Site Loader

Содержание

Как определить фазу, ноль и заземление самому, подручными средствами? – RozetkaOnline.COM

Любой человек, занимаясь электромонтажными работами у себя дома или просто решивший установить люстру, бра или подключить розетку, обязательно столкнется с вопросом – как определить фазу, ноль и заземление у проводов, в месте монтажа?

В наших статьях и инструкциях, мы часто выкладываем схемы подключения, правила монтажа и подсоединения электрооборудования к сети, а также многое другое, где для правильного выполнения всех операций необходимо знать, где у вас фазный провод, где нулевой (рабочий ноль), а где заземляющий (защитный ноль). Для опытного электрика определить где фаза и ноль или найти землю, обычно не составляет труда, а вот как быть остальным?

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

 
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Маркировка проводов по цвету

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку

и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.

В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов. 

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый

Защитный ноль (земля или заземление) – желто-зеленый провод

Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.

 

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.

Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного). 

КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

 

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

 

 

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

 

 

Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня. 

Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

 

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым. 

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

 

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения: 

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

 

 

 

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

– Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

 

 

– Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

 

 

Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Как понять где фаза а где ноль в проводах: 5 способов узнать

Согласно нормам ПУЭ к выключателю должен подсоединяться фазный провод. При ремонте или реконструкции электропроводки могут возникнуть и другие ситуации, при которых имеет значение, какой из проводов нейтраль, а какой фаза.

При наличии бирок на концах проводников это несложно, но как понять где фаза, а где ноль в проводах, если маркировка на проводах отсутствует? В этом случае необходимо иметь минимальные знания электротехники или внимательно изучить следующую статью.

Зачем нужно определять, где фаза, а где ноль

Для работы электроприборов не имеет значения, к какой клемме присоединяется фазный, а к какой нулевой проводник, но для повышения безопасности людей, живущих в доме, эти провода в некоторых ситуациях должны подключаться определённым образом:

  • К выключателю освещения необходимо подводить фазный провод, а к лампе нулевой. Это обеспечивает отсутствие напряжения в светильнике при выключенном освещении и позволяет производить замену лампы и ремонт осветительной аппаратуры без отключения автоматического выключателя. Это требование так же указано в «библии» электромонтёров — ПУЭ п.6.6.28.
  • Наличие в схеме электропроводки УЗО. Использование вместо нулевого проводника заземляющего при подключении электроприборов, освещения и розеток приводит к появлению тока утечки, нарушению равенства токов в нейтрали и фазном проводе и срабатыванию дифзащиты

Простые способы, как найти фазу

Для поиска фазного провода в электропроводке используются различные методы.

По цветовой маркировке

Это самый простой метод, позволяющий выполнить эту работу без каких-либо приборов, однако он применим только к электропроводке, выполненной согласно стандарту IEC 60446, принятому в 2004 году.

В этом случае согласно правилам цветовой маркировки изоляции проводов фазный провод в однофазной электропроводке и двух- или трёхжильных кабелях чаще всего окрашен в коричневый цвет, а в трёхфазной проводке и четырёх- или пятижильных кабелях оболочка может быть любого цвета, кроме синего и жёлто-зелёного.

С помощью индикаторной отвертки

Этот инструмент позволяет определить фазный контакт даже в закрытой розетке. Принцип работы индикаторной отвёртки основан на протекании через него активного тока, причём жало индикатора должно касаться проверяемого проводника, а вторым проводником является тело человека.

Принципиальная схема индикатора состоит из следующих узлов:

  • Жало отвёртки. Является одним из контактов электросхемы инструмента.
  • Индикатор. В старых моделях это неоновая лампочка, в более новых светодиод или ЖК дисплей.
  • Токоограничивающий элемент. В аппаратах с неонкой это резистор номиналом 1 МОм, в индикаторах со светодиодом или дисплеем ток ограничивается электронной схемой с питанием от батареек.
  • Контактное кольцо или площадка. Находится в рукоятке и служит для замыкания цепи через тело и перед тем, как найти фазу и ноль индикаторной отверткой, следует дотронуться к нему пальцами.

При прикосновении жала к фазному проводу, а человека к контактному кольцу в рукоятке ток начинает идти по цепи «жало-неонка-резистор-контакт-тело-пол» и лампа загорается.

Важно! При помощи индикаторной отвёртки с гарантией можно найти только фазный провод. Отсутствие сигнала не указывает на нулевой проводник, он может быть отключённым или оборванным, а при подаче питания на нём так же может появиться напряжение.

Как найти фазу указателем напряжения

Более надёжными являются индикаторы напряжения, как старые, которые использовались ещё в советское время, ПИН-90, так и более современные, имеющие встроенную функцию указания фазы.

Принцип действия этих устройств аналогичен индикаторной отвёртке, но конструкция прибора позволяет кроме фазного найти так же заземляющий и нейтральный проводники.

Для определения фазы один из щупов должен касаться проверяемого провода, а рукой при этом необходимо, в зависимости от конструкции, касаться второго щупа или специального вывода. При контакте с фазой на приборе загорится лампочка, светодиод или прозвучит звуковой сигнал.

С помощью мультиметра

Этот прибор можно применять для поиска фазы аналогично индикаторной отвёртке, однако необходимо использовать цифровой мультиметр. Он имеет встроенный усилитель сигнала и является более чувствительным, чем стрелочный прибор, требующий больший ток для работы показания которого составят менее 1 В. Есть два варианта, как найти фазу с помощью мультиметра.

Более надёжным способом является поиск фазного проводника при контакте тела с прибором:

  1. 1. перед тем, как найти фазу мультиметром, следует подключить щупы к прибору;
  2. 2. переключить мультиметр для измерения переменного напряжения ACV на предел 750В;
  3. 3. один из щупов взять за металлический наконечник незащищённой рукой;
  4. 4. вторым щупом поочерёдно дотронуться до всех проверяемых проводов.

При прикосновении к фазному контакту дисплей прибора покажет наличие напряжения. Его величина зависит от многих факторов и находится в диапазоне 20-100 Вольт. Так же, как и индикатор напряжения, после определения фазного проводника мультиметром можно найти нулевой провод и заземляющий.

Такой метод поиска фазы не указан в инструкции к прибору, поэтому для большей безопасности можно использовать «бесконтактный» метод, при котором нет необходимости дотрагиваться рукой до второго щупа. Показания мультиметра при этом составят 3-15 Вольт, что достаточно для поиска фазы.

При помощи контрольной лампы

Кроме методов, требующих специальных инструментов, существует достаточно опасный способ, как понять, где фаза, а где ноль в проводах при помощи контрольной лампы или контрольки. Для этого достаточно иметь обычную лампу, патрон и два куска провода. Для сборки этого приспособления провода с зачищенными концами подключают к патрону и закручивают в него лампу.

Для определения фазного провода один из проводов присоединяют к заведомо заземлённому элементу — нейтральному или заземляющему проводнику, шине заземления в электрощитке или контуру заземления здания, а вторым проводом поочерёдно прикасаются к проверяемым проводам. В случае контакта с фазным проводом лампа загорится.

В трёхпроводной электропроводке с заземляющим контактом контрольную лампу последовательно подключают попарно ко всем трём проводам. Тот проводник, при присоединении к которому лампа будет светиться с обоими другими проводами является фазным, оставшиеся являются нейтралью и заземлением.

Этот метод проверки наличия напряжения запрещён ПТБЭЭП и другими нормативными документами. Из-за высокого тока потребления контрольная лампа загорится только при низком сопротивлении электропроводки. Включённая последовательно с проверяемым контактом лампа или плохой контакт в скрутке или клеммнике не позволят лампочке включиться, однако прикосновение к этим проводам опасно для жизни.

Кроме того, возможна ситуация, при которой в кабеле будет обрыв в нулевом и заземляющем проводниках. При этом во всех вариантах подключения контролька светиться не будет, что позволит сделать ошибочный вывод об отсутствии напряжения в сети.

Как определить фазу и ноль

Далеко не всегда достаточно определить, какой из проводников является фазным. Очень часто, особенно в трёхпроводной однофазной системе электроснабжения, нужно найти нулевой контакт. Это необходимо при подключении розеток или освещения и не всегда, если один из проводов фазный, то второй обязательно нейтраль.

Он может быть отключённым, оборванным или замыкать на ту же или другую фазу. Поэтому необходимо проверку производить для всех проводов и существуют разные способы, как понять, где фаза, а где ноль в проводах.

Информация! Для поиска нулевого, фазного и заземляющего проводов можно использовать те же приборы, которые применялись для определения фазы.

По цветовой маркировке

Это самый простой способ, позволяющий определить фазный и нулевой провод без каких-либо приборов, «на глаз». Единственный недостаток этого метода заключается в том, что он применим только к электропроводке, проложенной после 2004 года при полной уверенности, что при этом были соблюдены правила цветовой маркировки изоляции проводов:

  • нейтраль N — синий или голубой;
  • заземление РЕ — в продольную жёлто-зелёную полосу;
  • фаза L — в однофазной электропроводке коричневая, в трёхфазной проводке оболочка может быть любого цвета кроме синего(голубого) и жёлто-зелёного.

Важно! Цветовая маркировка проводов не всегда и далеко не всеми электриками соблюдается. Поэтому этот метод является лишь косвенным, по которому нельзя судить есть напряжение на проводе или нет.

При помощи контрольной лампы, индикатора или вольтметра

В двухпроводной схеме электроснабжения это сделать несложно. После определения фазного проводника необходимо узнать, является ли оставшийся проводник нейтралью. Для этого достаточно любым способом проверить потенциал между ними.

Если прибор покажет напряжение сети 220В, значит эти провода, соответственно, ноль и фаза. В противном случае ноль на этом контакте отсутствует из-за аварии или неправильного монтажа.

В трёхпроводной системе с заземляющим проводом выполнить поиск ноля сложнее. Для этого необходимо:

  1. 1. перед тем, как определить фазу и ноль, в электрощитке от вводного автомата нужно отключить нейтральную клемму;
  2. 2. найти фазный провод;
  3. 3. определить, с каким из двух оставшихся проводников и фазным прибор показывает наличие напряжения.

Этот контакт является заземлением.

Определение ноля и заземления при помощи УЗО

Один из самых простых методов различить нейтральный и заземляющий контакты — это при помощи контрольной лампы и УЗО или дифавтомат.

Лампочка или другой электроприбор должны иметь мощность не менее 10 Вт, а УЗО уставку срабатывания не более 30мА.

Для поиска ноля и заземления необходимо:

  • найти фазу одним из вышеперечисленных способов;
  • отключить вводной автоматический выключатель;
  • подключить к фазному проводу и одному из оставшихся контрольную лампу;
  • включить автомат;
  • если сработает дифференциальная защита, то выбранный проводник является заземляющим, в противном случае это нейтраль.

Для надёжности данную последовательность действий желательно повторить для второго провода.

Совет! При отсутствии в схеме УЗО его допускается установить временно, снаружи электрощита. Подключение при этом можно выполнить при помощи отрезков гибкого провода.

Вывод

В связи с тем, что определение фазы при помощи цветовой маркировки имеет ограниченную область применения — новая электропроводка, причём выполненная профессионалами, а использование контрольной лампы запрещено ПТБЭЭП и может быть опасным для жизни, существует только три надёжных способа, как узнать, где ноль, а где фаза. Это индикаторная отвёртка, индикатор напряжения с функцией поиска фазы и мультиметр, причём два последних устройства позволяют найти не только фазный проводник, но так же нейтраль и заземление.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как определить фазу и ноль без приборов: видео, фото, идеи

Итак, представьте себе такую ситуацию – Вам нужно подключить новую розетку, но при этом по каким-либо причинам Вы не знаете, какой из проводов на выводе фазный, а какой нулевой. Ситуация дополнительной осложнена тем, что под рукой не оказалось ни индикаторной отвертки, ни мультиметра, которые позволят быстро найти по какому проводу проходит напряжение. Далее мы рассмотрим читателям Сам Электрика, как определить фазу и ноль без приборов!

Способ №1 – Визуальное обозначение

Первый и наиболее надежный способ самостоятельно определить, где фаза и ноль без тестера – осмотреть цвет изоляции каждого проводника, на основании чего сделать вывод.

Дело в том, что цветовая маркировка проводов как раз и предназначена для того, чтобы можно было без приборов узнать какая из жил нейтральная, а какая фазная. Чтобы Вам было понятнее и Вы смогли правильно определить фазу и ноль, предоставляем таблицу с существующими стандартами:

Как Вы видите, изоляция может быть различного окраса, поэтому лучше запомнить, что 0 – это всегда синий, а заземление – желто-зеленый (либо только желтый/зеленый). Как правило, оставшаяся третья жила – фаза, которую Вам и нужнее определить. Если же цветовая маркировка отсутствует, что не исключение, найти фазу и ноль без инструмента можно и другими способами, которые мы рассмотрели ниже!

Способ №2 – Делаем контрольку

Вторая идея определить без тестера, где фазный, а где нулевой провод в розетке заключается в том, что нужно самому сделать контрольную лампочку из подручных средств. Все очень просто, нужно всего лишь найти лампу накаливания с патроном и два отрезка многожильного провода, длиной около 50 сантиметров.

Жилы подсоединяются в соответствующие разъемы патрона, один проводник крепится на зачищенную до металлического цвета трубы отопления, а вторым нужно «прощупать» интересующие Вас жилы. Лампочка загорится в том случае, если Вы прикоснетесь к фазному контакту. Таким простым способ Вы можете быстро узнать без приборов, где фаза и ноль.

Обращаем Ваше внимание на то, что такой вариант поиска без приборов опасный и может стать причиной поражения электрическим током. Будьте осторожными при определении напряжения и остерегайтесь прикосновения рукой к оголенной жиле!

Простой пробник из подручных средств

Если у Вас под рукой нет лампы накаливания, можете использовать для сборки самодельного тестера неоновую лампочку, которая также позволит определить полярность. Схема контрольки будет выглядеть следующими образом:

 

Способ №3 – Картошка в помощь!

Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

  • Если на срезе образовалось небольшое потемнение – это фазный проводник;
  • Никакой реакции не произошло – Вы «нащупали» ноль.

Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

Наглядный видео урок по определению полярности без приборов своими руками

По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

Вот мы и предоставили наиболее простые способы, как определить фазу и ноль без приборов. Еще раз обращаем Ваше внимание на то, что безопасным является только первый способ. При использовании последних двух нужно соблюдать меры предосторожности, чтобы Вас не ударило током!

Также читают:

Как определить фазу, ноль и заземление

Многие электроприборы требуют соблюдения полярности. Это не только мощные потребители электроэнергии, такие как посудомоечная машина или электрическая печь, но и привычные для нас переключатели для включения/выключения света. Даже подключение переключателя с размыкаемым нулем вместо фазы может стать причиной удара током.

Стабильная и безопасная работа электроприборов возможна только при правильном подключении. Для этого нужно определить, какой из проводников является фазным, нулевым и заземляющим. В этой статье мы подробно рассмотрим способы, как это сделать безопасно с использованием доступных инструментов, а также разберем, можно ли определить фазность без приборов.

Безопасность прежде всего!

Жизнь и здоровье человека являются наибольшей ценностью. Поэтому, прежде чем приступить к работе с электрооборудованием, следует убедиться, что все инструменты исправны: корпуса без повреждений, изоляция без переломов провода и повреждений, щупы не разболтаны и их корпуса не нарушены.

Не прикасайтесь к участкам без изоляции на инструментах и проводах при работе под напряжением!

При возникновении малейших сомнений в правильности действий, прекратите работу и обратитесь к профессионалу — это убережет вас, а также окружающих людей, от возможного поражения током.

Как определить ноль и фазу индикаторной отверткой

Одним из простейших способов выявления фазы и нуля является работа с отверткой-индикатором. Такой инструмент доступен по цене и несложный в использовании. Подробно рассмотрим его устройство для понимания принципа работы.

Этот прибор состоит из рукоятки и металлического жала, большая часть которого покрыта изоляцией. Внутри прозрачной рукоятки размещен резистор и неоновая лампа, а на торцевой части имеется второй контакт.

Работая с индикаторной отверткой, её жало должно касаться исследуемого элемента, а человек — второго контакта. Емкость и сопротивление человеческого тела здесь выступают частями цепи: если в цепи присутствует напряжение, то лампочка начинает светиться.

Для определения фазы и нуля отверткой-индикатором достаточно дотронуться сначала к одному, а затем к другому не изолированному концу провода или отверстию розетки. Если в исследуемом элементе есть напряжение, то лампочка загорится. Это явление соответствует фазному проводнику. Если свечения нет, то перед нами нулевой или заземляющий кабель.

Как определить фазу и ноль мультиметром

Индикаторной отверткой мы могли определить только наличие напряжения. При помощи тестера мы можем увидеть определенные показатели, отображающиеся на мониторе. Определение рабочего, заземляющего и нулевого рабочего элемента при помощи мультиметра происходит по схожему с сценариею (как с отверткой). Но это более сложный прибор, поэтому нужно быть предельно внимательным при выставлении его режимов. Если вместо режима вольтметра будет выставлен режим амперметра, вы можете получить значительный удар током.

Итак, устанавливаем переключатель устройства в режим вольтметра переменного тока «~», а предел измерения устанавливаем выше предполагаемого напряжения в сети. Перед началом работы необходимо убедиться, что мультиметр исправен. Для этого нужно измерить напряжение переменного тока в рабочей розетке и проконтролировать полученные значения. После этого можно приступать к определению фазы в исследуемом объекте. Одним из электрощупов касаемся до исследуемого элемента, а контактную часть второго электрощупа зажимаем между двух пальцев. Если на экране отображается какое-либо значение, значительно отличающееся от нуля (близкое к номинальному напряжению в сети), то перед нами рабочий проводник, если же оно равно нулю или очень низкое (до нескольких десятков вольт), то это нулевой или заземляющий проводник.

Как определить фазу и ноль без приборов

Единственный возможный способ различить проводники без использования приборов — при помощи маркировки проводников по цветам. Желто-зеленая окраска изоляции соответствует кабелю заземления, синяя или голубая — нулевому, а рабочий кабель может быть любого цвета. К сожалению, не все придерживаются ГОСТов, а также необходимых требований. Нередко случается, что электричество подключено либо немаркированными кабелями, либо маркировка не соблюдена. Поэтому доверять такому способу нельзя.

В интернете можно найти множество способов определения фазы при помощи подручных средств — картофеля, стакана с водопроводной водой, контрольной лампочки и пр. Эти способы использовать ни в коем случае нельзя — такие опыты могут закончиться фатально не только для вас, но также для окружающих!

Отдельно отметим рекомендуемую даже некоторыми электриками контрольную лампочку, т.е. патрон с лампой, к которому подсоединены два провода. Использование такого самодельного прибора запрещено Правилами Безопасной Эксплуатации Электроустановок, т.к. может причинить серьезный ущерб и нанести травмы.

Также опасно использовать способы, в которых рекомендуется соединение электросети с заземленными предметами — трубами центрального отопления, водоснабжения, газовыми трубами и пр. — если напряжение окажется на таких предметах, то прикосновение к ним может стать смертельным.

Если вы не имеете достаточно инструментов или опыта работы с электричеством, то не рискуйте жизнью и здоровьем, а доверьте подключение электроприборов профессионалу.

Как определить заземление

Часто в новых домах можно встретить проводку из трехжильного кабеля, т.е. в нем присутствует отдельно выведенное заземление. При неправильном подключении есть риск короткого замыкания, а также поражения током. Поэтому для подключения электрооборудования важно знать не только где находится фаза, но также выявить ноль и заземление.

Определить провод заземления сложно из-за того, что по своим параметрам он схож с нулевым.

В электросистемах типа ТТ, имеющих индивидуальный заземляющий контур, можно найти кабель заземления при помощи измерений мультиметром. Для этого нужно поочередно измерить напряжение между рабочим проводником и двумя другими. Большее значение соответствует нулю, меньшее — земле.

В других конфигурациях сети этот прием не работает, поэтому мы рекомендуем предпринять следующие шаги:

  1. Отключить всех потребителей электроэнергии на исследуемом участке цепи.
  2. В щитке определить, где находится сдвоенный УЗО на ввод.
  3. Внимательно осмотрев защитное устройство, определить нахождение нулевого, а также фазного проводника.
  4. Отключить это УЗО.
  5. Аккуратно отсоединить нуль от УЗО на время исследования.
  6. Включить защитное устройство.
  7. Тестером произвести измерения исследуемых элементов поочередно подключая каждый к фазному. Нулевой проводник отключен, поэтому показания измерений будут нулевыми, сочетание фаза-земля покажет около 220 В.
  8. Промаркировать проводники по установленным данным.
  9. Произвести повторное подключение нуля к УЗО.

Помните: неосторожное или неумелое обращение с электричеством может привести к непоправимым последствиям. Не рискуйте жизнью и здоровьем — доверьте дело профессиональным электрикам со стажем и необходимыми допусками.

Оцените новость:

Как определить фазу и ноль правильно: советы и рекомендации

Категория: Электромонтажные работы

Для того чтобы починить розетку или подключить люстру, не обязательно звать на помощь электрика. Все эти работы при наличии определенного минимума знаний может выполнить даже школьник. Чтобы освоить элементарные навыки работы с электрической проводкой в квартире или частом доме необходимо сначала понять принцип устройства электросети, а также обзавестись индикаторной отверткой и недорогим тестером со стрелочной или цифровой индикацией, который называется мультиметром в связи с возможностью измерения сразу нескольких электрических параметров (сила тока, напряжение, сопротивление). Кроме того, для снятия изоляции, резания, сжатия или скрутки проводов, необходимо купить в магазине пассатижи, кусачки, нож и набор отверток различного размера. При этом необходимо чтобы весь инструмент имел надежные рукоятки, изготовленные из изоляционного материала. Из материалов нужна будет только изоляционная лента и клемники, позволяющие быстро соединять провода внутри коробок.

Перед тем, как приступать к подключению или починке электрического устройства или к ремонту электропроводки своими руками, необходимо в первую очередь понять, что представляют собой такие понятия, как фаза и ноль, которыми обычно оперируют электрики. Давайте рассмотрим, чем они отличаются, и как определить фазу и ноль при помощи различных приборов.

Что такое фаза?

Как известно, генератор, который вырабатывает электроэнергию, в сущности, представляет собой несколько огромных катушек провода, в которых возбуждается электрический ток движением постоянных магнитов. Все эти катушки соединены между собой таким образом, что один конец каждой из них соединен с землей (заземление), а другой представляет собой изолированный проводник, идущий к потребителям в виде воздушной линии или изолированного провода. Соответственно, один из двух проводов, которые заведены в квартиру, протянут от заземленного конца катушек электростанции, и представляет собой так называемый «ноль», а другой, который не соединен с землей, называется «фаза».

Как известно, в обычной бытовой розетке всегда есть ноль и одна фаза. В квартирах заведена всегда только одна фаза и ноль, поскольку все бытовые приборы и оборудование рассчитаны на однофазное питание. Однако от электростанции к потребителям идет всегда три фазы и ноль. Так куда же деваются еще две фазы? Почему их нет в квартире? На этот вопрос ответ находится в подвале многоэтажного дома, где установлен силовой щит. К нему подведены все три фазы, которые затем распределяются равномерно между квартирами для обеспечения одинаковой нагрузки.

Что такое ноль и заземление?

Гораздо проще обстоит дело с нолем. Этот проводник должен быть везде, вне зависимости от количества фаз в помещении. Как уже упоминалось, на электростанции ноль заземлен. Тогда почему же к розетке подведены три провода? Третий провод – это заземление, которое необходимо из соображения безопасности эксплуатации бытовых (и промышленных, кстати, тоже) электроприборов.

Дело в том, что если произойдет разрыв нулевого провода к объекту (жилому дому, предприятию, отдельному помещению), внутри объекта окажется только один (либо три) фазный провод, который подключен к огромному количеству различных устройств и приборов. Это значительно повышает вероятность поражения людей электрическим током путем прикосновения к металлическому корпусу или деталям прибора. Именно поэтому все корпуса бытового и промышленного оборудования дополнительно заземляются непосредственно на месте подключения и эксплуатации.

Как отличить друг от друга фазу и ноль?

Для начала отметим, что сегодня приобрела популярность цветовая маркировка проводов, согласно которой заземление должно представлять собой провод желто-зеленого цвета (зеленый с желтой полоской), фазный провод – в коричневой изоляции, и ноль – в синей (голубой). В случае наличия трех фаз остальные две фазы должны быть серого и черного цвета. Однако не рекомендуется доверять визуальному определению, поскольку во многих случаях оно является ошибочным.

Итак, как найти фазу и ноль, если провода не промаркированы или же вы не доверяете цветной маркировке? В бытовых условиях это можно сделать при помощи нескольких приборов: самодельного индикатора (так называемой «контрольки»), индикаторной отвертки и тестера (мультиметра). В первых двух случаях используется один и тот же принцип, который заключается в том, что между нулем и заземлением не должно быть разницы потенциалов (напряжения). В случае использования индикаторной отвертки проверяется каждый провод отдельно.

Итак, «контролька» – это классическое, хотя и примитивное, самодельное устройство, которое представляет собой небольшую лампочку на 220 вольт с патроном и двумя проводами длиной в несколько десятков сантиметров. «Контролькой» можно легко проверить наличие напряжения в розетке, сунув проводки в отверстия, а также определить таким же методом работоспособность проводки, которая идет к люстре, если она не работает. Для этого нужно лишь подключить «контрольку» параллельно проводам, к которым подключен осветительный прибор. Фаза определяется этим способом путем прикладывания одного провода «контрольки» к заземлению, а другого поочередно к проводам фазы и ноля. В данном случае от ноля лампочка, естественно, не будет светиться, а от фазы зажжется.

При определении мультиметром его необходимо включить в режим измерения переменного напряжения не менее 250 вольт. Принцип определения ноля и фазы точно такой же, как в предыдущем случае, просто индикатором в данном случае будет не лампочка, а стрелка или цифровые сегменты прибора. Преимущество в данном случае заключается в том, что тестером можно еще измерить величину напряжения. Один щуп (провод) прибора подключаем на землю, а вторым ищем ноль и фазу. При прикосновении к нулевому проводу стрелка отклоняться не будет, а на фазном проводе мультиметр покажет напряжение в 220 вольт (разумеется, с небольшой погрешностью).

Дополнительные рекомендации

Так чем же лучше всего воспользоваться, чтобы найти ноль и фазу в розетке? Неужели нельзя воспользоваться самодельной «контролькой» и отказаться от покупки других приборов? Конечно же можно, однако стоимость индикаторной отвертки копеечная, а в использовании она гораздо удобнее лампочки с патроном. Кроме того, некоторые современные отвертки имеют очень высокую чувствительность и способны индицировать фазный провод даже на расстоянии в несколько сантиметров.

Что касается мультиметра, его целесообразно приобрести тем, кто ближе знаком с электрическими приборами и электроникой. Этот прибор имеет широкие функциональные возможности в плане измерения различных электрических величин, поэтому он пригодится далеко не каждому человеку.

Избрав для себя оптимальный способ определения фазы и ноля, помните, что все электрические работы связаны с опасностью поражения током, поэтому строго соблюдайте правила техники безопасности при работе с электроприборами! Более наглядно процесс определения фазы и ноля изложен в видео к этому уроку.

Как самому определить фазу, ноль и заземление?

Смотрите также обзоры и статьи:

Любой человек, который запланировал выполнять любые электромонтажные работы во время ремонта в жилом или производственном помещении, рано или поздно столкнется с важнейшим вопросом: как самому определить где в электрической сети фаза, ноль и заземление. Ведь без этих знаний либо же придется воспользоваться услугами электрика, и нанимать его. Либо же самостоятельно, чтобы подключить люстру, бра, торшер, светильник, светодиодную ленту, любой электрический прибор, научится распознавать где защитный провод, где под напряжением, а где нулевой.

Определение по цветовой маркировке

Все современные кабели или электрические провода под своей изоляционной оболочкой содержат обычно три жилы, каждая из которых помечена изоляцией своего цвета. Таким образом, определить где какая жила можно и просто по цветовой маркировке. Так, обычно в новых проводах:

  • фаза отмечена черным, белым или коричневым цветами;
  • нейтральный провод, он же нулевой по мировым стандартам должен соответствовать синему или голубому цвету,
  • а заземление или защитный кабель обычно выполнен в двухцветном варианте – желто-зеленый, полосатый и т.п.

На постсоветском пространстве закреплен на законодательном уровне стандарт IEC 60446 2004 года, который и регламентирует какого цвета необходимо применять и изготавливать электроизоляцию проводов. Согласно нему в жилых квартирах:

  • синий или сине-белый провод – это ноль,
  • желто-зеленый – земля;
  • все остальные цвета могут быть фазой, как черный, так и красный.

Однако правило применимо в основном только для проводов, которые установлены в доме или офисе последние лет двадцать-тридцать. А как же быть с электросетями, которые были установлены раньше этого периода, где часто попадаются жилы с алюминиевым сечением? Или вам необходимо поменять часть какого-либо устройства или схемы, в которой данные цвета могли по стандартам и не быть использованы? Тогда вам пригодятся другие, более эффективные способы определения жил и напряжения в электропроводке.

Как определить ноль и фазу индикаторной отверткой

Одним из наиболее надежных, простых, доступных и не требующих особых затрат, и умений способом является определение ноль и фазы при помощи индикаторной отвертки. В чем заключается принцип работы индикаторной отвертки? Индикаторная отвертка – это ручной вспомогательный инструмент практически ничем не отличающийся от привычной нам плоской отвертки с пластиковой ручкой и металлическим наконечником, но есть одно «Но»: внутри рукояти есть индикационная лампочка или светодиод, который срабатывает свечением или загорается, если металлической частью коснутся фазы. На некоторых моделях для индикации следует также нажимать на специальную кнопку на рукояти, которая смыкает контакты и подает ток на индикатор. Однако в целях безопасности следует работать с такой отверткой только в резиновых перчатках электрика, чтобы избежать поражения электрическим током.

Как работать с индикаторной отверткой? В первую очередь, необходимо отключить напряжение в сети, и кусачками снять изоляцию на концах всех трех жил, оголив металлическую часть проводов, зачастую она будет медной. Дальше все три жилы необходимо развести между собой, так, чтобы они не соприкасались, чтобы избежать короткого замыкания при подаче на них напряжения.

После этого, одеть резиновые диэлектрические специальные перчатки и включить напряжение в сети. Хорошо, если ваш щиток имеет встроенный при монтаже устройства устройство защитного отключения. Или другими словами УЗО – он в аварийном режиме отключает питание в сети, если есть утечка тока на корпус.

Вооружившись индикаторной отверткой поочередно ее металлическим наконечником прикасаться к металлической оголенной части каждой жилы. Там, где лампочка индикаторной отвертки сработает и загорится – это фаза. Далее для работы с данными проводами следует изолентой после выключения напряжения замотать оголенные концы проводов.

Определение фазы, нуля и заземления контрольной лампой

Способ простой, однако не самый безопасный и требующий определенной ловкости и осторожности. Считается несколько кустарным и часто используется в грубых производственных условиях опытными мастерами, под рукой у которых не оказалось другого контрольного инструмента. Для того, чтобы воспользоваться данным методом, следует для начала собственно и собрать данную контрольную лампу. Для этого нужен патрон, два провода – фазы и нуля – и лампочка, можно самую обыкновенную, накаливания с вольфрамовой нитью. Это все необходимо скрутить, зачистить на концах его провода и поочередно скручивать с другими проводами в проводке, определить где фаза по тому, когда загорится лампа. Конечно же, скрутку нужно делать, отключив подачу напряжения на провода.

Если патрона не оказалось, можно задействовать часть светильника или настольной лампы, произведя ту же манипуляцию с концами его жил. Однако способ весьма сложный для неподготовленного и неопытного мастера, поскольку есть вероятность перепутать провода и пустить вместо постоянного тока, переменный, при котором лампочка тоже будет гореть. Лучше тогда основательно вывести жилу-землю, сделать ее нулем и тогда спокойно искать фазу.

Как определить фазу и ноль мультиметром

Мультиметры — универсальные многофункциональные приборы для измерения емкости, напряжения, сопротивления и силы тока, имеют отдельные выводы под щупы, укомплектованы самыми щупами, которыми легко и удобно пользоваться, точно определив напряжение. Это самый надежный и довольно простой способ определить фазу и ноль, без особых сложностей и безопасно для здоровья. Ведь все мультиметры имеют на своем корпусе прорезиненный диэлектрический чехол, который не только защищает от ударов тока, но и оставит прибор целым, если он случайно выскользнет из рук и упадет с высоты не более полутора метров. Универсальное мультифункциональное устройство для измерения силы тока, напряжения, сопротивления, емкости, частоты используется повсеместно, как автолюбителями, так и электронщиками, электриками, строителями, рабочими технических специальностей.

Есть целых пять причин, по которым стоит выбрать именно мультиметр для домашнего обихода и работы:

  • Высокая точность измерений – при максимальных значениях постоянного напряжения 0,8%, при больших позициях переменного — максимум 1,2%.
  • Возможность измерять переменное значение тока,
  • Одновременное измерение кроме постоянного и переменного напряжения, сопротивления, также такие величины как емкость, частота, скважность, а также температура благодаря термопаре.
  • Эргономический дизайн и большой мультифункциональный экран.
  • Усиленная индикация батареи и перегрузки.

Это надежный и добротный инструмент для качественного измерения всех требуемых показателей для проверки электрических показаний в цепи питания, а также замера целостности цепи, схемы, платы.

Как же определить фазу и ноль мультиметром? Для начала необходимо знать, что практически все современные мультифункциональные приборы данного типа имеют жидкокристаллический экран, на который выводятся показания в цифровом эквиваленте, однако не плавно, как это было в аналоговых устройствах, без экрана, а рывками.

Поэтому при измерении стоит выждать некоторое время, буквально секунду-две, чтобы прибор определил точное напряжение в сети. Кстати, на панельной панели мультиметра есть множество, свыше 20-30 режимов работы, которые выбираются поворотным рычагом. На этом круге нужно найти тот, что отвечает за переменное напряжение в сети и выглядит как обозначение вольт, также в большинстве мультиметров вручную нужно настроить и диапазон измерений, хотя многие могут это сделать и автоматически.

Далее один из щупов присоединяем к разъему мультиметра, а его другую сторону металлическим наконечником прикасаемся к проводу или в розетку. Если показания на экране прибора будут соответствовать 10-15 вольтам, то, скорее всего, вы попали не в фазу, а в ноль. Если показания в пределах от ста и до 250 вольт – то это и есть фаза.

Как определить фазу и ноль без приборов

Без никаких приборов, даже самых примитивных, искать фазу и ноль в сети не особо стоит. Но если у вас крайний случай, то, рискнуть, конечно можно, но нельзя сказать, что безопасность при этом будет выдержана. Есть несколько оригинальных, забавных, но в тоже время достаточно надежных и точных способа это сделать. Для первого из них стоит взять из подручных средств, которые скорее всего найдутся в каждом доме картофелину. Да-да! А помимо этого два провода на полметра и резистор на 1 мегаом. Все это необходимо собрать, чтобы один проводник был подключен к трубе, а второй – вставить в отрезанную половинку картофелины. Второй провод вставить в срез картофелины рядом с первым. Произведя подобную манипуляцию, только спустя минут пять-десять необходимо оценивать результат измерений.

Что же должно произойти? На том месте, где соприкасался проводник с фазой, должно появится сине-зеленый след от взаимодействия крахмалистых соединений с электричеством, т.е. окисление. Где его не окажется – это нулевой провод.

Второй такой же неоднозначный метод – использование чашки с обыкновенной водой. Тут срабатывает принцип, чем-то схожий с функционированием кипятильника – минус будет там, где вода возле проводника начнет пузырится. Соответственно, методом исключения – плюс будет находится на втором проводе.

Как определить заземление

Кроме очевидного способа по определению заземления, который заключается в идентификации земли по цвету изоляции в жиле, в частности желто-зеленого цвета по мировым стандартам, существует и несколько других, менее очевидных.

Например, если у вас в доме были случаи, что электроприборы, будь то стиральная машина, компьютер, микроволновка, бились током, то практически можно быть полностью уверенным, что заземление в вашей проводке отсутствует, поскольку именно оно должно ликвидировать остаточное напряжение на корпусы электроустройств.

Можно определить заземление мультиметром по принципу исключения, провод, в котором вовсе не будет наблюдаться отклонений по переменному напряжению – скорее всего и будет им.

Выводы

Очень важно научится самостоятельно понимать где в розетке в вашем доме фаза, ноль и заземление, ведь скорее всего доведется столкнуться с необходимостью замены или дополнительной установки каких-либо устройств, связанных с электричеством. Однако настоятельно рекомендуем пользоваться надежными методами, а нетрадиционными только в случае крайней необходимости! А лучше – воспользоваться мультиметром, индикаторной отверткой или вызвать опытного и надежного специалиста-электрика.

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Как определить фазу и ноль мультиметром: инструкции, фото, видео

Чтобы правильно подключить приборы освещения, розетки и другие электроустройства нужно знать, где фаза и ноль. Для этого можно воспользоваться очень полезным и функциональным измерителем — мультиметром. Несмотря на кажущуюся простоту этого прибора, нужно научиться им пользоваться, в некоторых случаях одно неверное действие может привести к неприятным и даже плачевным результатам. Мы расскажем вам, как определить фазу и ноль мультиметром, и вы сможете безопасно организовать электричество в своём доме.

Для неискушённых пользователей: что такое фаза и ноль

Чтобы понять, как определить фазу и ноль мультиметром, нужно сначала узнать, что такое «фаза и ноль». Здесь нам пригодится элементарная физика. Вспомним определение электротока, знакомое многим из нас со школы, — это упорядоченное движение заряженных частиц, то есть электронов. Все электросети сгруппированы так:

  1. С постоянным током, когда частицы движутся в едином направлении.
  2. С переменным, когда направление носит переменчивый характер.

Нам нужен второй вид. Переменная сеть включает в себя две части:

  1. Фаза (официальное название — рабочая фаза), по которой идёт рабочее напряжение.
  2. Ноль или пустая фаза, необходимая для образования замкнутой сети, чтобы подключались и работали электроприборы. Кроме того, она используется для сетевого заземления.

Когда электроприборы включаются в однофазку, расположение этих двух фаз не имеет значения. Но для монтажа электропроводки и её присоединения к общедомовой сети без этих знаний не обойтись.

О том, как проверить мультиметром фазу и ноль, мы и поговорим далее, но сначала вспомним простейшие меры безопасности.

Самое важное: правила безопасности

  1. Не используйте нерабочие щупы.
  2. Не используйте измеритель там, где царит высокая влажность.
  3. При выборе диапазона измерений переключатель важно сразу ставить к наибольшему значению во избежание поломки мультиметра.
  4. Не изменяйте измерительные границы или режим тестера прямо в ходе замеров. Проще говоря, не вертите переключатель мультиметра, когда делаете измерение.
  5. Перед эксплуатацией мультиметра прочитайте руководство по его применению. Есть разные модели и обозначения. Чтобы правильно расставить щупы, выбрать точный режим и диапазон значений, изучите руководство к своей модели тестера. Полезно прочитать и наш материал о том, как пользоваться мультиметром.

Как определить фазу мультиметром

Для начала включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Сразу ставим максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.

Кстати, если вы хотите убедиться в работоспособности определённого тестера (а это очень важно!), проверьте свою розетку. Сделать это очень просто: вставить щупы в розеточные гнёзда. О полярности не беспокойтесь, здесь она значения не имеет. Главное правило — не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.

Теперь можно продолжить рассказывать о том, как найти мультиметром фазу в розетке 220В.

Проще всего обстоят дела, если перед нами три проводка: земля, ноль и фаза. Всё, что нужно сделать в такой ситуации — проверить напряжение всех пар. Между землей и нулём напряжения почти нет, значит, другой проводок — фаза.

Если же перед вами два проводка, всё немного иначе. Теперь нам нужно организовать подходящие условия для движения электричества по прибору. Итак, дальнейшие действия для проверки фазы мультиметром:

  1. Наконечником алого провода тестера дотрагиваемся до исследуемого проводка.
  2. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). Им может быть стальной каркас рядом стоящей стены, отопительная батарея и т.п. Главное — выбрать заземленный предмет.
  3. Смотрим на показания мультиметра. Если вы видите показания, приближенные к 220В, значит, вы нашли фазу. Цифра может чуть отличаться в зависимости от условий, но будет находиться в пределах указанного значения. Если проверяемый вами кабель не является фазой, значит, вы увидите на дисплее 0 или немного вольт.

Есть ли риск в этом методе? Да, но он очень маленький. Дело в том, что сетевое напряжение движется через значительное сопротивление резистора, который встроен в наш измерительный прибор. Поэтому удара током нет. А рабочий этот резистор или нет, мы предварительно проверяем с помощью розетки способом, который описали выше. Без рабочего резистора, конечно, складываются отличные предпосылки для короткого замыкания, а его не заметить невозможно.

И лучше всего не зажимать наконечник пальцами, а использовать для этого заземлённые устройства. Но это возможно не всегда. Если вы будете использовать свою руку, советуем не пренебрегать такими принципами безопасности, как резиновый коврик под ногами или диэлектрические ботинки. Кроме того, прикоснитесь к щупу правой рукой сначала быстро: если нет никаких неприятных ощущений, то выполняйте измерения.

Рекомендуем посмотреть видео о том, как узнать мультиметром фазу и ноль:

Конечно, не забудьте перед описанными манипуляциями выбрать режим измерения именно напряжения переменного тока.

Если же вы не уверены, что всё пройдет благополучно, не беритесь за это дело, а доверьте опытным электрикам. Кроме того, можно использовать вместо мультиметра индикаторную отвертку (её индикатор загорается/не загорается при проверке).

А вот ещё одно интересное видео в тему, как мультиметром узнать, где фаза:

Как найти ноль мультиметром

Логично предположить, что ноль располагается по отношению к фазе, поэтому искать его легко: если вы нашли фазу, второй проводок из пары — ноль. Но не всё так просто, потому что другой провод может также быть землей. Ноль и заземление почти одинаковы. Иногда эти два провода связываются в щите и выявить их весьма нелегко. Как определить ноль мультиметром?

Советуется выключить кабель ввода от заземлительной шины в щитке. В таком варианте, когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при тестировании ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.

Как проверить ноль мультиметром в розетке:

  1. Красный провод мультиметра подвести к дырке, где фаза.
  2. Черный провод соединить сначала с одним контактом, потом с другим.
  3. Зафиксировать оба напряжения. Где оно меньше — там земля, где чуть больше — ноль.

Теперь вы знаете, как определить фазу и ноль мультиметром. Делитесь в комментариях своим опытом.

Желаем безопасных и точных измерений!

Вопрос — ответ

Вопрос: Как определить фазу цифровым мультиметром?

Ответ: Включите тестер и выберете функцию тестирования напряжения переменного тока. Чаще всего она отмечена знаком V~. Поставьте максимальный предел измерения, например, 750В. Не забудьте правильно установить щупы в гнезда. Обычно черный подключается к отверстию с надписью COM, а красный к VΩmA.

 

Вопрос: Как безопасно найти фазу мультиметром?

Ответ: Для этого нужно убедиться в работоспособности мультиметра с помощью проверки розетки. Вставьте щупы в розеточные гнёзда, не касайтесь руками частей щупов, которые проводят ток. Если с вашим тестером всё в порядке, нет затруднений с электроснабжением и подключением розетки, на дисплее вы увидите значение около 220-230В.

 

Вопрос: Как правильно проверить фазу и ноль мультиметром?

Ответ: Сначала можно найти фазу. Как это сделать, зависит от количества проводов: два или три. В первом случае наконечником алого провода тестера дотрагиваемся до исследуемого проводка. Наконечник темного провода мультиметра прижимаем пальцами или касаемся им заземленного предмета (второй вариант предпочтительнее!). После определения фазы можно найти ноль и заземление.

 

Вопрос: Как можно найти фазу в розетке 220В мультиметром?

Ответ: Проще всего это сделать, если три проводка: земля, ноль и фаза. Нужно только проверить напряжение всех пар. Между землей и нолём напряжения почти нет, значит, другой проводок — фаза. Если провода два, нужно организовать подходящие условия для движения электричества по прибору.

 

Вопрос: Как лучше всего найти ноль мультиметром?

Ответ: Нужно выключить кабель ввода от заземлительной шины в электрощитке. Когда будет проверяться напряжение между землёй и фазой, 220В не будет, как при проверке ноля и фазы. Если в щитке имеется дифференциальная защитная система, она проявит себя, когда будут проверяться заземлительные проводки относительно иного проводника, даже если он нулевой.

 

Разность фаз и сдвиг фаз в цепи переменного тока

Ранее мы видели, что синусоидальная форма волны — это переменная величина, которая может быть представлена ​​графически во временной области вдоль горизонтальной нулевой оси. Мы также видели, что как переменная величина, синусоидальные волны имеют положительное максимальное значение в момент времени π / 2, отрицательное максимальное значение во время 3π / 2, с нулевыми значениями, встречающимися вдоль базовой линии в точках 0, π и 2π.

Однако не все синусоидальные сигналы будут проходить точно через точку нулевой оси одновременно, но могут быть «смещены» вправо или влево от 0 o на некоторое значение по сравнению с другой синусоидальной волной.

Например, сравнение формы волны напряжения с формой волны тока. Затем это приводит к угловому сдвигу или разности фаз между двумя синусоидальными сигналами. Любая синусоида, которая не проходит через ноль при t = 0, имеет фазовый сдвиг.

Разность фаз или фазовый сдвиг, как его также называют синусоидальной формой волны, — это угол Φ (греческая буква Phi) в градусах или радианах, на который форма волны сдвинулась от определенной контрольной точки вдоль горизонтальной нулевой оси.Другими словами, фазовый сдвиг — это поперечная разность между двумя или более сигналами вдоль общей оси, а синусоидальные сигналы одной и той же частоты могут иметь разность фаз.

Разность фаз Φ переменного сигнала может изменяться от 0 до максимального периода времени T сигнала в течение одного полного цикла, и это может быть в любом месте по горизонтальной оси между, Φ = 0 — 2π (радианы) или Φ = От 0 до 360 o в зависимости от используемых угловых единиц.

Разность фаз также может быть выражена как сдвиг по времени τ в секундах, представляющий часть периода времени, например T, + 10 мс или -50 мкс, но обычно разность фаз чаще выражается как угловое измерение.

Затем уравнение для мгновенного значения синусоидальной формы волны напряжения или тока, которое мы разработали в предыдущей синусоидальной форме волны, необходимо будет изменить, чтобы учесть фазовый угол формы волны, и это новое общее выражение станет.

Уравнение разности фаз

  • Где:
  • A м — амплитуда осциллограммы.
  • ωt — угловая частота сигнала в радианах / сек.
  • Φ (фи) — это фазовый угол в градусах или радианах, на который форма сигнала сместилась влево или вправо от опорной точки.

Если положительный наклон синусоидального сигнала проходит через горизонтальную ось «до» t = 0, тогда форма сигнала сдвинута влево, поэтому Φ> 0, и фазовый угол будет положительным по своей природе, + Φ дает опережающую фазу угол. Другими словами, он появляется раньше, чем 0 o , производя вращение вектора против часовой стрелки.

Аналогичным образом, если положительный наклон синусоидального сигнала проходит через горизонтальную ось x через некоторое время «после» t = 0, тогда форма сигнала сдвинута вправо, поэтому Φ <0, и фазовый угол будет отрицательным по своей природе -Φ производя запаздывающий фазовый угол, поскольку он появляется позже, чем 0 o , производя вращение вектора по часовой стрелке.Оба случая показаны ниже.

Фазовое соотношение синусоидальной формы волны

Во-первых, давайте рассмотрим, что две переменные величины, такие как напряжение, v и ток, i имеют одинаковую частоту в герцах. Поскольку частота этих двух величин совпадает с угловой скоростью, ω также должно быть одинаковым. Таким образом, в любой момент времени мы можем сказать, что фаза напряжения v будет такой же, как фаза тока, т.е.

Тогда угол поворота в течение определенного периода времени всегда будет одинаковым, и разность фаз между двумя величинами v и i, следовательно, будет равна нулю и Φ = 0.Поскольку частота напряжения v и тока i одинаковы, они оба должны одновременно достичь своих максимальных положительных, отрицательных и нулевых значений в течение одного полного цикла (хотя их амплитуды могут быть разными). Тогда две переменные величины, v и i, называются «синфазными».

Две синусоидальные формы волны — «синфазные»

Теперь давайте предположим, что напряжение v и ток i имеют разность фаз между собой, равную 30 o , так что (Φ = 30 o или π / 6 радиан).Поскольку обе переменные величины вращаются с одинаковой скоростью, т. Е. Имеют одинаковую частоту, эта разность фаз будет оставаться постоянной в течение всех моментов времени, тогда разность фаз 30 o между двумя величинами представлена ​​фи, Φ, как показано ниже.

Разность фаз синусоидального сигнала

Форма волны напряжения, приведенная выше, начинается с нуля по горизонтальной опорной оси, но в тот же момент форма волны тока по-прежнему имеет отрицательное значение и не пересекает эту опорную ось до 30 o позже.Тогда существует разность фаз между двумя формами сигнала, когда ток пересекает горизонтальную опорную ось, достигая своего максимального пикового и нулевого значений после формы сигнала напряжения.

Поскольку две формы волны больше не «синфазны», они должны быть «не синфазны» на величину, определяемую фи, Φ, и в нашем примере это 30 o . Таким образом, мы можем сказать, что теперь две формы сигнала сдвинуты по фазе на 30 . Можно также сказать, что форма волны тока «отстает» от формы волны напряжения на фазовый угол Φ.Тогда в нашем примере выше две формы сигнала имеют разность фаз запаздывания , поэтому выражение для напряжения и тока, приведенное выше, будет иметь вид.

где, i отстает от v на угол Φ

Аналогично, если ток, i имеет положительное значение и пересекает опорную ось, достигая своего максимального пикового и нулевого значений за некоторое время до напряжения v, тогда форма волны тока будет «опережать» напряжение на некоторый фазовый угол. Тогда говорят, что две формы сигнала имеют опережающую разность фаз , и выражение для напряжения и тока будет таким.

где, i опережает v на угол Φ

Фазовый угол синусоидальной волны может использоваться для описания отношения одной синусоидальной волны к другой с использованием терминов «опережение» и «запаздывание» для обозначения взаимосвязи между двумя синусоидальными формами волны одной и той же частоты, нанесенными на одну и ту же точку отсчета. ось. В нашем примере выше две формы сигнала: , сдвинуты по фазе на 30, или . Таким образом, мы можем правильно сказать, что i отстает от v, или мы можем сказать, что v опережает i на 30 o , в зависимости от того, какой из них мы выбираем в качестве ориентира.

Взаимосвязь между двумя формами сигнала и результирующим фазовым углом может быть измерена в любом месте вдоль горизонтальной нулевой оси, через которую проходит каждая форма сигнала с «одинаковым наклоном», положительным или отрицательным.

В цепях питания переменного тока эта способность описывать взаимосвязь между напряжением и синусоидальной волной тока в одной и той же цепи очень важна и составляет основу анализа цепей переменного тока.

Форма волны косинуса

Итак, теперь мы знаем, что если форма сигнала «сдвинута» вправо или влево от 0 o по сравнению с другой синусоидальной волной, выражение для этой формы сигнала становится A m sin (ωt ± Φ).Но если форма волны пересекает горизонтальную нулевую ось с положительным наклоном 90 o или π / 2 радиан до опорной формы волны, эта форма волны называется косинусной формой волны , и выражение принимает вид.

Косинусное выражение

Косинусоидальный сигнал , называемый просто «косинусом», так же важен, как и синусоидальная волна в электротехнике. Косинусоидальная волна имеет ту же форму, что и синусоидальная волна, то есть она является синусоидальной функцией, но сдвинута на +90 o или на одну полную четверть периода впереди нее.

Разница фаз между синусоидальной волной и косинусоидальной волной

В качестве альтернативы, мы также можем сказать, что синусоидальная волна — это косинусоидальная волна, которая смещена в другом направлении на -90 o . В любом случае при работе с синусоидальными волнами или косинусоидальными волнами с углом всегда будут применяться следующие правила.

Синусоидальные и косинусно-волновые отношения

При сравнении двух синусоидальных сигналов чаще выражается их взаимосвязь в виде синуса или косинуса с положительными амплитудами, и это достигается с помощью следующих математических тождеств.

Используя эти соотношения выше, мы можем преобразовать любую синусоидальную форму волны с угловой или фазовой разностью или без нее из синусоидальной волны в косинусоидальную или наоборот.

В следующем уроке по фазорам мы будем использовать графический метод представления или сравнения разности фаз между двумя синусоидами, рассматривая представление вектора однофазной величины переменного тока вместе с некоторой векторной алгеброй, относящейся к математическому сложению двух или более векторов. .

Как рассчитать фазовый сдвиг

Фазовый сдвиг — это небольшая разница между двумя волнами; в математике и электронике это задержка между двумя волнами с одинаковым периодом или частотой. Обычно фазовый сдвиг выражается в единицах угла, который может быть измерен в градусах или радианах, и угол может быть положительным или отрицательным. Например, сдвиг фазы на +90 градусов составляет одну четверть полного цикла; в этом случае вторая волна опережает первую на 90 градусов.Вы можете рассчитать фазовый сдвиг, используя частоту волн и временную задержку между ними.

Синусоидальная функция и фаза

В математике тригонометрическая синусоидальная функция создает плавный волнообразный график, который циклически переключается между максимальным и минимальным значением, повторяясь каждые 360 градусов или 2 пи радиана. При нулевом градусе функция имеет нулевое значение. При 90 градусах он достигает максимального положительного значения. При 180 градусах он снова возвращается к нулю. При 270 градусах функция принимает максимальное отрицательное значение, а при 360 она возвращается к нулю, завершая один полный цикл.Углы больше 360 просто повторяют предыдущий цикл. Синусоидальная волна со сдвигом фазы начинается и заканчивается при значении, отличном от нуля, хотя во всех других отношениях она напоминает «стандартную» синусоидальную волну.

Выбор порядка волны

Расчет фазового сдвига включает сравнение двух волн, и часть этого сравнения выбирает, какая волна является «первой», а какая «второй». В электронике вторая волна обычно является выходом усилителя или другого устройства, а первая волна — входом.В математике первая волна может быть исходной функцией, а вторая — последующей или вторичной функцией. Например, первая функция может быть y = sin (x), а вторая функция может быть y = cos (x). Порядок волн не влияет на абсолютное значение фазового сдвига, но он определяет, является ли сдвиг положительным или отрицательным.

Сравнение волн

При сравнении двух волн расположите их так, чтобы они читались слева направо с использованием одного и того же угла оси x или единиц времени.Например, график для обоих может начинаться с 0 секунд. Найдите пик на второй волне и найдите соответствующий пик на первой. При поиске соответствующего пика оставайтесь в пределах одного полного цикла, иначе результат разности фаз будет неверным. Обратите внимание на значения по оси X для обоих пиков, затем вычтите их, чтобы найти разницу. Например, если вторая волна достигает пика в 0,002 секунды, а первая достигает пика в 0,001 секунды, тогда разница составляет 0,001–0,002 = -0,001 секунды.

Расчет фазового сдвига

Для расчета фазового сдвига вам нужны частота и период волн.Например, электронный генератор может генерировать синусоидальные волны с частотой 100 Гц. Разделение частоты на 1 дает период или продолжительность каждого цикла, поэтому 1/100 дает период 0,01 секунды. Уравнение фазового сдвига: ps = 360 * td / p, где ps — фазовый сдвиг в градусах, td — разница во времени между волнами, а p — период волны. Продолжая пример, 360 * -0,001 / 0,01 дает фазовый сдвиг -36 градусов. Поскольку результатом является отрицательное число, фазовый сдвиг также отрицательный; вторая волна отстает от первой на 36 градусов.Для разности фаз в радианах используйте 2 * pi * td / p; в нашем примере это будет 6,28 * -,001 / 0,01 или -,628 радиан.

2.10: Реакции нулевого порядка — Химия LibreTexts

В некоторых реакциях скорость составляет , по-видимому, независимо от концентрации реагента. Скорости этих реакций нулевого порядка не изменяются ни с увеличением, ни с уменьшением концентраций реагентов. Это означает, что скорость реакции равна константе скорости \ (k \) этой реакции.Это свойство отличается как от реакций первого порядка, так и от реакций второго порядка.

Происхождение кинетики нулевого порядка

Кинетика нулевого порядка всегда артефакт условий, в которых проводится реакция. По этой причине реакции, которые следуют кинетике нулевого порядка, часто называют реакциями псевдонулевого порядка. Ясно, что процесс нулевого порядка не может продолжаться после того, как реагент исчерпан. Непосредственно перед тем, как эта точка будет достигнута, реакция вернется к другому закону скорости вместо того, чтобы сразу упасть до нуля, как показано в верхнем левом углу.

Есть два общих условия, которые могут привести к ставкам нулевого порядка:

  1. Лишь небольшая часть молекул реагентов находится в том месте или состоянии, в котором они могут реагировать, и эта фракция постоянно пополняется из большего пула.
  2. Когда задействованы два или более реагентов, концентрации одних намного выше, чем у других

Эта ситуация обычно возникает, когда реакция катализируется присоединением к твердой поверхности ( гетерогенный катализ ) или к ферменту.

Пример 1: Разложение закиси азота

Закись азота экзотермически разлагается на азот и кислород при температуре около 575 ° C

\ [\ ce {2N_2O -> [\ Delta, \, Ni] 2N_2 (g) + O_2 (g)} \]

Эта реакция в присутствии горячей платиновой проволоки (которая действует как катализатор) является нулевым порядком, но она следует более традиционной кинетике второго порядка, когда проводится полностью в газовой фазе.

\ [\ ce {2N_2O -> 2N_2 (g) + O_2 (g)} \]

В этом случае количество реагирующих молекул \ (N_2O \) ограничено теми, которые прикрепились к поверхности твердого катализатора.После того, как все участки на ограниченной поверхности катализатора будут заняты, дополнительные молекулы в газовой фазе должны ждать, пока разложение одной из адсорбированных молекул не освободит участок на поверхности.

Катализируемые ферментами реакции в организмах начинаются с присоединения субстрата к активному центру фермента, что приводит к образованию комплекса фермент-субстрат . Если количество молекул фермента ограничено по отношению к молекулам субстрата, тогда реакция может оказаться нулевым порядком.

Это чаще всего наблюдается, когда задействованы два или более реагентов. Таким образом, если реакция

\ [A + B \ rightarrow \ text {products} \ tag {1} \]

имеет первый порядок по обоим реагентам, так что

\ [\ text {rate} = k [A] [B] \ tag {2} \]

Если \ (B \) присутствует в большом избытке , тогда реакция будет иметь нулевой порядок в \ (B \) (и первый порядок в целом). 0} {dt} = k \ tag {5} \]

, затем переставьте

\ [{d} [A] = -kdt \ tag {6} \]

Во-вторых, проинтегрируйте обе части уравнения.{t} kdt \ tag {7} \]

В-третьих, решите относительно \ ([A] \). Это обеспечивает интегрированную форму тарифного закона.

\ [[A] = [A] _0 -kt \ tag {8} \]

Интегрированная форма закона скорости позволяет нам найти популяцию реагента в любое время после начала реакции.

Графическое изображение реакций нулевого порядка

\ [[A] = -kt + [A] _0 \ tag {9} \]

имеет вид y = mx + b, где наклон = m = -k и точка пересечения оси y = b = \ ([A] _0 \)

Реакции нулевого порядка только применимы для очень узкого промежутка времени.Следовательно, линейный график, показанный ниже (Рисунок 2), реалистичен только в ограниченном временном диапазоне. Если бы мы экстраполировали линию этого графика вниз, чтобы представить все значения времени для данной реакции, это сообщило бы нам, что с течением времени концентрация нашего реагента становится отрицательной. Мы знаем, что концентрации никогда не могут быть отрицательными, поэтому кинетика реакции нулевого порядка применима для описания реакции только для короткого окна и в конечном итоге должна переходить в кинетику другого порядка.


Рис. 2 : (слева) Концентрация в зависимости от времени реакции нулевого порядка. (Справа) Концентрация в зависимости от времени каталитической реакции нулевого порядка.

Чтобы понять, откуда взялся приведенный выше график, давайте рассмотрим каталитическую реакцию. В начале реакции и для небольших значений времени скорость реакции постоянна; это обозначено синей линией на рис. 2; верно. Такая ситуация обычно возникает, когда катализатор насыщен реагентами.Что касается кинетики Михаэлиса-Ментона, эта точка насыщения катализатора связана с \ (V_ {max} \). Однако по мере развития реакции возможно, что все меньше и меньше субстрата будет связываться с катализатором. Когда это происходит, реакция замедляется, и мы видим спад на графике (рис. 2; справа). Эта часть реакции представлена ​​черной пунктирной линией. Глядя на эту конкретную реакцию, мы можем видеть, что реакции не имеют нулевого порядка при всех условиях.Они имеют нулевой порядок только в течение ограниченного времени.

Если мы построим график зависимости скорости от времени, мы получим график ниже (Рисунок 3). Опять же, это описывает только узкую область времени. Наклон графика равен k, постоянной скорости. Следовательно, k постоянно во времени. Кроме того, мы видим, что скорость реакции полностью не зависит от того, сколько реагента вы добавили.


Рис. 3 : Зависимость скорости реакции нулевого порядка от времени.

Взаимосвязь между периодом полураспада и реакциями нулевого порядка

Период полураспада.\ (t_ {1/2} \) — это шкала времени, в которой каждый период полураспада представляет собой сокращение исходной популяции до 50% от ее исходного состояния. Мы можем представить отношения следующим уравнением.

\ [[A] = \ dfrac {1} {2} [A] _o \ tag {10} \]

Используя интегрированную форму закона скорости, мы можем установить связь между реакциями нулевого порядка и периодом полураспада.

\ [[A] = [A] _o — kt \ tag {11} \]

Заменитель

\ [\ dfrac {1} {2} [A] _o = [A] _o — kt _ {\ dfrac {1} {2}} \ tag {12} \]

Решить относительно \ (t_ {1/2} \)

\ [t_ {1/2} = \ dfrac {[A] _o} {2k} \ tag {13} \]

Обратите внимание, что для реакций нулевого порядка период полураспада зависит от начальной концентрации реагента и константы скорости.

вопросов

  1. Используя интегрированную форму закона скорости, определите константу скорости k реакции нулевого порядка, если начальная концентрация вещества A составляет 1,5 M, а через 120 секунд концентрация вещества A составляет 0,75 M.
  2. Используя вещество из предыдущей задачи, каков период полураспада вещества A, если его исходная концентрация составляет 1,2 M?
  3. Если исходная концентрация снижена до 1,0 M в предыдущей задаче, период полувыведения уменьшится, увеличится или останется прежним? Если период полураспада изменится, то какой будет новый период полураспада?
  4. Даны константы скорости k трех различных реакций:
  • Реакция A: k = 2.3 м -1 с -1
  • Реакция B: k = 1,8 Ms -1
  • Реакция C: k = 0,75 с -1

Какая реакция представляет собой реакцию нулевого порядка?

  1. Верно / Неверно: Если скорость реакции нулевого порядка отображается как функция времени, график представляет собой прямую линию, где \ (скорость = k \).

ответы

  1. Константа скорости k составляет 0,00624 М / с
  2. Период полураспада 96 секунд.
  3. Поскольку это реакция нулевого порядка, период полураспада зависит от концентрации. В этом случае период полураспада уменьшается, когда исходная концентрация снижается до 1,0 М. Новый период полураспада составляет 80 секунд.
  4. Реакция B представляет собой реакцию нулевого порядка, поскольку единицы указаны в М / с. Реакции нулевого порядка всегда имеют константы скорости, которые представлены молярами в единицу времени. Однако реакции более высокого порядка требуют, чтобы константа скорости была представлена ​​в других единицах.n \) с n равным нулю в реакциях нулевого порядка. Следовательно, скорость равна константе скорости k.

Резюме

Кинетика любой реакции зависит от механизма реакции, закона скорости и начальных условий. Если мы предположим для реакции A -> Products, что существует начальная концентрация реагента [A] 0 в момент времени t = 0, и закон скорости является интегральным порядком по A, то мы можем суммировать кинетику реакции реакция нулевого порядка следующим образом:

Список литературы

  • Петруччи, Ральф Х., Уильям С. Харвуд, Джеффри Херринг и Джеффри Д. Мадура. Общая химия: принципы и современные приложения. Девятое изд. Верхняя Сэдл-Ривер, Нью-Джерси: Pearson Education, 2007. Печать.

Авторы и указание авторства

  • Рэйчел Кертис, Джессика Мартин, Дэвид Цао

Что такое ток нулевой последовательности? Определение и объяснение

Определение: Несбалансированный ток, протекающий в цепи во время замыкания на землю, известен как ток нулевой последовательности или постоянная составляющая тока короткого замыкания.Нулевая последовательность фаз означает, что величина трех фаз имеет нулевое смещение фаз. Три векторные линии представляют ток нулевой последовательности, и он обнаруживается путем сложения вектора трехфазного тока. Уравнение ниже выражает ток нулевой последовательности,

Обмотка, соединенная треугольником

Обмотка, соединенная треугольником, показана на рисунке ниже. Ток нулевой последовательности фаз a, b и c равны по величине и синфазны друг с другом. Он циркулирует в фазных обмотках соединения треугольником, как показано на рисунке ниже.Токи нулевой последовательности возникают из-за наличия напряжения нулевой последовательности.

По KCL в узле a получаем

Аналогичным образом, применяя KCL в узлах B и C, мы получаем

Приведенное выше уравнение показывает, что в соединении треугольником отсутствует ток нулевой последовательности из-за отсутствия обратных путей этого тока.

Поскольку в линии нет обратного пути для тока нулевой последовательности, полное сопротивление цепи становится бесконечным.Этот бесконечный импеданс показан разомкнутой цепью в точке P в однофазной эквивалентной сети нулевой последовательности для схемы, соединенной треугольником, с полным сопротивлением нулевой последовательности Z 0 .

Но для тока нулевой последовательности существует замкнутый контур в схеме треугольника. На это указывает соединение импеданса нулевой последовательности Z 0 с током нулевой последовательности.

Обмотка, соединенная звездой с нейтралью, изолированной от земли

Рассмотрим обмотку, соединенную звездой, без возврата нейтрали, как показано на рисунке ниже.

В данном случае

Приведенное выше уравнение показывает, что ток нулевой последовательности равен нулю в трехфазной трехпроводной системе без нейтрали.

Звезда подключена без нейтрали

На рисунке ниже показана обмотка, соединенная звездой с заземленной нейтралью.

Здесь,

Следовательно,

Приведенное выше уравнение показывает, что для трехфазной системы с заземлением ток нулевой последовательности будет течь как от фазной обмотки, так и по линиям.

Оценка фазы и полярности сейсмических данных

Сейсмические данные могут быть индикаторами многих факторов такие как амплитуда, непрерывность, фаза и полярность отражений, исходящих от недр. В этой статье рассматривается, как последние два используются в сейсмологии.

Обзор

Фаза в сейсмических данных известна просто как латеральная временная задержка в начале записи отражения, и, поскольку она не зависит от амплитуды, фаза может использоваться как хороший индикатор непрерывности в областях с плохой отражательной способностью в сейсмических данных с более высокой чувствительностью. к прерывистости отражения, вызванной выклиниванием, разломами, трещинами и другими структурными и стратиграфическими сейсмическими особенностями. [1]

Кроме того, полярность совместима с коэффициентом отражения сейсмических данных. Другими словами, если граница напластования дает положительный акустический импеданс, он соответствует положительной полярности и наоборот. [1]

Этап: оценка и примеры

Чтобы лучше понять, как работает фаза в сейсмологии, рассмотрим, например, простую косинусоидальную кривую. Если был применен «временной сдвиг» на 90 ° вправо, то уравнение косинуса имеет сдвиг на -90 ° и так далее.

Рисунок 1: Сравнение минимальной (длинная) (а) и нулевой фаз (б). боковые лепестки минимизированы, а основные амплитуды более подчеркнуты на (b). Кроме того, в данных с нулевой фазой легче различить множественные близкие отражения. Предоставлено «Шерифом», 1973 г. [1]

Расчет фаз и коррекция

Для реальных сейсмических данных мы хотим проверить, есть ли у них нулевая фаза (фазовый сдвиг не применяется) или минимальная фаза. Наличие наших данных с первым предпочтительнее, поскольку оно минимизирует обработку и неоднозначность, но второе может привести к подсчету ложных событий как истинных отражений и / или искажению фактических событий (см. Рисунок 1).Нам необходимо выполнить сейсмическую съемку (выбор горизонта), которая соединяет первичные пики, после того, как мы убедимся, что наши данные имеют нулевую фазу. [2] Некоторыми из продвинутых методов для этого являются автоматическое выделение, интерполяция, отслеживание вокселей и нарезка поверхности. [3] Многие математические операции применялись в сейсмическом программном обеспечении в настоящее время для правильного временного сдвига сейсмических откликов в желаемое положение, и одна из них используется в Росте и Томасе. [4] Авторы использовали метод, называемый формированием луча, который применяет математические уравнения для получения трассы без временной задержки при использовании сейсмических групп.Начнем со следующего временного ряда:

[xcenter = f (t) + ni (t)] {\ displaystyle [x_ {center} = f (t) + n_ {i} (t)]}

Где x center — центр массива, ф ( т ) — сигнал, а n i ( t ) — шум, зарегистрированный на станции i . Поскольку каждый фронт сейсмических волн имеет разное время прихода на каждую станцию ​​и те, время зависит от медленности и расположения датчика волнового фронта, в следующий раз серия создана:

[xi (t) = f (t − ri.uhor) + ni (t)] {\ displaystyle [x_ {i} (t) = f (t-r_ {i} .u_ {hor}) + n_ {i} (t)]}

Имея r i как вектор местоположения station i и u hor в качестве горизонтальной медленности. Затем трасса без временной задержки генерируется:

x¯i (t) = xi (t + ri.uhor) = f (t) + ni (t + ri.uhor) {\ displaystyle {\ bar {x}} _ {i} (t) = x_ {i} (t + r_ {i} .u_ {hor}) = f (t) + n_ {i} (t + r_ {i} .u_ {hor})}

Наконец, трасса луча называется « задержка и сумма »для массива с M элементов оценивается с помощью:

[B (t) = 1M∑i = 1Mni (t + ri.{M} n_ {i} (t + r_ {i} .u_ {hor})]}
Рисунок 2: Сравнение между простой суммой (вверху справа) и задержкой и суммой (внизу справа) для события, собранного в массив из озера Танганьика (2 октября 200 г.) (исходные данные слева). Обратите внимание, как метод задержки и суммирования дал более высокие амплитуды для основных событий и «удалил» в нем шум (небольшие колебания). Предоставлено [4] .

Конечный продукт этой системы представлен на рисунке 2 (нижний справа), в котором показано сравнение простой «суммы» и «задержки и суммы». подход (подробнее см. [4] ).

Рисунок 3: Возможная зона выклинивания с результатом обработки реальной даты. (а) исходные данные. (б) результат интерпретации с использованием амплитудного и фазового спектров. Предоставлено [5] .

Существуют различные другие способы определения фазы сейсмических данных, и один из них — [ГИСТОГРАММА СОГЛАСОВАНА С ОЦЕНКОЙ ФАЗЫ СЕЙСМИЧЕСКИХ ВОЛН].

Другой пример использования фазы при обработке сейсмических данных показан Митрофановым и Приименко. [5] В своей статье исследователи сравнили амплитудный и фазовый спектры при обнаружении выклинивания нефтегазового спектра и тонких слоев.Таким образом, ученые доказали, что второй способ просмотр сейсмических трасс более эффективен для снижения неопределенности при просмотре пластов зон выклинивания (рисунок 3).

Рисунок 4: Результат численного моделирования по оценке упругих параметров тонкослойной упаковки. (а) модель и первая оценка. (б) две части синтетической сейсмограммы, построенные для выделения отраженного сигнала обменной волны. (c) Измененная структура модели (амплитуда) с параметрами. (d) Результат оценки на основе фазового спектра.Предоставлено [5] .

Кроме того, Метрофанов и Приименко обнаружили, что фазовый спектр также может давать более точные упругие характеристики. параметры для тонкослойной упаковки, представленные в их исследованиях (рисунок 4) (подробности см. в [5] ).

Полярность: оценка и примеры

Полярность в основном используется в сейсмологии для принятия решения назначьте положительную полярность пику или впадине. Это может показаться простым, но тип полярности, используемой в сейсмических дисплеях, должен быть известен переводчикам. во избежание недоразумений относительно знаков коэффициентов отражений.

Типы полярности

Сейсмологи используют два определения полярности:

  • Американская полярность: положительная полярность (импеданс) связана с пиком (положительная амплитуда)

или «жестким» событием и наоборот. [6]

  • Европейская полярность: противоположна американской, что означает положительную полярность (импеданс).

ассоциируется с провалом (отрицательная амплитуда) или «мягким» событием и наоборот. [6]

Рис. 5: Сравнение полярностей для Америки (слева) и Европы (справа) при отображении яркого пятна синтетической сейсмограммы углеводородов. Предоставлено [7] .

На рис. 5 показано сравнение двух систем полярности и их вид яркого пятна углеводородного песка. [7] Это явление появляется, когда Встраиваемая формация имеет более высокий акустический импеданс, чем сам углеводород, поэтому его верхняя часть напоминает уменьшение акустического импеданса, в то время как основание способствует увеличению акустического импеданса. [7]

Типичный мягкий слой считается песком, а твердый — глинистым сланцем (см. [8] для получения дополнительных примеров мягких и твердых слоев и более подробной информации). Есть несколько методов, которые помогают обнаружить систему полярности, используемую в составных сейсмических данных, и некоторые из них — это деконволюция и обработка нулевой фазы. [3] Другой Способ определения полярности состоит в создании синтетических сейсмограмм из хороших каротажных диаграмм и сопоставлении их с реальными данными. [6] Другие способы определения полярности сейсмических данных были представлены другими учеными, такими как [Автоматическое байесовское определение полярности].

Полярность сейсмического дисплея

Рисунок 6: Типы режимов отображения сейсмических данных: (a) Покачивание. (б) Покачивание и переменная площадь. (c) Переменная плотность. (d) Комбинация пунктов (а) и (в). Предоставлено [1] .

Для отображения сейсмических данных с точки зрения полярности (импеданса) можно использовать отображение переменного покачивания и площади (VWA), отображение переменной плотности (VD) или их комбинацию (рисунок 6) [1]. Наиболее распространенным дисплеем VD является сине-бело-красная цветовая шкала (рисунок 6c). Синий цвет в соответствии с американским стандартом эквивалентен пику на дисплее VWA (рис. 6b) и противоположен европейскому (или австралийскому) стандарту. [6]

Смена полярности

Рисунок 7: Изменение акустического импеданса с глубиной для газовых песков, водяных песков и сланцев. На правом эскизе показана обобщенная кривая поведения акустического импеданса для этих материалов, а на рисунках слева показаны примеры отображения переменной плотности для трех ситуаций, представленных справа. Предоставлено AAPG Memoir 42 (шестое издание). [9]

Характеристики полярности могут быть хорошими индикаторами изменений в геологической среде, и изменение полярности, возникающее в результате изменения акустического импеданса с глубиной, является одним из них (рисунок 7). [9] На рисунке 7 яркое пятно над глубиной A связано с большой разницей акустического импеданса между газовым песком и сланцем, но очень редко между водно-песчаным и сланцевым импедансом. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! [9] Кроме того, изменение полярности, которое расположено между глубинами A и B, генерируется из воды-песка, имеющего более высокий импеданс, чем сланец, и газа-песка с более низким импедансом, чем сланец. [9] Наконец, тусклое пятно, показанное ниже глубины B, является результатом схождения трех формаций и, таким образом, имеет лишь небольшую разницу в импедансе между ними. [9]

Список литературы

  1. 1.0 1.1 1.2 1.3 Ниранджан, Н. К., 2016, Глава 2 Принципы сейсмического отражения: основы, интерпретация и оценка сейсмических данных для разведки и добычи углеводородов: Руководство для практиков, Springer, 19–35.
  2. ↑ Brown, 1998, найдено в Авсет, П., Мукерджи, Т., и Мавко, Г., 2005, Общие методы количественной интерпретации сейсмических данных. В количественной сейсмической интерпретации: применение инструментов физики горных пород для снижения риска интерпретации, Кембридж: Cambridge University Press, 168-257, DOI: 10.1017 / CBO9780511600074.005; https://pangea.stanford.edu/~quany/QSI_Chapter-4.pdf
  3. 3,0 3,1 Дорн, 1998, найдено в Авсет, П., Мукерджи, Т., и Мавко, Г., 2005, Общие методы количественной интерпретации сейсмических данных. В количественной сейсмической интерпретации: применение инструментов физики горных пород для снижения риска интерпретации, Кембридж: Cambridge University Press, 168-257, DOI: 10.1017 / CBO9780511600074.005; https://pangea.stanford.edu/~quany/QSI_Chapter-4.pdf
  4. 4.0 4,1 4,2 Рост, С., и Томас, К., 2002, Массивная сейсмология: методы и приложения, Rev. Geophys., 40, № 3, 1008, DOI: 10.1029 / 2000RG000100; https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000RG000100
  5. 5,0 5,1 5,2 5,3 Митрофанов Г., Приименко В. Фазовые спектры при обработке сейсмических данных // ПЕТРОБРС С.А. http://www.sscc.ru/conf/mmg2008/papers/Priimenko_2.pdf
  6. 6.0 6,1 6,2 6,3 Brown, 2001a, 2001b, найдено в Авсет, П., Мукерджи, Т., и Мавко, Г., 2005, Общие методы количественной интерпретации сейсмических данных. В количественной сейсмической интерпретации: применение инструментов физики горных пород для снижения риска интерпретации, Кембридж: Cambridge University Press, 168-257, DOI: 10.1017 / CBO9780511600074.005; https://pangea.stanford.edu/~quany/QSI_Chapter-4.pdf
  7. 7,0 7,1 7,2 Браун, А.Р., Уильям А. Л., 2014, Полярность вейвлетов с нулевой фазой. GeoScienceWorld, 2, №1, 19F; https://pubs.geoscienceworld.org/interpretation/article-abstract/2/1/19F/284781/the-polarity-of-zero-phase-wavelets?redirectedFrom=PDF
  8. ↑ Авсет, П., Мукерджи, Т., и Мавко, Г., 2005, Общие методы количественной сейсмической интерпретации, В количественной сейсмической интерпретации: Применение инструментов физики горных пород для снижения риска интерпретации, Кембридж: Cambridge University Press, 168-257 , DOI: 10.1017 / CBO9780511600074.005; https://pangea.stanford.edu/~quany/QSI_Chapter-4.pdf
  9. 9,0 9,1 9,2 9,3 9,4 Алистер, Б. Р., 2004, Идентификация коллектора, AAPG Memoir 42 и SEG Investigations in Geophysics, No. 9, Chapter 5,153-197.

Внешние ссылки

Определение фазы — SubSurfWiki

Наряду с амплитудой и частотой, фаза является фундаментальным атрибутом сейсмических данных.

Сейсмические данные обычно обрабатываются для получения нулевой фазы, и мы обычно предполагаем, что фаза стабильна в пространстве и времени. Действительно, эти предположения являются центральными для большинства AVO и других количественных исследований.

Обзор

Основываясь на рекомендациях Roden & Sepulveda 1999 [1] и Perz et al 2004 [2] , есть четыре простых способа помочь определить фазу:

  1. Инспекция
  2. Стяжка скважинная
  3. Мгновенная фаза
  4. Испытания на вращение

В общем, вы вряд ли сможете увидеть разность фаз 15 ° или меньше, и действительно, это, вероятно, не будет иметь значения для пикировки горизонта или даже количественной работы.Поворот фазы на 30 °, вероятно, стоит зафиксировать для количественной работы. Все, что больше 45 °, стоит зафиксировать даже для интерпретации.

Осторожно: отмена пикировки, которую вы выполняете для повернутого по фазе объема, обременительна: выполняйте ротацию ваших данных только тогда, когда вы уверены, что это более геологично.

Инспекция

Простое исследование сильного сейсмического события, соответствующего изолированной геологической поверхности с известным контрастом импеданса. Помогает, если контраст, который должен быть пространственно согласованным по полярности, достаточно сильный.Хорошими примерами являются морское дно, Вабамун (в Западной Канаде) и Девонское несоответствие (в нефтеносных песках Атабаски). Единственное, что действительно нужно искать, — это последовательно симметричный вейвлет — вот почему отражатель должен быть изолирован, так как любые настройки или эффекты интерференции могут испортить симметрию.

В этом поможет шаблон из нескольких повернутых вейвлетов.

Стяжка колодезная

Хороший рабочий процесс — связать скважины с помощью вейвлета с нулевой фазой, по крайней мере, сначала.При привязке обратите внимание на фазовый дисбаланс в скважине — многие программные инструменты позволяют строить график коэффициента корреляции в зависимости от поворота фаз. Как только вы почувствуете дисперсию привязок скважин, вы сможете начать видеть, есть ли пространственные тренды в этой дисперсии. Возможно, большинство скважин лучше соединяются при чередовании фаз на 90 °.

Мгновенная фаза

Этот метод подробно описан в Perz et al (2004> ref name = perz />). Поскольку мы хотим выбрать горизонт, независимый от фазы, мы не можем просто измерить мгновенную фазу на горизонте.Мы должны сделать это:

  1. Начать с исходных данных, объем D
  2. Вычислить огибающую E (иногда называемую мгновенной амплитудой или абсолютной амплитудой)
  3. Выберите горизонт H на сильном пике E
  4. Вычислить мгновенную фазу на H из объема D

Результат дает указание фазы в данных. Оно должно быть близко к нулю.

Этот метод упрощает регистрацию пространственной дисперсии, а если вы пробегаете несколько горизонтов, временной дисперсии тоже.

Испытания на вращение

Это простой, но неудобный метод. Поворачивайте данные на различную величину с шагом 15 ° (15 °, 30 °, 45 ° и т. Д.). Выберите сильное отражение и измерьте амплитуду на пике или впадине. Отражатель должен иметь самую высокую амплитуду, когда данные имеют нулевую фазу.

Проблема этого метода в том, что трудно уловить пространственную дисперсию.

Внешние ссылки

Список литературы

  1. ↑ Роден, Р. и Х. Сепульведа (1999).Значение фазы для переводчика; практические рекомендации по фазовому анализу Передний край 18 (7), стр. 774–777.
  2. ↑ Перц, М., М. Сакки и А. О’Бирн (2004). Мгновенная фаза и обнаружение устойчивости бокового вейвлета. Передний край 23 (7), 639–643.

Дополнительная литература

  • Лайнер, C (2002). Фаза, фаза, фаза. The Leading Edge 21, стр. 456–7.
  • Симм, Р. и Р. Уайт (2002), Учебное пособие: Фаза, полярность и вейвлет интерпретатора.Первый перерыв 20 (5), стр. 277–281. Доступно онлайн.
  • White R и R Simm (2003). Учебник: Хорошая практика в хороших связях. Первый перерыв 21 (10), с. 75–83. Доступно онлайн.

Фазовый угол — обзор

3.9.5 Унифицированный контроллер потока мощности

Унифицированный контроллер потока мощности (UPFC) является одним из самых передовых устройств FACTS и представляет собой комбинацию STATCOM и SSSC. Можно увидеть, что UPFC состоит из двух VSC, использующих общий конденсатор на их стороне постоянного тока, и единой системы управления.Два устройства связаны через канал постоянного тока, и комбинация обеспечивает двунаправленный поток реальной мощности между последовательным выходом SSSC и шунтирующим выходом STATCOM. Этот контроллер (UPFC) имеет возможность обеспечивать одновременную компенсацию действительной и реактивной последовательной линии без какого-либо внешнего источника электроэнергии. UPFC может иметь управляемую под углом последовательную подачу напряжения для управления напряжением передачи в дополнение к управлению импедансом линии и углом мощности. Таким образом, UPFC может управлять потоком реальной мощности, потоком реактивной мощности в линии и величиной напряжения на выводах UPFC, а также может использоваться независимо для компенсации реактивной мощности шунта.Контроллер может быть настроен на управление одним или несколькими из этих параметров в любой комбинации.

На рисунке 3.25 представлена ​​схема UPFC, которая содержит STATCOM с SSSC. Поток активной мощности для последовательного блока (SSSC) получается из самой линии через шунтирующий блок (STATCOM). STATCOM используется для управления напряжением (или реактивной мощностью), а SSSC используется для управления реальной мощностью. UPFC — это полный контроллер FACTS для управления потоком как активной, так и реактивной мощности в линии.Активная мощность, необходимая для последовательного преобразователя, потребляется параллельным преобразователем от шины переменного тока ( i ) и подается на шину j по звену постоянного тока. Инвертированное переменное напряжение ( В, ser ) на выходе последовательного преобразователя добавляется к напряжению передающего конечного узла В i на стороне линии, чтобы повысить узловое напряжение на шине j . Здесь можно отметить, что величина напряжения выходного напряжения | V ser | обеспечивает регулировку напряжения, а фазовый угол δ ser определяет режим управления потоком мощности.Дополнительное запоминающее устройство (а именно, сверхпроводящий магнит, подключенный к звену постоянного тока) через электронный интерфейс обеспечит расширение возможностей UPFC в управлении потоком реальной мощности.

Рисунок 3.25. Схема UPFC.

Помимо обеспечения вспомогательной роли в обмене активной мощностью между последовательным преобразователем и системой переменного тока, шунтирующий преобразователь может также генерировать или поглощать реактивную мощность, чтобы обеспечить независимое регулирование напряжения в точке соединения с система переменного тока.

Эквивалентная схема UPFC, показанная на рисунке 3.26, состоит из параллельно подключенного источника напряжения и последовательно подключенного источника напряжения. Уравнение ограничения активной мощности связывает два источника напряжения. Два источника напряжения подключены к системе переменного тока через индуктивное сопротивление, представляющее трансформаторы VSC. Выражения для двух источников напряжения и уравнения ограничения будут такими:

Рисунок 3.26. Эквивалентная схема UPFC между двумя шинами i и j.

Vshr = | Vshr | cosδshr + jsinδshr

Vser = | Vser | cosδser + jsinδser

Re − VshrIshr * + VserIj * = 0

Здесь V shr и V shr и управляемая величина и фаза источника напряжения, представляющего шунтирующий преобразователь. Величина V ser и фазовый угол δ ser источника напряжения представляют собой последовательный преобразователь. Подобно шунтирующим и последовательным источникам напряжения, используемым для представления STATCOM и SSSC, соответственно, источники напряжения, используемые в приложении UPFC, также будут иметь контрольные пределы, т.е.е., В shr min V shr V shr max , 0 ≤ δ shr ≤ 2 π и V ser min V ser V ser max , 0 ≤ δ ser ≤ 2 π соответственно.

Фазовый угол последовательно вводимого напряжения определяет режим управления потоком мощности. Следующие условия важны для понимания работы UPFC со ссылкой на его эквивалентную схему (рисунок 3.26):

Если δ ser находится в фазе с углом напряжения узла δ i , UPFC регулирует напряжение на клеммах, и между и отсутствует активный поток мощности -й и -й и -й автобусы. Поток реактивной мощности можно контролировать, изменяя | V ser |.

Если δ ser находится в квадратуре с δ i , поток активной мощности можно контролировать между i th и j th шинами, управляя δ ser и действует как фазовращатель.Между шинами i и j не будет потока реактивной мощности.

Если δ ser находится в квадратуре с углом линейного тока, то он также может управлять потоком активной мощности, действуя как переменный последовательный компенсатор.

Если δ ser находится в диапазоне от 0 ° до 90 °, он может управлять как потоком реальной мощности, так и потоком реактивной мощности в линии. Величина последовательно вводимого напряжения определяет величину регулируемого потока мощности.

Моделирование потока мощности UPFC [ 2 ]

На основе эквивалентной схемы, показанной на рисунке 3.26, мы имеем

Ii = Vi − Vj − VserYser + (Vi− Vshr) Yshr = ViYser + Yshr − VjYser − VserYser − VshrYshr

и Ij = −Vi + Vj + VserYser

, т.е. = Vi00VjYser + Yshr * −Yser * −Yser * −Yshr * −Yser * Yser * Yser * 0Vi * Vj * Vser * Vshr *

(3.146) илиPi + jQiPj + jQj = Vi00VjGii − jBiiGij − jBijGij − jBijGi0 − jBi0Gji − jBjiGjj − jBjjGjj − jBjj0Vi * Vj * Vser * Vshr *

(3.147i = | P Gijcosδi − δj + Bijsin (δi − δj)} + | Vi || Vser | {Gijcosδi − δser + Bijsin (δi − δser)} + ​​| V || Vshr | {Gi0cosδi − δshr + Bi0sin (δi − δshr)}

(3.147b) Qi = — | Vi | 2Bii + | Vi || Vj | {Gijsinδi − δj − Bijcos (δi − δj)} + | V || Vser | {Gijsinδi − δser − Bijcos (δi − δser)} + | Vi || Vshr | {Gi0sinδi − δshr − Bi0cos (δi − δshr)}

(3.148a) Pj = | Vj | 2Gjj + | Vj || Vi | {Gjicosδj − δi + Bjisin (δj − δi)} + | Vj || Vser | {Gjjcosδj − δser + Bjjsin (δj − δser)}

(3.148b) Qj = — | Vj | 2Bjj + | Vj || Vi | {Gjisinδj − δi − Bjicos (δj − δi)} + | Vj || Vser | {Gjjsinδj − δser − Bjjcos (δj − δser)}

Активный мощность и реактивная мощность последовательного преобразователя (SSSC) следующие:

Sser = Pser + jQser = VserIj * = VserYji * Vi * + Yjj * Vj * + Yjj * Vser *

(3.149a) ∴Pser = | Vser | 2Gjj + | Vser || Vi | {Gjicosδser − δi + Bjisin (δser − δi)} + | Vser || Vj | {Gjjcosδser − δj + Bjjsin (δser − δj)}

(3.149b) Qser = — | Vser | 2Bjj + | Vser || Vi | {Gjisinδser − δi − Bjicos (δser − δi)} + | Vser || Vj | {Gjjsinδser − δj − Bjjcos (δser − δj)}

Активная мощность и реактивная мощность для шунтирующий контроллер (STATCOM) получается как

(3.150a) Sshr = Pshr + jQshr = VshrIshr * = — VshrYshr * Vshr * −Vi * ∴Pshr = — | Vshr | 2Gi0 + | Vshr || Vi | {Gi0cosδshr − δi + Bi0sin (δshr − δi)}

3,1

( ) Qshr = | Vshr | 2Bi0 + | Vshr || Vi | Gi0sinδshr − δi − Bi0cosδshr − δi

Поскольку мы предполагаем преобразователи без потерь, UPFC не поглощает и не вводит активную мощность по отношению к системе переменного тока, то есть активную мощность, подаваемую на шунтирующий преобразователь, P shr , равен активной мощности, потребляемой последовательным преобразователем, P ser . Следовательно, уравнение ограничения:

(3.151) Pshr + Pser = 0

Кроме того, если предполагается, что трансформаторы связи не содержат сопротивления, тогда активная мощность на шине i соответствует активной мощности на шине j . Соответственно,

Pshr + Pser = Pi + Pj

Уравнения мощности UPFC в линеаризованной форме комбинируются с уравнениями мощности сети переменного тока. Чтобы получить линеаризованную модель системы с использованием формы рассогласования мощности, предположим, что UPFC подключен к узлу i , а система энергоснабжения подключена к узлу j .UPFC требуется для управления напряжением на выводе шунтирующего преобразователя, узле i , и поток активной мощности от узла j к узлу i . Предполагая, что реактивная мощность вводится в узле j , уравнения линеаризованной системы выглядят следующим образом:

(3.152) ΔPiΔPjΔQiΔQjΔPjiΔQjiΔP = ∂Pi∂δi∂Pi∂δj∂Pi∂ | Vshr | ∂Pi∂ | Vjser | ∂Pi∂δ ∂Pi∂ | Vser | ∂Pi∂δshr∂Pj∂δi∂Pj∂δj0∂Pj∂ | Vj | ∂Pj∂δser∂Pj∂ | Vser | 0∂Qi∂δi∂Qi∂δj∂Qi∂ | Vshr | ∂ Qi∂ | Vj | ∂Qi∂δser∂Qi∂ | Vser | ∂Qi∂δshr∂Qj∂δi∂Qj∂δj0∂Qj∂ | Vj | ∂Qj∂δser∂Qj∂ | Vser | 0∂Pji∂δi∂Pji ∂δj0∂Pji∂ | Vj | ∂Pji∂δser∂Pji∂ | Vser | 0∂Qji∂δi∂Qji∂δj0∂Qji∂ | Vj | ∂Qji∂δser∂Qji∂ | Vser | 0∂P∂δi∂P ∂δj∂P∂ | Vshr | ∂P∂ | Vj | ∂P∂δser∂P∂ | Vser | ∂P∂δshrΔδiΔδjΔ | Vshr | Δ | Vj | ΔδserΔ | Vser | Δδshr

Предполагалось, что узел j — это узел PQ, а Δ P — рассогласование мощности, заданное уравнением ограничения (3.151). Если управление напряжением на шине и деактивировано, третий столбец уравнения (3.152) заменяется частными производными мощности шины и рассогласования UPFC по величине напряжения на шине В, i . Кроме того, приращение величины напряжения шунтирующего источника Δ V shr заменяется приращением величины напряжения на шине i , Δ V i . Для решения этих уравнений потока мощности UPFC необходим обширный алгоритм.Хорошие начальные условия для всех переменных состояния UPFC также являются важным требованием для обеспечения сходимости.

Контроллеры демпфирования UPFC

Структурная схема контроллера демпфирования UPFC показана на рисунке 3.27, где u может быть V shr и δ , shr которые являются регулируемыми величиной и фазой источника напряжения, представляющего шунтирующий преобразователь.Чтобы поддерживать баланс мощности между последовательными и шунтирующими преобразователями, необходимо включить регулятор постоянного напряжения. Напряжение постоянного тока регулируется путем модуляции фазового угла напряжения шунтирующего трансформатора, δ shr . Регулятор постоянного напряжения представляет собой ПИ-регулятор. Другими блоками контроллеров являются блок усиления, блок размывания и блок контроллера опережения-запаздывания. T upfc представляет внутреннюю задержку UPFC [12].

Рисунок 3.27. Регулятор демпфирования UPFC.

Функции этих блоков уже знакомы при обсуждении других контроллеров FACTS. Линеаризованная модель в пространстве состояний контроллера демпфирования UPFC может быть получена алгебраически из представленной блок-схемы, которая может быть объединена с дифференциально-алгебраической моделью многомашинной системы для изучения проблемы устойчивости слабого сигнала.

Упражнения

3.1.

Изобразите установившуюся эквивалентную схему синхронной машины и, следовательно, получите ее установившуюся модель в системе координат dqo.

3.2.

Рассмотрим синхронную машину, обслуживающую нагрузку без насыщения, с V¯ = 1∠10 ° о.е. и I¯ = 0,5∠-20 ° о.е. Параметры машин представлены как X d = 1,2, X q = 1,0, X md = 1,1, X d ′ = 0,232 и R с = 0,0 (все в о.е.). Найдите следующие установившиеся переменные станка:

(i)

δ и δ T

(ii)

I d , I q , V d и V q

(iii)

ψ d , ψ q , и E q 3,

9
(iv)

E fd и I fd

(все в о.у., кроме угла в градусах)

3.3.

Выведите выражение основной составляющей эквивалентной восприимчивости SVC как

Bsvc = −XL − XCπ2π − α + sin2αXCXL

, где X L — эквивалентное реактивное сопротивление TCR, X C — эквивалентное реактивное сопротивление постоянного конденсатора, подключенного к цепи TCR, а α — угол включения. Получите его линеаризованную версию для применения в анализе устойчивости энергосистемы при слабых сигналах.
3.4.

TCSC подключен между узлами s и t. Поток мощности между узлами s и t определяется уравнением

Sst = Vs2gst − jbst − VsVtgst − jbstcosθst + jsinθst

Получите линеаризованные уравнения потока мощности TCSC. V s и V t — напряжения в узлах s и t. Y st = g st jb st — это пропускная способность сети между узлами, к которым подключается TCSC.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *