Site Loader

Содержание

Измерение сопротивления грунта

Оглавление

Каждая силовая кабельная линия и включённые в неё периферийные устройства должны быть заземлены для обеспечения безопасной эксплуатации инженерной сети. Измерение сопротивления грунта регламентируется действующими нормативами. Обследование позволяет определить глубину заложения заземлителей, расстояние между тоководами, а также выполнить обязательные требования безопасности, соблюдение которых необходимо для нормальной эксплуатации электрооборудования.

Определение удельного электрического сопротивления грунта в полевых условиях

Удельное сопротивление грунта в полевых условиях осуществляется путём сборки временной схемы и устройства лабораторных заземлителей, которые воспринимают на себя нагрузку при подаче напряжения на электрооборудование. В качестве энергопотребляющих приборов выступают метрологические установки.

Процедура регламентирована ПУЭ, выполняется силами аккредитованной электролаборатории, а по её результатам составляется технический отчёт установленной формы.

Средства контроля и вспомогательные устройства

При проведении измерения сопротивления грунта используется специализированное оборудование, а также дополнительные устройства, необходимые для сборки временной цепи:

  • Метрологические приборы, предназначенные для работы в полевых условиях с высоковольтными кабельными линиями. Наибольшей популярностью среди аккредитованных электролабораторий пользуется российское оборудование марки АС-72.
  • Токопроводящие электроды, изготовленные из стали или нержавейки, предназначенные для забивки в грунт при сборке временного заземлителя. Средний диаметр стального стержня составляет 20 мм, а длина колеблется в пределах от 250 до 400 мм.
  • Силовые кабели, клеммные соединения и другие элементы, которые поставляются в едином комплекте и предназначены для устройства временной схемы при проведении испытаний.

Всё оборудование, использующееся при выполнении измерений сопротивления грунта, должно пройти поверку в органах сертификации, с выдачей соответствующего сертификата, который необходимо пролонгировать, согласно требованиям ПУЭ.

Проведение измерений

Согласно современным методикам, при проведении испытаний в полевых условиях, исключается забор грунтового основания для его проверки в лаборатории. Все измерения производятся на месте, согласно следующей методике:

  • В месте прокладки кабеля, монтируется временная токопроводящая цепь, состоящая из 4 электродов.
  • При забивке стальных стержней в грунт, следует соблюдать идентичное расстояние между ними.
  • Расстояние между электродами следует подбирать не менее глубины заложения электротехнического сооружения в земле.
  • Электроды забиваются в грунтовое основание, подлежащее испытанию строго в едином створе.
  • Отдельно от электродов устанавливается метрологическое оборудование.
  • Прибор оснащён 4 вводами – 2 токовыми и 2 – для снятия замеров.
  • К каждому из вводов последовательна подключаются кабельные выводы от электродов.
  • Испытание проводятся в несколько итераций, временной промежуток между которыми составляет от 2 до 3 часов.
  • Измерения следует осуществлять в тёплое время года, что исключает риск промерзания грунтов на глубине залегания кабельной трассы.

При проведении измерений сопротивления грунта, следует соблюдать линейную зависимость между глубиной погружения и расстоянием между соседними стержнями. Заземлитель должен входить в грунт на глубину не более 5%, чем длина отрезка между соседними электродами.

Обработка результатов измерения

По завершении полевых испытаний, проводится камеральная обработка полученных результатов. Для вычисления итогового показателя, используется следующая аналитическая зависимость:

R = 2pRrl,

R – искомая величина, показатель удельного (кажущегося) сопротивления грунтового основания в зоне прокладке кабельной трассы.

p – математическая величина, равная 3,14.

l – расстояние между соседними токопроводящими стальными стержнями, из которых собрана временная цепь.

При вычислении показателей для каждой итерации, значения заносятся в соответствующую графу протокола, после чего значения сравниваются между собой и с нормативными величинами.

Оформление результатов измерения

По результатам проведённой экспертизы, ответственное лицо оформляет протокол установленной формы, в котором указываются все расчётные параметры, позволяющие сделать вывод о пригодности электрооборудования к последующей эксплуатации.

Форма протокола определения удельного электрического сопротивления грунта в трассовых условиях

В протокол заносятся следующие рабочие и расчётные показатели сопротивления грунтового основания, а также вспомогательные сведения:

  • Локация испытуемого объекта.
  • Информация о метрологическом оборудовании – марка, модель, идентификационный номер, дата последних поверочных мероприятий.
  • Дата проведения испытаний.
  • Геологические и физико-механические характеристики грунтового основания.
  • Климатические условия в день проведения экспертных мероприятий, с указанием температуры и влажности.
  • Маркировка электродов во временной схеме.
  • Расстояние между токопроводящими стержнями.
  • Показания прибора после проведения измерений.
  • Полученное по формуле удельное сопротивление грунта.
  • Сведение о составе комиссии, с личной подписью каждого аттестованного участника.

Каждый протокол заверяется оригинальной печатью электролаборатории, имеющей сертификат СРО и статус юрлица.

Определение удельного электрического сопротивления грунта в лабораторных условиях

Данная методика измерения сопротивления грунта проводится в условиях лаборатории, после забора образцов с объекта. Методика отличается повышенной точностью и позволяет получить более полные сведения об электротехнических характеристиках грунта.

Отбор проб

При отборе проб грунтового основания, представители электролаборатории руководствуются определёнными правилами:

  • Забор частиц основания осуществляется с глубины прокладки подземного электрооборудования или кабельных линий.
  • Расстояние от оси шурфа до места отбора не должно превышать 500 – 700 мм.
  • Отбор производится через каждые 50 – 150 м, по длине линейного объекта.
  • Каждый образец должен быть не менее 1 л в объёме, с массой не менее 1,5 кг.
  • Все образцы должны быть замаркированы, согласно координатам их забора.

В случае, если инженерная сеть проложена в потенциально подтопляемом участке, и сезонный уровень грунтовых вод располагается выше глубины залегания кабельной линии, лаборант отбирает жидкую взвесь в объёме не менее 2 – 3 литров.

Средства контроля и вспомогательные устройства:

При проведении измерений сопротивления грунта, используется следующее метрологическое оборудование и дополнительные детали временной электрической цепи:

  • Генератор напряжения с возможностью выставления минимальной частоты.
  • Миллиамперметр с ценой деления от 1 до 1,5 мА и диапазонами измерений 100 – 500 мА.
  • Прибор для измерения рабочего напряжения – вольтметр, показания сопротивления на вводе которого составляет от 1МОм и более.
  • Лабораторные токопроводящие детали с шириной 44 мм и высотой 40 мм. Представляют собой листовые материалы из высококачественной стали с приваренным к ним кронштейном для крепления провода. Электроды крепятся с наружной стороны временной схемы.
  • Электроды внутреннего контура, представляющие собой токопроводящую жилу из меди с диаметром сечения сердечника не менее 1 мм, но не более 5 мм. Рекомендуемая длина проволоки составляет 45 – 50 мм.
  • Мелкий абразив для зачистки концов проводника перед проведением испытаний.
  • Чистая вода без химических примесей, выполняющая роль электролита.
  • Лабораторный ацетон.

Все вспомогательные материалы должны соответствовать требованиям ГОСТ, предназначаются для промышленного использования.

Подготовка к измерению

Перед началом испытаний, лаборант проводит следующие подготовительные работы по сборке временной цепи:

  • Каждый их отобранных образцов увлажняется до достижения максимальной концентрации водной среды в структуре грунта.
  • Если испытанию подлежат глины, суглинки или супеси, они доводятся до мягкопластичной консистенции.
  • Смачивание осуществляется очищенной водой, не содержащей растворённых солей и других химических примесей, которые могут повлиять на показатель сопротивления грунта.
  • Каждый электрод обрабатывается абразивом, до чистого металла с характерным блеском.
  • После механической зачистки каждая контактная поверхность токопроводящей детали обезжиривается с помощью ацетона, после чего подлежит очистке и промывке дистиллированной водой.
  • Внешние пластинчатые электроды собираются в лабораторную схему в форме короба.
  • Увлажнённый грунт помещается между электродами и трамбуется под механическим воздействием.
  • Внутренние электроды втыкаются в образец грунта до самого низа.
  • Расстояние между внутренними тоководами должно составлять 45 – 55 мм, каждый из них также должен отстоять от пластин внешнего контура на 20 – 30 мм.

Когда схема собрана, лаборант проверяет корректность подключения генератора тока, а также все расстояния между электродами. По завершении подготовительных работ, ответственное лицо начинает испытания, согласно требованиям ПУЭ, с соблюдением техники безопасности.

Проведение измерений

Для проведения измерения сопротивления грунтового основания в лаборатории собирается стенд из 4 пластинчатых электродов.

Частота генератора постоянного или переменного тока не должна превышать 1000 Гц.

Все 4 внешних электрода должны иметь одинаковую толщину и площадь, выполнены из идентичного материала.

Суть испытаний сводится к определению разницы напряжений между внутренними электродами при подаче электротока от генератора. При снятии замеров, внутренние электроды устанавливаются на одинаковом расстоянии друг от друга.

Обработка результатов измерения

По аналогии с предыдущей методикой, после получения фактических показателей по результатам лабораторных измерений, начинается камеральная обработка результатов. Фактическое сопротивление грунтового основания выводится из следующей зависимости:

Rr = U0 / I0

Rr – искомая величина – удельное сопротивление грунта.

U0 – разница напряжений между соседними внутренними токопроводящими деталями.

I0 – расчётная сила тока внутри первичного контура, образованного пластинчатыми электродами.

Из формулы видно, что сопротивление выводится из классического закона Ома для переменного тока.

В свою очередь, удельное сопротивление грунта определяется с использованием следующей формулы:

 Rуд = (Rr * Fэл) / L,

Rуд – искомая величина.

Fэл – контактная площадь боковой поверхности внутреннего электрода, погруженного в образец.

L – расстояние между внутренними вертикальными токопроводящими элементами.

В зависимости от марки прибора, включенного во временную цепь, алгоритм определения сопротивления грунта может меняться, согласно инструкции по эксплуатации метрологического оборудования

Оформление результатов измерений

По результатам измерений оформляется протокол, содержание которого аналогично описанному выше варианту.

Форма протокола определения удельного электрического сопротивления грунта в лабораторных условиях

Пустые формы протоколов имеются в наличии у каждой официально зарегистрированной лаборатории. На бланке указываются сведения об объекте, метрологических приборах, а также результаты проведённых измерений.

В конце протокола ответственное лицо делает вывод о пригодности грунта основания для последующей эксплуатации токопроводящей жилы под напряжением без проведения дополнительных защитных мероприятий.

Удостоверяя документацию подписями и печатью, представители электролаборатории принимают на себя ответственность за последующую безопасную эксплуатацию инженерной сети.

Выполненные проекты ООО «Технадзор77»

Выполнили более 400 проектов для закачиков по

  • Частные клиенты
  • Коммерческие организации
  • Гос. учреждения

Выполненный проект

Отчет по работам №17499

Строительство жилого дома

Услуга: Технадзор

Выполненный проект

Отчет по работам №17537

Строительство жилого дома

Услуга: Технадзор

Выполненный проект

Отчет по работам №17580

Ремонт в квартире

Услуга: Технадзор

Выполненный проект

Отчет по работам №18242

Устройство котлована

Услуга: Технадзор

Выполненный проект

Отчет по работам №18237

Строительство ТЦ

Услуга: Технадзор

Выполненный проект

Отчет по работам №17465

Ремонт помещения предприятия общественного питания

Услуга: Технадзор

Выполненный проект

Отчет по работам №18208

Муниципальный заказ

Услуга: Технадзор

Выполненный проект

Отчет по работам №18187

Работы по проведению текущего ремонта зданий

Услуга: Технадзор

Выполненный проект

Отчет по работам №18192

Муниципальный заказ

Услуга: Технадзор

Смотреть больше
отчетов

Отзывы

Коэффициент сопротивления: рассчет и измерение удельного сопротивления грунта

Расчётное удельное электрическое сопротивление грунта представляет собой такой параметр, который определяет уровень электропроводности земли, выступающей в качестве проводника. Оно показывает, как хорошо будет происходить растекание электрического тока от заземлителя в такой среде.

Содержание:

  1. Защитное заземление.
  2. Удельное сопротивление грунта.
  3. Методика измерения сопротивления грунта.

Защитное заземление

Защитным заземлением должно обладать каждое электрическое оборудование, к которому допустимо прикосновение человека и которое не имеет иных видов защиты. Связано это с тем, что при коротком замыкании на корпус такое оборудование, как трансформаторы, светильники, электрические машины и т.п., может оказаться под напряжением, что опасно для жизни человека.

Удельное сопротивление грунта

Удельное сопротивление земли – это сопротивление между противоположными плоскостями куба земли, рёбра которого имеют размер в один метр. Измеряется данный показатель в омметрах. Удельное сопротивление зависит от состава грунта, размеров и плотности прилегания его частиц друг к другу, влажности, температурных показателей, а также концентрации в нём химических веществ, находящихся в растворённом состоянии.

Для того чтобы произвести расчёт заземления, необходимо рассчитать удельное сопротивление грунта. Стоит помнить, что этот показатель прямо пропорционален сопротивлению заземления установленного устройства.

Удельное сопротивление рассчитывается путём умножения измеренного значения на поправочный коэффициент сопротивления грунта.

Методика измерения сопротивления грунта

Под заземлением подразумевается подключение любой цепи к земле. Применяется оно для того, чтобы осуществить электрическую защиту. Чтобы не зависеть  от статического электричества, для защиты рабочего персонала от поражения электрическим током и оборудования от возгорания необходимо производить регулярные измерения сопротивления.

Измерить сопротивление грунта можно при помощи специального прибора, измерительного кабеля и штырей, для правильного расположения которых стоит соблюдать следующие условия:

  • штыри должны быть тщательно очищены от загрязнений;
  • их установка должна происходить вертикально и через одинаковое расстояние;
  • расстояние между электродами должно быть в 5 раз больше глубины их погружения.

Только в этих случаях точный расчёт сопротивления грунта может быть гарантирован. Присоединение кабеля к самому штырю осуществляется при помощи зажима. Затем на приборе выбирается необходимый режим измерения и осуществляется замер.

Полученные результаты сравниваются с табличными данными, где также и определяется вид самого грунта.

Все нормы указаны в ПУЭ (пункт 1.8.36.5), а также пункте 24.3 ПЭЭП.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения имерение удельного сопротивления грунта, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать измерение удельного сопротивления грунта или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Удельное сопротивление и измерение грунта – Принципы проектирования и испытания заземляющего электрода

Понимание удельного сопротивления и измерения грунта, а также его связи с конструкцией системы заземлителя является ключом к пониманию фундаментальных принципов проектирования, измерений и расчетов сопротивления грунта и удельного сопротивления грунта. Нижеследующее является второй частью наших принципов проектирования заземляющих электродов и серии испытаний, состоящей из четырех частей, которые основаны на нашем официальном документе «Принципы проектирования и испытания заземляющих электродов». Вы можете скачать полный технический документ здесь.

  1. Теория оболочки
  2. Удельное сопротивление грунта и измерение
  3. Расчет сопротивления заземляющего электрода одиночного стержня
  4. Измерение сопротивления электрода

Удельное сопротивление грунта 900 17

Удельное сопротивление грунта — другое название удельного сопротивления грунта. Измеряется в ом-метрах или ом-сантиметрах. Ом-метр – это удельное сопротивление грунта, когда оно имеет сопротивление 1 Ом между противоположными гранями куба со стороной в один метр.

Сопротивление прямо пропорционально удельному сопротивлению почвы. Это соотношение не так просто вычислить в реальной жизни, как может показаться, потому что удельное сопротивление грунта неизбежно будет меняться с глубиной. Вторая трудность при работе с разными местами заключается в том, что удельное сопротивление сильно различается в зависимости от места.

Приведенные ниже таблицы дают представление об удельном сопротивлении нескольких сред, представляющих интерес для проектирования системы заземления.

Материал Типовое удельное сопротивление
Медь 1,72 x 10-8 Ом·м
GEM, материал 0,12 Ом·м
Бентонит 2,5 Ом·м
Бетон от 30 до 90 Ом·м

 

Факторами, влияющими на удельное сопротивление грунта, являются тип грунта, плотность, химический состав, температура и содержание воды. На рис. 1 показано влияние влажности и температуры на удельное сопротивление грунта.

Рисунок 1: Влияние содержания влаги и температуры на удельное сопротивление грунта

Измерение удельного сопротивления грунта

Существует несколько методов измерения удельного сопротивления грунта.

К ним относятся:

  • Wenner Array 4-очковой метод
  • Schlumberger Array
  • метод управляемого стержня

Метод массива Wenner обсуждается в этой статье, потому что это наиболее распространенный метод измерения устойчивости к почве. Объем этого документа не позволяет подробно обсуждать другие методы тестирования почвы.

Используя метод решетки Веннера, четыре небольших электрода (вспомогательные датчики) размещают на прямой линии с интервалом a на глубину b. Через два внешних датчика пропускают ток, а затем измеряют потенциальное напряжение между двумя внутренними датчиками. Простое уравнение закона Ома определяет сопротивление. На основе этой информации теперь можно рассчитать удельное сопротивление местного грунта. В большинстве практических случаев «а» в 20 раз больше, чем «b», и тогда мы можем сделать предположение, что b = 0.

Тогда удельное сопротивление ρ определяется по формуле:

ρ = 2 π a Re

где

ρ = удельное сопротивление местного грунта (Ом-м)
a = расстояние между зондами (м)
9 0099 b
= глубина проникновения зондов в землю (м)
Re = значение сопротивления, измеренное испытательным устройством (Ом)

Эти значения дают среднее удельное сопротивление грунта на глубину a. Рекомендуется снимать серию показаний при различных значениях а, а также в 9ось повернута на 0°. Хорошей практикой является составление таблиц или графиков результатов, потому что это дает хорошее представление о том, как удельное сопротивление изменяется с глубиной, и дает нам лучшее представление о типе заземляющего электрода для проектирования.

Например, если удельное сопротивление очень велико на верхних трех метрах, но резко падает после этой глубины, то можно рассмотреть возможность проектирования с использованием электродов, которые вбиваются или бурятся на глубину более трех метров. И наоборот, если сопротивление не улучшается за пределами определенной глубины, скажем, двух метров, то в конструкции заземляющего электрода можно рассмотреть горизонтальные электроды.

Рис. 2. Решетка Веннера (метод 4 точек)

На рис. 2 показан типичный протокол измерений удельного сопротивления. Опыт показал, что многие измерители удельного сопротивления грунта часто не имеют полного представления о степени, в которой необходимо провести испытание. Часто отмечается, что измеряется только одно или несколько значений. Для проектирования заземляющего электрода рекомендуется собрать полный набор результатов в диапазоне от 2 до 40 метров.

9 0027 10
Рис. 3 Типовой протокол испытаний для метода решетки Веннера
Расстояние, a Измеренное значение Re Удельное сопротивление, R = 2 π a Re
2
4
6
8

Загрузите информационный документ «Принципы проектирования и тестирования заземляющих электродов nVent ERICO»

Загрузите приведенный ниже информационный документ, в котором изложены основные принципы проектирования заземлителей, измерений и расчетов сопротивления заземления и удельного сопротивления грунта. послужат основой для понимания существующих практик заземления и послужат ориентиром для инженера, пытающегося понять суть конструкции заземляющего электрода.

Загрузить информационный документ

Инженеры-электрики: ваш источник новостей и советов по электротехнике

Будьте в курсе новых тенденций, советов и информации, подписавшись на блог nVent ERICO. Наши эксперты по электротехнике и продуктам регулярно публикуют новую информацию, а также курируют лучшие ресурсы, публикуя подобные публикации.

Определение удельного сопротивления грунта

Что такое испытание удельного сопротивления грунта?

Измерение удельного сопротивления грунта — это процесс измерения объема грунта для определения проводимости грунта. Результирующее удельное сопротивление грунта выражается в ом-метрах или ом-сантиметрах.

Испытание удельного сопротивления грунта является наиболее важным фактором при проектировании электрического заземления. Это верно при обсуждении простых электрических схем, специальных систем заземления с низким сопротивлением или гораздо более сложных вопросов, связанных с исследованиями повышения потенциала заземления (GPR). Хорошие модели грунта являются основой всех проектов заземления и разрабатываются на основе точных испытаний удельного сопротивления грунта.

4-точечный тест Веннера

4-точечный метод Веннера на сегодняшний день является наиболее часто используемым методом измерения удельного сопротивления грунта. Существуют и другие методы, такие как общий метод и метод Шлюмберже, однако они редко используются для проектирования заземления и лишь незначительно различаются по расположению датчиков по сравнению с методом Веннера.

Удельное электрическое сопротивление — это измерение удельного сопротивления данного материала. Оно выражается в ом-метрах и представляет собой сопротивление, измеренное между двумя пластинами, покрывающими противоположные стороны куба со стороной 1 м. Этот тест на удельное сопротивление грунта обычно проводится на необработанных участках земли во время проектирования и планирования систем заземления, характерных для испытываемого участка.

При испытании удельного сопротивления грунта четыре (4) датчика размещаются на одинаковом расстоянии, чтобы примерно определить глубину залегания испытываемого грунта. Типичные интервалы составляют 1 фут, 1,5 фута, 2 фута, 3 фута, 4,5 фута, 7 футов, 10 футов и т. д., при этом каждый интервал увеличивается по сравнению с предыдущим примерно в 1,5 раза, до максимального расстояния, равного соизмеримо с 1-3-кратным максимальным диагональным размером проектируемой системы заземления, в результате чего максимальное расстояние между внешними токоведущими электродами составляет от 3 до 9раз больше максимального диагонального размера будущей системы заземления. Это один «проход» или набор измерений, который обычно повторяется, хотя и с более короткими максимальными интервалами, несколько раз вокруг места под прямым углом и по диагонали друг к другу для обеспечения точных показаний.

Основная предпосылка испытания удельного сопротивления грунта заключается в том, что датчики, расположенные на расстоянии 5 футов по земле, будут считывать 5 футов в глубину. То же самое верно, если вы разместите датчики на расстоянии 40 футов по земле, вы получите средневзвешенное сопротивление почвы от 0 до 40 футов в глубину и все точки между ними. Эти необработанные данные обычно обрабатываются с помощью компьютерного программного обеспечения для определения фактического удельного сопротивления грунта в зависимости от глубины.

Проведение четырехточечного (или четырехштырькового) измерения удельного сопротивления грунта по Веннеру

Ниже описано, как выполнить один «ход» или набор измерений. Как указывает «4-точечный», тест состоит из 4 штырей, которые необходимо вставить в землю. Два внешних контакта называются датчиками тока, C1 и C2. Это зонды, которые подают ток в землю. Два внутренних датчика — это потенциальные датчики, P1 и P2. Это датчики, которые измеряют фактическое сопротивление почвы.


На приведенной ниже схеме установки Веннера для четырехточечного измерения зонд C1 вбивается в землю в углу измеряемой области. Зонды P1, P2 и C2 приводятся в движение на расстоянии 5 футов, 10 футов и 15 футов соответственно от стержня C1 по прямой линии для измерения удельного сопротивления грунта на глубине от 0 до 5 футов. C1 и C2 — внешние датчики, а P1 и P2 — внутренние датчики. В этот момент на щупы C1 и C2 подается известный ток, а результирующее напряжение измеряется на щупах P1 и P2. Затем можно применить закон Ома для расчета измеренного кажущегося сопротивления.

Зонды C2, P1 и P2 затем можно перемещать на расстояние 10, 20 и 30 футов для измерения сопротивления грунта на глубине от 0 до 10 футов. Продолжайте перемещать три зонда (C2, P1 и P2) от C1 через равные промежутки времени, чтобы приблизить глубину измеряемого грунта. Обратите внимание, что на характеристики электрода может влиять удельное сопротивление грунта на глубинах, которые значительно больше, чем глубина электрода, особенно для обширных горизонтальных электродов, таких как водопроводные трубы, фундаменты зданий или заземляющие сетки.

Измерители сопротивления почвы

Существует два основных типа измерителей сопротивления почвы: низкочастотные и высокочастотные модели. Оба типа измерителей могут использоваться для 4-х и 3-х точечного тестирования, и даже могут использоваться в качестве стандартного (2-точечного) вольтметра для измерения обычного удельного сопротивления грунта.

Всегда следует проявлять осторожность при выборе измерителя сопротивления почвы, поскольку электроника, участвующая в фильтрации сигналов, является узкоспециализированной. Говоря электрически, земля может быть шумным местом. Воздушные линии электропередач, электрические подстанции, железнодорожные пути, различные передатчики сигналов и многие другие источники вносят свой вклад в сигнальный шум, присутствующий в любом заданном месте. Гармоники, фоновый шум частотой 60 Гц и связь с магнитным полем могут исказить сигнал измерения, в результате чего показания кажущегося удельного сопротивления грунта будут на порядок больше, особенно при большом расстоянии друг от друга. Выбор оборудования с электронными блоками, способными различать эти сигналы, имеет решающее значение.

Высокочастотные измерители сопротивления грунта обычно используют импульсы, работающие с частотой 128 импульсов в секунду, или с другой частотой импульсов, кроме 60. Эти высокочастотные измерители обычно не могут генерировать достаточное напряжение для обработки длинных перемещений, и их, как правило, не следует использовать. для расстояния между зондами более 100 футов. Кроме того, высокочастотный сигнал, протекающий в токоподводе, индуцирует шумовое напряжение в потенциальных выводах, которое невозможно полностью отфильтровать: этот шум становится больше, чем измеренный сигнал, по мере уменьшения удельного сопротивления грунта и увеличения расстояния между выводами. Высокочастотные измерители дешевле, чем их низкочастотные аналоги, и на сегодняшний день являются наиболее распространенными измерителями, используемыми для измерения удельного сопротивления грунта.

Низкочастотные измерители, которые на самом деле генерируют низкочастотные импульсы (порядка 0,5–2,0 секунды на импульс), являются предпочтительным оборудованием для испытания удельного сопротивления грунта, так как они устраняют проблему индукции, с которой сталкиваются высокочастотные измерители. страдать. Однако их покупка может быть очень дорогой. В зависимости от максимального напряжения оборудования низкочастотные измерители могут считывать показания с очень больших расстояний между датчиками и часто на расстоянии многих тысяч футов. Как правило, пакеты электронных фильтров, предлагаемые в низкочастотных измерителях, лучше, чем в высокочастотных измерителях. Следует проявлять осторожность при выборе надежного производителя.

Анализ данных

После сбора всех данных об удельном сопротивлении грунта можно применить следующую формулу для расчета кажущегося удельного сопротивления грунта в ом-метрах.

Например, если кажущееся сопротивление почвы 4,5 Ом на расстоянии 40 футов, удельное сопротивление почвы в ом-метрах будет 344,7. На Рисунке 11 подробно показана вся формула удельного сопротивления грунта. Один ссылается на «кажущееся» удельное сопротивление, поскольку оно не соответствует фактическому удельному сопротивлению грунта. Эти необработанные данные должны быть интерпретированы подходящими методами, чтобы определить фактическое удельное сопротивление грунта.

Показания малой глубины

Показания малой глубины, всего 6 дюймов, чрезвычайно важны для большинства, если не для всех, конструкций заземления. Как описано выше, более глубокие показания удельного сопротивления грунта фактически представляют собой средневзвешенные значения удельного сопротивления грунта от поверхности земли до глубины и включают все поверхностные показания сопротивления над ней. Хитрость при разработке окончательной модели грунта заключается в том, чтобы извлечь фактическое сопротивление грунта на глубине, а для этого необходимо «вычесть» верхние слои из глубинных показаний. На следующем рисунке показано, как самые мелкие показания влияют на более глубокие ниже него.

Как вы можете видеть на следующей диаграмме, если у вас есть показание 50 Ом-метров на 5 футов и показание 75 Ом-метров на 10 футов, фактическое удельное сопротивление почвы от 5 до 10 футов может быть 100 Ом-метров. (дело здесь в том, чтобы проиллюстрировать концепцию: для правильной интерпретации данных необходимы предварительно вычисленные кривые или компьютерное программное обеспечение). То же самое справедливо и для больших расстояний между штифтами. Самые мелкие показания используются снова и снова для определения фактического удельного сопротивления на глубине.

Небольшие показания глубины 6 дюймов, 1 фут, 1,5 фута, 2 фута и 2,5 фута важны для проектирования заземления, поскольку заземляющие проводники обычно прокладываются на глубине от 1,5 до 2,5 футов ниже поверхности земли. Чтобы точно рассчитать, как эти проводники будут работать на этих глубинах, необходимо снять показания неглубокого грунта. Эти неглубокие показания становятся еще более важными, когда инженеры рассчитывают повышение потенциала заземления, напряжения прикосновения и шаговые напряжения.

Крайне важно, чтобы измерительные зонды и токоизмерительные зонды были погружены в землю на надлежащую глубину для получения показаний удельного сопротивления неглубокого грунта. Если зонды вбиты слишком глубоко, определение удельного сопротивления неглубокого грунта может оказаться затруднительным. Эмпирическое правило заключается в том, что глубина проникновения потенциальных щупов не должна превышать 10 % расстояния между выводами, тогда как токовые щупы не должны проникать более чем на 30 % расстояния между выводами.

Глубокие показания

Часто тип используемого измерителя определяет максимальную глубину или расстояние, которое можно считать. Общее правило заключается в том, что высокочастотные измерители удельного сопротивления грунта подходят для измерений с расстоянием между штырями не более 100 футов, особенно в грунтах с низким удельным сопротивлением. Для большего расстояния между штырьками требуются низкочастотные измерители удельного сопротивления грунта. Они могут генерировать необходимое напряжение, необходимое для прохождения сигнала через почву на больших расстояниях, и обнаруживать слабый сигнал, свободный от наведенного напряжения от вводов тока.

Место измерения удельного сопротивления грунта

Испытание сопротивления грунта должно проводиться как можно ближе к предлагаемой системе заземления с учетом физических элементов, которые могут привести к ошибочным показаниям. Есть две (2) проблемы, которые могут привести к ухудшению качества показаний:

1. Электрические помехи, вызывающие нежелательные помехи сигнала, поступающие в счетчик.
2. Металлические предметы, «сокращающие» электрический путь от зонда к зонду. Эмпирическое правило заключается в том, что между измерительной траверсой и любыми параллельными заглубленными металлическими конструкциями должен сохраняться зазор, равный расстоянию между штифтами.

Очевидно, важно проводить испытания вблизи рассматриваемого объекта; однако это не всегда практично. У многих электроэнергетических компаний есть правила относительно того, насколько близким должно быть испытание на сопротивление почвы, чтобы оно было действительным. Геология района также играет роль в этом уравнении, поскольку только на небольшом расстоянии могут существовать совершенно разные почвенные условия.

Когда остается мало места или плохие условия для проведения надлежащего испытания удельного сопротивления грунта, следует использовать ближайшее доступное открытое поле с как можно более близкими геологическими условиями грунта.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *