Site Loader

Что будет если подключить диодный мост к трансформатору!?-Пояснение опыта. — Радиомастер инфо

от admin

Как-то давно попалось видео с заголовком: «Что будет если подключить диодный мост к трансформатору!? — Опыт». Посмотреть можно здесь. Для меня ответ на вопрос был очевиден сразу, я думаю, для многих тоже, наверное потому и комментарии к видео отключены, видимо в основном были нецензурные.

Прошло время, я уже и забыл. Но в интернете еще несколько раз попадались схемы, затрагивающие подобную тематику. Например, такие:

Однако я не встретил ни одного внятного пояснения затронутых в этой теме процессов. Или потому, что всем все очевидно и ясно, или по другим причинам. Но просмотры на видео, с которого я начал, давно превысили миллион.

Почему я считаю эту тему интересной? Потому, что после двухполупериодного выпрямления напряжение становится пульсирующим и его частота, по сравнению с частотой сети, повышается в два раза и становится равной 100 Гц.

Как известно, при расчете габаритной мощности трансформаторов частота входит в числитель. Вот пример формулы:

Габаритная мощность трансформатора, в ваттах, на конкретно выбранном сердечнике определяется по формуле:

Это говорит о том, что, повысив частоту в 2 раза мы можем на том же сердечнике что для 50 Гц изготовить трансформатор в два раза большей мощности. Представляете, сварочный трансформатор на частоте 50 Гц весит, например, 20 кг,  а на частоте 100 Гц будет в 2 раза меньше, всего 10 кг. Выгодно, не правда ли?

Так почему же это не делают?

Ниже на рисунке показаны напряжения на входе и выходе двухполупериодного выпрямителя:

Рассмотрим эти графики подробнее:

Верхний график, это напряжение в сети. Его частота 50 Гц, период (Т) 20 мс. Есть положительная “+” и отрицательная “–“ полуволна. Они компенсируют друг друга и постоянная составляющая равна 0 (зеленая линия).

Нижний график, после двухполупериодного выпрямителя отрицательная полуволна перевернута вверх, она стала такая же, как и положительная из-за чего период (Т) уменьшился в 2 раза стал равен 10мс. Соответственно частота 100 Гц. Поскольку теперь положительная и отрицательная полуволна не компенсируют друг друга, постоянная составляющая (зеленая линия) на уровне около 0,707 от амплитудного значения, т.е. равна действующему значению напряжения.

Что же будет с сердечником трансформатора при подаче на него напряжения как на верхнем графике и на нижнем?

Ток через обмотку трансформатора в первом случае (верхний график) в течение периода меняет свое направление и сердечник перемагничивается. Индуктивное сопротивление обмотки равно:

ХL = R + 2πfL

Где: Rактивное, омическое сопротивление провода обмотки

      2πfL  

реактивное (индуктивное) сопротивление обмотки.

При ненамагниченном сердечнике основное сопротивление носит индуктивный характер, именно оно определяет величину тока через обмотку. Активное сопротивление, это сопротивление провода, оно вносит потери и снижает КПД.

Во втором случае (нижний график), когда есть постоянная составляющая тока, она намагничивает сердечник. Диполи один раз развернулись вдоль магнитных линий и застыли. Они не поворачиваются туда-сюда, как в первом случае. По этой причине индуктивное сопротивление обмотки становится малым, практически нулевым, как вроде обмотка без сердечника. Величину тока в основном определяет омическое сопротивление обмотки R, которое в разы меньше индуктивного. Из-за чего ток растет до недопустимых значений и провод обмотки перегорит. Естественно трансформатор не может выполнять свои функции.

Но тема актуальна и народ не теряет к ней интерес.

Самое простое, что можно сделать, отсечь постоянную составляющую при помощи конденсатора, как показано на этой схеме:

Недостаток в том, что для перезаряда конденсатора нужен резистор R. Его мощность соизмерима с мощностью нагрузки, это понижает КПД схемы настолько, что смысл теряется.

Есть патенты на данную тему. Например, такой:

Двухполупериодный выпрямитель со средней точкой на двух диодах 5 и 6.

С целью компенсации постоянной составляющей на сердечнике размещена дополнительная обмотка 3 с формирователем на элементах 8,9,10,11. Но это эффективно на более высоких частотах и небольших мощностях.

Есть еще такие удвоители частоты, где используется сдвиг фаз на 90 град.

Но опять же, это для небольших мощностей и более высоких частот.

Так что на сегодня самым реальным методом уменьшения габаритов источников питания является выпрямление напряжения сети, а затем питание от этого постоянного напряжения генераторов и мощных оконечных усилителей. Эти устройства работают на частотах десятков килогерц и трансформаторы выполняют на ферритах или сердечниках из распыленного железа с распределенным магнитным зазором. Именно так делают импульсные блоки питания и сварочные инверторы.

Материал статьи продублирован ан видео:

 

 

Как правильно подключить диодный мост к трансформатору

Содержание

  1. Как работает диодный мост
  2. Применение диодных мостов
  3. Как сделать диодный мост
  4. Обозначение на схеме
  5. Принцип работы
  6. Практические опыты
  7. Виды диодных мостов
  8. Как проверить диодный мост
  9. Резюме

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения – амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью – Как устроен компьютерный блок питания.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14. 5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах. Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах. Широко применяются и во всех моделях современных сварочных аппаратов.

Как сделать диодный мост

Словосочетание “диодный мост” образуется от слова “диод”. Следовательно, диодный мост должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

Обозначение на схеме

Диодный мост на схемах выглядит подобным образом:

Иногда в схемах его обозначают еще так:

Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка “

”. На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками “+” и “-“. Диодный мост также называют диодным выпрямителем.

Принцип работы

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок, как все это будет выглядеть:

Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше. Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост “переворачивает” отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

На выходе диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Практические опыты

Для начала возьмем простой диод.

Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на так называемом “холостом ходу”.

Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

3,3х5=16.5В – это максимальное значение напряжения. А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт – это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу вторичной обмотки трансформатора наш диод.

Цепляемся снова щупами осциллографа

Смотрим на осциллограмму

А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

Находим еще три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

С двух других концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

Вот, теперь порядок.

Виды диодных мостов

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент – диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

Например, на советском диодном мосте показаны контакты, на которые нужно подавать переменное напряжение значком ”

“, а контакты, с которых надо снимать постоянное пульсирующее напряжение значком “+” и “-“.

Существует множество видов диодных мостов в разных корпусах

Есть даже автомобильный диодный мост

Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

В основном трехфазные диодные мосты используются в силовой электронике.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

Как проверить диодный мост

1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками “

”, а с двух других контактов, с “+” и “-” снимаем показания с помощью осциллографа.

Значит, импортный диодный мост исправен.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая “кушает” напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Трансформатор

— подключение другого мостового выпрямителя к существующему источнику питания V+/V-

\$\начало группы\$

Это лучше всего объяснить на схеме.

  • В настоящее время у меня есть питание V+/V- на схеме.
  • Мне нужно подключиться к трансформатору для питания другой цепи (нижняя часть схемы с мостовым выпрямителем)
  • Трансформатор, который я использую, имеет две вторичные обмотки, соединенные последовательно. Подключенные провода становятся моим заземлением центрального отвода.

Возможно ли это? Если да, какие изменения мне нужны (если есть), чтобы заставить его работать?

PS. извиняюсь за качество схемы. Это мэшап, который я сделал с помощью MS Paint.

Edit1 : существующее питание является регулируемым +/- 12В. Новый блок питания даст мне больше +12В.

Edit2

: 2 заземления не подключены.

Edit3 : 0В в первом источнике заземления

  • источник питания
  • трансформатор

\$\конечная группа\$

3

\$\начало группы\$

Вот соответствующая схема.

\$\конечная группа\$

2

\$\начало группы\$

Ваша схема будет работать нормально, и два источника постоянного тока не будут мешать друг другу.

Конечно, вы должны убедиться, что любая мощность, которую вы получаете от вашего дополнительного источника питания, не перегружает трансформатор. Любой ток, который вы получаете от вашего второго источника, увеличивает ток через трансформатор сверх величины, которую потребляет первый источник сам по себе.

Самая большая проблема, с которой вы столкнетесь, может быть связана с тем, как взаимодействуют системы, которые вы подключаете к этим двум источникам. Теперь у вас есть две точки заземления, исходная помеченная «0V», и ваша новая точка с символом земли внизу справа.

Это не одно и то же, и, измерив переменное напряжение между ними, вы обнаружите значительную разницу потенциалов.

Следовательно, любой сигнал, полученный от цепи, подключенной к вашему новому второму источнику питания, будет относиться к своей конкретной земле, а по отношению к земле другого источника он будет выглядеть как беспорядок шума и переменного тока. Вы не можете решить эту проблему, соединив два заземления друг с другом, потому что это приведет к короткому замыканию диодов и возникновению дыма.

Другими словами, эта схема будет вам полезна только в том случае, если не будет абсолютно никакой связи (или какой-либо связи) между схемами на каждом источнике постоянного тока. Если все, что вам нужно, это запитать полностью независимую систему

от второго источника постоянного тока, все готово. В противном случае можно ожидать серьезных осложнений.

\$\конечная группа\$

1

\$\начало группы\$

Вы можете удвоить или утроить напряжение, подключив другой мостовой выпрямитель. Однако, хотя умножители напряжения могут повышать напряжение, они обеспечивают только меньший ток в нагрузке. Таким образом, можно легко сделать дополнительный источник питания 24 В или источник питания 36 В.

Схема удвоения напряжения: Цепь тройника напряжения:

\$\конечная группа\$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

. Блок питания

— Расположение диодного моста в цепи трансформатора?

спросил

Изменено 6 лет, 3 месяца назад

Просмотрено 2к раз

\$\начало группы\$

Я разрабатываю полный мостовой выпрямитель, который преобразует 110 В переменного тока в 4-16 В постоянного тока для ввода в импульсный стабилизатор 5 В.

Я открыл несколько блоков питания 5 В, и они разместили мост на стороне высокого напряжения. Почему бы не использовать низковольтный размер, чтобы диоды были меньше/дешевле?

Кроме того, я заметил, что они используют микросхему на стороне высокого напряжения. Какова цель этой микросхемы и требуется ли она?

Большинство схем, которые я вижу в Интернете, являются базовыми, такими как эта, которая должна дать мне полное определение волны:

Это трансформатор, который я использую: http://catalog. triad Magnetics.com/Asset/FS10-600-C2.pdf

  • блок питания
  • блок питания
  • трансформатор
  • выпрямитель
  • мост-выпрямитель

\$\конечная группа\$

5

\$\начало группы\$

Вы путаете «старомодный» линейный источник питания следующим образом:

Причины для использования этой конструкции:

  • Это простая конструкция
  • Пока вы не прикасаетесь к первичной стороне трансформатора, это довольно безопасно

С более современным импульсным источником питания:

Как видите, импульсный источник питания намного сложнее!

Причины для использования этого дизайна:

  • трансформатор используется на гораздо более высокой частоте, чем 50 или 60 Частота сети Гц означает, что она может быть намного меньше и больше эффективный
  • сглаживающие конденсаторы после трансформатора можно меньше
  • , будучи коммутируемым источником , означает, что он намного эффективнее
  • можно сделать компактнее (по одной причине)
  • можно сделать дешевле (без дорогого трансформатора)
  • легче по весу, его легче носить с собой.

Для бонусных баллов:

Вот пример простого сетевого питания с переключаемым режимом, обратите внимание, что он имеет 2 выхода, 5 В и 12 В. Вы можете не использовать выход 12 В, чтобы сделать его еще более простым. .

Теперь сравните это с первой схемой!

\$\конечная группа\$

8

\$\начало группы\$

Блоки питания 5 В, которые вы открыли, используют топологию, отличную от той, которую вы пытаетесь построить. Поскольку существуют различные способы изготовления блока питания, реальный вопрос заключается в том, почему вы ожидаете, что случайный серийный блок будет таким же, как ваш.

Коммерческие низковольтные источники питания постоянного тока обычно выпрямляют входящий переменный ток для создания постоянного высокого напряжения. Он прерывается на гораздо более высокой частоте, чем входящий переменный ток, а затем проходит через трансформатор.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *