашей настольной лампе потребляет в среднем 60 Вт. Как показано на Рисунке 3, средняя мощность P ave составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это видно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или действующего значения тока I среднеквадратического значения и среднее значение или действующее значение напряжения В среднеквадратического значения , равное, соответственно,

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднеквадратичное значение = I среднеквадратичное значение V среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Стандартной практикой является указание I среднеквадратичного значения , В среднеквадратичного значения и P среднеквадратичного значения , а не пиковых значений.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичного значения составляет 120 В. Обычный автоматический выключатель на 10 А прервет постоянное напряжение I среднеквадратичного значения более 10 А. Ваш 1,0-кВт микроволновая печь потребляет P , средняя = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичного значения составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на V rms дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Что такое переменный ток (AC)?

AC: Электрический ток, который постоянно меняет направление.

Переменный ток — это сокращенная форма от «переменного тока», в которой электрический заряд меняет направление на обратное через равные промежутки времени, создавая чередующиеся положительные и отрицательные значения одинаковой величины.

Переменный ток имеет синусоидальную форму, при которой напряжение постоянно увеличивается от нуля до максимального положительного пикового напряжения. Затем он меняет направление и падает до нуля в отрицательном направлении, пока не достигнет отрицательного пикового значения, которое равно положительному по величине и отличается только полярностью.Напряжение снова меняется на противоположное и поднимается к нулевой точке, чтобы завершить один цикл. Этот процесс повторяется с номинальной частотой 50 или 60 Гц (циклов в секунду).

Скорость изменения направления определяется количеством полных циклов в секунду и известна как частота. Два обычно используемых стандарта частоты для бытовых и промышленных применений: 50 Гц, который используется в большинстве частей мира, и 60 Гц, используемый в США и некоторых других регионах.

Другая частота — 400 Гц, она используется в самолетах, космических кораблях, морских, военных и других чувствительных приложениях, где требуется легкое оборудование и более высокие скорости двигателя.

Переменный ток генерируется с помощью гидро-, дизельных, паровых или ветряных турбин. Другими источниками являются возобновляемые источники энергии, такие как солнечная энергия; однако некоторые из них производят постоянный ток и должны быть преобразованы в переменный ток перед подачей в сеть.

Переменный ток — это обычная форма выработки и распределения электроэнергии из-за простоты его генерации и распределения.Переменное напряжение легко повышается и понижается для соответствия любому требуемому уровню напряжения. Чтобы минимизировать потери мощности в проводниках, электрическая мощность передается при высоких напряжениях и малых токах. Позже это снижается на уровне распределения и потребителя, чтобы удовлетворить потребности потребителя.

Большая часть электрического и электронного оборудования использует переменный ток напряжением 220–240 В или 110–120 В для бытовых и офисных приложений и 415 В для промышленного использования. Однако большая часть оборудования и особенно вся электроника используют внешние или внутренние блоки питания для преобразования переменного тока в соответствующий постоянный ток (DC), необходимый для электронных устройств и цепей.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *