Site Loader

Динамометр — урок. Физика, 7 класс.

Для измерения силы используется прибор, который называется динамометр (от греч. «динамис» — сила, «метрео» — измеряю).

Единица измерения силы называется \(1\) ньютон (\(1 Н\)) в честь Исаака Ньютона.

 

Устройство простейшего динамометра основывается на сравнении любой силы с силой упругости пружины.

 

Простейший динамометр можно изготовить из пружины с крючком, укреплённой на дощечке (рис. \(а\)).

 

             а                          б

К нижнему концу пружины прикрепляют указатель, а на доску наклеивают полоску белой бумаги.

Чёрточкой отметим положение указателя при нерастянутой пружине.

Эта отметка будет нулевой отметкой.

Если подвесить к крючку груз массой \(102 г\), на него будет действовать сила тяжести \(1 Н\), т.к.

Fтяж.=m⋅g=0,102 кг⋅9,8Нкг≈1Н.

 

Под действием этой силы пружина растягивается.

Это новое положение отмечаем на бумаге и ставим цифру \(1\).

 

Поступая аналогично, подвешивая груз массой \(204 г\), получим на бумаге отметку с цифрой \(2\) и т.д. (рис. \(б\)).

 

Для измерения десятых долей ньютона нужно расстояния между отметками \(0\) и \(1\), \(1\) и \(2\), \(2\) и \(3\) и т.д. разделить на \(10\) равных частей.

Проградуированная пружина и будет простейшим динамометром.

С помощью динамометра измеряют силу тяжести, силу упругости, силу трения и другие силы.

 

На практике применяют медицинские динамометры, ручные динамометры — силомеры.

21633972_w640_h640_dk100.jpg

Применяют также ртутные, гидравлические, электрические и другие динамометры.

Для измерения очень больших сил (до нескольких десятков тысяч ньютонов) используют тяговые динамометры (см. рис.).

 

Источники:

Пёрышкин А.В. Физика. 7 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013.

Сила — Класс!ная физика

Сила

«Физика — 10 класс»

Что является причиной изменения скорости тел?
Что можно сказать о скорости и ускорении тела, к которому не приложена никакая сила?

Основное утверждение механики состоит в том, что ускорения тел определяются действиями на них других тел.

Силой в механике называют количественную меру действия тел друг на друга, в результате которого тела получают ускорения или испытывают деформацию.

Это определение основано на главном утверждении механики:

1) ускорения тел вызываются силами;
2) силы, действующие на тело, обусловлены действиями на него других тел.

Сила — мера взаимодействия тел.

Понятие силы относится к двум телам.

С самого начала нужно отчётливо представить себе, что понятие силы относится именно к двум телам, а не к одному. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует. Так, сила тяжести действует на камень со стороны Земли, а на шарик, подвешенный на пружине, действует сила упругости со стороны пружины.

Сила имеет направление. Так, сила упругости растянутой пружины действует вдоль её оси. Сила трения останавливает скользящую по льду шайбу и направлена против скорости её движения.

Сила — векторная величина.

Сравнение сил.

Для количественного определения силы мы должны уметь её измерять. Только при этом условии можно говорить о силе как об определённой физической величине. Но ведь действия на данное тело могут быть самыми разнообразными. Что общего, казалось бы, между силой притяжения Земли к Солнцу и силой, которая, преодолевая тяготение, заставляет взмывать вверх ракету, или между этими двумя силами и силой, сжимающей мяч в руке, определяемой сокращением мускул? Ведь они совершенно различны по своей природе! Можно ли говорить о них как о чём-то физически родственном? Можно ли сравнивать их?

Две силы независимо от их природы считаются равными и противоположно направленными, если их одновременное действие на тело не меняет его скорости (т. е. не сообщает телу ускорение).

Это определение позволяет измерять силы, если одну из них принять за единицу измерения.

Измерение сил.

Для измерения сил необходим эталон единицы силы. В качестве эталона единицы силы выберем силу 0, с которой некоторая определённая (эталонная) пружина при фиксированном растяжении Δх действует на прикреплённое к ней тело (рис. 2.1). Сила упругости пружины направлена вдоль оси пружины.

Установим способ сравнения сил с эталонной силой.

По определению две силы считаются равными и противоположными по направлению, если при одновременном действии они не сообщают телу ускорение. Следовательно, измеряемая сила 1 равна по модулю эталонной силе 0 и направлена в противоположную сторону, если под воздействием этих сил тело не получает ускорение (см. рис. 2.1). Причём сила 1 может быть любой природы: силой давления, силой трения и т. д.

Если к телу прикрепить две пружины и растянуть их также на Δх (рис. 2.2), то равнодействующая сила будет равна 20 . Сила 2 , направленная в противоположную сторону, по модулю также равна 20 , если все три силы, действуя одновременно на тело, не сообщают ему ускорение.

Таким образом, располагая эталоном силы, мы можем измерять силы, кратные эталону. Для этого к телу, на которое действует измеряемая сила, прикладывают в сторону, противоположную её направлению, такое количество эталонных сил, чтобы тело не получило ускорение, и подсчитывают число эталонных сил. Естественно, что при этом мы можем измерить силу не меньше эталонной силы

0 и ошибка измерения будет также не меньше ошибки измерения эталонной силы.

Выбрав эталонную силу достаточно малой, можно в принципе производить измерения разных сил с требуемой точностью.

Динамометр.

На практике для измерения сил применяют динамометр (рис. 2.3). Использование динамометра основано на том, что при упругой деформации удлинение пружины прямо пропорционально приложенной к ней силе. Поэтому по длине пружины можно судить о значении силы.

О силах в механике.

В механике не рассматривается природа тех или иных сил и не делаются попытки выяснить, вследствие каких физических процессов появляются те или иные силы. Это задача других разделов физики.

В механике важно лишь знать, при каких условиях возникают силы, каковы их направления и чему равны их модули, т. е. знать, как силы зависят от расстояний между телами и от скоростей их движения. А знать модули сил, определять, когда и как они действуют, можно, не вникая в природу сил, а лишь располагая способами их измерения.

В механике имеют дело с тремя типами сил: гравитационными силами, силами упругости и силами трения. Модули и направления этих сил определяются опытным путём. Важно, что все рассматриваемые в механике силы зависят либо только от расстояний между телами или от расположения частей тела (гравитация и упругость), либо только от относительных скоростей тел (трение).

Когда человек не может поднять тяжёлую вещь, он говорит: «Не хватает сил». При этом, в сущности, происходит сравнение двух совершенно разных по своей природе сил — мускульной силы и силы, с которой Земля притягивает этот предмет. Но если вы подняли тяжёлый предмет и держите его на весу, то ничто не мешает вам утверждать, что сила, действующая на тело со стороны ваших рук, по модулю равна силе тяжести. Это утверждение, по существу, и является определением равенства сил в механике.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Динамика — Физика, учебник для 10 класса — Класс!ная физика

Основное утверждение механики — Сила — Инертность тела. Масса. Единица массы — Первый закон Ньютона — Второй закон Ньютона — Принцип суперпозиции сил — Примеры решения задач по теме «Второй закон Ньютона» — Третий закон Ньютона — Геоцентрическая система отсчёта — Принцип относительности Галилея. Инвариантные и относительные величины — Силы в природе — Сила тяжести и сила всемирного тяготения — Сила тяжести на других планетах — Примеры решения задач по теме «Закон всемирного тяготения» — Первая космическая скорость — Примеры решения задач по теме «Первая космическая скорость» — Вес. Невесомость — Деформация и силы упругости. Закон Гука — Примеры решения задач по теме «Силы упругости. Закон Гука» — Силы трения — Примеры решения задач по теме «Силы трения» — Примеры решения задач по теме «Силы трения» (продолжение) —

Изменения определений основных единиц СИ (2019) — Википедия

В 2019 году вступили в силу изменения определений основных единиц Международной системы единиц (СИ), состоящие в том, что основные единицы СИ стали определяться через фиксированные значения фундаментальных физических постоянных. При этом величины всех единиц остались неизменными, однако из их определений окончательно исчезла привязка к материальным эталонам. Подобные изменения предлагались давно, однако лишь к началу XXI века это стало возможно. Окончательное решение об изменениях было принято XXVI Генеральной конференцией по мерам и весам в 2018 году.

Международная система единиц, СИ, включает 7 основных единиц измерения: секунда, метр, килограмм, ампер, кельвин, моль, кандела, а также ряд их производных единиц[1].

До изменений килограмм определялся как масса одного конкретного эталона — международного прототипа килограмма. Это определение обладало некоторыми недостатками. Другие основные единицы не были привязаны к конкретным артефактам, но некоторые определения также оказались неудобны (и к тому же сами по себе опирались на определения килограмма)[2]

.

Изменения относятся ко всей СИ. Непосредственно они затрагивают определения килограмма, ампера, кельвина и моля: теперь эти единицы определяется через фиксированные значения элементарного электрического заряда и постоянных Планка, Больцмана и Авогадро[3].

Соблюдается преемственность СИ: в результате изменений величина всех единиц измерения не изменилась; численное значение результатов измерений, выраженных в старых единицах, таким образом, тоже не изменилось (кроме некоторых электрических величин, о чём сказано далее). Однако некоторые величины, которые ранее были определены точно, стали экспериментально определяемыми[4].

Международная система единиц, СИ, — это система единиц, в которой[5]:

Можно придать этому определению форму набора определений основных единиц[1]. Этот набор определений приведён в статье Основные единицы СИ § Основные единицы.

Влияние изменений на основные единицы[править | править код]

СИ до реформы. Во внутреннем кольце показаны основные единицы: секунда (с), метр (м), ампер (А), кельвин (К), кандела (кд), моль (моль), килограмм (кг). Они определялись с помощью различных констант и других единиц, от которых к ним идут стрелки. Константы показаны во внешнем кольце: ΔνCs — частота сверхтонкого расщепления основного состояния атома цезия, c — скорость света, μ0 — магнитная постоянная, TTPW — температура тройной точки воды, Kcd — световая эффективность излучения определённой частоты, m(12C) — масса атома углерода, MIPK — масса международного прототипа килограмма.
СИ после реформы. Часть определяющих констант заменены новыми: элементарный заряд e, постоянные Больцмана k, Авогадро NA и Планка ℎ.

Секунда и метр[править | править код]

Определения секунды и метра содержательно не изменились, однако были переформулированы для соблюдения стилевого единства определений[3].

Килограмм[править | править код]

Величина килограмма устанавливается фиксацией численного значения постоянной Планка ℎ и связана с секундой и метром[3].

Ранее килограмм определялся как масса международного прототипа килограмма. В результате изменений массы всех эталонов килограмма, восходящих к международному прототипу килограмма, приобрели дополнительную погрешность 10 мкг, поскольку масса самого прототипа теперь равна 1 кг именно с такой погрешностью[6]. Хотя международный прототип килограмма более не служит эталоном килограмма как единицы СИ, он по-прежнему хранится в Международном бюро мер и весов, максимально защищённый от внешних воздействий[7].

Ампер[править | править код]

Величина ампера устанавливается фиксацией численного значения элементарного электрического заряда e и связана с секундой. Кроме того, отменены ранее рекомендованные для реализации вольта и ома фиксированные значения постоянной Джозефсона KJ-90 и постоянной фон Клитцинга RK-90[3].

Измеренные значения и шкалы напряжений и сопротивлений изменились на долю порядка 10−7 и 10−8, соответственно, однако это связано не с изменением определений основных единиц, а с тем, что ранее для реализации единиц напряжения и сопротивления были рекомендованы фиксированные значения постоянных Джозефсона и фон Клитцинга, не согласованные с остальной СИ[8].

Кельвин[править | править код]

Величина кельвина устанавливается фиксацией численного значения постоянной Больцмана k и связана с секундой, метром и килограммом[3].

Моль[править | править код]

Величина моля устанавливается фиксацией численного значения постоянной Авогадро NA[3].

Кандела[править | править код]

Определение канделы содержательно не изменилось, не считая того, что оно связано с секундой, метром и килограммом, а определение последнего изменилось[3].

Международная система единиц, СИ, была принята в 1960 году и дополнялась и корректировалась Международным бюро мер и весов (BIPM) в последующие годы. Более 50 лет в СИ сохранялось определение килограмма, которое действовало ещё с 1889 года: 1 килограмм — это масса международного прототипа килограмма MIPK (более того, и в XIX веке килограмм тоже определялся через материальный эталон). Это создавало трудности: и сам прототип, и его копии со временем изменяют массу ввиду загрязнения и износа; однозначно установить направление изменения можно лишь для копий относительно прототипа; при этом для минимизации изменений массы прототипа его сравнение с копиями производилось крайне редко, и в промежутках между сравнениями накапливались ошибки ввиду изменения масс копий — а поскольку иного способа воспроизвести килограмм не было, все пользователи стандарта килограмма (национальные метрологические организации) получали значение килограмма с этими ошибками. Предложения изменить определение килограмма через фиксацию значения какой-либо природной постоянной, подобно тому, как это было сделано с метром, звучали давно и регулярно, однако лишь к началу XXI века точность экспериментов стала достаточной, чтобы реализовать эту идею[9].

Сообщества специалистов по метрологии в различных областях науки и техники также поддержали идею изменений. Практическая реализация единиц напряжения и сопротивления опиралась не на определение ампера, а на фиксированные значения постоянных Джозефсона и фон Клитцинга; отказ от этих фиксированных значений с одновременной фиксацией e и ℎ сделал бы единицы из области электричества и магнетизма согласованными с остальной СИ. Единица температуры определялась через фиксацию температуры тройной точки воды TTPW, однако эта температура зависит от изотопного состава воды и примесей в ней, и к тому же такое определение плохо подходит к очень низким и очень высоким температурам — переопределение кельвина через фиксацию k решало эти проблемы. Наконец, поскольку концепция количества вещества не связана с массой частиц, было предложено заодно изменить определение моля, отвязав его от массы атома углерода-12 m(12C) и привязав к фиксированному значению NA[10].

Можно было бы избавиться и от привязки системы единиц к конкретному электронному переходу в конкретном атоме, фигурирующего в определении секунды, зафиксировав вместо него ещё одну фундаментальную постоянную — например, гравитационную постоянную, как это делается, например, в планковской системе единиц. Однако неопределённость измеренного значения гравитационной постоянной слишком велика для этого[11].

Изменения в том виде, в каком они были приняты, восходят к предложению 2006 года[4]. Основные принципы реформы и требования к точности измерений значений физических констант, необходимых для реформы, принимались на Генеральных конференциях по мерам и весам в 2011 и 2014 годах[12].

Весы Киббла в NIST

В рамках подготовки изменений в 2014 году было проведено внеочередное сравнение массы международного прототипа килограмма с его копиями. Различные научные группы по всему миру провели измерения фундаментальных констант, чтобы снизить погрешность до требуемого уровня. Рабочая группа CODATA по фундаментальным константам собрала эти данные во внеочередном выпуске набора значений констант 2017 года, и на основании этих значений были выбраны фиксированные значения для новой СИ[13].

Решение об изменениях в СИ и конкретные значения физических постоянных были окончательно приняты 16 ноября 2018 года, когда за них единогласно проголосовали участники XXVI Генеральной конференции по мерам и весам[12]. Новые определения СИ вступили в силу 20 мая 2019, в день метрологии[14].

Для каждой из основных единиц в новой СИ определены рекомендованные методы для практической реализации единиц. Так, для килограмма это весы Киббла и рентгеновский анализ плотности кристалла (XRCD)[15].

Обновлённая СИ допускает дальнейшие изменения. В частности, прогресс в области измерения частот электромагнитных волн и конструировании атомных часов позволяет ожидать, что примерно через десятилетие секунда будет переопределена через частоту какого-то другого электронного перехода[16].

Поскольку атомная единица массы по-прежнему определяется через массу атома углерода-12, она перестала быть равна в точности 1 грамму, делённому на число Авогадро. Некоторые авторы критикуют новую СИ, указывая, что фиксация атомной единицы массы вместо постоянной Планка решила бы данную проблему, а аргументы, которые привели к выбору постоянной Планка в 2000-х годах, к 2010-м годам утратили силу[17].

Электрическая постоянная и магнитная постоянная в СИ до изменений имели точные значения: ε0=14πc2⋅107{\displaystyle \varepsilon _{0}={\frac {1}{4\pi c^{2}}}\cdot 10^{7}} м/Гн и μ0=4π⋅10−7{\displaystyle \mu _{0}=4\pi \cdot 10^{-7}} Гн/м. После реформы эти равенства стали соблюдаться не абсолютно точно, а до девяти значащих цифр, приобретя ту же относительную погрешность, что и постоянная тонкой структуры α=e22ε0hc{\displaystyle \alpha ={\frac {e^{2}}{2\varepsilon _{0}hc}}}. Из этого, в частности, следует, что коэффициенты для перевода между единицами СИ и различными вариантами системы СГС перестали быть точными, фиксированными величинами, поскольку они выражаются через магнитную постоянную. Этого можно было избежать, если бы был зафиксирован не элементарный заряд e{\displaystyle e}, а прежнее значение магнитной постоянной или, что равносильно при фиксированных h{\displaystyle h} и c{\displaystyle c}, планковский заряд e/α{\displaystyle e/{\sqrt {\alpha }}}. Однако этот вариант был отвергнут, поскольку предыдущая реализация стандартов величин, связанных с электричеством и магнетизмом, была основана на фиксированных постоянных Джозефсона и фон Клитцинга, что равносильно фиксации постоянной Планка и элементарного заряда, поэтому переход к новой системе оказывался легче при фиксации именно элементарного заряда[18].

  1. 1 2 Брошюра СИ, 2019, с. 18—23, 130—135.
  2. ↑ Stock et al, 2019, pp. 3—4.
  3. 1 2 3 4 5 6 7 Брошюра СИ, 2019, с. 92—94, 197—199.
  4. 1 2 Stock et al, 2019, p. 2.
  5. ↑ Брошюра СИ, 2019, с. 15—16, 127—128.
  6. ↑ Note on the impact of the redefinition of the kilogram on BIPM mass calibration uncertainties (неопр.). BIPM. Дата обращения 9 июня 2019.
  7. ↑ FAQs: Frequently Asked Questions about the revision of the SI (неопр.). BIPM. Дата обращения 12 июня 2019.
  8. ↑ CCEM Guidelines for Implementation of the ‘Revised SI’ (неопр.). BIPM. Дата обращения 9 июня 2019.
  9. ↑ Stock et al, 2019, pp. 1—2.
  10. ↑ Stock et al, 2019, pp. 2—3.
  11. C. Rothleitner and S. Schlamminger. Invited Review Article: Measurements of the Newtonian constant of gravitation, G // Review of Scientific Instruments. — 2017. — Vol. 88. — P. 111101. — DOI:10.1063/1.4994619.
  12. 1 2 Resolution 1 of the 26th CGPM (2018) (неопр.). BIPM. Дата обращения 22 мая 2019.
  13. ↑ Stock et al, 2019, pp. 3—10.
  14. ↑ The International System of Units — making measurements fundamentally better (неопр.). BIPM. Дата обращения 22 мая 2019.
  15. ↑ Practical realizations of the definitions of some important units (неопр.). BIPM. Дата обращения 10 июня 2019.
  16. Fritz Riehle, Patrick Gill, Felicitas Arias and Lennart Robertsson. The CIPM list of recommended frequency standard values: guidelines and procedures // Metrologia. — 2018. — Vol. 55. — P. 188. — DOI:10.1088/1681-7575/aaa302.
  17. Бронников К. А., Иващук В. Д., Калинин М. И., Мельников В. Н., Хрущёв В. В. О выборе фиксируемых фундаментальных констант для новых определений единиц СИ // Измерительная техника. — 2016. — № 8. — С. 11—15.
  18. Ronald B. Goldfarb. The Permeability of Vacuum and the Revised International System of Units // IEEE Magnetics Letters. — Vol. 8. — DOI:10.1109/LMAG.2017.2777782.

Методы измерения силы мышц — SportWiki энциклопедия

Измерение характеристик силы — это очень сложная область науки о спорте. Ее задачей является определение физической формы спортсмена для того, чтобы на этой основе разработать соответствующий план тренировки, а также оценить тренировку для определения ее эффектов и внесения необходимых изменений. Оценка динамики результатов тренировки основывается на неоднократном проведении измерений. При этом важно учитывать целый ряд факторов, влияющих на объективность, достоверность и надежность измерений. Многие из этих факторов приведены в форме опросного листа в работе Кремера, Ратамесса, Фрайя и Френча (Kraemer et al., 2006). В него включены, например, вопросы о сопоставимости питания тестируемого и температуры во время тестирования, об изменении установок в аппаратуре, о наличии каких-либо признаков заболеваний и многие другие.

С помощью диагностических методов предпринимается попытка получить результаты измерений различных факторов силы и ее проявлений. При этом для каждой области используются обычно специфические методы измерения силы, которые отвечают специфическим требованиям.

По возможности перед тестированием силы следует провести разминку для подготовки организма к физической нагрузке. Необходимо ли после разминки растягивание той или иной мышцы — это вопрос, который следует хорошо обдумать, т.к. растяжка может оказывать отрицательное воздействие на мышечную работоспособность. Если разминка включает соответствующие движения с определенным углом между суставами, то целенаправленное растягивание мышц после нее не нужно. Вопрос о необходимости перед тестированием использовать субмаксимальные нагрузки пока остается открытым. Некоторые авторы (Schlumberger, Schmidtbleicher, 2000) рекомендуют следовать предпочтениям тестируемого. Важную роль играют подробные указания, которые получает тестируемый, содержащие описание цели и процесса проведения тестирования. Также при измерении характеристик силы большое значение имеет наличие обученного персонала. Особенно важно это при тестировании максимальной силы (по возможности со свободным весом), т. к. в этом случае часто требуется страховка.

Ниже представлен краткий обзор важных методов измерения силовых характеристик (без претензии на исчерпывающую полноту), в который включены методы статического и динамического тестирования, а также краткое описание основных методов измерения (с помощью динамометров, тензометрических датчиков).

Разовое повторение с максимальным весом (One Repetition Maximum, концентрическая максимальная сила)[править | править код]

Под 1 RM (One Repetition Maximum, концентрическая максимальная сила) подразумевается величина отягощения, которое при максимальном напряжении и правильном выполнении движения может быть преодолено один раз. Определяется эта величина, как правило, на силовых тренажерах, т. е. с помощью известных упражнений. Поэтому измерение 1 RM у опытных спортсменов-профессионалов производится быстро и не представляет собой никаких трудностей. Во-первых, им хорошо знакомы и сами тренажеры, и порядок выполнения упражнений, с помощью которых тестируется максимальная сила. Во-вторых, благодаря их опыту несложно определить величину максимальной нагрузки. После разминки довольно быстро (после 3-4 попыток) подбирается вес отягощения, соответствующий 1 RM.

Начинающим Шлумбергер и Шмидтбляйхер (Schlumberger, Schmidtbleicher, 2000) советуют произвести оценку 1 RM следующим образом: сначала выполняются несколько повторений с субмаксимальным напряжением для того, чтобы тестируемый привык к тренажеру и был подготовлен к выполнению данного конкретного упражнения. Затем вес отягощения увеличивают каждый раз на 5-10 кг, причем при любой его величине его поднимают только один раз. Интервал между двумя попытками составляет около 2-3 мин. Если становится очевидно, что величина веса все ближе подходит к максимальному значению, то его повышают при каждой попытке только на 1,25-5 кг, пока не будет достигнута максимальная величина. Интервал между попытками с весом, близким по значению к максимальному, может быть достаточно продолжительным. Рекомендуются интервалы от 3 до 5 мин между попытками.

В связи со сложностями привыкания к тренажерам и новым ощущениям при первом определении 1 RM у начинающих часто возникают ошибки. Поэтому рекомендуется сначала перед тестированием провести отдельное тренировочное занятие, направленное на привыкание к тренажерам. При тестировании и также в процессе тренировок, чтобы снизить риск получения травм, к упражнениям с максимальными весами следует прибегать только при наличии соответствующей страховки партнера (особенно при выполнении со свободным весом). При обсуждении данной формы определения максимальной силы необходимо сделать целый ряд важных замечаний (Boeckh-Berens, Buskies, 2001). Одно из них касается зависимости результатов измерений от уровня мотивации тестируемого спортсмена и от правильной координации движений. Оба этих фактора могут повлиять на то, что полученный результат не на 100% будет соответствовать реальному, а это может привести к погрешностям в дальнейших расчетах интенсивности нагрузки. Другое важное замечание касается аспекта нагрузки «до отказа», к которому особо внимательно следует отнестись в случае известных ограничений по здоровью во избежание определенного риска. В таких случаях для тестируемых могут представлять опасность форсированное дыхание, высокое АД и высокие нагрузки на пассивный двигательный аппарат. Проблема также может заключаться в том, что проявления силы у спортсмена как раз в начале тренировки значительно меняются. Поэтому необходимы многократные измерения, которые будут являться основой для вычисления каждый раз новых актуальных значений интенсивности нагрузки. Также нельзя забывать о том, что сама измерительная аппаратура часто подвергается критике в связи с тем, что вследствие отсутствия бесступенчатого регулирования нагрузки на силовых тренажерах и, соответственно, отсутствия в некоторых случаях необходимой нагрузки профессиональным спортсменам иногда не удается достичь предельной величины усилия. Шлумбергер и Шмидтбляйхер (Schlumberger, Schmidtbleicher, 2000) не согласны с этим, заявляя в качестве возражения, что такой вид определения силы экономически выгоднее, чем многие биомеханические способы измерения (электромиография, динамометры, тензометрические датчики, изокинетика). Еще одно преимущество — это удобство применения полученных значений максимальной силы на практике, т. к. и тренировка, и проведение измерений проводятся на одних и тех же тренажерах. Поэтому, несмотря на все недостатки, данный метод пользуется популярностью и часто применяется.

Электромиография[править | править код]

Электромиография (ЭМГ) — это метод измерения мышечной активности. Физиологической основой данного метода является регистрация потенциалов действия в процессе иннервации мышечных клеток.

Регистрация работы мышц с помощью (поверхностной) ЭМГ позволяет создать координационные модели определенных движений. Кроме того, с помощью этого метода можно определить степень активности мышцы по отношению к максимальнохму произвольному сокращению (МПС), а также состояние утомления посредством анализа частоты зарегистрированных сигналов (Zschorlich, 2003). ЭМГ зависит от гой силы, которую хмышца развивает при статических условиях. Хотя такая связь имеет линейный характер (Seidenspinner, 2005), судить на ее основе о развиваемой силе не представляется возможным. Используя данный способ измерения, Бекх-Беренс и Бускис (Boeckh-Behrens, Buskies, 2001) составили список силовых упражнений с учетом их эффективности.

В биомеханике и науке о спорте обычно используются поверхностные электроды (Zschorlich, 2003). Они накладываются на поверхность кожи и неинвазивно регистрируют электрическое напряжение. Преимущество поверхностных электродов состоит в том, что с их помощью можно проводить и динамические измерения. Это объясняет широкую область их применения в спорте. Однако в восприятии сигналов через кожу заключается и недостаток, т. к. при прохождении через кожу они могут измениться. Кроме того, при использовании поверхностных электродов нужно учитывать возможность наложения сигналов различных мышц (Wiek, 1998), что затрудняет анализ данных отдельной мышцы. В неврологии по этой причине часто используются игольчатые электроды, которые вводятся непосредственно в мышцы (Bischoff et al., 2005). При этом улучшается качество сигналов, что позволяет собрать более точные данные об отдельных частях мышцы.

На точность сигналов ЭМГ могут оказывать отрицательное воздействие многие факторы. Натяжение проводов или давление на электроды может вызывать напряжение в электрической сети (50 Гц) или ложное увеличение сигналов. Поэтому к анализу данных измерений следует подойти с особой осторожностью.

Измерение силы посредством тензометрических датчиков и динамометров[править | править код]

Измерение воздействия внешних сил называется динамометрией. В биомеханике с этой целью широко используются силоизмерительные пластины (кварцевые кристаллы) или тензометрические датчики (Zschorlich, 2003). С помощью тензометрических датчиков сила измеряется на основе изменения формы тела, а измерения с использованием кварцевых кристаллов основаны на пьезоэлектрическом эффекте. Каждый метод имеет свои плюсы и минусы: тензометрические датчики экономичны и просты в эксплуатации. С их помощью можно проводить измерения силы на протяжении длительного времени. Однако линейность зависимости измеренной силы от действующей внешней силы здесь не так высока, как при измерениях с помощью силоизмерительных пластин. В этом состоит преимущество силоизмерительных пластин, которые, хотя и являются более дорогими, чем тензометрические датчики, показывают распределение силы на ортогональные компоненты. Силоизмерительные пластины используются, кроме прочего, для определения высоты прыжка и продолжительности контактной фазы, что необходимо при диагностике реактивной силы, контроле амортизационных качеств обуви, а также измерении координационной и стабилизирующей способности (Schlumberger, Schmidtbleicher, 2000; Wiek, 1998). Область применения силоизмерительных пластин довольно широка, например, их можно использовать также для анализа состояний утомления на основе особенностей походки (Jager et al., 2003). Кроме того, динамометрия является важной частью оценки нагрузки на организм во время занятий спортом.

Изокинетическое измерение силы[править | править код]

Особенностью изокинетических измерений является то, что они проводятся при неизменной скорости движения при выполнении упражнения. Это достигается при использовании определенной аппаратуры, которая, с одной стороны, контролирует постоянность скорости движения и, с другой — позволяет изменить сопротивление в соответствие с силой, которую развивает тренирующийся (Frobose, Nellessen, 1998). Значения силы определенных конечностей регистрируются на основе данных крутящего момента при соответствующих значениях угла в градусах и представляются в виде кривой. Преимущества изо-кинетической тренировки при работе с пациентами (Seidenspinner, 2005):

  • сопротивление автоматически приводится в соответствие с болевыми ощущениями и со степенью утомляемости;
  • сопротивление регулируется в соответствии с изменениями рычага приложения силы;
  • возможна максимальная нагрузка на мышцу в полном объеме области движения (концентрического и эксцентрического типа).

При этом изокинетические системы должны как минимум обеспечивать возможность проводить измерения в области тазобедренных, коленных, голеностопных, локтевых и лучезапястных суставов (Verdonck, 1998). Кривые значений силы позволяют определить нарушение функций мышц и суставов. При этом проводится сравнительный анализ конечностей с правой и левой сторон, мышц-агонистов и антагонистов, а также сравнение полученных результатов с нормой (в соответствии с полом, возрастом, спортивной формой и т.д. (см. также Kraemer et al., 2006). Кроме того, целесообразно провести сравнение результатов измерений, полученных до и после тренировки или терапии.

Изометрическое измерение силы[править | править код]

Изометрическое измерение силы отличается тем, что оно определяется против непреодолимого сопротивления и при жестко установленных положениях суставов (Seidenspinner, 2005). Соответственно, угол между тестируемыми конечностями остается неизменным. При этом сила будет зависеть от определенного угла, поскольку от него, в свою очередь, зависит взаимное положение актина и миозина. Поэтому к определению углов суставов следует отнестись очень внимательно. Углы, при которых достигаются оптимальные значения силы, зависят от особенностей самого сустава и от того, находится ли конечность в выпрямленном или согнутом положении. В работе Кремера и соавт. (Kraemer et al., 2006) в качестве диапазона для оптимального развития силы представлены следующие данные: сгибание в локтевом суставе — 70-120°, разгибание в локтевом суставе — 90-120°, сгибание в тазобедренном суставе — 145-150°, разгибание в тазобедренном суставе — 40-50°, сгибание в коленном суставе — 130-170°, разгибание в коленном суставе — 80-130°. В соответствии с рекомендациями этих авторов, продолжительность одного теста при изометрических измерениях силы должна составлять как минимум 5 с для достижения максимальной силы. В связи с этим они указывают, что скорость развития максимальной силы также может влиять на высоту кривой силовых значений.

Преимуществами данного метода являются целенаправленное определение силы в зависимости от положения суставов, низкая стоимость измерительных систем и простота их использования. Кроме того, большим преимуществом является надежность результатов измерений, если они проводятся под соответствующим контролем. Недостатком данного метода могут быть предельные нагрузки, которые при максимальном напряжении оказывают воздействие на пассивный двигательный аппарат. Кроме того, по результатам изометрических измерений невозможно судить о показателях силы в процессе движения, т. к. данный метод не учитывает влияние координации (Verdonck, 1998). В связи с этим следует еще раз обратить внимание на возможные побочные явления при проведении (изометрического) тестирования максимальной силы (например, повышение АД, аритмию у пациентов с нарушениями сердечно-сосудистой системы и т.д.). Поэтому перед выполнением силового тестирования, а также началом силовых тренировок необходимо тщательное медицинское обследование и определение состояния здоровья. Кроме того, перед началом изометрического тестирования рекомендуется тщательная разминка (Boeckh-Behrens, Buskies, 2001; Kraemer et al 2006).

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *