принцип работы, устройство, назначение генератора
Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.
Превращение механической энергии в электрическую
Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.
Устройство и конструкция генератора переменного тока
Стандартный электрогенератор имеет следующие компоненты:
- Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
- Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
- Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
- Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.
В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:
- Ротор – подвижная цельная деталь из железа;
- Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.
Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:
- С подвижным якорем и статическим магнитным полем.
- С неподвижным якорем и вращающимся магнитным полем.
В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.
Схема генератора переменного тока
Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.
Классификация и виды агрегатов
Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.
По принципу работы
Разделяют асинхронные и синхронные генераторы переменного тока.
Асинхронный
У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.
Синхронный
Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.
По типу топлива двигателя
Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.
Газовый генератор
В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:
- Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
- Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
- Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
- Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор
Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:
- Относительная дешевизна топлива;
- Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
- Высокий уровень противопожарной безопасности;
- В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
- Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор
Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:
- Малые габариты при высокой мощности;
- Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
- В случае перегрузки генератора автоматически срабатывает защита;
- Просты в обслуживании и ремонте;
- Во время работы не издают много шума;
- Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.
Основные сферы применения
В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:
- Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
- Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
- Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.
Устройство генератора тока | У электрика.ру
Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему и рассмотреть устройство генераторов постоянного и переменного токов.
На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.
Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.
Содержание:
Устройство генератора переменного тока
Итак, относительно устройства генератора переменного тока и принципа его действия.
Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.
Основные виды генераторов переменного тока
Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.
- По виду используемой энергии:
- Энергия ветра
- Энергия газа
- Энергия жидкого топлива
- Энергия тепла
- Энергия воды
- По типу генератора:
- Однофазный
- Трёхфазный
- Синхронный
- Асинхронный
- По количеству полюсов статорной обмотки
Есть и другие типы, но они менее распространены.
- По типу возбуждения:
- Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
- Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
- Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы
Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.
Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.
Асинхронный генератор: схема, устройство, принцип работы
Устройство асинхронного генератора
Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.
Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.
Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.
Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.
Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.
Схемы подключения
Собственно, даже не схемы включения, а варианты. Их, как правило, три:
- Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
- Ручное включение
. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор. - Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор
Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.
Включение однофазного генератора в трёхфазную сеть
Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.
Трехфазный генератор
Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.
Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.
Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.
Устройство генератора постоянного тока
Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:
- 0° — ЭДС =0
- 90° — ЭДС достигает максимального значения со знаком «+»
- 180° — ЭДС снова равна 0
- 270° — ЭДС достигает пикового значения со знаком «-»
Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.
Схема генератора постоянного тока
Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.
С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:
Основные виды генераторов постоянного тока
В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.
По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:
- Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
- Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
- Зависимое возбуждение, которое делится на три типа:
- Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
- Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
- Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы
Схема генератора независимого возбуждения
Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.
Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.
Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.
Генераторы с параллельным возбуждением: схема, устройство, принцип работы
Схема генератора параллельного возбуждения
У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.
Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.
В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.
Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.
Генераторы с последовательным возбуждением: схема, устройство, принцип работы
Схема генератора последовательного возбуждения
Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.
Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.
Генераторы со смешанным возбуждением: схема, устройство, принцип работы
Схема генератора со смешанным возбуждением
На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик такого генератора, и мы по ним пройдемся.
График внешних характеристик генератора постоянного тока со смешанным возбуждением
Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.
Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.
Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.
Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.
К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.
Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.
Поделиться ссылкой:
Похожее
Электрический генератор — Википедия
Электрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания Ганц, 1909 год.[1] Фотография Прокудина-Горского, 1911 год. У этого термина существуют и другие значения, см. Генератор.Электри́ческий генера́тор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
Динамо-машина Йедлика[править | править код]
В 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.
Диск Фарадея[править | править код]
В 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.
Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.
Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.
Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.
Динамо-машина[править | править код]
Динамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году.
Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.
Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.
Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.
Обратимость электрических машин
Русский учёный Э. Х. Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.
Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 году.
При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя. В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением.
В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти.
В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.
До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух принципов:
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.
Другие электрические генераторы, использующие вращение[править | править код]
Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.
МГД генератор[править | править код]
Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.
Электромеханические индукционные генераторы[править | править код]
Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.
- E=−dΦdt{\displaystyle E=-{\frac {d\Phi }{dt}}} — устанавливает связь между ЭДС и скоростью изменения магнитного потока Φ{\displaystyle \Phi } пронизывающего обмотку генератора.
Классификация электромеханических генераторов[править | править код]
- По типу первичного двигателя:
- По виду выходного электрического тока:
- Вид соединения обмоток:
- С включением обмоток звездой
- С включением обмоток треугольником
- По способу возбуждения
- С возбуждением постоянными магнитами
- С внешним возбуждением
- С самовозбуждением
- С последовательным возбуждением
- С параллельным возбуждением
- Со смешанным возбуждением
Генератор переменного тока Википедия
У этого термина существуют и другие значения, см. Генератор.Генера́тор переме́нного то́ка (устаревшее «альтерна́тор») — электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.
Как работает генератор переменного тока: генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки. Электроны перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток. Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита, то есть когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.
История[ | ]
Электрические машины, генерирующие переменный ток, были известны в простом виде со времён открытия магнитной индукции электрического тока. Ранние машины были разработаны Майклом Фарадеем и Ипполитом Пикси.
Фарадей разработал «вращающийся прямоугольник», действие которого было многополярным — каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году. Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году. Лорд Кельвин и Себастьян Ферранти также разработали ранний альтернатор, производивший переменный ток частотой между 100 и 300 герц. В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (к
принцип работы и описание устройства, ампераж
Чтобы преобразовать механическую силу в электрическую энергию, используется генератор напряжения. При рассмотрении устройства важно затронуть тему принципа работы и технических характеристик. Учитываются типы установок и схема генератора.
Описание устройства
Простейший генератор тока представляет собой установку с проволочной катушкой. Ветки между собой пересекаются и во время движения электроны начинают перемещаться. Действие элементов производится относительно полюсов магнитов. Основная задача — индицирование электрического тока. Если обратиться к истории, ранее существовали такие разновидности:
- динамо-машина Йедлика;
- диск Фарадея;
- динамо-машина;
- электрические модули с вращением.
Динамо-машина
Базовый принцип работы
Для примера рекомендуется рассмотреть асинхронный генератор, который состоит из следующих элементов:
- ротор;
- подвижный якорь;
- встроенный статор;
- обмотка;
- прочный стержень;
- кольца;
- корпус;
- пластины;
- сердечник ротора.
Принцип работы построен на преобразовании механической энергии. Уровень электрического тока зависит от скорости вращения генератора. Процесс начинается с вращения ротора. На модуль действует магнитное поле и приводится в действие пластина, а также обмотка статора. Катушка испытывает нагрузки, и в цепи появляется ток.
Катушка в цепи
Основная задача на этом этапе — повышение выходной мощности. При увеличении скорости повышается показатель магнитной индукции. Она влияет на коэффициент полезного действия устройства.
Дополнительная информация! К катушке подведены контакты статора, есть возможность подключить проводники.
Технические характеристики
Рассматривая простой генератор напряжения, нужно учитывать следующие показатели:
- номинальная мощность;
- частота;
- токовая перегрузка;
- количество полюсов.
Если рассматривать генераторы, специалисты обращают внимание на амперы. Чтобы им управлять, используются регуляторы мощности. В отечественных автомобилях показатель находится на отметке 55 ампер.
Замер напряжения
Скорость вращения генератора
Скорость вращения генератора в синхронном, асинхронном двигателе зависит от следующих факторов:
- число полюсов;
- частота.
Если взять модификацию на два полюса, при частоте 50 герц обеспечивает обороты 3000. Модификация на 6 полюсов при той же частоте дает обороты 1000. Устройство на 16 полюсов с частотой 50 герц обеспечивает обороты 375.
Виды и применение
Разделение устройств, происходит в зависимости от сети:
- постоянного тока;
- переменного тока.
Если рассматривать устройства переменного тока, они делятся на подгруппы:
- синхронные;
- асинхронные.
Асинхронный тип
Разделение модулей в зависимости от количества фаз:
- однофазные;
- трехфазные.
Генераторы постоянного тока производятся с дополнительной обмоткой, предрасположены к большим нагрузкам. Они используются в металлургической промышленности. Установки функционируют по принципу электромагнитной индукции. К основным параметрам относят:
- количество оборотов;
- мощность;
- индуктивность;
- частота.
В установках используются катушки возбуждения. У них различная пропускная способность, учитывается количество контактов. Если разбирать мощные установки, у них имеется несколько колец, которые изолированы между собой. Для контроля электрического напряжения, применяется выпрямитель.
Выпрямитель в цепи
У якоря используются щётки, которые не соприкасаются между собой. При работе отслеживается уровень напряжения на контуре. В нормальном состоянии показатель имеет нулевое значение. Отдельный вопрос — выбор полярности. К второстепенным показателям приписывают синусоидальное напряжение.
Особенности якоря:
- функционирует на холостом ходу;
- выдерживает значительную нагрузку;
- создаёт собственное магнитное поле;
- является компактным;
- при вращении элемента образуется магнитное поле.
Есть установки с несколькими якорями, которые поставляются с магнитными проводами. Основной показатель демонстрирует насыщенность напряжения в цепи. Если требуется определить электродвижущую силу, берётся в расчёт количество оборотов, а также полюсов.
Важно! Дополнительно в формуле рассчитывается показатель индуктивности. Есть варианты с параллельным и последовательным соединением элементов.
Последовательное подключение
Обмотка на якоре может быть одинарной либо двойной, многое зависит от количества проводников. С целью расчета средней электродвижущей силы определяется мощность и частота. Это физическая величина, которая может быть определена лишь в квазистационарных цепях. Учитывается полезная мощность и максимальный уровень напряжения.
Виды генераторов постоянного тока:
- параллельные;
- последовательного возбуждения;
- смешанный тип.
Установки с параллельным возбуждением могут называться шунтами. Они отличаются небольшой мощностью. У элементов широкая сфера применения. Модули с последовательным возбуждением могут называться сериесными и поставляются для промышленных предприятий. У них используется постоянный магнит и нет проблем с нагрузкой.
Установки способны работать на холостом ходу, есть возможность регулировать электрическую нагрузку. При рассмотрении генераторов с независимым возбуждением учитываются следующие показатели:
- ток нагрузки;
- холостой ход;
- максимальная мощность;
- частота;
- электродвижущая сила;
- сопротивление.
К основным преимуществам генераторов постоянного тока стоит приписать независимое возбуждение. К минусам относят зависимость от источника питания. В 2019 году установки могут применяться в сильноточных агрегатах.
Сильноточные агрегаты
Если рассматривать регулировочные характеристики генераторов, учитывается тип нагрузки и постоянство частоты. Модификации с параллельным возбуждением имеют следующие особенности:
- не боятся коротких замыканий;
- быстрый прогрев якоря;
- питание установок;
- подходят для сварочных аппаратов.
Устройства переменного тока функционируют за счет вращения ротора. Модели используются в морских судах и частично в общественном транспорте. Синхронные модификации поставляются с блоками пусковой перегрузки. Элементы встречаются в персональных компьютерах и прочей электронике.
Рассматривая асинхронный генератор, принцип работы и устройство, можно заметить, что по конструкции он являются простым. Агрегаты устанавливаются на сварочную технику. Однофазные функционируют при напряжении 220 вольт, а трехфазные поставляются с параметром 380 вольт.
Интересно! Установки востребованы на промышленных объектах, где требуются модули высокой мощности.
Схема генератора переменного тока
Схема генератора переменного тока включает следующие элементы:
- центральный шкив;
- вентиляторы;
- ротор;
- обмотка держателя;
- контакты;
- щеткодержатель;
- элемент выпрямитель.
Меры безопасности
Осуществляя диагностику модуля, рекомендуется придерживаться правил:
- не замыкать контакты;
- не допускать попадания воды;
- отдельно хранить аккумулятор;
- следить за герметичностью конструкции;
- проверять уровень напряжения.
Во время снятия генератора проверяются комплектующие. Уделяется внимание правилам эксплуатации по инструкции. Установки функционируют в определенных режимах, оцениваются основные характеристики. Модули боятся соли и жидкостей. Установка генератора должна производиться специалистом.
Если подключать генератор к автомобилю, нужно проверить силовой выпрямитель. Необходимо вывести обмотки возбудителя, а также фазу. Отдельно проверяется регулятор напряжения. При установке запрещается производить проверку до момента полного подключения.
Выше подробно описано понятие генератора напряжения. Расписан базовый принцип работы и характеристики. Учитывается ампераж, скорость вращения и схема подключения.
Генераторы тока: переменного и постоянного
Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.
Что такое генератор тока
Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.
В чем разница между постоянным и переменным током
Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).
Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.
Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.
В чем конструктивная разница между генераторами
Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.
Особенности конструкции генераторов переменного тока
Электростанция такого типа состоит из:- Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
- Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
- Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
- Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
- Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.
Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.
Особенности конструкции генератора переменного тока
Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.
Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.
Асинхронным машинам характерны:
- отсутствие электрической связи с ротором;
- вращение якоря под воздействием остаточного механизма статора;
- измененная электрическая нагрузка на статоре.
Такие агрегаты могут быть однофазными и трехфазными.
Принцип работы генератора постоянного тока
Простейший по конструкции генератор работает следующим образом:
- Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
- Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
- Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
- С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.
Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.
К преимуществам генераторов постоянного тока относят:
- небольшой вес и компактность агрегата;
- возможность использовать в экстремальных условиях;
- отсутствие потерь, связанных с вихревыми токами.
Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.
Принцип работы генератора переменного тока
Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.
Основные достоинства генераторов переменного тока
В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.
Плюсами использования генераторов переменного тока являются:
- большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
- выработка электроэнергии на низких скоростях вращения ротора;
- проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
- конструкция токосъемного узла отличается большей надежностью;
- больше эксплуатационный ресурс и меньше эксплуатационные затраты.
Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.
Где применяются генераторы постоянного и переменного тока
Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники.
Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования.
Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.
Колебания и волны » ГДЗ (решебник) по физике 7-11 классов
633. Через какой наименьший промежуток времени от начала движения из положения равновесия тело, подвешенное на нити, смещается на половину амплитуды? Данную систему нить — тело считайте математическим маятником, период колебаний которого 12 с. За какое время тело проходит оставшуюся часть пути до максимального смещения?
634. Шарику массой 100 г, висящему на пружине жесткостью 1,6 Н/м, сообщили скорость 0,04 м/с, направленную вертикально вниз, и одновременно включили секундомер. Запишите закон изменения координаты шарика х от времени. Ось ОХ направлена вертикально вверх.
635. Грузик, надетый на гладкую горизонтальную спицу, соединен двумя невесомыми пружинами (рис. 154). Свободные концы пружин прикреплены к неподвижным стенкам. В положении равновесия пружины не деформированы. Определите период колебаний грузика, если известно, что при его поочередном подвешивании к каждой из пружин по отдельности они удлиняются соответственно на 4 и 6 см.
636. Тело массой 1 кг колеблется на пружине с амплитудой 0,02 м. Максимальное ускорение тела равно 0,3 м/с2. Определите полную механическую энергию колебаний.
639. На гладкой горизонтальной поверхности на пружине жесткостью k находится брусок массой т. Свободный конец пружины прикреплен к стене. В брусок попадает пуля, летящая со скоростью v0 под углом а к горизонту, и застревает в нем (рис. 156). Масса пули, равная т0, много меньше массы бруска. Определите энергию колебаний системы и запишите уравнение колебаний бруска вдоль оси ОХ, считая за нуль его начальное положение.
642. Небольшой шарик массой 20 г, подвешенный на нерастяжимой непроводящей нити, совершает колебания в однородном электрическом поле напряженностью 20 В/м, силовые линии которого вертикальны. После того как ему сообщили некоторый заряд q, период колебаний изменился в 1,2 раза. Определите заряд q.
643. Ускорение свободного падения на поверхности Марса 3,7 м/с2. Сравните периоды колебаний математического и пружинного маятников на Марсе и Земле.
648. Колебательный контур состоит из катушки и двух конденсаторов, которые можно подключать по отдельности и параллельно. При подключении поочередно одного из конденсаторов периоды колебаний в колебательном контуре равны 3 и 4 с. Определите период колебаний при параллельном подключении обоих конденсаторов.
651. В колебательном контуре, состоящем из катушки индуктивностью 2 Гн и конденсатора емкостью 1,5 мкФ, максимальное значение заряда на пластинах 2 • 10“6 Кл. Определите значение силы тока в контуре в тот момент, когда заряд на пластинах конденсатора станет равным 10“6 Кл.
652. В колебательном контуре, состоящем из конденсатора емкостью 10 мкФ и катушки индуктивностью
0,4 Гн, происходят затухающие колебания. В некоторый момент времени сила тока в контуре 10~3 А, а заряд на пластинах конденсатора 10~6 Кл. Определите количество теплоты, выделившейся в проводниках, когда колебания полностью прекратятся.
653. Определите период колебаний в контуре (рис. 157). В цепь включены два идеальных полупроводниковых диода. С = 0,25 мкФ, Lx = 2,5 мГн, Ь2 = 4,9 мГн.
655. На рисунке 158 показан график зависимости силы тока от времени. Определите действующее значение силы переменного тока.
658. К генератору переменного тока подключили печь сопротивлением 440 Ом. Определите количество теплоты, выделившейся в печи за 2 мин работы, если амплитуда напряжения 220 В.
663. В цепи (рис. 159) индуктивность катушки равна 2,53 мГн, а емкость конденсатора равна 10 мкФ, частота источника переменного тока равна 103 Гц. Определите силу тока, идущего через резистор.
665. Определите амплитуду установившихся колебаний силы тока при резонансе в колебательном контуре, если активное сопротивление равно 5 Ом, а амплитудное значение внешнего напряжения равно 100 В.
667. В колебательный контур с конденсатором емкостью 10 мкФ и катушкой индуктивностью 0,1 Гн последовательно включили источник переменной ЭДС. При какой частоте ЭДС амплитуда силы тока в контуре будет максимальной?
670. Первичная обмотка трансформатора в ламповом радиоприемнике имеет 2000 витков, напряжение в сети 220 В. Определите число витков во вторичной обмотке трансформатора, используемого для питания электролампы, рассчитанной на напряжение 10 В и силу тока 0,5 А, если сопротивление вторичной обмотки 2 Ом.
675. Для определения числа витков в первичной обмотке трансформатора на его сердечник намотали 10 витков провода и концы подключили к вольтметру. При подаче на первичную обмотку переменного напряжения 220 В вольтметр показал напряжение 1,1 В. Чему равно число витков в первичной обмотке трансформатора?
680. Камень брошен со скалы. Всплеск от его падения в воду был услышан через 5 с. Определите высоту скалы. Скорость звука в воздухе 330 м/с.
685. Волна возбуждается источником, уравнение колебаний которого s = 0,lsin57rt. Скорость распространения волны 100 м/с. Запишите уравнение волны и найдите смещение от положения равновесия, скорость и ускорение точки, находящейся на расстоянии 180 м от источника колебаний в момент времени, равный 2 с.
689. Определите расстояние от наблюдателя до места, где вспыхнула молния, если промежуток времени между вспышкой и громом был равен 5 с. Скорость звука в воздухе 330 м/с, скорость света 3 • 108 м/с.
692. Наибольшая частота волн, воспринимаемых ухом как звук, равна 20 000 Гц. При повышении температуры от 0 до 20 °С скорость звука возрастает на 12 м/с. Определите, на сколько возрастает при этом наименьшая длина звуковых волн.
696. Определите, на каком расстоянии от источника плотность потока излучения уменьшится в 100 раз по сравнению с плотностью потока излучения на расстоянии 100 м от источника.
704. Радиолокатор, ведя разведку месторождений, работает на волне 12 см и дает 5000 импульсов в секунду. Длительность импульса 3 мкс. Сколько колебаний содержится в каждом импульсе и какова наибольшая глубина разведки локатора?