Урок 9. конденсатор и катушка индуктивности в цепи переменного электрического тока — Физика — 11 класс
Физика, 11 класс
Урок 9. Конденсатор и катушка индуктивности в цепи переменного электрического тока
Перечень вопросов, рассматриваемых на уроке:
Процессы, происходящие в цепи переменного электрического тока при наличии конденсатора и катушки индуктивности;
Устройство и принцип действия генератора переменного тока и трансформатора;
Автоколебания;
Проблемы передачи электроэнергии и способы повышения эффективности её использования.
Глоссарий по теме
Автоколебания – незатухающие колебания в системе, поддерживаемые за счет постоянного источника энергии.
Электрические машины преобразующие механическую энергию в электрическую называются генераторами.
Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.
Коэффициент трансформации – величина равная отношению напряжений в первичной и вторичной обмотках трансформатора.
Основная и дополнительная литература по теме урока
Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.
Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.
Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.
Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004
Основное содержание урока
Переменный ток, которым мы пользуемся, вырабатывается с помощью генераторов переменного тока на электростанциях. Для передачи произведенной электроэнергии строятся линии электропередачи. В каждом населенном пункте имеются трансформаторы. Какую роль играют трансформаторы при передаче электроэнергии? Об этом мы поговорим на данном уроке.
В июле 1832 года Фарадей получил анонимное письмо, в котором автор описывал устройство созданного им генератора постоянного тока. Ознакомившись с содержанием письма Фарадей тут же отослал его в редакцию научного журнала. Автор этого письма не назвал себя, его фамилия осталась неизвестной.
Электрические машины преобразующие механическую энергию в электрическую называются генераторами. Впоследствии генераторы постоянного тока непрерывно совершенствовались. Потом, когда начали использовать переменный ток они уступили место генераторам переменного тока. Переменный ток в основном вырабатывается генераторами переменного тока. Простой моделью генератора может служить прямоугольная рамка, вращающаяся в магнитном поле. При вращении рамки, магнитный поток пронизывающий площадь поверхности, ограниченную рамкой, меняется по гармоническому закону:
N- число витков.
Возникает ЭДС индукции который меняется по гармоническому закону.
ЭДС индукции в рамке равна:
Если с помощью контактных колец и скользящих по ним щёток соединить концы рамки с электрической цепью, то в цепи возникнет переменный ток.
В современной энергетике для производства электроэнергии используются электромеханические индукционные генераторы. Принцип действия таких генераторов основан на явлении электромагнитной индукции. Основными частями генератора являются статор и ротор. Неподвижная часть генератора называется статором, а вращающаяся – ротором.
Постоянный ток не может идти по цепи содержащей конденсатор, т. к. цепь оказывается разомкнутой. При включении конденсатора в цепь переменного тока конденсатор будет периодически заряжаться и разряжаться с частотой равной частоте приложенного напряжения. В результате периодически меняющихся процессов зарядки и разрядки конденсатора в цепи течет переменный ток. Лампа накаливания, включенная в цепь переменного тока последовательно с конденсатором кажется горящей непрерывно, т.к. при высокой частоте колебаний силы тока человеческий глаз не способен заметить периодического ослабления нити накала. Конденсатор оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.
Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора называют ёмкостным сопротивлением.
Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току. Чем больше ёмкость конденсатора и частота колебаний, тем больше ток перезарядки. При наличии в цепи переменного тока конденсатора колебания силы тока опережают по фазе колебания напряжения конденсаторе на 90º. Сдвиг фазы колебаний силы тока на 90º относительно фазы колебания напряжения на конденсаторе приводит к тому, что мощность переменного тока в течение одной четверти периода имеет положительный знак, а в течение второй четверти – отрицательный. Поэтому среднее значение мощности за период равно нулю.
Индуктивность в цепи, так же, как и ёмкость, влияет на силу переменного тока. Объясняется это явлением самоиндукции. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при этом вихревое электрическое поле тормозит движение электронов. Лишь спустя некоторое время сила тока достигает максимального значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она приобрела бы при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и его частотой колебаний.
Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.
Если частота равна нулю, то индуктивное сопротивление тоже равно нулю. Поэтому постоянный ток как бы не «замечает» катушку индуктивности в цепи.
Колебания напряжения на катушке опережают по фазе колебания силы тока на 90º.
Сдвиг фазы колебаний приводит к тому, что средняя мощность за период колебаний равна нулю.
Генератор на транзисторе используется для создания высокочастотных электромагнитных колебаний.
Для потребления электрической энергии нужно доставить его от источника к потребителю. Для этого строят линии электропередачи. При передаче электроэнергии на расстояние возникают потери энергии вследствие нагревания проводов. Тепловые потери можно определить используя закон Джоуля – Ленца:
Из этой формулы следует, что для уменьшения потерь энергиинужно уменьшить сопротивление или повысить напряжение. Уменьшения сопротивления проводов ЛЭП требует увеличения их площади поперечного сечения, что приведет к увеличению массы проводов. Увеличение массы проводов связано с большими расходами на укрепление столбов линии электропередачи, для их удержания и на производство металла для них. Наиболее эффективным является увеличение напряжения.
Для изменения напряжения в сети используют трансформаторы. Трансформатор был изобретен в 1876 году Яблочковым и в 1882 году усовершенствован Усагиным. Простейший трансформатор состоит из двух катушек, надетых на общий замкнутый стальной сердечник. Эти катушки называются обмотками трансформатора. Обмотка трансформатора, подключаемая к источнику переменного напряжения, называют первичной, а другая к которой присоединяют нагрузку – вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в трансформаторе возникает переменное магнитное поле. Это поле пронизывает обе обмотки и в них возникает вихревое электрическое поле, которое действуя на заряженные частицы во вторичной обмотке способствует возникновению в ней переменного напряжения.
Величина равная отношению напряжений в первичной и вторичной обмотках трансформатора называют коэффициентом трансформации. Его обозначают буквой «k».
k– коэффициент трансформации.
U1 иU2 – напряжения на первичной и на вторичной обмотке.
N1 и N2— число витков на первичной и на вторичной обмотке.
Если k < 1 — трансформатор повышающий,
k > 1 — трансформатор понижающий.
КПД трансформатора равен отношению мощности в нагрузке к мощности, подаваемой из сети на первичную обмотку:
Для передачи электроэнергии на расстояние напряжение повышают с помощью трансформатора, а для потребления — понижают. В массивных проводниках при изменении магнитного поля возникают индукционные токи (токи Фуко), которые нагревают проводник. Чтобы эти индукционные токи не нагревали сердечник трансформатора его делают не сплошным, а из отдельных пластин, скрепленных вместе.
Закон Ома гласит: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.
Из формулы закона Ома для переменного тока мы видим, что при постоянной амплитуде напряжения, амплитуда силы тока зависит от частоты. Амплитуда силы тока будет максимальной, если полное сопротивление минимально. Полное сопротивление цепи минимально при равенстве индуктивного и ёмкостного сопротивления. В этом заключается условие возникновения резонанса в электрической цепи.
Резонанс в электрической цепи – это явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний контура.
Явление резонанса широко используется в радиотехнике, в схемах настройки радиоприемников. Меняя электроемкость конденсатора в колебательном контуре можно настроить его на нужную волну, т.е. выделить частоту на которой работает передающая станция
Разбор тренировочных заданий
1. Каково амплитудное значение ЭДС, возникающей в рамке из 50 витков, если она вращается с циклической частотой 180 рад/с в магнитном поле индукцией 0,4 Тл? Площадь рамки 0,02 м2.
Дано:
N=50
ω=180 рад/с
B=0,4 Тл
S=0,02 м2
_________
Ԑm=?
Решение:
Ответ: 72 В.
2. Катушка с индуктивностью 0,08 Гн присоединена к источнику переменного тока частотой 1000 Гц. При этом вольтметр показывает 100 В. Определить амплитуду тока в цепи. Ответ округлить до десятых.
Дано:
L=0,08 Гн
ν= 1000 Гц
U=100 В
__________
Im=?
Решение:
Напишем закон Ома для переменного тока
Т.к. ХC и R равны нулю, то
Учитывая, что , получаем:
Найдем амплитудное значение напряжения:
Подставим числовые данные в формулу для расчета амплитуды силы тока:
Ответ: Im = 0,3 А.
Переменный электрический ток. Генератор переменного электрического тока
1. Переменный электрический ток. Генератор переменного электрического тока.
2. Определение
• Переменным током называетсяэлектрический ток, который
периодически изменяется по
величине и по направлению.
• Условное обозначение
или
.
• Модуль максимального значения
силы тока за период называется
амплитудой колебаний силы тока.
• В настоящее время в электрических
сетях используется переменный ток.
Многие законы, которые были
выведены для постоянного тока,
действуют и для переменного тока.
Переменный ток имеет ряд преимуществ по сравнению с
постоянным током:
— генератор переменного тока значительно проще и дешевле
генератора постоянного тока;
— переменный ток можно трансформировать;
— переменный ток легко преобразуется в постоянный;
— двигатели переменного тока значительно проще и дешевле
двигателей постоянного тока;
— проблема передачи электроэнергии на большие расстояния
была решена только при использовании переменного тока
высокого напряжения и трансформаторов.
Для производства
переменного тока применяется
синусоидальное напряжение.
4. Частота переменного тока – это число колебаний в 1 с
Стандартная частотапромышленного
переменного тока
равна 50 Гц.
5. Генератор переменного тока
Генератор переменного тока — являетсяэлектромеханическим устройством, которое преобразует
механическую энергию в электрическую энергию
переменного тока.
Системы производящие переменный ток были известны в
простых видах со времён открытия магнитной индукции
электрического тока.
Принцип действия генератора основан на явлении
электромагнитной индукции — возникновении
электрического напряжения в обмотке статора, находящейся
в переменном магнитном поле. Оно создается с помощью
вращающегося электромагнита — ротора при прохождении
по его обмотке постоянного тока.
8. Общий вид генератора переменного тока с внутренними полюсами; Ротор является индуктором, а статор — якорем.
9. Схема устройства генератора: 1 — неподвижный якорь; 2 — вращающийся индуктор; 3— контактные кольца; 4— скользящие по ним щетки.
Вращающийся индукторгенератора 1 (ротор) и якорь
(статор) 2, в обмотке которого
индуцируется ток.
11. Виды генераторов:
— это генератор,который приводится в действие паровой
или газовой турбиной.
генератор, ротор
которого
вращается от
двигателя
внутреннего
сгорания.
вращает
гидротурбина.
Генератор переменного тока раннего 20-го века
сделанный в Будапеште
Получение и передача переменного электрического тока. 9 класс. Физика. — Объяснение нового материала.
Комментарии преподавателяРассмотрим ещё раз получение индукционного тока в катушке с помощью перемещения относительно неё постоянного магнита. Но теперь будем периодически двигать магнит вверх и вниз в течение нескольких секунд. Мы увидим, что при этом стрелка гальванометра отклоняется от нулевого деления то в одну, то в другую сторону. Это говорит о том, что модуль силы индукционного тока в катушке и направление этого тока периодически меняются.
- Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током
В осветительной сети наших домов и во многих отраслях промышленности используется именно переменный ток.
В настоящее время для получения переменного тока используют в основном электромеханические индукционные генераторы, т. е. устройства, в которых механическая энергия преобразуется в электрическую. Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции.
Генератор переменного тока: а — внешний вид; б — общий вид на электростанции вместе с паровой турбиной, приводящей ротор генератора во вращение
Неподвижная часть генератора, аналогичная контуру, называется статором, а вращающаяся, т. е. магнит, —ротором. В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.
Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и пр.). Во внутренней его части прорезаются пазы, в которые витками укладывается толстый медный провод. В витках и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока.
Магнитное поле создаётся ротором (рис. а). Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Ток к этой обмотке подводится через щётки и кольца от постороннего источника постоянного тока.
Рис. Схема генератора переменного тока
На рисунке б приведена схема генератора переменного тока. Штрихами показано примерное расположение линий индукции магнитного поля ротора. При вращении ротора какой-либо внешней механической силой создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.
На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.
На рисунке а изображён внешний вид мощного гидрогенератора, а на рисунке б схематично показано его устройство, где цифрой 1 обозначен статор, цифрой 2 — ротор, а цифрой 3 — водяная турбина.
Рис. Внешний вид и устройство мощного гидрогенератора
Ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.
Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Это означает, что на протяжении 1 с ток 50 раз течёт в одну сторону и 50 раз в другую. В некоторых странах (например, США) стандартная частота переменного тока равна 60 Гц.
Современные высоковольтные ЛЭП
Сила тока, вырабатываемого генераторами переменного тока, меняется со временем по гармоническому закону (т. е. по закону синуса или косинуса). На рисунке показан график изменения силы тока i со временем t.
Рис. График зависимости силы переменного тока от времени
Для передачи электроэнергии от электростанций в места её потребления служат линии электропередачи (ЛЭП). Чем дальше от электростанции находится потребитель тока, тем больше энергии Q тратится на нагревание проводов и тем меньше доходит до потребителя:
Eпотребляемая = Eгенерируемая — Q
Уменьшение потерь электроэнергии при её передаче от электростанций к потребителям является важной задачей экономики.
Из закона Джоуля—Ленца (Q = I2Rt) следует, что уменьшить потери можно за счёт уменьшения сопротивления R проводов и силы тока I в них (что более эффективно, поскольку при уменьшении I в n раз Q уменьшается в n2 раз).
Сопротивление проводов будет тем меньше, чем больше площадь S их поперечного сечения и чем меньше удельное сопротивление ρ металла, из которого они изготовлены (так как R = ρl/S). Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением. Увеличивать толщину проводов экономически невыгодно (ввиду увеличения расхода металла) и неудобно (из-за трудностей при их подвеске).
Поэтому существенного снижения потерь Q можно добиться только за счёт уменьшения силы тока I. Но при этом необходимо во столько же раз увеличить получаемое от генератора напряжение U, чтобы не снижать мощность тока Р (так как Р = UI1). Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.
Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, предназначенного для увеличения или уменьшения переменного напряжения и силы тока.
Павел Николаевич Яблочков (1847—1894)
Русский электротехник и изобретатель. Изобрёл дуговую лампу («свеча Яблочкова»), сконструировал первый генератор переменного тока, трансформатор, сделал изобретения в области электрических машин и химических источников тока
Трансформатор был изобретён в 1876 г. русским учёным Павлом Николаевичем Яблочковым. В основе его работы лежит явление электромагнитной индукции. На рисунке а показан внешний вид трансформатора, а на рисунке б схематично изображены его основные части. Обратите внимание на то, что число витков в обмотках различно: в данном случае N2 > N1. Протекающий в первичной обмотке переменный ток создаёт (главным образом в сердечнике) переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле. В результате действия этого поля на концах вторичной обмотки возникает переменное напряжение U2.
Рис. Внешний вид и схема устройства повышающего трансформатора
Величина U2 определяется из соотношения:
Значит, при N2 > N1 трансформатор будет повышающим (так как U2 > U1), а при N2 < N1 — понижающим (в данном случае U2 < U1).
Теперь вернёмся к вопросу о передаче электроэнергии от электростанции к месту её потребления. Напряжение, вырабатываемое генератором, обычно не превышает 25 кВ. А для оптимальной передачи электроэнергии на большие расстояния требуется напряжение порядка сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, где напряжение повышается до нескольких сотен киловольт (в большинстве случаев оно не превышает 750 кВ), и под таким напряжением подаётся в ЛЭП. Поскольку такое высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 или 220 В, а затем — на предприятия или в жилые дома.
Схема передачи электроэнергии от электростанции к потребителю
Трансформаторы нашли широкое применение в быту. Например, при подзарядке сотового телефона имеющийся в зарядном устройстве трансформатор понижает напряжение, полученное из осветительной сети и равное 220 В, до 5,5 В, пригодного для телефона. В телевизоре имеется несколько трансформаторов (как понижающих, так и повышающих), поскольку для питания различных его узлов требуется напряжение от 1,5 В до 25 кВ.
Внешний вид силового масляного трансформатора
Домашнее задание.Задание 1. Ответь на вопросы.
- Какой электрический ток называется переменным? С помощью какого простого опыта его можно получить?
- Где используют переменный электрический ток?
- Расскажите об устройстве и принципе действия промышленного генератора.
- Чем приводится во вращение ротор генератора на тепловой электростанции; на гидроэлектростанции?
- Почему в гидрогенераторах используют многополюсные роторы?
- По какому физическому закону можно определить потери электроэнергии в ЛЭП и за счёт чего их можно уменьшить?
- Для чего при уменьшении силы тока во столько же раз повышают его напряжение перед подачей в ЛЭП?
- Расскажите об устройстве, принципе действия и применении трансформатора.
Задание 2. Реши ребус.
К занятию прикреплен файл «Это интересно!». Вы можете скачать файл в любое удобное для вас время.
Использованные источники:
http://www.tepka.ru/fizika_9/42.html
Для получения промышленного переменного тока используют
1. Какой электрический ток называется переменным? С помощью какого простого опыта его можно получить?
Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.
Переменный ток можно получить, если в катушке, замкнутой на гальванометр, периодически двигать магнит вверх и вниз.
При этом стрелка гальванометра будет периодически отклоняться от нулевого значения то в одну сторону, то в другую.
Значит, модуль силы индукционного тока и его направление периодически меняются во времени, т.е. в катушке образуется переменный ток.
Сила тока, вырабатываемого генераторами переменного тока, меняется со временем по гармоническому закону ( по закону синуса или косинуса).
2. Где используют переменный электрический ток?
В осветительной сети наших домов и во многих отраслях промышленности используется именно переменный ток.
3. На каком явлении основано действие наиболее распространенных в настоящее время генераторов переменного тока?
В настоящее время для получения переменного тока используют в основном электромеханические индукционные генераторы.
Эти устройства преобразуют механическую энергию в электрическую.
Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции.
4. Как устроен и действует промышленный генератор переменноо тока?
Работа электромеханического генератора переменного тока аналогична способу получения индукционного тока в плоском контуре при вращении внутри него магнита.
Неподвижная часть генератора, аналогичная контуру, называется статором, а вращающаяся (магнит) — ротором.
В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.
Статор промышленного генератора представляет собой стальной цилиндр, в его пазах витками укладывается медный провод.
При изменении пронизывающего витки магнитного потока в них индуцируется переменный электрический ток .
Магнитное поле создаётся ротором.
Чаще это электромагнит, на стальной сердечник которого надета обмотка, по которой протекает постоянный электрический ток.
Ток подводится через щётки и кольца от источника постоянного тока.
Внешняя сила вращает ротор, создаваемое им магнитное поле тоже вращается.
При этом меняется магнитный поток, пронизывающий статор.
В результате этого в обмотке статора индуцируется переменный ток.
5. Чем приводится во вращение ротор генератора на тепловой электростанции? на гидроэлектростанции?
На тепловой электростанции ротор генератора приводится во вращение паровой турбиной; на гидроэлектростанции — водяной турбиной.
На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.
6. Почему в гидрогенераторах используют многополюсные роторы?
Так как скорость вращения водяных турбин относительно невысока, то для создания тока стандартной частоты применяют многополюсные роторы.
Ротор гидрогенератора обычно имеет несколько пар магнитных полюсов.
Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором.
Так как скорость вращения водяных турбин невелика, для создания тока стандартной частоты используют многополюсные роторы.
7. Какова стандартная частота промышленного тока, применяемого в России и многих других странах?
Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц.
8. По какому физическому закону можно определить потери электроэнергии в ЛЭП и за счёт чего их можно уменьшить?
Для передачи электроэнергии от электростанций в места её потребления служат линии электропередачи (ЛЭП).
Чем дальше от электростанции находится потребитель тока, тем больше потери энергии — Q.
E потребляемая = E генерируемая — Q
Уменьшение потерь электроэнергии — это важная задача экономики.
Большие потери энергии возникают из-за нагревания проводов ЛЭП.
По закону Джоуля-Ленца : Q = I 2 Rt.
Уменьшить эти потери можно за счёт уменьшения сопротивления R проводов и силы тока I в них.
Так как R = ρl/S, то провода делают из дешевых меди или алюминия, у которых малое удельное сопротивление.
Увеличивать толщину проводов экономически невыгодно.
Можно уменьшать силу тока, но при этом необходимо во столько же раз увеличить получаемое от генератора напряжение U, чтобы не снижать мощность тока Р = UI.
9. Для чего при уменьшении силы тока во столько же раз повышают его напряжение перед подачей в ЛЭП?
В ЛЭП при передаче электроэнергии на большие расстояния важно не снижать мощность тока Р = UI.
Чтобы уменьшить потери электроэнергии при передаче можно уменьшать силу тока.
Но при этом необходимо во столько же раз увеличить получаемое от генератора напряжение.
При таких преобразованиях мощность тока (Р = UI) в ЛЭП сохраняется.
10. Что такое трансформатор?
Трансформатор — это устройство, предназначенное для увеличения или уменьшения переменного напряжения и силы тока.
Трансформатор был изобретён в 1876 г. русским учёным П.Н. Яблочковым.
В основе его работы лежит явление электромагнитной индукции.
11. Как устроен трансформатор? его принцип действия?
Трансформатор состоит из двух обмоток (как минимум) и железного сердечника.
Протекающий в первичной обмотке переменный ток создаёт внутри сердечника переменное магнитное поле, которое порождает переменное электрическое поле во вторичной обмотке.
Во вторичной обмотке возникает индукционный ток, а на ее концах переменное напряжение U2.
Величина U2 определяется из соотношения:
При N2 > N1 трансформатор называется повышающим ( U2 > U1).
При N2 По следам «английских ученых»
Несмотря на то что многие приборы работают на постоянном токе, вся энергосистема страны построена на переменном.
Последний обладает рядом преимуществ: простота трансформации, низкая стоимость генераторов и двигателей. Как же происходит получение переменного тока?
Принцип получения переменного тока
Преобразование механической энергии в электрическую происходит за счет электромагнитной индукции. Это явление состоит в следующем: если магнитный поток (МП), пересекающий проводник, изменить, в дальнейшем возникнет электродвижущая сила (ЭДС). Добиться изменения МП можно путем перемещения проводника в магнитном поле.
Электродвижущая сила источника тока
ЭДС при этом равна Е = B * L * V * sin α, где:
- B — индукция МП, Гн;
- L — длина проводника, м;
- V — скорость движения сердечника относительно поля, м/с;
- α — угол между вектором скорости проводника и силовыми линиями поля.
Способы
Таким образом, для получения переменного тока достаточно вращать в поле постоянного магнита проволочную рамку с подсоединенной к ее концам электрической цепью. Источником энергии выступает сила, вращающая рамку и преодолевающая сопротивление магнитного поля.
Каждые пол-оборота проводники рамки меняют направление движения относительно полюсов магнита, соответственно, меняется и направление ЭДС в рамке.
Получение переменного тока
Угол между вектором скорости и силовыми линиями поля меняется по закону α = w*t, где:
- W — угловая скорость вращения рамки, рад/с;
- T — время, прошедшее с начального момента, когда вектор скорости был параллелен силовым линиям, с.
То есть ЭДС зависит от sin (wt): E = f (sin (wt)). Следовательно, график изменения значения ЭДС с течением времени имеет вид синусоиды. Вызванный этой ЭДС переменный ток называют, соответственно, синусоидальным.
Описанный простейший генератор можно усовершенствовать:
- постоянный магнит меняют на электрический, размещая в статоре несколько катушек (обмотка возбуждения). В итоге получают равномерное магнитное поле и тем самым добиваются идеальной синусоидальности ЭДС (повышается качество работы приборов). Обмотку возбуждения питает маломощный генератор постоянного тока либо аккумулятор;
- вместо одной рамки размещают на роторе несколько: ЭДС кратно увеличивается. То есть ротор также представляет собой обмотку.
Проблемная часть такого генератора — подвижный контакт между вращающимся ротором и электрической цепью.
Он состоит из медного кольца и графитовых щеток, прижимаемых к кольцу пружинами. Чем выше мощность генератора, тем менее надежен этот узел: он искрит, быстро изнашивается. Поэтому в мощных промышленных генераторах, установленных на электростанциях, обмотки статора и ротора меняют местами: обмотку возбуждения размещают на роторе, а индуцирующую — на статоре.
Подвижный контакт остается, но из-за малой мощности обмотки возбуждений требования к нему снижаются. Частота промышленного переменного тока — 50 Гц. То есть напряжение периодически меняет направление и величину 50 раз в секунду или 3000 раз в минуту. При наличии 2-х полюсов в обмотке возбуждения для достижения такой частоты и ротор должен вращаться со скоростью 3000 об/мин.
В генераторах тепловых и атомных электростанций так и происходит. Но в гидроэлектростанциях вращать ротор с такой скоростью невозможно физически: движителем служит падающая вода, а ее скорость намного меньше скорости перегретого пара с давлением в 500 атм.
Кроме того, ротор гидростанции имеет огромные размеры и при частоте вращения в 3000 об/мин.
Его удаленные от центра участки двигались бы со скоростью сверхзвукового истребителя, что приведет к разрушению конструкции. Для сокращения количества оборотов увеличивают число пар полюсов в электромагните. Частота вращения при этом составит W = 3000 / n, где n — число пар полюсов. То есть при наличии 10-ти пар полюсов для генерации переменного тока с частотой 50 Гц ротор необходимо вращать со скоростью всего 300 об/мин, а при 20-ти парах — 150 об/мин.
В электротехнике практикуют и другой способ получения переменного тока — преобразованием постоянного. Применяется электронное устройство — инвертор, состоящее из силовых транзисторов, управляющей ими микросхемы и прочих элементов. На выходе инвертора можно получить переменное напряжение любой величины и частоты. Самые простые схемы выдают прямоугольное переменное напряжение, более сложные и дорогие — стабилизированное синусоидальное.
Примеры применения инверторов:
- импульсные блоки питания и инверторные сварочные аппараты. Сетевой ток с частотой 50 Гц выпрямляется и затем подается на инвертор, дающий на выходе переменный ток с частотой 60-80 кГц. Назначение: при столь высокой частоте резко уменьшаются габариты трансформатора и потери в нем, то есть устройство в целом становится более компактным и экономичным;
- автономные дизельные и бензиновые генераторы для питания оборудования, чувствительного к качеству напряжения. Дизель-генератор в чистом виде дает низкокачественный ток, поскольку при преобразовании нагрузки частота вращения вала у него меняется. Инвертор устраняет все эти колебания и дает на выходе стабильное, качественное напряжение;
- ЛЭП на постоянном токе.
Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.
Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.
Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.
Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.
Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.
Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.
Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.
Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.
Обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.
Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.
Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.
Получение переменного тока осуществляется в. Получение переменного электрического тока
Получение переменного тока
Для получения переменного тока промышленной частоты (50 гц ) на электрических станциях установлены электромашинные синхронные генераторы переменного тока. В этих машинах, как и в генераторах неизменного тока, употребляется явление электромагнитной индукции. Средством генератора переменного тока механическая энергия, сообщаемая первичным движком (паровой либо гидравлической турбиной), преобразуется в электрическую энергию переменного тока.
Синхронный генератор (рис. 1) состоит из недвижной части 1 — статора и вращающейся части 2 — ротора .
Статор собирается из листовой электротехнической стали. Он имеет форму полого цилиндра. В пазах (каналообразных впадинах), изготовленных повдоль внутренней поверхности статора, уложены изолированные проводники, соединенные меж собой и образующие обмотку переменного тока статора.
Рис. 1 Схема устройства генератора переменного тока
Ротор представляет собой электромагнит, возбуждаемый постоянным током . Этот ток возбуждения подается в обмотку ротора через медные кольца, укрепленные на валу ротора. По кольцам скользят недвижные щетки, соединенные проводами с возбудителем — маленьким относительно генератором постоянного тока.
Рис. 2 Неявнополюсный ротор турбогенератора
Конструкция ротора находится в зависимости от рабочей скорости вращения на которую рассчитан генератор. Для быстроходных генераторов, вращаемых паровыми турбинами (турбогенераторы), роторы изготовляются неявнополюсными (рис.2). Для тихоходных генераторов, вращаемых гидравлическими турбинами (гидрогенераторы) роторы изготовляются явнополюсными (рис.3).
Простой по устройству неявнополюсный ротор (3000 и. 1500 об/мин) представляет собой громоздкую железную поковку (см. рис. 2), в круговых пазах которой укрепляются металлическими клиньями проводники обмотки возбуждения.
Рис. 3 Явнополюсный ротор
Магнитный поток ротора проходит через тело ротора, два воздушных промежутка меж статором и ротором и сердечник, статора (см. рис. 1). При вращении ротора этот магнитный поток Ф пересекает проводники статора и индуктирует в их переменную э. д. с. Потому что магнитный поток в воздушном зазоре направлен перпендикулярно к проводникам обмотки статора, та согласно закону электрической индукции в каждом из этих проводников при вращении потока индуктируется э. д. с.
е = BLV
где B — магнитная индукция в пазе , где находится данный проводник;
L — активная длина проводника , т. е. длина той части проводника, которая находится в магнитном поле; V- окружная скорость, т. е. скорость движения магнитного потока по отношению к проводнику .
Почти всегда окружная скорость генератора поддерживается неизменной (v = const) и потому что длина L тоже постоянна, то изменение э. д. с. е при вращении ротора вызывается только переменами магнитной индукции B повдоль окружности ротора. Если эта индукция распределена повдоль окружности ротора синусоидально (В = В m sin а), то э. д. с. меняется во времени тоже синусоидально (е = Е m sin wt) Это событие используется при построении генераторов переменного тока для того, чтоб получать от их синусоидальное напряжение.
Одному обороту двухполюсного ротора соответствует один период переменной э. д. е., индуктируемой в проводниках обмотки статора . Если же статор имеет р пар полюсов, то поворот ротора на угол, занимаемый одной парой полюсов, обуславливает один период конфигурации э. д. с. В данном случае одному обороту ротора соответствует р периодов переменной э. д. с. Ротор делает n об/мин; как следует, за минуту переменная э. д. с. генератора будет иметь p n периодов. Число периодов за секунду генератора переменного тока, т. е. частота его переменной э. д. е., будет в 60 раз меньше:
Но генератор должен давать переменный ток стандартной частоты f = 50 гц. При всем этом условии p n = 3000 .
Таким макаром, наибольшая скорость, которую может иметь генератор переменного тока промышленной частоты, соответствует одной паре полюсов p = 1. При этой скорости n = 3000 об/мин работают вышеупомянутые турбогенераторы. Выгодно строить машины с большей допустимой скоростью, так как при одной и той же мощности, чем быстроходнее машина, тем меньше ее вес и габариты.
Но скорость гидрогенератора определяется скоростью движения воды, потому при постройке гидростанции на реках с медленным течением приходится пичкать роторы гидрогенераторов огромным числом полюсов. К примеру, генераторы Днепровской гидростанции им. Ленина делают 83,3 об/мин, а их роторы имеют по 72 полюса (т. е. p = 36).
Получение переменного электрического тока Постоянный электрический ток можно получить от батарейки или другого источника тока. В таком случае мы будем иметь ток, текущий все время в одном направлении от положительного полюса источника к отрицательному. Некоторые электроприборы питаются постоянным током, однако большинство потребляет переменный ток.
Что такое переменный токВ электрических розетках у нас в квартирах тоже течет переменный ток. Мы знаем, что переменный ток это ток, который регулярно меняет свое направление. То есть в случае переменного тока у нас не будет положительного полюса источника и отрицательного. Как же получают переменный ток?В самом деле, в нашей стране используют ток частотой 50 Гц, то есть, направление такого тока меняется 50 раз в секунду. Не крутят же на электростанциях с такой скоростью батарейки или иные источники постоянного тока. Очевидно, что ток получают каким-то другим способом. Интересно, каким? Тогда разберемся.Получение переменного электрического тока возможно благодаря использованию явления электромагнитной индукции. Это явление заключается в том, что при изменении магнитного потока, пронизывающего замкнутый проводящий контур, в контуре возникает электрический ток.
Как получить переменный токПомните опыты с вдвиганием и выдвиганием магнита внутрь катушки, подключенной к гальванометру? Гальванометр показывал противоположное значение тока в зависимости от того, куда двигался магнит внутрь или наружу катушки. Вот на этом и основано получение переменного тока в электромеханических индукционных генераторах. Генератор состоит из двух основных частей подвижной и неподвижной.Неподвижная часть называется статором, а подвижная ротором. Статор представляет собой большой цилиндр, в котором проложены толстые медные провода. Внутри статора вращается ротор, который представляет собой большой магнит, чаще всего это электромагнит. При вращении ротора меняется создаваемое им магнитное поле, и магнитный поток, пронизывающий провода, изменяется. При этом магнит оказывается попеременно повернутым к контуру то одним, то другим полюсом, вследствие чего создаваемый ток периодически меняет свое направление.Для вращения ротора используют механическую энергию. Это может быть или тепловая энергия, как например, на дизельных и угольных электростанциях, либо же энергия воды и ветра, как например, на гидроэлектростанциях и ветряках. Так механическая энергия преобразуется в электрическую и подается потребителю.
Нетрудно догадаться, что получение электричества с помощью воды и ветра является намного более выгодным делом, чем, если на это приходится тратить топливо. К тому же такой процесс экологически намного чище. Поэтому задачей человека в наше время является максимальный переход на получение электроэнергии от возобновляемых источников.Это поможет как снизить стоимость электричества для конкретного потребителя, то есть для нас с вами, так и сохранить природную чистоту. Такая потребность становится все более очевидной в последнее время.
Теперь я вам хочу рассказать, как получить переменный синусоидальный ток .
Возьмем проводник, согнутый в виде рамки и будем вращать его в равномерном магнитном поле (рисунок 1). При вращении рамки магнитный поток, охватываемый ею, будет изменяться, следовательно, в рамке возникнет ЭДС индукции .
Пусть рамка вращается с равномерной скоростью. Мы уже знаем, что величина ЭДС, индуктированной в рамке, будет тем больше, чем быстрее будет изменяться число магнитных силовых линий, охватываемых рамкой, или иначе, чем большее число магнитных силовых линий будут пересекать стороны рамки в единицу времени (например в одну секунду).
Примем за начальное то положение рамки, когда она охватывает наибольшее число магнитных силовых линий, т. е. когда плоскость ее перпендикулярна направлению магнитного потока. На рисунке 1 это положение отмечено цифрой 1 .
Рисунок 1. Получение синусоидального переменного тока. а — ряд последовательных положений рамки в магнитном поле; б -график переменного тока (синусоида).
В начале вращения рамки ее стороны будут скользить почти вдоль магнитных силовых линий, пересекая очень малое число их, то есть магнитный поток, проходящий через рамку, будет изменяться очень медленно, следовательно, и наводимая этим изменением потока ЭДС индукции будет невелика.
По мере приближения рамки, к положению 2 , когда плоскость ее становится параллельной силовым линиям, количество пересекаемых рамкой силовых линий возрастает (при постоянной скорости вращения рамки) а, следовательно, возрастает и индуктируемая в ней ЭДС.
Когда рамка пройдет положение 2 , действующая в рамке ЭДС начнет постепенно убывать и станет равной нулю, когда рамка сделает полоборота (положение 3 ). Затем ЭДС будет снова возрастать, но уже в обратном направлении, так как теперь стороны рамки будут пересекать магнитные силовые линии в противоположном направлении. В момент, когда рамка займет положение 4 , т. е. сделает три четверти оборота, ЭДС будет наибольшей, после чего она начнет снова убывать и сделается равной нулю в тот момент, когда рамка завершит полный оборот (положение 5 ).
При дальнейшем вращении рамки все явления будут повторяться в прежнем порядке. Так как ЭДС в рамке непрерывно изменяется по величине и, кроме того, два раза в течение каждого оборота изменяет свое направление, то и ток, вызываемый ею в рамке, будет также изменяться и по величине и по направлению.
Условимся изображать изменение переменной ЭДС, наводимой в рамке при вращении ее в магнитном поле, таким образом, что по горизонтальной прямой линии (оси) слева направо будем откладывать в каком-нибудь масштабе угол поворота рамки или время, протекшее от начала поворота, а вверх и вниз (по вертикали) будем откладывать те ЭДС, которые наводятся в рамке при данном угле ее поворота. Вверх будем откладывать ЭДС одного направления, а вниз- ЭДС другого направления. В результате такого построения получим график изменения ЭДС в зависимости от угла поворота рамки или, что то же самое, в зависимости от времени, так как рамка вращается с постоянной скоростью. Кривая эта, изображенная на рисунке 1б, очень часто встречается в электротехнике и носит название синусоиды .
Итак, мы видим, что при равномерном вращении рамки в равномерном магнитном поле в ней индуктируется переменная ЭДС, изменяющаяся по периодическому закону, выражаемому синусоидой; ЭДС и токи, изменяющиеся по такому закону, называются синусоидальными , а весь описанный процес будет иметь название получение переменного синусоидального тока .
Свяжем мысленно с вращающейся рамкой стрелку, укрепленную на одной оси с рамкой (рисунок 2а). Направим на вращающуюся стрелку пучок параллельных световых лучей так, как это изображено на рисунке 2б, а с другой стороны стрелки поставим экран (например лист бумаги). Электродвижущая сила, индуктируемая в рамке, в каждый данный момент будет пропорциональна длине тени, отбрасываемой стрелкой на экран. Длина тени в начальный момент, когда стрелка находится в горизонтальном положении, т. е. острием направлена в сторону экрана, будет равна нулю.
Рисунок 2. Модель синусоидального колебания. а -вместе с рамкой вращается стрелка; б -кончик тени от стрелки совершает синусоидальные колебания.
При вращении стрелки в направлении, указанном на рисунке, ее тень начнет удлиняться, вытягиваясь вверх. Сначала удлинение тени будет происходить быстро, но по мере приближения стрелки к вертикальному положению оно замедлится и, наконец, совеем прекратится, когда длина тени сделается равной длине стрелки. После этого тень будет укорачиваться, сначала медленно, а затем все быстрее и быстрее и, наконец, сделается равной нулю в тот момент, когда стрелка, совершив полоборота, займет горизонтальное положение. В то время, когда стрелка будет совершать следующую половину оборота, ее тень совершит такое же удлинение и укорочение, как и прежде, с той лишь разницей, что удлиняться она теперь будет не вверх, а вниз.
При каждом обороте стрелки ее тень будет совершать одно полное колебание.
Колебания тени вращающейся стрелки дают полную картину изменения скорости движения электронов в проводнике при синусоидальном переменном токе. Скорость свободных электронов в проводнике сначала невелика, затем электроны начинают двигаться все быстрее и быстрее (сила тока увеличивается). В некоторый момент скорость электронов достигает своей максимальной величины (сила тока максимальна), после чего электроны постепенно замедляют свое движение и, наконец, совсем останавливаются (сила тока равна нулю).
Однако, практически электроны не делают остановки, так как они тотчас же начинают движение в обратном направлении (ток изменяет свое направление) с постепенно увеличивающейся скоростью (сила тока растет) и т. д.
Начертим окружность, внутри которой наметим несколько положений радиуса, занимаемых им при равномерном движении его конца по окружности. На рисунке 3 показано 24 последовательных положения радиуса, занимаемых им через каждые 15° поворота. Справа от этой окружности проведем горизонтальную линию на высоте центра окружности. Разделим горизонтальную координатную ось также на 24 части, каждая из которых будет соответствовать 15° окружности.
Рисунок 3. Построение грфика синусоидального переменного тока. Окружность и горизонтальная ось координат разделены на одинаковое число частей.
Из каждой отмеченной точки на горизонтальной оси проведем вертикальную линию, равную проекции радиуса на вертикальный диаметр или длине тени при данном угле поворота. Соединим плавной кривой концы всех вертикальных линий. Эта кривая и будет синусоидой.
Вращающийся радиус, употребляемый при построении синусоиды, называется радиусом-вектором .
Получение переменного электрического тока
Электромагнитные явления
Тема этого занятия посвящена вопросу получения переменного электрического тока. Этот вопрос, напрямую связанный с явлением электромагнитной индукции, впервые поднял М. Фарадей. С помощью специального устройства, называемого генератором, он опытным путем доказал, как можно получать переменный электрический ток.
Тема: Электромагнитное поле
Урок 46. Получение переменного электрического тока
Ерюткин Евгений Сергеевич
Урок будет посвящен теме «Получение переменного электрического тока». Этот вопрос вплотную связан с явлением электромагнитной индукции . Когда мы говорили об индукционном электрическом токе, наверное, вы заметили, что величина и направление тока зависит от того, как двигался магнит по направлению и по скорости — от того, как изменялся магнитный поток.
Если обобщить имеющиеся экспериментальные данные, то можно предложить следующее устройство: закрепить магнит и относительно него двигать катушку с большим числом витков (или наоборот, двигать магнит относительно неподвижной катушки). В результате будет создаваться индукционный электрический ток.
Так мы переходим к устройству, которое дает возможность получить электрический ток и называется генератором.
Идея получения электрического тока таким способом впервые пришла Майклу Фарадею. В его рисунках даже сохранился чертеж первого генератора.
Большинство генераторов — это т.н. электромеханические генераторы, в них за счет механического движения подвижной части такого генератора создается переменный электрический ток.
Что же такое переменный электрический ток ? Переменным электрическим током называют такой ток, который периодически изменяется по своей величине, модулю и направлению.
На сегодняшний день вся промышленность использует именно переменный электрический ток.
Объясняется это тем, что очень удобно, во-первых, получить переменный электрический ток, а во-вторых, удобно передавать его на большие расстояния. Вот поэтому в мире везде и всюду используется именно переменный ток.
Обозначают его на всех схемах волнистой линией.
Рис. 1. Обозначение переменного тока
Обратите внимание: если дома есть какие-либо электрические приборы и на этих приборах встречается такое обозначение, значит, эти приборы работают на переменном электрическом токе.
Как устроены генераторы?
Итак, современный генератор представляет собой довольно сложное устройство, но в основном состоит он из двух частей — ротора и статора.
Рис. 2. Устройство генератора
Статор — это неподвижная часть. Ротор — подвижная. Можно сказать, что статор — это аналог катушки с большим числом витков. А ротор — это магнит, который вращается и создает изменяющийся магнитный поток с течением времени, пронизывая те витки, которые находятся в статоре, индуцирует, наводит в этих витках электрический ток.
Если генератор маломощный, то обычно ротор делают из постоянного магнита. Ему придают определённую форму, создают внутри несколько отдельных полюсов. Этот постоянный магнит, вращаясь прямо внутри статора, непосредственно создаёт индукционный электрический ток. Если же необходим мощный генератор, то в этом случае ротор — уже не постоянный магнит, а электромагнит.
Конечно, необходимо сказать, что во всех генераторах ротор вращается за счет работы сторонней силы. Если этот генератор установлен на гидроэлектростанции, то там используется энергия падающей воды. В этом случае ротор вращается с небольшой скоростью. Поэтому приходится делать ротор сложной формы, чтобы создать большое изменение магнитного потока при вращении ротора и получить значительный электрический ток. Например, у генератора на тепловых электростанциях ротор будет вращаться за счет поступающего пара, там частота вращения достаточно большая, и в этом случае количество полюсов и форма ротора будет совсем иная.
Рис. 3. Устройство ротора и статора
Если говорить про статор, то это неподвижная часть генератора. В ней прорезаются пазы. Представьте себе цилиндр, в котором прорезаны пазы, в этих пазах укладывается обмотка статора, где и создается индукционный электрический ток. Так устроены генераторы переменного тока.
Передача электроэнергии
Большое значение имеет вопрос о передаче переменного электрического тока. Передача переменного электрического тока на большие расстояния связана с электромагнитной индукцией. Чтобы передать переменный электрический ток, используются приборы, которые называются трансформаторами. — прибор для преобразования электрического тока и напряжения.
Он состоит из двух катушек, они называются обмотками, и эти две катушки (катушек может быть и больше на самом деле) надеты на один сердечник.
Рис. 4. Трансформатор состоит из двух катушек
Это устройство, которое состоит из двух катушек или большего количества катушек, надетых на общий сердечник.
Когда мы подключаем переменный электрический ток к одной из катушек, в ней создается переменное магнитное поле. Магнитное поле одной катушки усиливается за счет железного сердечника и своим магнитным потоком пронизывает витки другой катушки. Тем самым в другой катушке тоже будет создаваться электрический ток. Если мы будем теперь изменять количество витков в одной катушке и в другой катушке, то будут меняться значения электрического тока в различных катушках.
Вот здесь и происходит самое главное. Дело в том, что, когда электрический ток протекает по проводам, главная потеря связана с тем, что провода нагреваются, т.е. сказывается тепловое действие электрического тока. Это является главным неудобством при передаче постоянного электрического тока.
А если мы говорим о переменном токе, то за счет трансформатора, изменяя витки в катушках, можно регулировать значение электрического тока.
Если мы уменьшим количество витков, то можем изменить и значение электрического тока. Мы можем его уменьшить, и потери электрического тока при передаче тоже уменьшатся.
Если мы все это примем во внимание, то можем сказать следующее. Трансформатор дает возможность уменьшить значение электрического тока и увеличить при этом напряжение электрического тока.
Таким образом удобно передавать переменный электрический ток, трансформатор называется повышающим тогда, когда напряжение увеличивается. Когда такой электрический ток приходит уже непосредственно к нам в квартиры, то включают другой трансформатор, который называется понижающим. В этом случае напряжение уменьшается до 220 В, но сила тока в цепи возрастает.
Этот электрический ток мы используем в бытовых приборах. Если мы будем рассматривать отдельно каждую линию электропередач (кратко ее называют ЛЭП), то каждая такая линия отдельно разрабатывается для конкретной электростанции, с которой мы получаем электроэнергию. На пути ее передачи устанавливаются трансформаторные станции, которые меняют напряжение переменного электрического тока.
Устройство,принцип действия автомобильных генераторов
Электрооборудование любого автомобиля включает в себя генератор – основной источник электроэнергии. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.Основные требования к автомобильным генераторам
1. Генератор должен обеспечивать бесперебойную подачу тока и обладать достаточной мощностью, чтобы:
– одновременно снабжать электроэнергией работающих потребителей и заряжать АКБ;
– при включении всех штатных потребителей электроэнергии на малых оборотах двигателя не происходил сильный разряд аккумуляторной батареи;
– напряжение в бортовой сети находилось в заданных пределах во всем диапазоне электрических нагрузок и частот вращения ротора.
2. Генератор должен иметь достаточную прочность, большой ресурс, небольшие массу и габариты, невысокий уровень шума и радиопомех.
Принцип действия генератора
В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И, наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует, собственно, статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) – ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там, где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки. Ток, поступающий через эту лампу в обмотку возбуждения, после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т. к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы – обычно 2…3 Вт.
При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения f зависит от частоты вращения ротора генератора N и числа его пар полюсов р:
f=p*N/60
За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения я ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т. к. он оказывается включенным параллельно диоду силового выпрямителя генератора. С учетом передаточного числа i ременной передачи от двигателя к генератору частота сигнала на входе тахометра fт связана с частотой вращения коленчатого вала двигателя Nдв соотношением:
f=p*Nдв(i)/60
Конечно, в случае проскальзывания приводного ремня это соотношение немного нарушается и поэтому следует следить, чтобы ремень всегда был достаточно натянут. При р=6 , (в большинстве случаев) приведенное выше соотношение упрощается fт = Nдв (i)/10. Бортовая сеть требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор.
Обмотка статора генераторов зарубежных фирм, как и отечественных – трехфазная. Она состоит из трех частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 120 электрических градусов, как это показано на рис. I. Фазы могут соединяться в «звезду» или «треугольник». При этом различают фазные и линейные напряжения и токи. Фазные напряжения Uф действуют между концами обмоток фаз. я токи Iф протекают в этих обмотках, линейные же напряжения Uл действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи Jл. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные.
При соединении в «треугольник» фазные токи в корень из 3 раза меньше линейных, в то время как у «звезды» линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в «треугольник», значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т. к. при меньших токах обмотки можно наматывать более толстым проводом, что технологичнее. Однако линейные напряжения у «звезды» в корень из 3 больше фазного, в то время как у «треугольника» они равны и для получения такого же выходного напряжения, при тех же частотах вращения «треугольник» требует соответствующего увеличения числа витков его фаз по сравнению со «звездой».
Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в «звезду», т. е. получается «двойная звезда».
Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых: VD1, VD3 и VD5 соединены с выводом «+» генератора, а другие три: VD2, VD4 и VD6 с выводом «-» («массой»). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя на диодах VD7, VD8, показанное на рис.1, пунктиром. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».
У значительного количества типов генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю, собранному на диодах VD9-VD 11.Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении. По графику фазных напряжений (рис. 1) можно определить, какие диоды открыты, а какие закрыты в данный момент. Фазные напряжения Uф1 действует в обмотке первой фазы, Uф2 – второй, Uф3 – третьей. Эти напряжения изменяются по кривым, близким к синусоиде и в одни моменты времени они положительны, в другие отрицательны. Если положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее то, например, для момента времени t1, когда напряжение второй фазы отсутствует, первой фазы – положительно, а третьей – отрицательно. Направление напряжений фаз соответствует стрелкам, показанным на рис. 1. Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. При этом открыты диоды VD1 и VD4. Рассмотрев любые другие моменты времени, легко убедиться, что в трехфазной системе напряжения, возникающего в обмотках фаз генератора, диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление – от вывода «+» генераторной установки к ее выводу «-» («массе»), т. е. в нагрузке протекает постоянный (выпрямленный) ток. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленным током эту обмотку. Причем в выпрямитель обмотки возбуждения тоже входят 6 диодов, но три из них VD2, VD4, VD6 общие с силовым выпрямителем. Так в момент времени t1 открыты диоды VD4 и VD9, через которые выпрямленный ток и поступает в обмотку возбуждения. Этот ток значительно меньше, чем ток, отдаваемый генератором в нагрузку. Поэтому в качестве диодов VD9-VD11 применяются малогабаритные слаботочные диоды на ток не более 2 А (для сравнения, диоды силового выпрямителя допускают протекание токов силой до 25…35 А).
Рис. 1. Принципиальная схема генераторной установки. Uф1 — Uф3 — напряжение в обмотках фаз: Ud — выпрямленное напряжение; 1, 2, 3 — обмотки трех фаз статора: 4 — диоды силового выпрямителя; 5 — аккумуляторная батарея; 6 — нагрузка; 7 — диоды выпрямителя обмотки возбуждения; 8 — обмотка возбуждения; 9 — регулятор напряжения.
Остается рассмотреть принцип работы плеча выпрямителя, содержащего диоды VD7 и VD8. Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками – первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник (первой и третьей) показано на рис. 2.
Рис. 2. Представление фазного напряжения Uф в виде суммы синусоид первой, U1, и третьей U3, гармоник
Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном – нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения, не может быть использована потребителями. Чтобы использовать эту мощность добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5…15% при частоте вращения более 3000 мин-1.
Выпрямленное напряжение, как это показано на рис. 1, носит пульсирующий характер. Эти пульсации можно использовать для диагностики выпрямителя. Если пульсации идентичны – выпрямитель работает нормально, если же картинка на экране осциллографа имеет нарушение симметрии – возможен отказ диода. Проверку эту следует производить при отключенной аккумуляторной батарее. Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.
Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т. е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генераторную установку элементов защиты ее от всплесков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+ « генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя «используется и в регуляторах напряжения.
Устройство автомобильного генератора
По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой компактной конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой и генераторы, где контактные кольца и щетки расположены вне внутренней полости. В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.
Любой генератор содержит статор с обмоткой, зажатый между двумя крышками – передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.
Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор обычно оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку, существуют конструкции, у которых средние листы пакета статора выступают над остальными и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное – только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.
Статор генератора (рис. 3) набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». Такое исполнение обеспечивает меньше отходов при обработке и высокую технологичность. При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой его наружной поверхности. Необходимость экономии металла привела и к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.
Рис.3. Статор генератора: 1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем
В пазах располагается обмотка статора, выполняемая по схемам (рис. 4) в виде петлевой распределенной (рис.4-а) или волновой сосредоточенной (рис.4-б), волновой распределенной (рис.4-б) обмоток. Петлевая обмотка отличается тем, что ее секции (или полусекции) выполнены в виде катушек с лобовыми соединениями по обоим сторонам пакета статора напротив друг друга. Волновая обмотка действительно напоминает волну, т. к. ее лобовые соединения между сторонами секции (или полусекции) расположены поочередно то с одной, то с другой стороны пакета статора. У распределенной обмотки секция разбивается на две полусекции, исходящие из одного паза, причем одна полусекция исходит влево, другая направо. Расстояние между сторонами секции (или полусекции) каждой обмотки фазы составляет 3 пазовых деления, т.е. если одна сторона секции лежит в пазу, условно принятом за первый, то вторая сторона укладывается в четвертый паз. Обмотка закрепляется в пазу пазовым клином из изоляционного материала. Обязательной является пропитка статора лаком после укладки обмотки.
Рис.4 Схема обмотки статора генератора: А — петлевая распределенная, Б — волновая сосредоточенная, В — волновая распределенная
——- 1 фаза, — — — — — — 2 фаза, -..-..-..- 3 фаза
Особенностью автомобильных генераторов является вид полюсной системы ротора (рис.5). Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы – полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.
Рис. 5. Ротор автомобильного генератора: а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал.
Если полюсные половины имеют полувтулки, то обмотка возбуждения предварительно наматывается на каркас и устанавливается при напрессовке полюсных половин так, что полувтулки входят внутрь каркаса. Торцевые щечки каркаса имеют выступы-фиксаторы, входящие в межполюсные промежутки на торцах полюсных половин и препятствующие провороту каркаса на втулке. Напрессовка полюсных половин на вал сопровождается их зачеканкой, что уменьшает воздушные зазоры между втулкой и полюсными половинами или полувтулками, и положительно сказывается на выходных характеристиках генератора. При зачеканке металл затекает в проточки вала, что затрудняет перемотку обмотки возбуждения при ее перегорании или обрыве, т. к. полюсная система ротора становится трудноразборной. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума.
После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление особенно при работе во влажной среде. Диаметр колец при расположении щеточно – контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т. к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.
Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.
Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.
Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластинтеплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.
Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец – обычно плотная, со стороны привода – скользящая, в посадочное место крышки наоборот – со стороны контактных колец – скользящая, со стороны привода – плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства – резиновые кольца, пластмассовые стаканчики, гофрированные стальные пружины и т. п.
Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле. Гибридные регуляторы напряжения и регуляторы напряжения на монокристалле ни разборке, ни ремонту не подлежат.
Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (рис. 6-а) воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места – к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом (рис. 6-б), закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.
Рис .6. Система охлаждения генераторов: а — генераторы обычной конструкции; б — генераторы для повышенной температуры в подкапотном пространстве; в — генераторы компактной конструкции. Стрелками показано направление воздушных потоков.
Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.
Переменный электрический ток. Генератор переменного электрического тока. Презентация на тему «устройство и принцип работы генератора» Электростатические генераторы презентация
Определение Переменным током называется электрический ток, который периодически изменяется по величине и по направлению. Условное обозначение или. Модуль максимального значения силы тока за период называется амплитудой колебаний силы тока. В настоящее время в электрических сетях используется переменный ток. Многие законы, которые были выведены для постоянного тока, действуют и для переменного тока.
Переменный ток имеет ряд преимуществ по сравнению с постоянным током: — генератор переменного тока значительно проще и дешевле генератора постоянного тока; — переменный ток можно трансформировать; — переменный ток легко преобразуется в постоянный; — двигатели переменного тока значительно проще и дешевле двигателей постоянного тока; — проблема передачи электроэнергии на большие расстояния была решена только при использовании переменного тока высокого напряжения и трансформаторов. Для производства переменного тока применяется синусоидальное напряжение.
Генератор переменного тока — является электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока. Системы производящие переменный ток были известны в простых видах со времён открытия магнитной индукции электрического тока. Принцип действия генератора основан на явлении электромагнитной индукции возникновении электрического напряжения в обмотке статора, находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита ротора при прохождении по его обмотке постоянного тока.
Областное государственное автономное профессиональное образовательное учреждение «Борисовский агромеханический техникум»
- Презентация к уроку по теме; Устройство и принцип работы автомобильного генератора.
- по МДК 01 02 «Устройство, техническое обслуживание
- и ремонт автомобилей»
- Здоровцов Александр Николаевич
- — устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока.
- выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумуляторной батареи;
- напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.
- – служит для передачи механической энергии от двигателя к валу генератора посредством ремня
- состоит из двух крышек: передняя (со стороны шкива) и задняя (со стороны контактных колец), предназначены для крепления статора, установки генератора на двигателе и размещения подшипников (опор) ротора. На задней крышке размещаются выпрямитель, щеточный узел, регулятор напряжения (если он встроенный) и внешние выводы для подключения к системе электрооборудования;
- Ротор состоит
- стальной вал с расположенными на нем двумя стальными втулками клювообразной формы. Между ними находится обмотка возбуждения, выводы которой соединены с контактными кольцами. Генераторы оборудованы преимущественно цилиндрическими медными контактными кольцами;
- 1. вал ротора; 2. полюса ротора; 3. обмотка возбуждения; 4. контактные кольца.
- Статор генератора
- — пакет, набранный из стальных листов, имеющий форму трубы. В его пазах расположена трехфазная обмотка, в которой вырабатывается мощность генератора;
- 1. обмотка статора; 2. выводы обмоток; 3. магнитопровод
- Сборка с выпрямительными диодами
- — объединяет шесть мощных диодов, запрессованных по три в положительный и отрицательный теплоотводы;
- 1. силовые диоды; 2. дополнительные диоды; 3. теплоотвод.
- — устройство, поддерживающее напряжение бортовой сети автомобиля в заданных пределах при изменении электрической нагрузки, частоты вращения ротора генератора и температуры окружающей среды;
- – съемная пластмассовая конструкция. В ней установлены подпружиненные щетки, контактирующие с кольцами ротора;
- Бесконтактный генератор с возбуждением от постоянных магнитов.
- Генератор переменного тока с клювообразным ротором и с контактными кольцами
- Индукторный генератор переменного тока.
- · а — модель генератора;
- · б- ротор с постоянным магнитом NS и с шестью когтеобразными полюсами;
- · в — шестиполюсный статор с тремя фазными обмотками, соединенными «звездой»;
- · NS- цилиндрический постоянный магнит с полюсами N и S;
- · М — магнитопровод статора;
- · R- магнитопровод ротора в виде когтеобразных наконечников из твердой стали;
- · Ф- магнитный поток ротора;
- · 8- воздушным зазор;
- · Ф.- фазная обмотка статора;
- · EФ- ЭДС, наведенная в фазной обмотке;
- · w- круговая частота вращения ротора;
- · 1. 2, 3, общ. — выводы фазных обмоток, соединенных «звездой».
- вращающийся ротор — это постоянный магнит, а фазные обмотки — это катушки на неподвижном статоре. Такой генератор называется бесконтактным генератором переменного тока с возбуждением от постоянных магнитов. Он может быть однофазным или многомерным. Генератор прост по конструкции, надежен, не боится грязи, не требует электрического возбуждения, не имеет трущихся электроконтактов, срок службы определяется высыханием изоляции фазных обмоток. Но на современных легковых автомобилях генератор с возбуждением от постоянных магнитов не применяется из-за невозможности строго поддерживать в нем постоянное рабочее напряжение при изменении оборотов двигателя внутреннего сгорания
- а — модель генератора; б — расчлененный ротор с катушкой возбуждения W„ и с шестью северными N и шестью южными S клювообразными полюсами постоянного электромагнита; в — упрощенная конструкция генератора;
- 1 — магнитопровод М статора с фазными обмотками Wф
- 2 — клювообразные полюсные наконечники ротора;
- 3 — обмотка возбуждения Wв;
- 4 — крыльчатка вентилятора;
- 5 — приводной шкив;
- 6 — магнитопровод R ротора;
- 7 — корпусные крышки;
- 8 — встроенный выпрямитель;
- 9 — контактные кольца К;
- 10 — щеткодержатель КЩМ со щетками.
- Обмотка Wв своими выводами подключена к контактным кольцам К, которые в свою очередь через щетки КЩМ соединяются с внешней электрической цепью возбуждения. Таким способом к клювообразный ротор становится многополюсным постоянным электромагнитом, магнитодвижущая сила которого может легко регулироваться путем изменения тока возбуждения, что очень важно для автомобильных электрогенераторов.
- Генератор с клювообразным ротором и с контактными кольцами имеет самое широкое применение на современных легковых автомобилях.
- а — модель генератора;
- б — схема соединения обмоток на однофазном статоре;
- в — упрощенная конструкция генератора;
- 1 — — паз ротора
- ;2 — подшипник;
- 3 — вал ротора;
- 4 — полюс ротора
- ;5 — корпус генератора; Wв, Wф — обмотки возбуждения и фазные.
- Основным отличием этого генератора является то, что его вращающийся ротор — это пассивная магнитомягкая ферромасса, а обмотка возбуждения установлена на неподвижном статоре вместе с фазными обмотками. Для уменьшения магнитных потерь ферромасса ротора, как и статора, выполнена набором тонких пластин из электротехнической стали. Генератор является бесконтактным. Работа такого генератора основана на периодическом прерывании постоянного магнитного потока, статора, что при вращении ротора достигается периодическим изменением величины воздушного зазора между статором и ротором. Таким образом, индукторный генератор является синхронным и управляется по напряжению с помощью изменения тока возбуждения в статорной обмотке. В индукторном генераторе реализуется принцип получения ЭДС путем изменения магнитной проводимости в воздушном зазоре: при управлении величиной индукции магнитного поля статора. Соответствующим подбором конфигурации поверхности пассивного ротора и полюсных наконечников статора можно приблизить периодичность изменения магнитного потока к синусоидальному закону, что обеспечивает синусоидальную форму рабочему напряжению генератора.
- http://respektt.ru/foto/generator_ustroistvo.jpg
- http://www.mlab.org.ua/articles/electric/59-electric-generator.html
- http://www.domashniehitrosti.ru/generator4.html
- Родичев В. А.: Грузовые автомобили. М.: Издательский центр «Академия», 2010-239с.
«Генератор переменного тока»Генератор переменного тока (альтернатор)
является электромеханическим устройством,
которое преобразует механическую энергию в
электрическую энергию переменного тока.
Большинство генераторов переменного тока
используют вращающееся магнитное поле.
История:
Системы производящие переменный ток былиизвестны в простых видах со времён открытия
магнитной индукции электрического тока.
Ранние машины были разработаны Майклом
Фарадеем и Ипполитом Пикси.
Фарадей разработал «вращающийся
треугольник», действие которого было
многополярным — каждый активный проводник
пропускался последовательно через область,
где магнитное поле было в противоположных
направлениях. Первая публичная демонстрация
наиболее сильной «альтернаторной системы»
имела место в 1886 году. Большой двухфазный
генератор переменного тока был построен
британским электриком Джеймсом Эдвардом
Генри Гордоном в 1882 году. Лорд Кельвин и
Себастьян Ферранти также разработали ранний
альтернатор, производивший частоты между 100
и 300 герц. В 1891 году Никола Тесла
запатентовал практический «высокочастотный»
альтернатор (который действовал на частоте
около 15000 герц). После 1891 года, были
введены многофазные альтернаторы.
Принцип действия генератора основан на
действии электромагнитной индукции —
возникновении электрического напряжения в
обмотке статора, находящейся в переменном
магнитном поле. Оно создается с помощью
вращающегося электромагнита — ротора при
прохождении по его обмотке постоянного тока.
Переменное напряжение преобразуется в
постоянное полупроводниковым
выпрямителем.
Общий вид генератора переменного тока с внутренними полюсами. Ротор является индуктором, а статор — якорем
Ротор – сердечник,вращающийся вокруг
горизонтальной или
вертикальной оси
вместе со своей
обмоткой.
Статор – неподвижный сердечник с его обмоткой.
Схема устройства генератора: 1 — неподвижный якорь, 2 — вращающийся индуктор, 3- контактные кольца, 4- скользящие по ним щетки
Вращающийсяиндуктор
генератора I
(ротор) и якорь
(статор) 2, в
обмотке которогоРотор
(индуктор)
генератора
переменного
тока
с
внутренними
полюсами. На валу ротора
справа
показан
ротор
вспомогательной
машины,
Виды генераторов:
Турбогенератор – это генератор,который приводится в действие
паровой или газовой турбиной.Дизельагрегат
—
генерат
ор,
ротор
которог
о
вращает
ся от
двигатеГидроге
нератор
вращает
гидроту
рбина.Генератор переменного тока начала 20-го века сделанный в Будапеште,
Венгрия, в зале производства электроэнергии гидроэлектростанции
(фотография Прокудина-Горского, 1905-1915). Автомобильный
генератор
переменного
тока. Приводной
ремень снят.
Широкое применение генераторов переменного тока:
Ни для кого не станет удивительным тот факт, что в наши дни популярность,востребованность и спрос таких устройств, как электростанции и генераторы переменного
тока, достаточно высоки. Это объясняется, прежде всего, тем, что современное
генераторное оборудование имеет для нашего населения огромное значение. Помимо этого
необходимо добавить и то, что генераторы переменного тока нашли свое широкое
применение в самых различных сферах и областях.
Промышленные генераторы могут быть установлены в таких местах, как поликлиники и
детские сады, больницы и заведения общественного питания, морозильные склады и
многие другие места, требующие непрерывной подачи электрического тока. Обратите свое
внимание на то, что отсутствие электричества в больнице может привести непосредственно
к гибели человека. Именно поэтому в подобных местах генераторы должны быть
установлены обязательно.
Также довольно распространенным является явление использования генераторов
переменного тока и электростанций в местах проведения строительных работ. Это
позволяет строителям использовать необходимое им оборудование даже на тех участках,
где полностью отсутствует электрификация. Однако и этим дело не ограничилось.
Электростанции и генераторные установки были усовершенствованы и дальше. В
результате этого нам были предложены бытовые генераторы переменного тока, которые
вполне удачно можно было устанавливать для электрификации коттеджей и загородных
домов.
Таким образом, мы можем сделать вывод о том, что современные генераторы переменного
тока имеют довольно широкую область применения. Кроме того они способны решить
большое количество важных проблем, связанных с некорректной работой электрической
сети, либо ее отсутствием.
Цель: 1) Изучить генератор, его устройство,
принцип его работы.
2) Детальное рассмотрение принципов
работы и устройства автомобильного
генератора.
3) Выполнить письменную
экзаменационную работу в связи с
окончанием курса автослесаря.
Изобретателем автомобильного генератора в
той форме, в которой он устанавливается и в
наши дни, был немецкий инженер Роберт Бош.
В 1887 он разработал низковольтное магнето
для стационарных двигателей, а к 1902 году –
магнето высокого напряжения, которое стало
прообразом показанной им в 1906 году
«световой машины», то есть первого
автомобильного генератора постоянного тока.
Аббревиатура «АГС»
расшифровывается
«Автомобильные Генераторы и
Стартеры»Генератор — устройство, преобразующее
механическую энергию, получаемую от
двигателя, в электрическуюВИДЫ ГЕНЕРАТОРОВ
Генераторы
постоянного тока
(не применяют на
современных
автомобилях)
Генераторы
переменного
тока
(используют в
настоящее время)ГЕНЕРАТОРЫ ПОСТОЯННОГО
ТОКА
На автомобилях выпуска до
1960-х годов (например ГАЗ51, ГАЗ-69, ГАЗ-М-20
«Победа» и многих других)
устанавливались генераторы
постоянного тока
ГЕНЕРАТОРЫ ПЕРЕМЕННОГО
ТОКА
Первая конструкция генераторов
переменного тока была
представлена фирмой «Невиль»,
США в 1946 году.
Применяются на автомобилях
ГАЗ-53, ВАЗ-2101, Москвич-2140
Генератор переменного тока мощнее
долговечнее, дешевле, чем
генераторы постоянного токаОсновне части автомобильного генератора:
1)
2)
3)
4)
5)
6)
7)
8)
Шкив
Корпус
Ротор
Статор
Сборка с выпрямительными диодами
Регулятор напряжения
Щёточный узел
Защитная крышка диодного модуляПринцип работы автомобильного
генератора:
Когда в замке зажигания
поворачивается ключ, на обмотку
возбуждения поступает ток через
щёточный узел и контактные кольца. В
обмотке наводится магнитное поле.
Ротор генератора начинает двигаться
с вращением коленчатого вала.
Обмотки статора пронизываются
магнитным полем ротора. На выводах
обмоток статора возникает
переменное напряжение. С
достижением определённой частоты
вращения, обмотка возбуждения
запитывается непосредственно от
генератора, то есть, генератор
переходит в режим самовозбуждения.
Неисправности генератора:
Электрические неисправности:Износ щёток;
Обрыв или нарушения
контакта электрических
цепей;
Замыкания между
витками обмотки ротора;
Выход из строя, хотя и не
часто, диодного моста или
регулятора напряжения.
Механические неисправности:
Износ подшипников;
Вибрирующий ротор;
Растяжение и обрыв ремня
привода генератора.
ВЫВОД:
Генератор — очень сложное устройство, поэтому важно бережно относитьсяк нему. Постоянно следите за состоянием всех его деталей, а также за
степенью натяжения приводного ремня. Тогда автомобильный генератор
сможет прослужить максимально долго.
«Электрические цепи переменного тока» — Применение электрического резонанса. Векторная диаграмма напряжений в сети переменного тока. Закон Ома. Колебания силы тока. Электрические цепи переменного тока. Электрический резонанс. Диаграмма. Три вида сопротивлений. Векторная диаграмма. Диаграмма при наличии в цепи переменного тока только индуктивного сопротивления.
«Переменный ток» — Переменный ток. Генератор переменного тока. Переменным током называется электрический ток, изменяющийся во времени по модулю и направлению. Определение. ЭЗ 25.1 Получение переменного тока при вращении катушки в магнитном поле.
««Переменный ток» физика» — Сопротивление конденсатора. Конденсатор в цепи переменного тока. Колебания тока на конденсаторе. R,C,L в цепи переменного тока. Как ведет себя конденсатор в цепи переменного тока. Как ведет себя индуктивность. Проанализируем формулу индуктивного сопротивления. Использование частотных свойств конденсатора и катушки индуктивности.
«Сопротивление в цепи переменного тока» — Индуктивное сопротивление- величина, характеризующее сопротивление, оказываемое переменному току индуктивностью цепи. Емкостное сопротивление — величина, характеризующая сопротивление, оказываемое переменному току электрической емкостью. Одинаков ли цвет фигур? Активное сопротивление в цепи переменного тока.
«Переменный электрический ток» — Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Активное сопротивление. Im= Um / R. i=Im cos ?t. Свободные электромагнитные колебания в контуре быстро затухают и поэтому практически не используются. И наоборот, незатухающие вынужденные колебания имеют большое практическое значение.
«Трансформатор» — Если ответ «да», то к источнику какого тока нужно подключить катушку и почему? Написать конспект к параграфу 35 Физические процессы в трансформаторе. Задача2. Источник переменного тока. ЭДС индукции. K – коэффициент трансформации. Напишите формулу. Можно ли повышающий трансформатор сделать понижающим?
Генератор переменного тока
Генератор переменного токаДалее: Генератор постоянного тока вверх: магнитная индукция Предыдущая: Вихревые токи
Генератор переменного тока Электрический генератор или динамо-машина — это устройство, преобразующее механическую энергию в электроэнергия. Простейший практичный генератор состоит из прямоугольного катушка вращается в однородном магнитном поле. Магнитное поле обычно подается постоянным магнитом.Эта установка проиллюстрирована на рис. 38.
Пусть будет длина катушки вдоль оси вращения, а
ширина катушки, перпендикулярная этой оси. Предположим, что
катушка вращается с постоянной угловой скоростью в равномерном
магнитное поле напряженности. Скорость, с которой двое
длинные стороны катушки (, т.е. ,
стороны и) движутся через магнитное поле, это просто продукт
угловой скорости вращения и расстояния каждого
сторону от оси вращения, поэтому
.Двигательная ЭДС
индуцированный в каждую сторону задается
, где
составляющая магнитного поля, перпендикулярная мгновенному направлению
движения рассматриваемой стороны.
Если направление магнитного поля составляет
угол с нормальным направлением к
катушку, как показано на рисунке, затем
.
Таким образом, величина двигательной ЭДС, генерируемой в сторонах и
является
(209) |
где площадь катушки.ЭДС равна нулю, когда или, поскольку направление движения сторон и параллельно к направлению магнитного поля в этих случаях. ЭДС достигает максимального значения, когда или, поскольку направление движения сторон и находится на перпендикулярно к направлению магнитного поля в этих случаях. Между прочим, из симметрии ясно, что нет чистого двигательного ЭДС генерируется в сторонах и катушки.
Предположим, что направление вращения катушки такое, что сторона
перемещается на страницу на рис.38 (вид сбоку), тогда как сбоку
перемещается со страницы. Двигательная ЭДС, индуцированная в побочных действиях от
к . Точно так же двигательный
ЭДС индукции в побочных действиях от до. Видно, что обе ЭДС
действуйте по часовой стрелке вокруг катушки. Таким образом, чистая ЭДС
действуя вокруг
катушка
. Если в катушке есть витки, то чистая ЭДС становится равной . Таким образом, общее выражение для ЭДС, генерируемой вокруг
устойчиво вращающаяся многовитковая катушка в однородном магнитном поле
(210) |
где мы написали для постоянно вращающейся катушки (при условии, что в ).Это выражение также можно записать
(211) |
куда
(212) |
— пиковая ЭДС, создаваемая генератором, и — количество полных оборотов, выполняемых катушками в секунду. Таким образом пиковая ЭДС прямо пропорциональна площади катушки, количеству витков в катушке частота вращения катушки, и напряженность магнитного поля.
Рисунок 39 показывает ЭДС, указанную в формуле. (211) в виде функции времени. Видно, что изменение ЭДС во времени равно синусоидальный в природе. ЭДС достигает максимальных значений, когда плоскость катушка параллельна плоскости магнитного поля, проходит через ноль, когда плоскость катушки перпендикулярна магнитному полю, и меняет направление подписывать каждые полупериоды оборота катушки. ЭДС периодическая (, т.е. , он постоянно повторяет один и тот же образец во времени), с период (который, конечно же, период вращения катушки).
Предположим, что некоторая нагрузка ( например, , лампочка или электрический обогреватель)
элемент) сопротивления подключается к клеммам
генератор. На практике это достигается соединением двух концов
катушка к вращающимся кольцам, которые затем подключаются к внешней цепи с помощью
металлических щеток.По закону Ома ток, протекающий в
нагрузка дается
(213) |
Обратите внимание, что этот ток постоянно меняет направление, как и ЭДС генератора. Следовательно, тип генератора, описанный выше, является обычно называемый переменным током , или генератором.
Ток, протекающий через нагрузку, также должен течь по катушке.
Поскольку катушка находится в магнитном поле, этот ток вызывает
крутящий момент на катушке, который, как легко продемонстрировать, замедляет ее
вращение.Согласно разд. 8.11, тормозной момент действующий
на катушке дается выражением
(214) |
куда — составляющая магнитного поля, которая лежит в плоскости катушки. Из уравнения (210) что
(215) |
поскольку . Внешний крутящий момент, равный разрывному моменту и противоположный ему, должен быть приложен к катушка, если она должна вращаться равномерно , как предполагалось выше.Скорость, с которой этот внешний крутящий момент действительно работает, равна произведение крутящего момента и угловой скорости катушки. Таким образом,
(216) |
Неудивительно, что скорость, с которой работает внешний крутящий момент, точно соответствует скорость, с которой электрическая энергия генерируется в цепи, состоящей из вращающейся катушки и нагрузки.
Уравнения (210), (213) и (215) дают
(217) |
куда .На рисунке 40 показан разрыв крутящий момент, построенный как функция времени, согласно Уравнение (217). Видно, что крутящий момент всегда одного знака (, т.е. , всегда действует в одном и том же знаке). направление, чтобы постоянно противостоять вращение катушки), но не постоянный во время. Вместо этого периодически пульсирует с периодом. Нарушение крутящий момент достигает максимального значения, когда плоскость катушки параллельна плоскость магнитного поля и равна нулю, если плоскость катушки перпендикулярна к магнитному полю.Понятно, что внешний крутящий момент нужен чтобы катушка вращалась с постоянной угловой скоростью, она также должна пульсировать вовремя с периодом. Постоянный внешний крутящий момент может привести к неравномерно вращающемуся катушки, и, следовательно, к переменной ЭДС, которая меняется со временем в более сложнее, чем .
Практически все коммерческие электростанции вырабатывают электроэнергию с помощью генераторов переменного тока.Внешнее питание, необходимое для вращения генерирующей катушки, обычно подается от паровая турбина (продувка паром по вентиляторным лопаткам, которые принудительно вращается). Вода испаряется, чтобы произвести высокое давление пара, сжигая уголь, или используя энергию, выделяемую внутри атомной электростанции. реактор. Конечно, на гидроэлектростанциях мощность нужна на поворот катушки генератора подводится водяная турбина (аналогичная к паровой турбине, за исключением того, что падающая вода играет роль пара).Недавно был разработан новый тип электростанции, в которой мощность, необходимая для вращения генераторной катушки, обеспечивается газовой турбиной. (по сути, большой реактивный двигатель, работающий на природном газе). В Соединенных Штатах и Канаде переменная ЭДС, генерируемая электростанциями, колеблется на Гц, что означает, что катушки генератора на электростанциях вращаются точно шестьдесят раз в секунду. В Европе и большей части остального мира частота колебаний коммерчески производимой электроэнергии составляет Гц.
Далее: Генератор постоянного тока вверх: магнитная индукция Предыдущая: Вихревые токи Ричард Фицпатрик 2007-07-14
Медленный переменный ток с генератором низкой частоты и вольтметром
переменного тока
Электричество и магнетизм
Медленный переменный ток с генератором низкой частоты и вольтметром
Практическая деятельность для 14-16
Демонстрация
Отображение медленного переменного тока с помощью вольтметра.Это впечатляющая демонстрация для учителей, если она выполняется с использованием больших счетчиков.
Аппараты и материалы
- Низкочастотный генератор переменного тока с аккумулятором — см. Техническое примечание
- Вольтметр (± 5 В), DC
- Вольтметр переменного тока
- Источник питания, низковольтный, регулируемый (для двигателя)
- Электродвигатель малый
- Резинка
- Выводы, 4 мм, 6
Осциллограф
Здоровье и безопасность, Технические примечания
Прочтите наше стандартное руководство по охране труда и технике безопасности
Низкочастотный генератор переменного тока состоит из катушки из резистивного провода с вращающейся парой контактов.К катушке генератора подключен низковольтный источник постоянного тока. Металлические щетки вращаются в контакте с катушкой и подключаются к выходным клеммам переменного тока, давая переменный выход.
Процедура
- Подключите аккумулятор к клеммам постоянного тока генератора, а вольтметр — к клеммам переменного тока. Установите стрелку вольтметра по центру.
- Поворачивайте генератор все быстрее и быстрее, чтобы амплитуда движения указателя становилась все меньше и меньше.Затем замените измеритель постоянного тока на измеритель переменного тока.
- Используйте двигатель для привода генератора, используя эластичную ленту в качестве приводного ремня. Низковольтный регулируемый источник питания может использоваться для привода двигателя сначала на низкой скорости, а затем на высокой.
- Покажите, как выходной сигнал генератора переменного тока, приводимого в действие небольшим двигателем, может быть отображен на осциллографе.
Учебные заметки
Генератор вращается медленно, так что можно увидеть, как стрелка измерителя колеблется во время вращения двигателя.Когда двигатель вращает генератор слишком быстро, стрелка на измерителе не успевает за ним. Пришло время использовать измеритель переменного тока.
Этот эксперимент прошел испытания на безопасность в октябре 2006 г.
Что такое электрическая частота и почему это важно? | Дракс | Drax
Поддержание постоянной частоты нашего источника питания — это деликатный национальный баланс, который требует изменений менее чем за секунду.
Всякий раз, когда вы включаете чайник, зарядное устройство для телефона или любой другой электроприбор в Великобритании, вырабатываемая мощность — это то, что мы называем переменным током (AC). Это означает, что оно чередуется между положительным и отрицательным напряжением.
Это колебание известно как электрическая частота. Переменный ток, который колеблется 50 раз в секунду, как в Великобритании, имеет частоту 50 Гц (50 Гц).
Но какое это имеет значение?
Оборудование в вашем доме, на заводе или в офисе рассчитано на работу на частоте 50 Гц с жесткими допусками, поэтому очень важно поддерживать стабильную частоту нашего источника питания.
Вот почему каждый генератор в Англии, Шотландии и Уэльсе, подключенный к системе передачи высокого напряжения , синхронизируется с каждым другим генератором. Все они соединены вместе и вращаются на частоте 50 Гц, образуя единый стабильный источник питания.
Как осуществляется управление частотой?
Изменения спроса и предложения на электроэнергию могут иметь большое влияние на частоту сети. Например, если спрос на электроэнергию больше, чем предложения, частота будет падать.Или, если питания будет слишком много, частота возрастет.
И погрешность очень мала. Фактически, любая мощность с частотой всего на один процент выше или ниже стандартных 50 Гц рискует повредить оборудование и инфраструктуру, если она не исчезнет. Здесь вы можете увидеть, насколько частота в стране в настоящее время отклоняется от 50 Гц.
В Великобритании управление частотой электросети возлагается на National Grid . Для обеспечения стабильности энергосистема заключает контракты с такими генераторами, как Drax, электростанция , для предоставления услуг частотной характеристики, поэтому при изменении частоты в сети генерирующие блоки Drax могут автоматически реагировать.
Если частота повышается, турбина снижает расход пара. Если частота падает, расход пара увеличивается. В случае энергоблоков на электростанции Drax этот отклик срабатывает менее чем за одну секунду от начального отклонения частоты.
Что такое частота? | Fluke
Частота переменного тока (ac) — это количество циклов в секунду в синусоидальной волне переменного тока. Частота — это скорость изменения направления тока в секунду. Он измеряется в герцах (Гц), международной единице измерения, где 1 герц равен 1 циклу в секунду.
- Герц (Гц) = Один герц равен одному циклу в секунду.
- Цикл = Одна полная волна переменного тока или напряжения.
- Чередование = половина цикла.
- Период = время, необходимое для создания одного полного цикла сигнала.
По сути, частота — это то, как часто что-то повторяется. В случае электрического тока частота — это количество раз, когда синусоидальная волна повторяет или завершает цикл от положительного к отрицательному.
Чем больше циклов происходит в секунду, тем выше частота.
Пример: Если переменный ток имеет частоту 3 Гц (см. Диаграмму ниже), это означает, что его форма волны повторяется 3 раза за 1 секунду.
Частота обычно используется для описания работы электрического оборудования. Ниже приведены некоторые распространенные диапазоны частот:
- Частота сети питания (обычно 50 Гц или 60 Гц).
- Преобразователи частоты, которые обычно используют несущую частоту 1–20 килогерц (кГц).
- Диапазон звуковых частот: от 15 Гц до 20 кГц (диапазон человеческого слуха).
- Радиочастота: 30-300 кГц.
- Низкая частота: от 300 кГц до 3 мегагерц (МГц).
- Средняя частота: 3-30 МГц.
- Высокая частота: 30-300 МГц.
Цепи и оборудование часто предназначены для работы с фиксированной или переменной частотой. Оборудование, предназначенное для работы на фиксированной частоте, работает ненормально, если оно работает на частоте, отличной от указанной. Например, двигатель переменного тока, предназначенный для работы на частоте 60 Гц, работает медленнее, если частота падает ниже 60 Гц, и быстрее, если она превышает 60 Гц.Для двигателей переменного тока любое изменение частоты вызывает пропорциональное изменение скорости двигателя. Другой пример: уменьшение частоты на 5% приводит к снижению скорости двигателя на 5%.
Как измерить частоту
Цифровой мультиметр, который включает режим частотомера, может измерять частоту сигналов переменного тока, а также может предлагать следующее:
- Запись MIN / MAX, что позволяет записывать измерения частоты в течение определенного периода или таким же образом записываются измерения напряжения, тока или сопротивления.
- Автоматический диапазон, который автоматически выбирает частотный диапазон, кроме случаев, когда измеренное напряжение выходит за пределы диапазона измерения частоты.
Электросети различаются в зависимости от страны. В США сетка основана на высокостабильном 60-герцовом сигнале, то есть 60 циклов в секунду.
В США для электроснабжения домашних хозяйств используется однофазный источник переменного тока на 120 Вольт. Мощность, измеренная в розетке в доме в США, даст синусоидальные волны, колеблющиеся в пределах ± 170 вольт, при измерении истинного среднеквадратичного напряжения 120 вольт.Частота колебаний составит 60 циклов в секунду.
Герц назван в честь немецкого физика Генриха Герца (1857–1894), который первым начал передавать и принимать радиоволны. Радиоволны распространяются с частотой один цикл в секунду (1 Гц). (Точно так же часы отсчитывают 1 Гц.)
Ссылка: Принципы цифрового мультиметра, автор — Глен А. Мазур, American Technical Publishers.
Статьи по теме:
1. | Большая часть электроэнергии, используемой на борту кораблей и самолетов ВМФ, а также в гражданских целях, составляет | |
ac | ||
dc | ||
2. | Генераторы переменного тока являются по номеру | |
Генераторы переменного тока | ||
Компрессоры | ||
3. | Генераторы переменного тока сильно различаются по размеру в зависимости от нагрузки, на которую они подают питание.Например, генераторы переменного тока, используемые на гидроэлектростанциях, таких как плотина Гувера, огромны по размеру и вырабатывают тысячи киловатт при очень высоких уровнях напряжения. Другой пример — генератор в обычном автомобиле, который по сравнению с ним очень мал. Он весит всего несколько фунтов и выдает мощность от 100 до 200 Вт, обычно при напряжении 12 вольт. | |
Верно | ||
Ложно | ||
4. | Независимо от размера, все электрические генераторы постоянного или переменного тока работают по принципу магнитной индукции. ЭДС индуцируется в катушке в результате (1) прохождения катушки через магнитное поле или (2) магнитного поля, прорезающего катушку. Пока существует относительное движение между проводником и магнитным полем, в проводнике будет индуцироваться напряжение. Та часть генератора, которая производит магнитное поле, называется полем. Та часть, в которой индуцируется напряжение, называется якорем.Чтобы между проводником и магнитным полем происходило относительное движение, все генераторы должны иметь две механические части — ротор и статор. ROTor — это часть, которая вращается; СТАТОР — это та часть, которая остается СТАЦИОНАРНОЙ. В генераторе постоянного тока якорь всегда является ротором. В генераторах переменного тока якорь может быть | |
Ротор | ||
Статор | ||
либо ротор, либо статор | ||
5. | Генератор с вращающимся якорем аналогичен по конструкции генератору постоянного тока (рисунок 3-1) в том, что | |
Якорь вращается в постоянном магнитном поле | ||
Магнитное поле вращается вокруг фиксированный якорь | ||
6. | Статоры всех генераторов с вращающимся полем примерно одинаковы. Статор состоит из многослойного железного сердечника с заделанными в него обмотками якоря, как показано на рисунке 3-2.Сердечник прикреплен к | |
Рама статора | ||
Рама ротора | ||
7. | Все генераторы, большие и малые, переменного и постоянного тока, нуждаются в механическом источнике. власть вращать их роторы. Этот источник механической энергии называется первичным двигателем. | |
Верно | ||
Ложно | ||
8. | Генератор, который вырабатывает одно непрерывное переменное напряжение, известен как ОДНОФАЗНЫЙ генератор переменного тока | |
ОДНОФАЗНЫЙ | ||
ДВУХФАЗНЫЙ генератор переменного тока. | ||
9. | Выходная частота напряжения генератора зависит от скорости вращения ротора и количества полюсов. Чем выше скорость, тем выше частота. Чем ниже скорость, тем ниже частота.Чем больше полюсов на роторе, тем выше частота для данной скорости. Когда ротор повернулся на такой угол, что два соседних полюса ротора (северный и южный полюс) прошли через одну обмотку, индуцированное в этой обмотке напряжение будет изменяться в течение одного полного цикла. Для данной частоты чем больше пар полюсов, тем ниже скорость вращения. Этот принцип проиллюстрирован на рисунке 3-12; Двухполюсный генератор должен вращаться в четыре раза быстрее, чем восьмиполюсный генератор, чтобы генерировать одинаковую частоту генерируемого напряжения.Частота любого генератора переменного тока в герцах (Гц), которая представляет собой количество циклов в секунду, связана с количеством полюсов и скоростью вращения, как выражено уравнением F = NP / 120 , где P — количество полюсов, N — это скорость вращения в оборотах в минуту (об / мин), а 120 — постоянная величина, позволяющая преобразовать минуты в секунды и от полюсов к парам полюсов. Например, двухполюсный генератор переменного тока с частотой вращения 3600 об / мин имеет частоту | |
60 Гц | ||
90 Гц | ||
120 Гц | ||
10 . | В генераторе переменного тока в обмотках якоря индуцируется переменное напряжение, когда через эти обмотки проходят магнитные поля переменной полярности. Величина индуцированного напряжения в обмотках в основном зависит от | |
количества последовательно соединенных проводов на обмотку, | ||
Скорость (об / мин генератора), при которой магнитное поле разрезает обмотку, | ||
напряженность магнитного поля. | ||
Все вышеперечисленное | ||
Любой из этих факторов можно использовать для управления величиной напряжения, индуцируемого в обмотках генератора. | ||
Генератор переменного тока — каков процесс внутри электрического генератора? — Высшее — OCR 21C — Редакция GCSE Physics (Single Science) — OCR 21st Century
Выходной сигнал генератора на графике
Выходной сигнал генератора переменного тока может быть представлен на графике разности потенциалов-времени с разностью потенциалов на вертикальной оси и время по горизонтальной оси.
На графике изображена переменная синусоида. Максимальную разность потенциалов или ток можно увеличить за счет:
- увеличения скорости вращения
- увеличения силы магнитного поля
- увеличения количества витков на катушке
На схеме показаны четыре различных положения катушки в генераторе переменного тока и соответствующая разность потенциалов.
График разности потенциалов-времени для генератора переменного токаA — Катушка находится под 0 °.Катушка движется параллельно направлению магнитного поля, поэтому разность потенциалов не индуцируется.
B — Катушка под углом 90 °. Катушка движется под углом 90 ° к направлению магнитного поля, поэтому наведенная разность потенциалов максимальна.
C — Змеевик под углом 180 °. Катушка движется параллельно направлению магнитного поля, поэтому разность потенциалов не возникает.
D — Змеевик под углом 270 °. Катушка движется под углом 90 ° к направлению магнитного поля, поэтому наведенная разность потенциалов максимальна.Здесь наведенная разность потенциалов находится в направлении , противоположном направлению , по отношению к тому, что было в точке B.
A — Катушка находится под углом 360 °, то есть она вернулась в исходную точку, сделав полный оборот. Катушка движется параллельно направлению магнитного поля, поэтому разность потенциалов не возникает.
Как генератор вырабатывает электричество? Статья о том, как работают генераторы
Генераторы — это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций.Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.
Как работает генератор?Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.
Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.
Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.
Основные компоненты генератораОсновные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:
- Двигатель
- Генератор
- Топливная система
- Регулятор напряжения
- Системы охлаждения и выхлопа
- Система смазки
- Зарядное устройство
- Панель управления
- Основной узел / рама
Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.
(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, а большие двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.
(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не установлены на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:
• Компактная конструкция
• Более простой рабочий механизм
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов
Однако OHV-двигатели также дороже других двигателей.
(c) Чугунная гильза (CIS) в цилиндре двигателя. CIS — это футеровка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.
Генератор Генератор переменного тока, также известный как «генератор», является частью генератора, который вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.
(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:
(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.
Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.
При оценке генератора переменного тока необходимо учитывать следующие факторы:
(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.
(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.
(c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего технического обслуживания, а также производит более чистую мощность.
Топливная системаТопливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае небольших генераторных установок топливный бак является частью опорной рамы генератора или устанавливается наверху рамы генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.
Общие характеристики топливной системы включают следующее:
(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.
(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.
(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.
(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.
(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.
(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.
Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.
(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.
(2) Обмотки возбудителя: преобразование постоянного тока в переменный — обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.
(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.
(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.
Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, ровно столько, чтобы поддерживать выходную мощность генератора на полном рабочем уровне.
Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.
Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.
Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.
Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.
(b) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.
Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно присоединяются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.
Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.
Зарядное устройство
ST e Художественная функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.
Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.
(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.