Site Loader

Координаты точки и координаты вектора. Как найти координаты вектора

Прямоугольная система координат

Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.

Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)

Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Координаты точки

Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).

Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ

Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).

Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.

Пример 1

Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.

Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Точка $O$ начало координат, следовательно, $O=(0,0,0)$.

Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит

$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$

Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит

$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$

Точка $P$ имеет координаты $P=(2,2.5,1.5)$

Координаты вектора по двум точкам и формула нахождения

Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $\overline{i}$, по направлению оси $Oy$ — единичный вектор $\overline{j}$, а единичный вектор $\overline{k}$ нужно направлять по оси $Oz$.

Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).

Теорема 1

Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.

Математически это выглядит следующим образом:

$\overline{δ}=m\overline{α}+n\overline{β}+l\overline{γ}$

Так как векторы $\overline{i}$, $\overline{j}$ и $\overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $\overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид

$\overline{δ}=m\overline{i}+n\overline{j}+l\overline{k}$ (1)

где $n,m,l∈R$.

Определение 1

Три вектора $\overline{i}$, $\overline{j}$ и $\overline{k}$ будут называться координатными векторами.

Определение 2

Коэффициенты перед векторами $\overline{i}$, $\overline{j}$ и $\overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть

$\overline{δ}=(m,n,l)$

Линейные операции над векторами

Теорема 2

Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.

Доказательство.

Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $\overline{α}=(α_1,α_2,α_3)$, $\overline{β}=(β_1,β_2 ,β_3)$.

Эти вектора можно записать следующим образом

$\overline{α}=α_1\overline{i}+ α_2\overline{j}+α_3\overline{k}$, $\overline{β}=β_1\overline{i}+ β_2\overline{j}+β_3\overline{k}$

$\overline{α}+\overline{β}=α_1\overline{i}+α_2\overline{j}+α_3\overline{k}+β_1\overline{i}+ β_2\overline{j}+β_3\overline{k}=(α_1+β_1 )\overline{i}+(α_2+β_2 )\overline{j}+(α_3+β_3)\overline{k}$

Следовательно

$\overline{α}+\overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$

Теорема доказана.

Замечание 1

Замечание: Аналогично, находится решение разности нескольких векторов.

Теорема 3

Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.

Доказательство.

Возьмем $\overline{α}=(α_1,α_2,α_3)$, тогда $\overline{α}=α_1\overline{i}+α_2\overline{j}+α_3\overline{k}$, а

$l\overline{α}=l(α_1\overline{i}+ α_2\overline{j}+α_3\overline{k})=lα_1\overline{i}+ lα_2\overline{j}+lα_3\overline{k}$

Значит

$k\overline{α}=(lα_1,lα_2,lα_3)$

Теорема доказана.

Пример 2

Пусть $\overline{α}=(3,0,4)$, $\overline{β}=(2,-1,1)$. Найти $\overline{α}+\overline{β}$, $\overline{α}-\overline{β}$ и $3\overline{α}$.

Решение.

$\overline{α}+\overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$

$\overline{α}-\overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$

$3\overline{α}=(3\cdot 3,3\cdot 0,3\cdot 4)=(9,0,12)$

Координаты вектора

Вспомним, как мы находили координаты вектора на плоскости.

Пользуясь тем, что любой вектор можно разложить по двум неколлинеарным векторам, на осях мы задавали единичные векторы. Таким образом, любой вектор можно разложить по данным единичным векторам, а координатами вектора являются коэффициенты этого разложения.

Так же вам уже известно, что любой вектор пространства можно выразить через 3 некомпланарных вектора, то есть векторы, не лежащие в одной плоскости.

Изобразим прямоугольную систему координат Охуz. На каждой из положительных осей от начала координат отложим единичные векторы.

Буквой i обозначим единичный вектор оси Оx, буквой j — единичный вектор оси Оy, буквой k — единичный вектор оси Оz.

Определение:

Векторы i, j,

k будем называть координатными векторами.

Понятно, что они являются некомпланарными. И поэтому любой вектор пространства можно разложить по единичным векторам i, j, k. Причём коэффициенты разложения х, у и z определяются единственным образом.

Коэффициенты х, у и z называют координатами вектора р в данной системе координат. Координаты вектора будем записывать в фигурных скобках в последовательности х, у, z.

Задание: Пользуясь разложениями векторов по координатным векторам, записать их координаты.

Решение:

Задание: пользуясь координатами векторов, запишем их разложения по координатным векторам i, j, k.

Решение:

Задача: В прямоугольном параллелепипеде 𝑂𝐴 = 2, 𝑂𝐵 = 3, а ОО1 = 2. Найти координаты векторов 𝑂𝐴1, 𝑂𝐵1, 𝑂𝑂1, 𝑂𝐶, 𝑂𝐶1, 𝐵𝐶1, 𝐴𝐶1 и 𝑂1

𝐶.

Решение:

После выполнения этого задания можно сделать вывод о том, что если вектор лежит в некоторой из координатных плоскостей или параллелен ей, а также лежит или параллелен некоторой из координатных осей, то его соответствующие координаты равны нулю.

Если вектор лежит в координатной плоскости Оху или параллелен ей, то его аппликата равна нулю. Если вектор принадлежит или параллелен координатной плоскости Охz, то его

ордината равна нулю. Если же вектор принадлежит или параллелен координатной плоскости Оyz, то его абсцисса равна нулю.

В случае, когда вектор лежит на оси координат Оx или параллелен ей, то ордината и аппликата равны нулю. Если вектор принадлежит или параллелен оси Оy, то абсцисса и аппликата равны нулю. И если вектор принадлежит или параллелен оси Оz, то абсцисса и ордината равны нулю.

А сейчас поговорим о противоположных векторах. Из планиметрии известно, что координаты противоположных векторов противоположны. Это утверждение верно и для векторов в пространстве.

Задание: найти координаты векторов противоположных данным векторам.

Решение:

Также из курса планиметрии вам известны правила определения координат вектора суммы, вектора разности и произведения вектора на число.

Такие же правила действую и для координат векторов в пространстве.

Задание: 𝑎 ⃗{−1;0;3}, 𝑏 ⃗{5;−2;1} и 𝑐 ⃗{1;7;−2}. Определить координаты векторов:

1) 𝑎 ⃗+𝑐 ⃗;   2) 𝑏 ⃗−𝑎 ⃗;   3) 2𝑎 ⃗+𝑏 ⃗;   4) 1/2 𝑎 ⃗−2𝑏 ⃗+𝑐 ⃗.

Решение:

Так, используя правила определения координат вектора суммы, разности и произведения вектора на число, мы определили координаты данных векторов.

Итоги:

Сегодня мы ввели понятие координатных векторов i, j, k. И, пользуясь тем, что любой вектор пространства можно выразить через 3 некомпланарных вектора, записали, что коэффициенты х, у и z называют координатами вектора p в данной системе координат.

Мы отметили, что все координаты нулевого вектора равны нулю. Равные векторы имеют равные координаты, а координаты противоположных векторов противоположны.

Также мы записали правила, которые позволяют находить координаты любого вектора, представленного в виде алгебраической суммы данных векторов, координаты которых известны.

Направляющий вектор прямой, координаты направляющего вектора прямой

С понятием прямой линии тесно связано понятие ее направляющего вектора. Часто в задачах бывает удобнее рассматривать его вместо самой прямой. В рамках данного материала мы разберем, что же такое направляющий вектор прямой в пространстве и на плоскости, и расскажем, для чего можно его использовать.

В первом пункте мы сформулируем определение и покажем основные понятия на иллюстрациях, дополнив их конкретными примерами направляющего вектора. Далее мы посмотрим, как прямая и направляющие векторы взаимодействуют в прямоугольной системе координат и как можно вычислить координаты этого вектора, если мы знаем уравнение прямой. Все правила, как всегда, будут проиллюстрированы примерами решений задач.

Что такое направляющий вектор прямой

Для того чтобы понять эту тему, нам нужно хорошо представлять, что такое вообще прямая и как она может размещаться в пространстве и на плоскости. Кроме того, важно вспомнить ранее изученное понятие вектора. Об этом мы уже писали в отдельном материале. Если нужно, найдите и перечитайте эти статьи.

Сформулируем, что такое направляющий вектор.

Определение 1

Направляющим вектором прямой является любой вектор, не равный нулю, который размещается на данной прямой или же на прямой, параллельной ей.

Что такое направляющий вектор прямой

Получается, что у каждой прямой есть бесконечное множество направляющих векторов. При этом все они будут являться коллинеарными в силу озвученного определения, ведь они лежат на одной прямой или параллельной ей другой прямой. Выходит, что если a→ является направляющий вектором прямой a, то другой направляющий вектор мы можем обозначить как t·a→ при любом значении t, соответствующем действительному числу.

Также из определения выше можно сделать вывод, что направляющие векторы двух параллельных прямых будут совпадать: если прямые a и a1 являются параллельными, то вектор a→ будет направляющим и для a, и для a1.

Третий вывод, следующий из определения: если у нас есть направляющий вектор прямой a, то он будет перпендикулярным по отношению к любому нормальному вектору той же прямой.

Приведем пример направл

Нормальный вектор прямой, координаты нормального вектора прямой

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Нормальный вектор прямой – определение, примеры, иллюстрации

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами.  Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Нормальный вектор прямой – определение, примеры, иллюстрации

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а1 параллельные, а n→ считается нормальным вектором прямой a, также считается нормальным вектором для прямой a1.  Когда прямая а имеет прямой вектор, тогда вектор t·n→ является ненулевым при любом значении параметра t, причем также является нормальным для прямой a.

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость Оху, то множеством векторов для Ох является координатный вектор j→. Он считается ненулевым и принадлежащим координатной оси Оу, перпендикулярной Ох. Все множество нормальных векторов относительно Ох можно записать, как t·j→, t∈R, t≠0.

Прямоугольная система Oxyz имеет нормальный вектор i→, относящийся к пря

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *