Site Loader

Вычитание векторов и правила вычитания

Определение и правила вычитания векторов

Рассмотрим два вектора и (рис. 1).

Если задан вектор , то можно построить противоположный ему вектор , равный по длине, но противоположно направленный. Сумма противоположных векторов равна нулевому вектору:

   

Таким образом, разность можно записать в следующем виде:

   

То есть разность двух векторов равна сумме уменьшаемого и вектора, противоположного вычитаемому.

Правило треугольника для разности векторов

Чтобы графически продемонстрировать разность векторов, необходимо отложить от произвольной точки вектор , из его начала вектор . Тогда вектор, начало которого совпадает с концом вектора , а конец – с концом вектора , и будет искомым вектором разности (рис. 2).

Правило параллелограмма разности векторов

Если два неколлинеарных вектора и имеют общее начало (рис. 3), то разностью этих вектор есть вектор, совпадающий с диагональю параллелограмма, построенного на этих векторах и , причем начало этой диагонали совпадает с концом вектора , а конец – с концом вектора .

Если векторы и заданы своими координатами в некотором базисе: , то, чтобы найти координаты их разности , необходимо от координат вектора отнять соответствующие координаты вектора :

   

Примеры вычитания векторов

Понравился сайт? Расскажи друзьям!

Сложение и вычитание векторов. Умножение вектора на число

Отметим, что сложение векторов производится аналогично планиметрии, только все действия выполняются в пространстве.

Итак, пусть заданы два произвольных вектора в пространстве (рис. 1):

Рис. 1. Произвольные векторы в пространстве

Определим, что же называется суммой двух этих векторов.

Точно так же, как в планиметрии, из любой удобной точки, назовем ее точкой А, можно единственным образом отложить вектор, равный вектору . Напомним, что заданные векторы, как и любые другие, свободны, важно лишь направление и длина, сам вектор можно параллельно переносить в любое место как на плоскости, так и в пространстве. Так, мы получили вектор  – в результате действия вектора

 точка А переместилась в точку В. Теперь из точки В откладываем единственно возможным образом вектор , получаем вектор  – так, в результате действия вектора  точка В переместилась в точку С. В результате точка А переместилась в точку С, получен вектор , который и называется суммой векторов
 и  (рис. 2).

Рис. 2. Сумма двух векторов в пространстве

Так, получено правило треугольника для сложения векторов в пространстве.

Правило треугольника

Из любой точки пространства (точка А) откладываем первый вектор, из конца первого вектора (точка В) откладываем второй вектор и получаем точку С. Вектор, соединяющий начало первого вектора (точка А) и конец второго (точка С), и будет результирующим.

Отметим, что результат сложения векторов не зависит от выбора начальной точки, существует соответствующая теорема, которая это доказывает на основании того, что из точки можно отложить вектор, равный заданному, единственным образом.

Определение

Разностью двух векторов называется такой третий вектор, который, будучи сложенным со вторым вектором, даст первый вектор.

Введем разность векторов  и , для этого сложим вектор  с противоположным вектором

:

Итак, из произвольной точки А откладываем вектор , получаем точку В. Чтобы получить вектор  мы строим вектор, равный вектору  по длине, но противонаправленный. Полученный вектор откладываем из точки В – получаем точку D. Вектор

 и будет искомым вектором разности.

Проиллюстрируем (рис. 3):

Рис. 3. Вычитание двух векторов в пространстве

Построим на заданных векторах  и  параллелограмм (рис. 4):

Рис. 4. Параллелограмм на двух заданных векторах

Т. к. вектор

; аналогично .

По правилу треугольника:

Так, одна из диагоналей параллелограмма, построенного на двух векторах, соответствует сумме этих векторов.

Рассмотрим разность векторов. По правилу треугольника:

.

Так, вторая диагональ параллелограмма, построенного на двух векторах, соответствует разности этих векторов.

Для сложения и вычитания нескольких векторов применяется правило многоугольника. Пусть заданы векторы

 и :

Рис. 5. Три вектора в пространстве

Необходимо построить вектор .

Видим, что перед некоторыми векторами стоят численные множители. Напомним, что при умножении вектора на число получаем сонаправленный вектор, длина которого – это длина исходного вектора, умноженная на заданное число. Получим векторы

 и . Вектор  сонаправлен с вектором , длина его в три раза больше. Вектор  противонаправлен вектору , длина его в два раза больше. Проиллюстрируем (рис. 6):

Рис. 6. Умножение вектора на число

Приступаем к сложению. Из произвольной точки А откладываем полученный вектор  – получаем точку В. Из точки В откладываем вектор  – получаем точку С. Из точки С откладываем вектор  – получаем точку D. Согласно правилу многоугольника, вектор  соответствует искомому вектору

:

Рис. 7. Сложение векторов по правилу многоугольника

Задача 1:

Задан тетраэдр ABCD (рисунок 8). Доказать:

 

Рис. 8. Тетраэдр, задача 1

Решение:

По правилу треугольника:

Аналогично:

, ч. т. д.

По правилу треугольника:

Аналогично: , ч. т. д.

Задача 2

Упростить выражение:

Рассмотрим отдельно сумму двух векторов: , ее значение очевидно:

Проиллюстрируем (рис. 9):

Рис. 9. Сумма двух векторов

Теперь сократим противоположные векторы:

Можно было сразу заметить:

.

В результате упрощения получено:

.

Итак, мы ввели операции сложения и вычитания векторов, умножения вектора на число в стереометрии, отметили, что операции аналогичны таким же для планиметрии. Кроме того, решили несколько задач, базирующихся на описанных операциях.

 

Список литературы

  1. Геометрия. 10–11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил.
  2. Геометрия. 10–11 класс: учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
  3. Геометрия. 10 класс: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М.: Дрофа, 2008. – 233 с.: ил.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Ru.onlinemschool.com (Иточник).
  2. Emomi.com (Источник).
  3. Cleverstudents.ru (Источник).

 

Домашнее задание

Задача 1: задан параллелепипед (рисунок 10). Доказать:

1.

2.

3.

Рис. 10. Параллелепипед

Задача 2: упростить выражение:

Задача 3: построить вектор , если векторы  и  заданы на рисунке 11:

Рис. 11. Векторы, задача 3

Вычитание векторов

Откладывание вектора от данной точки

Для того, чтобы ввести разность векторов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

$\overrightarrow{a}$ отложенный от точки $A$

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

  1. Вектор $\overrightarrow{a}$ — нулевой.

    В этом случае, очевидно, что искомый вектор — вектор $\overrightarrow{KK}$.

  2. Вектор $\overrightarrow{a}$ — ненулевой.

    Обозначим точкой $A$ — начало вектора $\overrightarrow{a}$, а точкой $B$ — конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Иллюстрация теоремы 1

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Вычитание векторов. Правило первое

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Разностью двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ называется такой вектор $\overrightarrow{c}$, который при сложении с вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$, то есть

\[\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}\]

Обозначение: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{c}$.

Построение разности двух векторов рассмотрим с помощью задачи.

Пример 1

Пусть даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$. Построить вектор $\overrightarrow{a}-\overrightarrow{b}$.

Решение.

Построим произвольную точку $O$ и отложим от нее векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$. Соединив точку $B$ с точкой $A$, получим вектор $\overrightarrow{BA}$ (рис. 3).

Разность двух векторов

Рисунок 3. Разность двух векторов

По правилу треугольника для построения суммы двух векторов видим, что

\[\overrightarrow{OB}+\overrightarrow{BA}=\overrightarrow{OA}\]

То есть

\[\overrightarrow{b}+\overrightarrow{BA}=\overrightarrow{a}\]

Из определения 2, получаем, что

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}\]

Ответ: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}$.

Из этой задачи получаем следующее правило для нахождения разности двух векторов. Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$ и соединить конец второго вектор с концом первого вектора.

Вычитание векторов. Правило второе

Вспомним следующее необходимое нам понятие.

Определение 3

Вектор $\overrightarrow{a_1}$ называется произвольным для вектора $\overrightarrow{a}$, если эти векторы противоположно направлены и имеют равную длину.

Обозначение: Вектор $(-\overrightarrow{a})$ противоположный для вектора $\overrightarrow{a}$.

Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.

Теорема 2

Для любых двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ справедливо следующее равенство:

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\]

Доказательство.

По определению 2, имеем

Прибавим к обеим частям вектор $\left(-\overrightarrow{b}\right)$, получим

Так как векторы $\overrightarrow{b}$ и $\left(-\overrightarrow{b}\right)$ противоположны, то $\overrightarrow{b}+\left(-\overrightarrow{b}\right)=\overrightarrow{0}$. Имеем

Теорема доказана.

Из этой теоремы получаем следующее правило для разности двух векторов: Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить вектор $\overrightarrow{OA}=\overrightarrow{a}$, затем от полученной точки $A$ отложить вектор $\overrightarrow{AB}=-\overrightarrow{b}$ и соединить начало первого вектора с концом второго вектора.

Пример задачи на понятие разности векторов

Пример 2

Пусть дан параллелограмм $ADCD$, диагонали которого пересекаются в точке $O$. $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AD}=\overrightarrow{b}$ (рис. 4). Выразить через векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ следующие векторы:

а) $\overrightarrow{DC}+\overrightarrow{CB}$

б) $\overrightarrow{BO}-\overrightarrow{OC}$

Параллелограмм

Рисунок 4. Параллелограмм

Решение.

а) Произведем сложение по правилу треугольника, получим

\[\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\]

Из первого правила разности двух векторов, получаем

\[\overrightarrow{DB}=\overrightarrow{a}-\overrightarrow{b}\]

б) Так как $\overrightarrow{OC}=\overrightarrow{AO}$, получим

\[\overrightarrow{BO}-\overrightarrow{OC}=\overrightarrow{BO}-\overrightarrow{AO}\]

По теореме 2, имеем

\[\overrightarrow{BO}-\overrightarrow{AO}=\overrightarrow{BO}+\left(-\overrightarrow{AO}\right)=\overrightarrow{BO}+\overrightarrow{OA}\]

Используя правило треугольника, окончательно имеем

\[\overrightarrow{BO}+\overrightarrow{OA}=\overrightarrow{BA}=-\overrightarrow{AB}=-\overrightarrow{a}\]

определение, формула для нахождения, аналитический метод и графическое построение

Как вычитать векторы - задачи и решения

Как вычитать векторы - задачи и решенияВ математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block id=»32″]

Вконтакте

Facebook

Twitter

Google+

Мой мир


[block id=»33″]
Максимально наглядно применение векторных величин объясняется в физике. Самыми простыми примерами являются силы (сила трения, сила упругости, вес), скорость и ускорение, поскольку помимо численных значений они также обладают направлением действия. Для сравнения приведём пример скалярных величин: это может быть расстояние между двумя точками или масса тела. Для чего же необходимо выполнять действия над векторными величинами такие как сложение или вычитание? Это нужно, чтобы было возможно определить результат действия системы векторов, состоящей из 2 или более элементов.

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) — это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
  7. Разностью векторов a и b называют сумму a и ( b), где ( b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.

[block id=»3″]

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a {a₁; a₂} и b {b₁; b₂} расчёты будут иметь следующий вид: c {c₁; c₂} = {a₁ — b₁; a₂ — b₂}.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a {a₁; a₂; a₃} и b {b₁; b₂; b₃} координаты разности будут также получены попарным вычитанием: c {c₁; c₂; c₃} = {a₁ — b₁; a₂ — b₂; a₃ — b₃}.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

[block id=»4″]
Результат операции вычитания показан на рисунке ниже.

Построение разности по правилу треугольника

Построение разности по правилу треугольника

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Применение теоремы о разности векторов

Применение теоремы о разности векторов

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.

Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:

AB {0 — 1; 4 — (— 3)} = {— 1; 7}

Аналогичный расчёт выполняется для CD:

CD {— 3 — 5; 2 — 8} = {— 8; — 6}

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = a b координаты имеют вид {c₁; c₂} = {a₁ — b₁; a₂ — b₂}. Для конкретного случая можно записать:

q = {— 1 — 8; 7 — ( — 6)} = { — 9; — 1}

Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block id=»5″]
Задача 2. На рисунке изображены векторы m, n и p.

Исходные векторы m, n и p.

Исходные векторы m, n и p.

Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.

Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Вычисление разности p - n по правилу треугольника

Вычисление разности p - n по правилу треугольника

Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

Нахождение m - n с использованием теоремы о разности

Нахождение m - n с использованием теоремы о разности
[block id=»6″]
Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:
  • m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
  • (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
  • (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.

Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).

Построение вектора разности m - n - p

Построение вектора разности m - n - p

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block id=»2″]
[block id=»10″]

Линейные операции над векторами, формулы и примеры

Рассмотрим два ненулевых вектора и .

1. Сложение (сумма) векторов

Замечание. Если начало вектора не совпадает с концом вектора , то от конца вектора надо отложить вектор , равный вектору (рис. 2).

Правило треугольника сложения векторов. Если конец вектора совпадает с началом вектора , то суммой этих векторов есть вектор, начало которого совпадает с началом вектора , а конец – с концом вектора (рис. 3).

Правило параллелограмма сложения векторов. Если два неколлинеарных вектора и имеют общее начало (рис. 4), то суммой этих вектор есть вектор, имеющий общее начало с указанными векторами и совпадающий с диагональю параллелограмма, построенного на этих векторах и .

Сложение векторов обладают переместительным и распределительным свойствами:

   

Если векторы и заданы своими координатами, например, на плоскости, , тогда суммой этих векторов есть вектор , координаты которого равны сумме соответствующих координат векторов-слагаемых:

   

2. Разность векторов

Противоположным вектором к некоторому вектору называется вектор, противоположно направленный данному и имеющий такую же длину.

Замечание. Сумма противоположных векторов равна нулевому вектору:

   

Разностью двух векторов и называется сумма вектора и вектора , который является противоположным вектору :

   

Чтобы построить геометрически разность векторов и , необходимо совместить начала этих векторов (то есть от одной точки отложить равные им векторы и ), тогда вектор, начало которого совпадает с концом вектора , а конец – с концом вектора , и будет искомой разностью (рис. 5).

Если векторы и заданы своими координатами: , то их разностью есть вектор , координаты которого равны разности соответствующих координат векторов и :

   

3. Умножение вектора на число

Произведением вектора на число называется вектор , модуль которого , причем вектор будет сонаправлен с вектором , если , и противоположно направлен в случае, если .

Произведением вектора на число называется вектор, полученный из исходного умножением его каждой координаты на число :

   

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *