Site Loader

Содержание

Фаза или ноль на выключатель. Подключаем правильно

Итак, делая электропроводку, вы дошли до соединения проводов в распределительных коробках. С розеточной группой всё понятно. Провода в распределительной коробке соединяем все параллельно — жёлто-зеленые с жёлто-зелеными, синие с синими, белые с белыми. То есть, землю соединяем с землёй, ноль с нолём, фазу с фазой. Будет выглядеть это так:

Я приведу две схемы соединения проводов в световой распредкоробке. Это схемы соединения для одноклавишного выключателя и для двухклавишного выключателя.

Содержание

Выключатель должен разрывать фазу!

На схемах видно, что в обоих случаях на выключателе разрывается фаза, а ноль идёт на лампочку или светильник напрямую. И это правильно! Ибо, как говорил Остап Бендер, ибо…..

А что произойдёт, если сделать наоборот?

В принципе, ничего особенного, всё будет работать. Но. Самый большой минус такого подключения это безопасность. Так как безопасность эксплуатации электроустановок имеет большое значение, то подключение выключателя оговорено в ПУЭ (Правила устройства электроустановок).

«В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного».
(7 издание ПУЭ, 6.6.28)

Это правило для подключения автоматического выключателя. И говорит оно о том, что нельзя разрывать нулевой провод не разрывая и фазный.

Так что произойдёт если выключатель будет стоять в нулевом проводнике?

При включённом выключателе всё будет работать так как к лапочке будет приходить и ноль (через выключатель) и фаза (напрямую).

А вот при выключенном выключателе на лампочке ноль исчезнет, а фаза останется. Причем на обоих проводах, если это лампа накаливания.

Чем это чревато?

Если светильник исправен и работает, то ничем не чревато. А вот если вы захотите поменять перегоревшую лампу в люстре или светильнике подключённом неправильно, то при случайном прикосновении к контактам в цоколе вас может ударить током. А может и не ударить. Всё зависит от того как хорошо заземлены ваши ноги. Но лучше не экспериментировать!

Что ещё может произойти?

Если люстра или светильник не новые, может потрескаться изоляция проводов и (не дай Бог) они замкнут на корпус люстры или светильника. На металлическом корпусе люстры может оказаться фаза. Простое прикосновение к корпусу может быть чревато поражением электрическим током. Всё зависит от особенности организма и качества заземления ваших ног. Исход может быть непредсказуем.

Ну а почему не сработала защита?

Да потому, что ноля то на люстре у нас нет — выключатель выключен, ноль разорван и не подается на светильник. Если же выключатель включён и ноль подается на светильник, он может и не быть на корпусе люстры. На корпусе люстры может быть только фаза.
Автомат же дифференциальной защиты в цепи освещения можно не ставить согласно ПУЭ.

Ещё одна неприятная проблема при неправильном подсоединении выключателя это мерцание светодиодных ламп и светильников при постоянной фазе на них. Не факт, что это будет происходить, но у светильников не очень высокого качества это может случиться.

Как определить фаза или ноль идёт на выключатель?

Определить ноль или фаза идёт на выключатель можно двумя способами: на выключателе или на самом светильнике.

Выключатель должен быть в отключённом состоянии.

В выключателе на одном проводе должна быть фаза (индикатор будет светиться), а на люстре индикатор светиться не будет. Конечно же на выключателе проверять удобнее так как он находится внизу, да и снять его будет проще, чем открутить люстру или светильник с на потолке. Как снять выключатель рассказывать вам не буду.

Но что же делать, если вы узнали что выключатель у вас подключён неправильно.

В старых квартирах обычно схема электропроводки однолинейная. А это значит, что вся квартира «висит» на одной линии. Скорее всего у вас все выключатели подключены данным образом.

Многие советуют переподключить провода в распределительной коробке. Но, как вы понимаете, для этого нужно её найти, снять с этого места обои, раскрутить скрутки. Но во многих старых квартирах проводка алюминиевая и лишний раз раскрутить, скрутить провод чревато поломкой их.

Можно, просто напросто, перекинуть провода на автоматических выключателях, которые находятся в щитке. И тогда фаза станет нулём, а ноль фазой и на выключатель пойдёт фазный провод.

На картинке показана схема где на нулевом и фазном проводе стоят отдельные однополюсные выключатели. Так делали раньше. Сейчас же используют один двухполюсный автоматический выключатель.

Если же вы определили что какой выключатель подключён неправильно, а остальные в порядке, это значит, что у электрика в том момент, когда он собирал коробку было «озарение». Вот тогда то кроме как переделать распредкоробку данного выключателя ничего не поможет.

Находим распределительную коробку. Обычно она находится над выключателем на расстоянии 15-20 сантиметров от потолка. Вскрываем её, предварительно выключив автоматы в распредщитке. Освобождаем скрутки от изоляции. Включаем автоматы и находим фазный провод индикатором. Выключатель должен быть выключен.

Обычно в световых коробках бывает четыре кабеля:

  • приходящий
  • отходящий
  • на лампочку
  • на выключатель

Цвет проводов не имеет значения потому, что провода могут быть разного цвета.

Определяем какой кабель идёт на лампочку, а какой на выключатель. Обычно кабель на выключатель уходит вертикально вниз, а на лампочку (светильник) вверх. Обесточиваем коробку отключением автоматического выключателя.

Переделываем коробку следующим образом:

Как соединять провода в распредкоробке решите по месту в зависимости от состояния и материала проводов. Изолируем места соединения проводов.

Всё, дело сделано!

Цвета проводов в распределительной коробке указаны в соответствие с современной расцветкой проводов в кабеле. Вместо коричневого провода чаще всего используется белый.

Ещё статьи:

Как собрать схему проходного переключателя

Как определить неисправность освещения

Что такое фаза и ноль в электрике, обозначение, как определить, как найти

Больше 100 лет электричество есть на предприятиях, в офисах и домах. Все начиналось с подачи одной фазы и ноля еще в конце 19 столетия, а эксперименты Николы Тесла и Михаила Федоровича Доливо-Добровольского привели к появлению уже понятной нам электросети. Именно последний изобретатель в 1891 году на Франкфуртской электротехнической выставке представил первую трехфазную сеть протяженностью 170 км. Это событие стало триумфом электросистемы с тремя фазами и нулем, которая используется и сейчас во всем мире.

Даже не зная этого и особо не вникая в электротехническую сферу, многие люди используют в обиходе такие термины, как фаза и ноль. При этом редко задумываясь о том, что же это такое, какова их задача и как обнаружить фазу и ноль в квартире, доме. Чтобы разобраться, нужно проследить путь электричества от генератора до розетки.

Как устроена электросистема?

Если вы когда-нибудь меняли розетку или выключатель, то видели, что они подключаются двумя-тремя проводами. Это и есть фаза и ноль в розетке, а третий проводник — заземление. Однако перед тем, как зайти в дом, ток по проводам проходит длинный путь:

  • В трехфазном генераторе переменного тока на электростанции вырабатывается электричество. Из него выходит только три фазы.
  • По ЛЭП оно направляется к повышающей трансформаторной подстанции, где с 10-20 кВ повышается до 330 кВ. После этого и появляется нейтраль, также известная как ноль. Она соединяется с землей, а дальше по линиям электропередач по-прежнему идут три фазных провода.
  • Когда электроэнергия достигает населенного пункта, она попадает на понижающий трансформатор. Вольтаж уменьшается до распределительного напряжения района — 110-150 кВ. Здесь также остается три фазных проводника, а нейтраль от трансформатора заземляется.
  • Далее ток движется по сетям среднего напряжения. Они самые протяженные и состоят только из трех фаз, без ноля.
  • Следующий пункт на пути электричества — распределительная электроподстанция. От нее ток по другим линиям электропередач идет к домам на электрощит по трем фазным проводам, а также уже появляется рабочий ноль, который распределяет однофазную нагрузку по трехфазной сети.
  • В электрическом общедомовом щите и происходит самое интересное: трехфазная сеть подключается к ВРУ — вводно распределительному устройству. Здесь все фазы разделяются, для каждой отдельно выделяется ноль и заземление. Между фазой и нулем есть фазное напряжение — всем известные 220-230 В.
  • Далее ток через уже однофазную систему попадает в подъездный распределительный щит, потом в этажный и в конце — в квартирный.
  • Последний «пункт» на пути проводников — розетки. Когда в них подключается электрический прибор, цепь замыкается.

Почему на фазах для квартир и большинства частных домов именно переменный ток? Потому что его в разы легче передавать на большие дистанции по сравнению с постоянным током.

Если объяснить простыми словами, что такое фаза в электрике, то это провод, по которому ток приходит в квартиру, дом, офис и т.д. То есть на всей протяженности от электростанции до розетки кабели и проводники, по которым течет синусоидальный ток — это фазы. Соответственно, ноль — проводник, по которому он уходит назад к электрической подстанции.

При строительстве новостроек в электросети используются трехжильные провода. Это означает, что на вводное устройство заходит одна фаза 220-230 В, рабочий ноль и защитный ноль. Очень важно не перепутать нули:

  • Рабочий предназначен для нормальной работы замкнутой электроцепи — по нему ток идет обратно. Он отвечает и за выравнивание фазного напряжения.
  • Защитный основное время остается невостребованным и срабатывает в аварийной ситуации, когда произошел обрыв рабочего ноля. По нему напряжение уходит в землю.

Обозначение фаза и ноль

В Украине с 2011 года действует ГОСТ Р 50462-2009, определяющий правила идентификации и маркировки проводников с помощью оболочек определенного цвета и буквенно-цифрового обозначения. Согласно документу, компоненты трехфазной сети обозначаются так:

  • L — одна из трех фазных жил.
  • N — нейтраль.
  • PE — защитный ноль.

Буквы наносят обычно не на сами проводники, а на контакты, к которым они подключаются. Однако что делать, если есть просто вывод трехжильного кабеля в распределительный короб и нет никаких пометок на нем? Рассмотрим два ключевых метода.

Как определить фазу и ноль?

Чтобы разобраться в электрике, фаза это или ноль, в первую очередь ориентируйтесь на цветовую маркировку. Хотя есть стандарт, и его должны придерживаться электромонтеры, иногда разрабатывается специфический проект электрификации и в нем могут быть отступления от нормативов. Лучше найти техническую документацию на квартиру, где четко прописаны параметры идентификации проводников на конкретном объекте.

Иногда в старом жилом фонде, где еще не сделана замена проводки, непрофессионалу бывает сложно быстро определить фазу и ноль в электрике. В этом случае поможет либо поиск старых ГОСТов с указанием, как маркировались раньше проводники и контакты, либо простой инструмент, который есть практически у каждого в хозяйстве — индикаторная отвертка.

Как найти фазу?

Электрики рекомендуют сначала найти фазу в розетке. Если проводка новая, ищите жилу с изоляцией красного, коричневого, черного, белого или другого цвета, который отличается от синего, а также желто-зеленой или сине-белой комбинации. Этот метод удобный, но не на 100% надежный. Всегда остается риск, что при монтаже могли быть допущены ошибки, а проводники — перепутаны. Поэтому лучше использовать индикатор фаз. Это отвертка с прозрачным корпусом ручки, внутри которого размещены небольшая лампочка и резистор. Они в определенных условиях срабатывают и указывают на присутствие напряжения. Для этого:

  • Прикладываем индикаторную отвертку к проводнику. Можно даже не к срезу, а в любом месте, включая изолированный участок жилы.
  • Напряжения 220-230 В достаточно, чтобы инструмент выявил его. Лампочка загорится, если индикатор прижат к фазному проводу.

Это приспособление безопасно для человека. Внутри корпуса есть сопротивление от резистора, которое снижает ток до минимального значения. Такой индикатор — обязательное приспособление в каждом доме, ведь рано или поздно большинство хозяев все же решаются на самостоятельную замену электрофурнитуры или светильника. Его использование простое и занимает считанные секунды.

Опытные электрики, которые не соблюдают правила безопасности, знают, как найти фазу без индикатора и цветовой маркировки по своему. Для этого они касаются края проводника пальцем: где «ущипнет», там и ток. Однако мы настойчиво выступаем против подобных действий и призываем избегать такого риска для здоровья и жизни. Лучше подберите в нашем каталоге индикаторную отвертку, которая прослужит вам десятки лет и избавит вас от опасных экспериментов с электричеством в процессе поиска фазы и ноля.

Как найти ноль?

Чтобы не беспокоиться, как узнать, где фаза, а где ноль, запомните два способа маркировки последнего:

  • синяя или сине-белая изоляция жилы — это всегда рабочий ноль N;
  • желто-зеленая оболочка указывает на защитную нейтраль PE.

Аналогично фазной жиле можно проверить и нулевые проводники с помощью инструмента. Отличие только в том, что от них лампочка в индикаторе загораться не будет.

Важно! Это даст понимание, что перед вами ноль, но не ответит на вопрос — рабочий или защитный. Лучше определять фазу и ноль по цвету. Если же речь идет о старой проводке, где нет заземления, то метода проверки индикаторной отверткой будет достаточно.

Когда может понадобиться поиск ноля и фазы?

Обычно потребность в этом возникает, когда нужно установить или заменить какое-то электрооборудование:

  • Розетки и выключатели.
  • УЗО или диф автомат на 3 фазы в большом частном доме.
  • Светильники.
  • Стационарная бытовая техника и т.д.

В нашем каталоге есть кабели и проводники для обустройства одно- и трехфазных сетей любой сложности. Они маркированы по украинским ГОСТам и согласно регламентам международной системы ISO. Аналогичные обозначения есть на клеммниках и контактах в различных устройствах всех марок и моделей из нашего ассортимента. Также мы поможем подобрать индикатор фазного напряжения и бесплатно проконсультируем по любому актуальному для вас товару.

Фаза и ноль в электрике

Владелец квартиры или частного дома, решив проделать какую-либо процедуру, связанную с электричеством, будь то установка розетки или выключателя, вешание люстры или бра, неизменно сталкивается с необходимостью определить, где фаза и нейтраль провода расположены по месту работы, как и заземляющий кабель. Это необходимо для того, чтобы правильно подключить монтируемый элемент, а также во избежание случайного поражения электрическим током. Если у вас есть некоторый опыт работы с электричеством, то этот вопрос вас не смутит, а вот для новичка может стать серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

Содержание

  • Чем отличается фазный провод от нулевого?
  • Для чего нужен заземляющий кабель?
  • Бытовая электропроводка: найти ноль и фазу
    • Проверка электролампой
    • Проверка индикаторной отверткой
    • Проверка мультиметром
  • Вывод

Чем отличается фазный провод от нулевого?

Фазовый кабель предназначен для подачи электроэнергии в нужное место. Если говорить о трехфазной электросети, то на единственный нулевой провод (нейтраль) приходится три ввода тока. Это связано с тем, что поток электронов в цепи такого типа имеет фазовый сдвиг в 120 градусов, и наличие в ней одного нулевого кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, при этом ноль, как и провод заземления, не находится под напряжением. На паре фазных проводов значение напряжения 380 В.

Линейные кабели предназначены для соединения фазы нагрузки с фазой генератора. Нулевой провод (рабочий ноль) предназначен для соединения нулей нагрузки и генератора. От генератора поток электронов движется к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым тросам.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода — создать цепь с низким показателем сопротивления, чтобы в случае короткого замыкания ток был достаточным для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует быстрое отключение от сети.

В современной электропроводке оболочка нулевого проводника синего или голубого цвета. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Этот кабель имеет желто-зеленое покрытие.

В зависимости от назначения ЛЭП может иметь:

  • Кабель с глухозаземленной нейтралью.
  • Изолированный нейтральный провод.
  • Эффективно заземленный ноль.

Линия первого типа все чаще используется при обустройстве современных жилых домов.

Для того, чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами, а также подается по трем высоковольтным фазным проводникам. Рабочий ноль, являющийся четвертым проводом, подается от той же генераторной установки.

Наглядно про разницу между фазой и нулем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электробытовых приборах. Он помогает снизить величину тока до безопасного для здоровья уровня, перенаправляя большую часть потока электронов на землю и защищая человека, прикасающегося к устройству, от поражения электрическим током. Также заземляющие устройства являются составной частью молниеотводов. на зданиях — через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не вызывая возгорания.

На вопрос — как отличить грозотрос — можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, часто не соблюдается. Бывает и так, что электрик, не имеющий достаточного опыта, путает фазный кабель с нулевым, а то и соединяет сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Бытовая электропроводка: найти ноль и фазу

Установить дома, где какой провод находится, можно по-разному. Мы разберем только самые распространенные и доступные практически любому человеку: с помощью обычной лампочки, индикаторной отвертки и тестера (мультиметра).

О цветовой маркировке фазных, нулевых и заземляющих проводов в видео:

Проверка с помощью электрической лампы

Перед началом такого теста нужно собрать тестовое устройство с помощью лампочки. Для этого его следует вкрутить в патрон подходящего диаметра, а затем закрепить на клемме проводов, сняв изоляцию с их концов с помощью съемника или обычного ножа. Затем к испытуемым жилам необходимо поочередно прикладывать проводники лампы. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если кабель проверять на две жилы, то уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Индикаторная отвертка — хороший помощник в электромонтажных работах. Этот недорогой инструмент основан на принципе протекания емкостного тока через корпус индикатора. Включает в себя следующие основные элементы:

  • Металлический наконечник в форме плоской отвертки, прикрепляемый к проводам для тестирования.
  • Неоновая лампа, которая загорается при прохождении через нее тока и тем самым сигнализирует о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, предохраняющий устройство от возгорания под действием мощного потока электронов.
  • Контактная площадка, позволяющая создавать цепь при прикосновении.

Профессиональные электрики используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными батареями, но простой прибор китайского производства вполне доступен каждому и должен быть в наличии у каждого хозяина дома.

Если проверять наличие напряжения на проводе этим прибором при дневном свете, то при работе придется присматриваться внимательнее, так как свечение сигнальной лампы будет плохо заметно.

При касании кончиком отвертки фазного контакта загорается индикатор. При этом он не должен светиться ни на защитном нуле, ни на земле, иначе можно сделать вывод о проблемах в схеме подключения.

При использовании этого индикатора будьте осторожны, чтобы случайно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера необходимо перевести прибор в режим вольтметра и попарно измерить напряжение между контактами. Между фазой и любым другим проводом этот показатель должен быть 220 В, а прикладывание щупов к земле и защитному нулю должно свидетельствовать об отсутствии напряжения.

Вывод

В этом материале мы подробно ответили на вопрос, что такое фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где находится фазный проводник в проводке. Какой из этих способов предпочтительнее решать вам, но помните, что вопрос определения фазы, нуля и земли очень важен. Неверные результаты проверки могут привести к перегоранию приборов при подключении или, что еще хуже, к поражению электрическим током.

Используйте формулу фазового угла, чтобы понять мощность

Ключевые выводы

  • Подача энергии в системе переменного тока зависит от фазового угла между напряжением и током.

  • Фазовый угол также зависит от импеданса цепи, который вызывает изменение фазы.

  • При наличии разности фаз между напряжением и током реальная мощность, подаваемая на нагрузку, может быть довольно низкой. Вы можете определить, когда это произойдет, посмотрев на графики для вашей схемы.

Поддерживайте высокий коэффициент мощности при работе с 3-фазным питанием в ваших системах переменного тока.

Работа с подачей энергии может быть опасной и сложной, особенно когда мы рассматриваем реактивное сопротивление в практических цепях переменного тока. Обеспечение реальной подачи мощности на резистивную нагрузку зависит от поддержания высокого коэффициента мощности в ваших цепях, что в свою очередь требует поддержания фазового угла в вашей системе близким к нулю. Время от времени вам нужно будет проверять угол сдвига фаз между напряжением и током в реактивной цепи, чтобы обеспечить достаточную подачу мощности на элемент нагрузки.

Просто взглянув на разницу во времени между подаваемым напряжением и током на вашем компоненте нагрузки, вы можете определить фазовый угол, определяющий реальную подачу мощности. Затем вы можете использовать формулу фазового угла для реальной и полной мощности, чтобы определить коэффициент мощности в вашей системе. Затем вы можете определить, потребуется ли коррекция коэффициента мощности, которая будет зависеть от входного напряжения и мощности в системе.

Формула фазового угла

Фазовый угол цепи зависит от разности фаз между напряжением и током в цепи. Предполагая, что у нас есть простая система LTI, состоящая только из резисторов, конденсаторов и катушек индуктивности, вы можете определить простое соотношение фазового угла между напряжением и током в каждом элементе схемы.

Разность фаз в различных цепях RLC графически показана на изображении ниже, где мы видим, что напряжение и ток смещены друг относительно друга во временной области. Здесь реактивное сопротивление элементов C и L создает разность фаз между напряжением и током. Эта разность фаз станет важной позже, когда вы захотите рассчитать реальную мощность, подаваемую на компонент нагрузки.

Комплексные напряжения и токи в различных цепях, а также их разности фаз.

Фазовый угол можно определить, просто взглянув на разницу во времени между кривыми напряжения и тока. Это равно разнице во времени между соседними пиками тока и напряжения, деленной на 180 градусов. В качестве альтернативы, если вы знаете импеданс в вашей цепи переменного тока, вы можете рассчитать разницу фаз, которую вы увидите между напряжением и током:

Формула фазового угла в терминах импеданса.

Обратите внимание, что это относится к цепям LTI, где фаза является постоянной величиной (т. е. не зависит от напряжения или тока). Для обычной сети RLC фазовый угол может быть функцией частоты, даже если цепь представляет собой систему LTI. Теперь, когда у нас есть четкое определение разности фаз в цепи переменного тока, мы можем определить реальную мощность, подаваемую на компонент нагрузки в цепи переменного тока.

Отдаваемая мощность и фазовый угол

Когда ток и напряжение имеют некоторую разность фаз между собой, мощность в цепи представляется комплексным числом S. Действительная и мнимая части комплексной мощности представляют реальную отдаваемую мощность и реактивную мощность соответственно. Следующая формула определяет комплексную мощность S, которая выражается через комплексный импеданс Z.

Комплексная мощность через комплексный импеданс.

Обратите внимание, что резистивные части цепи всегда рассеивают активную мощность, как мы сейчас увидим, а реактивные части получают только реактивную мощность. Физически реактивная мощность представляет собой мощность, ограниченную реактивным элементом в цепи (т. е. элементами L и C). Напротив, реальная мощность рассеивается в виде тепла в резистивных элементах.

Если вы знаете фазовый угол из импеданса или разницы во времени между током и напряжением, то вы можете рассчитать реальную мощность, подаваемую на нагрузку. Это определяется ниже с точки зрения величины S и фазового угла:

Фактическая мощность, подаваемая на компонент нагрузки.

Чтобы рассчитать реактивную мощность, просто замените косинус на синус в приведенном выше уравнении. Обратите внимание на знак фазового угла в этом расчете, так как он покажет вам, когда мощность ограничивается реактивными элементами, а когда она рассеивается в резистивных элементах. Это различие между кажущейся мощностью и реальной мощностью становится более ясным, когда мы исследуем распределение тока и напряжения в последовательной цепи RLC, как показано на рисунке ниже.

Распределение напряжения и тока в последовательной цепи RLC.

На этом изображении ток и индуктивность имеют напряжения, которые не совпадают по фазе друг с другом, поэтому общая реактивная мощность в LC-ветви цепи равна нулю. Другими словами, элементы C и L имеют противоположное реактивное поведение в разные моменты времени; один элемент генерирует реактивную мощность, а другой ограничивает ее.

Фазовый угол от активной и реактивной мощности

Другой важной величиной является кажущаяся мощность |S|, которая учитывает активную и реактивную мощности вместе без фазовой постоянной. В другом случае вы можете уже знать реальную мощность Re[S] и кажущуюся мощность |S|, и вам нужно найти фазовый угол. Отношение этих двух величин известно как коэффициент мощности, который очень важен в регулируемых системах преобразования переменного тока в постоянный. Коэффициент мощности определяется по фазовому углу следующим образом:

Определение коэффициента мощности по фазовому углу.

В идеале коэффициент мощности системы преобразования мощности должен быть равен 1. Поскольку реальные схемы регуляторов имеют коэффициент мощности где-то около ~0,7, цепь PFC обычно добавляется на этапе выпрямления AC-DC, чтобы обеспечить коэффициент мощности как можно ближе к 1. Вычисление фазового угла говорит вам, как вам нужно будет компенсировать низкий коэффициент мощности при проектировании ваших цепей.

После того, как вы использовали формулу фазового угла и определили, какой уровень коррекции коэффициента мощности вам нужен, вы можете создать макет платы с помощью лучшего программного обеспечения для компоновки и проектирования печатных плат с полным набором инструментов проектирования.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *