Измерение мощности постоянного и переменного однофазного тока
Из выражения для мощности на неизменном токе Р = IU видно, что ее можно измерить при помощи амперметра и вольтметра косвенным способом. Но в данном случае нужно создавать одновременный отсчет по двум устройствам и вычисления, усложняющие измерения и снижающие его точность.
Для измерения мощности в цепях неизменного и однофазового переменного тока используют приборы, именуемые ваттметрами, для которых употребляют электродинамические и ферродинамические измерительные механизмы.
Электродинамические ваттметры выпускают в виде переносных устройств больших классов точности (0,1 — 0,5) и употребляют для четких измерений мощности неизменного и переменного тока на промышленной и завышенной частоте (до 5000 Гц). Ферродинамические ваттметры почаще вэтого встречаются в виде щитовых устройств относительно низкого класса точности (1,5 — 2,5).
Используют такие ваттметры приемущественно на переменном токе промышленной частоты. На неизменном токе они имеют значительную погрешность, обусловленную гистерезисом сердечников.
Для измерения мощности на больших частотах используют термоэлектрические и электрические ваттметры, представляющие из себя магнитоэлектрический измерительный механизм, снабженный преобразователем активной мощности в неизменный ток. В преобразователе мощности осуществляется операция умножения ui = р и получение сигнала на выходе, зависящего от произведения ui, т. е. от мощности.
На рис. 1, а показана возможность использования электродинамического измерительного механизма для построения ваттметра и измерения мощности.
Рис. 1. Схема включения ваттметра (а) и векторная диаграмма (б)
Недвижная катушка 1, включаемая в цепь нагрузки поочередно, именуется поочередной цепью ваттметра, подвижная катушка 2 (с дополнительным резистором), включаемая параллельно нагрузке — параллельной цепью.
Для ваттметра, работающего на неизменном токе:
Разглядим работу электродинамического ваттметра на переменном токе. Векторная диаграмма рис. 1, б построена для индуктивного нрава нагрузки. Вектор тока Iu параллельной цепи отстает от вектора U на угол γ вследствие некой индуктивности подвижной катушки.
Из этого выражения следует, что ваттметр верно определяет мощность только в 2-ух случаях: при γ = 0 и γ = φ.
Условие γ = 0 может быть достигнуто созданием резонанса напряжений в параллельной цепи, к примеру включением конденсатора С соответственной емкости, как это показано штриховой линией на рис. 1, а. Но резонанс напряжений будет только при некой определенной частоте. С конфигурацией частоты условие γ = 0 нарушается. При γ не равном 0 ваттметр определяет мощность с погрешностью βy, которая носит заглавие угловой погрешности.
При малом значении угла γ (γ обычно составляет менее 40 — 50′), относительная погрешность
При углах φ, близких к 90°, угловая погрешность может достигать огромных значений.
2-ой, специфичной, погрешностью ваттметров является погрешность, обусловленная потреблением мощности его катушками.
При измерении мощности, потребляемой нагрузкой, вероятны две схемы включения ваттметра, отличающиеся включением его параллельной цепи (рис. 2).
Рис. 2. Схемы включения параллельной обмотки ваттметра
Если не учесть фазовых сдвигов меж токами и напряжениями в катушках и считать нагрузку Н чисто активной, погрешности β(а) и β(б), обусловленные потреблением мощности катушками ваттметра, для схем рис. 2, а и б:
где Рi и Рu — соответственно мощность, потребляемая поочередной и параллельной цепью ваттметра.
Из формул для β(а) и β(б) видно, что погрешности могут иметь приметные значения только при измерениях мощности в маломощных цепях, т. е. когда Рi и Рu соизмеримы с Рн.
Если поменять символ только 1-го из токов, то поменяется направление отличия подвижной части ваттметра.
У ваттметра имеются две пары зажимов (поочередной и параллельной цепей), и зависимо от их включения в цепь направление отличия указателя может быть разным. Для правильного включения ваттметра один из каждой пары зажимов обозначается знаком «*» (звездочка) и именуется «генераторным зажимом».
Школа для электрика
4.2. Измерение мощности
Мощность измеряют различными способами.
Мощность в электрических цепях постоянного и однофазного переменного тока, измеряют в основном ваттметрами электродинамической системы. На рис. 4.4 приведены схемы включения ваттметра для измерения мощности, потребляемой сопротивлением нагрузки RНАГ в цепях постоянного и однофазного переменного тока.
В цепях напряжения включено добавочное сопротивление RД. Начало токовой обмотки напряжения, так же как и в последующих схемах, показано, соответственно, левой и верхней точками на обмотках ваттметра W; перемена полярности одной из обмоток приведет к отклонению стрелки ваттметра в обратную сторону. Если включить ваттметр в цепь постоянного тока (рис. 4.4, схема
P=IU’=I(U+IRт)=IU+I2RT=Pпp+Pт,
где I и U — соответственно, ток и напряжение на нагрузке; U’ — напряжение питания; Rт — сопротивление токовой обмотки ваттметра; Рпр и Рт — соответственно, потребляемая приемниками мощность и потери мощности в токовой обмотке.
При включении (рис. 4.4, схема б) по схеме ваттметра учитываются дополнительные потери в обмотке напряжения Рн:
P=U(I+Iн)=UI+UIн=Pнр+Pн.
Таким образом, систематической погрешности, возникающей в следствии того, что цепи тока и напряжения измерительного механизма должны включаться также, как и приборы для измерения тока и напряжения избежать не удается. Если ожидаются значительные колебания мощности за счёт колебаний тока, то предпочтительней будет схема
Показания ваттметра, включенного в цепь переменного тока, пропорциональны произведению подведенного к нему напряжения U, тока в токовой обмотке I и cosφ:
Р = с·U·I·cosφ, где с — цена деления ваттметра.
При определенном положении переключателей пределов по току и напряжению цена деления составит
с = (UПРIПР)/ПР, Вт/дел,
где UПР и IПР — верхние пределы ваттметра, ПР — количество делений шкалы ваттметра.
При определении мощности косвенным методом в цепи постоянного тока измеряют ток и напряжение, а в цепи переменного тока (дополнительно, с помощью фазометра), коэффициент мощности cosφ.
Для расширения пределов измерения по току и напряжению применяют шунты, добавочные сопротивления и измерительные трансформаторы (рис. 4.5). Цену деления ватт-метра при пользовании измерительными трансформаторами определяют по уравнению:
СИЗМ= СКIHКUH, Вт/дел.
На сверхвысоких частотах (СВЧ) способы измерения мощности, рассмотренные выше очень трудно реализуемы, поэтому применяются другие способы измерения мощности. Несмотря на кажущееся разнообразие, все они сводятся к преобразованию энергии электромагнитных колебаний в другой вид энергии, более применяемый для измерения (тепловую, механическую и другие) с последующим вторичным преобразованием в электрический сигнал. Измерение производится в основном цифровыми приборами.
При измерении активной мощности в трёхфазных цепях (три фазовых провода и один нулевой — четырех проводная сеть) используют три однофазных ваттметра, включенных в отдельные фазы; измеряемую мощность определяют как сумму мощностей всех фаз. В, этом случае не следует пользоваться ваттметром, включенным в одну из фаз, так как велика вероятность неравномерности нагрузки, и погрешность измерения может оказаться значительно больше допустимой.
В трехфазных цепях без нулевого провода возникает затруднение с подключением цепи напряжения ваттметра, потому что в цепи имеется линейное напряжение. Однако при симметричной, нагрузке можно измерить мощность одним ваттметром. Для этого в месте измерения создается искусственная нулевая точка. Сопротивления всех фаз, образующие звезду, должны быть равными. Мощность в этом случае равна утроенному показанию ваттметра.
В несимметричных трехфазных трехпроводных цепях мощность можно измерить так же, как и в четырехпроводных цепях, т.е. как сумму трех мощностей. Здесь также необходима искусственная нулевая точка, однако ее можно очень просто создать соединением в звезду трех (одинаковых!) цепей напряжения ваттметров.
Более универсальным и точным методом измерения трехфазной мощности является метод двух ваттметров или так называемая схема Арона (рис. 4.6).
Токовые обмотки ваттметров включены на линии А, В; обмотки по напряжению на АС и ВС (рис. 4.6, а).
Токовые обмотки ваттметров включены на линии А, С; обмотки по напряжению — на АВ и СВ (рис. 4.6, б).
Токовые обмотки ваттметров включены в линии В, С; обмотки по напряжению – на ВА и СА (рис. 4.6, в).
Построим векторную диаграмму (рис. 4.7) для схемы Арона (рис. 4.6, схема б).
Мощность определяют по сумме показаний ваттметров
P=P1+P2=UавIаcosψ1+UсвIсcosψ2.
В зависимости от характера нагрузки один из углов (ψ1 или ψ2) может стать больше 90°. В этом случае один из ваттметров будет показывать отклонение в противоположную сторону. Чтобы получить отсчет, надо изменить направление тока в одной из обмоток этого ваттметра. Показания берут со знаком минус, т.е. общая мощность равна алгебраической сумме показаний. В частном случае, когда система симметрична, ψ1=30+φ, ψ2=30-φ и общую мощность находят по формуле
P=P1+P2=UавIаcos(30+φ)+UсвIсcos(30-φ)=UлIл2cos30cosφ= UлIлcosφ.
Даже при полной симметрии показания ваттметров не равны и зависят от величины и знака угла φ. При значении φ, равном 0-60 показания обоих положительны; при φ=60 показания первого ваттметра Р1=0; при φ>60 оба покажут отрицательные значения.
При измерении реактивной мощности однофазные реактивные ваттметры применяют для лабораторных измерений и поверки индукционных счетчиков. В отличии от обыкновенного ваттметра реактивный имеет усложненную схему параллельной цепи, в которую включают реактивное сопротивление для получения сдвига по фазе на 90° между током и напряжением. Тогда угол отклонения подвижной части будет пропорционален реактивной мощности. При измерении реактивной мощности в трехфазных цепях нет необходимости получать сдвиг по фазе на 90°, так как при переходе от схемы звезды к схеме треугольника всегда имеется напряжение, которое пропорционально измеряемому и сдвинуто по фазе на 90°. В соответствии с этим, например в несимметрично нагруженной трех- и четырехфазной сети, реактивную мощность Q определяют по схеме трех активных ваттметров, включенных по напряжению на «чужие» фазы (рис. 4.8).
Тогда реактивная мощность Q = (P1+P2+P3)/
При равномерной нагрузке можно ограничиться одним из ваттметров. Тогда Q =·Р1. В трехфазной сети с равномерной нагрузкой (рис. 4.6, любая схема), реактивную мощность Q определяют по формуле
Q =·(P1-P2).
Реактивную мощность в трехфазной сети с равномерной и неравномерной загрузкой фаз Q находят по схеме с искусственной нулевой точкой (рис. 4.9):
Q = ·(P1+ Р2).
Сопротивление, включенное на свободную фазу (R), подбирают так, чтобы оно вместе с обмотками напряжения ваттметров образовало симметричную звезду, а к ваттметрам были подведены фазовые напряжения:
R=Rw1=Rw2.
Для определении реактивной мощности указанными выше методами необходимо знать порядок чередования фаз сети. Если он окажется обратным, показания ваттметров во многих случаях будут отрицательными.
4.1. Измерение тока и напряжения< Предыдущая | Следующая >4.3. Измерение энергии |
---|
Измерения в цепях постоянного и переменного тока
Инфоурок › Другое ›Презентации›Измерения в цепях постоянного и переменного токаОписание презентации по отдельным слайдам:
1 слайд Описание слайда: 2 слайд Описание слайда:1. Измерение постоянного и переменного тока и напряжения. 2. Расширение пределов измерения амперметра и вольтметра. 3. Измерение мощности в цепях постоянного и переменного тока. 4. Счетчики (Л-3)§ §11.11-11.14 5. Измерение электрического сопротивления 6. Измерение индуктивности и емкости. 7. Использование цифровых приборов для измерения
3 слайд Описание слайда:5. Измерение электрического сопротивления 6. Методы измерения индуктивности и емкости. 7. Цифровые приборы (Л-3) § §11.15-11.17
4 слайд Описание слайда: 5 слайд Описание слайда:Для расширения пределов измерения амперметра при измерении постоянного тока параллельно амперметру включают шунт
6 слайд Описание слайда:rш = rА/(п-1), где rА – внутреннее сопротивление амперметра; Imax – максимальное значение тока в цепи; IАН – номинальное (предельное) значение тока амперметра в отсутствие шунта; Iш –ток, проходящий через шунт п = Imax /IАН – коэффициент, показывающий, во сколько раз расширяются пределы измерения. Ток в цепи при заданной нагрузке I = nIA, где IА — показание амперметра.
7 слайд Описание слайда:При измерении переменных токов шунты не применяют. Поэтому для расширения пределов измерения амперметров в цепях переменного тока используют измерительные трансформаторы тока.
8 слайд Описание слайда:Измеряемый ток при использовании трансформатора тока ТА I1= kIД IA , где IA – показание амперметра РА; kIД — действительный коэффициент трансформации трансформатора тока.
9 слайд Описание слайда:Для расширения пределов измерений вольтметров в цепях постоянного тока с напряжением до 1000-4500 В служат добавочные резисторы, включаемые последовательно с прибором rд = rV (n-1) фактически измеряемое напряжение Ux=nUv, где Uv— показание вольтметра.
10 слайд Описание слайда:В цепях переменного тока напряжением свыше 1000 В для расширения пределов измерений используют измерительные трансформаторы напряжения U1 = kUДUV где UV — показание вольтметра PV; kUД — действительный коэффициент трансформации трансформатора напряжения
11 слайд Описание слайда:В цепи постоянного тока мощность может быть измерена с помощью амперметра и вольтметра, так как Р=I•U. Однако более точно ее можно измерить электродинамическим ваттметром Он состоит из катушки с малым сопротивлением, включенной, как амперметр, последовательно и называемой токовой обмоткой, и подвижной катушки с большим сопротивлением, включаемой параллельно и называемой обмоткой напряжения.
12 слайд Описание слайда:В цепях переменного тока для измерения активной энергии служат однофазные и трехфазные счетчики индукционной системы. В трехпроводных трехфазных цепях для измерения активной энергии применяют двухэлементные объединяющие измерительные системы двух однофазных счетчиков
13 слайд Описание слайда:1. Сколько зажимов необходимо для включения однофазного счётчика в сеть? 2. Какой прибор используется для измерения электрической мощности? 3. Какое сопротивление должны иметь: а) вольтметр, б) амперметр 4. Чему пропорциональны: а) мощность, б) энергия, потребляемые из сети?
14 слайд Описание слайда:5. Шкала амперметра 0 –10 А. Сопротивление амперметра 0,5 Ом. Сопротивление шунта 0,1 Ом. Какой максимальный ток можно измерить? 6. Шкала амперметра 0-50 А. Ток в цепи может достигать 500 А. Сопротивление амперметра 0,09 Ом. Найдите сопротивление шунта, Ом 7. Шкала амперметра0-5 А. Амперметр подключён к трансформатору тока с коэффициентом трансформации 100. Какой максимальный ток можно измерить? 8. Шкала вольтметра 0-100В. Напряжение в цепи может достигать 500В. Сопротивление вольтметра 500 Ом. Найти добавочное сопротивление вольтметра?
15 слайд Описание слайда:Метод определения сопротивлений с помощью амперметра и вольтметра является косвенным, так как в этом случае по показаниям приборов I и U, пользуясь законом Ома, находят искомое сопротивление: RX=U/I При измерении сопротивления этим методом приборы могут быть включены двумя способами (рис.), причем и в том и в другом случае результаты не будут точными.
16 слайд Описание слайда: 17 слайд Описание слайда:Рассмотренный косвенный метод измерения сопротивлений не всегда удобен, так как требует затрат времени на дополнительные вычисления. Кроме того, он отличается невысокой точностью из-за влияния внутренних сопротивлений приборов. Для непосредственного измерения сопротивлений служат специальные приборы — омметры, которые представляют собой комбинацию магнитоэлектрического миллиамперметра и специальной измерительной схемы. Шкалу такого прибора градуируют в омах.
18 слайд Описание слайда:Показания омметров зависят от значения ЭДС источника питания, которая с течением времени уменьшается, что является существенным недостатком этих приборов. На практике чаще всего применяют омметры, показания которых не зависят от ЭДС источника питания. В качестве таких омметров используют магнитоэлектрические логометры — приборы, у которых отсутствует механическое устройство для создания противодействующего момента. Магнитоэлектрический логометр состоит из двух катушек, закрепленных на одной оси под углом 90° и жестко связанных друг с другом.
19 слайд Описание слайда:Индуктивность, взаимная индуктивность и емкость являются составляющими комплексного сопротивления, а последнее—одной из важных характеристик участка электрической цепи переменного тока. При выборе метода измерения составляющих комплексного сопротивления необходимо иметь в виду, что последние зависят от силы тока, напряжения, частоты, температуры и т. п.
20 слайд Описание слайда:На рис. приведена схема для измерения индуктивности с помощью амперметра и вольтметра. Измерив силу тока I в катушке, а также напряжение U на ее зажимах, можно определить полное сопротивление катушки
21 слайд Описание слайда:Точность измерения этим методом сравнительно низкая из-за суммирования погрешностей применяемых приборов. Чаще всего для измерения индуктивности применяют мосты переменного тока.
22 слайд Описание слайда:Для измерений емкости конденсаторов используются приборы фарадметры. Однако они имеют сравнительно низкую точность. Емкость конденсатора можно определить методом амперметра и вольтметра (рис.). Измерив силу тока и напряжение и зная частоту переменного тока, емкость определим по формуле C = IA/(U)=IA(U/2f)
23 слайд Описание слайда:Цифровые электроизмерительные приборы (рис. ) состоят из входного усилительного устройства ВУУ, аналого-цифрового преобразователя АЦП, который служит для преобразования непрерывного сигнала Y в цифровой код Y’, генератора импульсов ГИ, цифровых счетчика и индикатора ЦСИ, управляющего устройства УУ с коммутационным и логическими блоками.
24 слайд Описание слайда:Они предназначены для измерения и быстрого отсчета электрических величин и параметров с высокой точностью и надежностью. В них входной сигнал усиливается и преобразуется в дискретный выходной сигнал А в цифровой форме. Цифровые измерительные приборы (ЦИП) используются с 1960 г. как при научных и иных исследованиях, так и в обычной производственной практике. ЦИП имеют, кроме высокой точности, возможность запоминать, передавать на расстояние и вводить в ЭВМ измерительные значения, а также свободны от утомительного отсчета и многих проблем технического обслуживания.
25 слайд Описание слайда:ЦИП по виду измеряемых величин делятся на вольтметры, омметры, мосты, измерители частоты и интервалов времени, комбинированные и специализированные приборы. Последние служат для измерения температуры, массы грузов, скорости перемещения материалов и т. п. Комбинированные ЦИП позволяют измерять спряжение постоянного и переменного тока, сопротивление постоянному току, емкость и индуктивность. Основой таких приборов является цифровой вольтметр постоянного токаи ряд преобразователи электрических величин в напряжение постоянного тока. Промышленность выпускает ряд типов ЦИП.
26 слайд Описание слайда:1. Укажите основное достоинство уравновешенного измерительного моста 2. В какой системе счисления производится обработка результатов измерения в схеме цифрового измерительного прибора? 3. Какое достоинство характерно для электроизмерительного цифрового прибора? 4. Какое достоинство не свойственно цифровым электроизмерительным приборам?
27 слайд Описание слайда:5. Для измерения каких сопротивлений целесообразно применить эту схему?
Курс повышения квалификации
Курс профессиональной переподготовки
Педагог-библиотекарь
Курс профессиональной переподготовки
Библиотекарь
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
Выберите категорию: Все категорииАлгебраАнглийский языкАстрономияБиологияВсеобщая историяГеографияГеометрияДиректору, завучуДоп. образованиеДошкольное образованиеЕстествознаниеИЗО, МХКИностранные языкиИнформатикаИстория РоссииКлассному руководителюКоррекционное обучениеЛитератураЛитературное чтениеЛогопедия, ДефектологияМатематикаМузыкаНачальные классыНемецкий языкОБЖОбществознаниеОкружающий мирПриродоведениеРелигиоведениеРодная литератураРодной языкРусский языкСоциальному педагогуТехнологияУкраинский языкФизикаФизическая культураФилософияФранцузский языкХимияЧерчениеШкольному психологуЭкологияДругое
Выберите класс: Все классыДошкольники1 класс2 класс3 класс4 класс5 класс6 класс7 класс8 класс9 класс10 класс11 класс
Выберите учебник: Все учебники
Выберите тему: Все темы
также Вы можете выбрать тип материала:
Краткое описание документа:
Измерения в цепях постоянного и переменного тока. В презентации рассмотрены следующие вопросы:
1. Измерение постоянного и переменного тока и напряжения.
2. Расширение пределов измерения амперметра и вольтметра.
3. Измерение мощности в цепях постоянного и переменного тока.
4. Счетчики
5. Измерение электрического сопротивления
6. Измерение индуктивности и емкости.
7. Использование цифровых приборов для измерения
Общая информация
Номер материала: ДБ-1664458
Похожие материалы
Вам будут интересны эти курсы:
Оставьте свой комментарий§102. Измерение мощности и электрической энергии
Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.
В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.
Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.
Рис. 336. Схема для измерения мощности
Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.
Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.
Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.
Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.
Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).
Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.
Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.
Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.
При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.
Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).
В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается
Рис. 337. Ферродинамический счетчик электрической энергии
Рис. 338. Индукционный счетчик электрической энергии
помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.
Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.
Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.
При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.
Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.
Измерение напряжения, тока, споротивления, емкости, индуктивности, мощности в электрических цепях
Методика измерений в электрических цепях
Измерение постоянного и переменного напряжения
Измерение как постоянного, так и переменного напряжения может производиться непосредственно вольтметрами, рассчитанными для работы соответствующего типа напряжения. В тех случаях, когда необходимо измерить напряжение больше того, на которое рассчитан вольтметр, необходимо последовательно с ним включить добавочный резистор. Тогда часть измеряемого напряжения будет падать на добавочный резистор, а часть — на прибор. Подбирая величину сопротивления добавочного резистора, можно в широких пределах расширять возможности измерения больших напряжений. Известно сопротивление вольтметра Rпp и выбран коэффициент расширения пределов расширения:
n = Ux/Uпp
где Ux — максимальное напряжение на входе схемы, подлежащее измерению; Uпp — максимальные пределы измерения непосредственно вольтметром.
Величина сопротивления добавочного резистора может быть найдена по следующей формуле:
Rдоб = Rпр(n-1)
Обычно для удобства производства отсчетов коэффициент п выбирают кратным 2, 5 или 10.
Для измерения высоких значений переменных напряжений могут быть использованы так называемые измерительные трансформаторы напряжения.
Они представляют собой понижающие трансформаторы, т. е. такие, у которых число витков вторичной обмотки W2, к которой подключается вольтметр, меньше числа витков W1 первичной обмотки. Коэффициент расширения пределов измерения n = W1/W2. Схемы подключения вольтметров для измерения напряжения приведены на рис. 1.
Рис. 1. Схемы измерения напряжения
Измерение электродвижущей силы (ЭДС)
Измерение Е имеет свои особенности. При подключении вольтметра к источнику ЭДС для ее измерения через него всегда будет проходить ток, а так как любой источник ЭДС обладает внутренним сопротивлением Rвн, то напряжение на таком источнике и вольтметр будет измерять величину меньшую, чем ЭДС Е.
U = E – IRвн
Если нет требований к высокой точности измерения ЭДС, то для уменьшения тока можно воспользоваться вольтметром с большим внутренним сопротивлением, например электронным. В этом случае можно считать, что измеренное напряжение U ~ Е. Более точные методы измерения ЭДС связаны с использованием компенсационных схем (рис. 2).
Рис. 2. Схемы измерения ЭДС
В них напряжение, измеряемое вольтметром PV, снимаемое с переменного резистора R, сравнивается с напряжением на источнике ЭДС.
Изменяя напряжение на выходе переменного резистора (потенциометра), можно добиться такого условия, когда измерительный прибор Р покажет отсутствие тока через источник ЭДС. В этом случае показания вольтметра будут точно соответствовать величине ЭДС источника, т. е. U = Е .
Измерение тока
Можно производить измерение тока непосредственно амперметром, включенным в разрыв измеряемой цепи (рис. 3, а).
Рис. 3. Схемы измерения силы тока
При необходимости расширить пределы измерения амперметра необходимо параллельно амперметру включить резистор (рис. 3, б), который чаще всего называют шунтом. Тогда через амперметр будет проходить только часть тока, а остальная — через шунт. Так как сопротивление амперметров обычно небольшое, то для существенного расширения пределов измерения сопротивление шунта должно быть очень небольшим. Существуют формулы для расчета сопротивления шунта, но обычно на практике приходится вручную подгонять его сопротивление, контролируя ток эталонным амперметром.
Для измерения больших переменных токов часто используют измерительные трансформаторы токов (рис. 3, в). У них первичная обмотка, включаемая в разрыв измеряемой цепи, имеет число витков W1 меньшее, чем число витков W2 вторичной обмотки, т. е. трансформатор является повышающим по напряжению, но по току он понижающий. Амперметр подключается к выходу вторичной обмотки трансформатора тока. Часто лабораторные трансформаторы тока вообще не имеют изготовленной заранее первичной обмотки, а в их корпусе имеется широкое сквозное отверстие, через которое сам экспериментатор наматывает необходимое число витков (рис. 3, г). Зная число витков вторичной обмотки (оно обычно указано на корпусе трансформатора тока), можно выбрать коэффициент трансформации n = W1/W2 и определить измеряемый ток Iх по показаниям амперметра Iпр по следующей формуле:
Iх = Iпр/n
Совершенно по-иному производят измерение токов в электронных схемах, которые обычно спаяны, изготовлены на печатных платах; произвести какой-либо разрыв в них практически невозможно. Для измерения токов в этих случаях используют вольтметры (обычно электронные с большим внутренним сопротивлением для устранения влияния прибора на работу электронной схемы), подключая их к резисторам схемы, величины которых либо известны, либо могут быть предварительно измерены. Воспользовавшись законом Ома, можно определить силу тока:
I = U/R
Измерение сопротивлений
Часто при работе с электрическими установками или при наладке электронных схем необходимо производить измерение различных сопротивлений. Простейший способ измерения сопротивлений заключается в использовании двух измерительных приборов: амперметра и вольтметра. С их помощью измеряют напряжение и ток в сопротивлении R, подключенном к источнику питания, и по закону Ома находят величину искомого сопротивления:
R = U/I
Однако этот способ измерения сопротивлений не позволяет получить результаты измерения с высокой точностью, так как на результаты измерения оказывают влияние собственные внутренние сопротивления амперметра и вольтметра. Так, на изображенной на рис. 4, а схеме амперметр измеряет не только ток, проходящий через сопротивление, но и ток, проходящий через вольтметр, чем вносится методическая погрешность измерений.
Рис. 4. Схема для измерения сопротивлений методом амперметра и вольтметра (а) и схема омметра (б)
Этим способом производят измерение обычно в тех случаях, когда нет специальных приборов — омметров. Одна из возможных схем омметра (рис. 4, б) — последовательная. Она состоит из автономного источника питания Е, переменного резистора R и миллиамперметра магнитоэлектрического типа РА. В качестве источника питания обычно используют сухие элементы или батареи напряжением 1,4…4,5 В. Если к выводам прибора подключить сопротивление Rx, величину которого необходимо определить, то по цепи пойдет ток, величина которого будет зависеть от величины сопротивления. Так как миллиамперметр измеряет этот ток, то его шкала может быть непосредственно отградуирована в омах. Шкала у такого омметра обратная, т. е. нуль находится в правой части шкалы, так как при сопротивлении на входе, равном нулю (режим короткого замыкания), через амперметр будет протекать максимальный ток. Если внешняя цепь разорвана, что соответствует бесконечно большому сопротивлению на входе, то стрелка миллиамперметра будет находиться в самой левой части шкалы, где стоит знак х . Шкала такого омметра резко нелинейная, что в какой-то мере затрудняет считывание результатов. Переменный резистор омметра служит для установки прибора на нуль перед началом работы с ним. Для этого замыкают выводы омметра накоротко и, вращая ручку переменного резистора, добиваются нулевых показаний прибора. Так как ЭДС элемента питания с течением времени за счет разряда уменьшается, такую установку нуля необходимо периодически контролировать. С помощью подобных омметров можно измерять сопротивления от нескольких омов до сотен килоомов.
Рис. 5. Схемы мегометра (а) и электрического моста (б)
Измерение больших сопротивлений до 100 МОм обычно производят с помощью мегометров (рис. 5, а). В своем классическом виде он представляет собой комбинацию автономного источника питания и измерительного прибора — логометра. Логометр — разновидность магнитоэлектрического прибора, у которого вместо одной рамки имеются две, соединенные жестко между собой под некоторым утлом. Так же, как и в обычном магнитоэлектрическом приборе, с ними связана стрелка прибора и находятся они в магнитном поле постоянного магнита. При пропускании тока через обмотки рамок они создают вращающие моменты противоположных знаков, в результате чего положение стрелки будет зависеть от отношения токов в рамках. В цепь одной из рамок включен резистор R, а в цепь другой — сопротивление Rx, величина которого должна быть определена. Применение логометра объясняется тем, что его показания определяются только отношением токов в рамках и не зависят от изменения питающего напряжения Uпит. В качестве источника напряжения для мегометра используют либо индуктор, приводимый во вращение рукой оператора, либо аккумуляторную батарею с электронным преобразователем напряжения. Такая система питания определяется тем, что для работы прибора требуются большие напряжения — порядка 500 В, так как при меньших напряжениях токи в обмотках прибора были бы слишком малыми для его нормальной работы. Использование автономного источника питания диктуется тем, что мегометром часто измеряют сопротивление изоляции кабелей; при этом, естественно, напряжение в них бывает отключенным. Кроме того, с его помощью часто проводят измерения вне помещений, где нет электрической сети.
Измерение малых сопротивлений (меньше 1 Ом), а также измерения других сопротивлений в широком диапазоне значений с высокой точностью могут проводиться с помощью электрических мостов.
Электрический мост (рис. 5, б) представляет собой четыре сопротивления (одно из них — Rx подлежит измерению), включенные по кольцевой схеме. Каждое из сопротивлений образует плечо моста. В одну диагональ моста подают постоянное напряжение питания Uпит , а к другой подключают измерительный прибор — гальванометр Р. Он представляет собой высокочувствительный магнитоэлектрический прибор с нулем посередине шкалы. Его назначение — фиксировать момент, когда ток будет отсутствовать. Приборы подобного типа часто называются нуль-индикаторами. Одно или два сопротивления в плечах моста делаются переменными, и именно ими добиваются нулевых показаний прибора. Мост при этом считается сбалансированным. Как показывает теория электрических мостов, условие баланса достигается при равенстве произведения сопротивлений противоположных плеч, т. е. при условии R1Rx = R2R3. Следовательно, после балансировки моста можно, зная величины всех сопротивлений, определить значение неизвестного сопротивления
где N = R2/R1 — множитель.
Точность измерения с помощью мостов постоянного тока может быть очень велика. Результирующие значения сопротивлений могут иметь более пяти значащих цифр. В то же время мост не позволяет оперативно производить измерения, так как процесс балансировки требует определенного времени и навыка оператора.
Измерение емкостей
Определение емкости конденсатора или других устройств емкостного характера также может осуществляться различными способами. Простейший из них — метод амперметра-вольтметра (рис. 6, а).
Рис. 6. Схемы измерения емкости
Он во многом аналогичен такому же методу измерения сопротивлений, с той только разницей, что схема питается переменным синусоидальным напряжением от генератора низкой или высокой частоты (или от сети). Емкостное сопротивление конденсатора определяется по следующей формуле:
где f — частота переменного напряжения.
Емкостное сопротивление находится по закону Ома по показаниям приборов
Измерение малых по величине емкостей удобнее производить методом резонанса (рис. 6, б). Измеряемый конденсатор Сх подключается к известной индуктивности L, образуя колебательный контур. На контур подается синусоидальное напряжение от генератора. С помощью электронного вольтметра измеряют напряжение на контуре. При резонансе оно достигает максимума.
Известно, что резонансная частота контура может быть выражена следующей формулой:
Следовательно, при известной величине индуктивности в контуре и определенной по максимальным показаниям вольтметра частоте резонанса можно найти искомое значение емкости Сх.
Измерение больших емкостей (например, электролитических конденсаторов) проще всего производить путем разряда конденсатора на известное сопротивление R. Известно, что за время, равное постоянной времени цепи разряда конденсатора, его напряжение уменьшается в е раз, где е = 2,71… — основание натурального логарифма. Постоянная времени цепи разряда конденсатора на резистор определяется соотношением
Схема измерения емкости этим методом (рис. 6, в) состоит из источника постоянного напряжения питания, известного по величине сопротивления резистора R, электронного вольтметра PV, переключателя S и клемм для подключения конденсатора. С помощью переключателя S конденсатор Сх заряжается до напряжения источника питания, а после переключения конденсатора на разряд с помощью секундомера измеряют время t, по истечении которого конденсатор разрядится до напряжения Uпит/е. Емкость конденсатора определяется по формуле
Емкости конденсаторов можно измерять также с помощью мостов переменного тока.
Измерение индуктивностей
Измерение индуктивностей несколько сложнее. Это связано с тем, что любая катушка (обмотка трансформатора и т. п.) имеет кроме индуктивности еще и резистивное сопротивление. Поэтому во многих случаях измеряют предварительно полное сопротивление катушки индуктивности:
Оно может быть определено методом амперметра и вольтметра путем измерения напряжения и тока измерительными приборами схемы на переменном напряжении (рис. 7, a) z = U/I. При подаче на схему постоянного напряжения (рис. 7, б), как уже рассматривалось выше, можно определить резистивное сопротивление катушки R.
Рис. 7. Схемы измерения индуктивностей
Тогда
В свою очередь, индуктивное сопротивление
При известном значении частоты / напряжения питания легко найти величину искомого значения индуктивности
При малых значениях индуктивности (например, контурных катушек радиоэлектронных устройств) можно воспользоваться резонансной схемой, аналогичной схеме определения емкости резонансным методом.
Для измерения индуктивности можно использовать также мосты переменного тока, специальные измерительные приборы — ку- метры, позволяющие определять не только величину индуктивности, но и такую характеристику, как добротность катушки, характеризующие качество работы катушки в электронных схемах.
Измерение мощности
В электрических цепях измерение мощности удобнее рассматривать отдельно для цепей постоянного и переменного тока.
На постоянном токе основные формулы для определения мощности следующие:
В соответствии с приведенными формулами мощность в каком-то сопротивлении нагрузки R можно измерить тремя способами: с помощью вольтметра и амперметра (рис. 8, а), только вольтметром (рис. 8, б) и только амперметром (рис. 8, в). Во всех случаях после снятия показаний с приборов необходимо провести математические расчеты для определения собственно мощности.
Рис. 8. Схемы измерения мощности в цепях постоянного тока
Этого можно избежать, если для измерения мощности воспользоваться специальным прибором ваттметром (рис. 8, г). Как правило, выпускаемые промышленностью ваттметры изготавливаются на базе ферродинамического прибора (см. рис. 2.105). У ваттметров имеются две обмотки и соответственно четыре вывода. Одна из обмоток является токовой, через нее проходит ток к нагрузке, расходуемая мощность в которой подлежит измерению, а вторая — обмоткой напряжения. Она подключается непосредственно к источнику питания.
Измерение мощности на переменном токе имеет свои особенности. Во-первых, здесь существуют три различные мощности:
полная мощность, В * А,
S= UI,
активная мощность, Вт,
Р = UIcosφ;
реактивная мощность, вар,
Q = UIsinφ.
В этих формулах (φ — угол сдвига по фазе между током и напряжением.
Чаще всего интересуются полной и активной мощностями. Знание полной мощности необходимо для расчета токов в нагрузке, выбора сечения проводов и предохранителей. Активная мощность важна потому, что именно она характеризует ту мощность, которая в нагрузке преобразуется в теплоту, свет, звук и т.д.
Измерение полной мощности обычно производят, измеряя напряжение и ток вольтметром и амперметром и перемножая полученные значения. Активную мощность чаще всего измеряют с помощью ферродинамических ваттметров, которые кроме напряжения и тока учитывают и так называемый коэффициент мощности cosφ.
При подключении обмоток ваттметра к нагрузке, так же как и при постоянном напряжении, ваттметр непосредственно произведет измерение активной мощности.
На переменном токе достаточно часто приходится решать задачу измерения активной мощности в трехфазных цепях. Трехфазные цепи могут быть двух типов: трехпроводные и четырехпроводные. В трехпроводных цепях к нагрузке подходят три провода, обозначаемые буквами А, В, С. Для измерения активной мощности в такой цепи при любом варианте подключения элементов нагрузки к проводам достаточно подключить только два ваттметра так, как это показано на рис. 9.
Рис. 9. Схемы измерения мощности на переменном токе: а — трехпроводная система; б — четырехпроводная система
При этом необходимо соблюсти определенные правила подключения ваттметров. Выводы обмоток ваттметра, обозначенные на его корпусе звездочками, должны быть обращены в сторону источника энергии. Поэтому эти выводы получили название генераторные (подключаются к проводам, идущим от генератора). Суммарная активная мощность такой трехфазной системы находится как алгебраическая сумма показаний двух ваттметров. При этом возможен вариант, когда показания одного из ваттметров могут быть отрицательными, т. е. его стрелка уйдет влево. Для снятия показаний с такого ваттметра необходимо поменять местами провода, подходящие к любой из обмоток, прочесть результат измерения, но в формулу подставить с отрицательным знаком.
Измерение активной мощности в четырехпроводных цепях требует использования трех ваттметров. Один из выводов каждого ваттметра здесь подключается к четвертому проводу, обычно называемому нулевым. Показания всех ваттметров могут быть только положительными, и суммарная активная мощность, потребляемая трехфазной цепью, будет равна сумме мощностей, измеряемых каждым из ваттметров:
Ре = Р1 + Р2 + Р3.
Один из наиболее простых методов измерения количества электричества — метод измерения с помощью так называемого баллистического гальванометра. Он представляет собой прибор магнитоэлектрической системы (см. рис. 2.103) с умышленно утяжеленной подвижной частью (с большим моментом инерции). Если на вход такого баллистического гальванометра подать кратковременный импульс напряжения, то подвижная часть прибора, получив как бы импульсный вращающий момент, начнет движение, причем уже после окончания входного импульса это движение еще будет продолжаться и стрелка прибора, двигаясь по инерции, отклонится до какого-то значения шкалы, а затем возвратится в исходное нулевое положение. В качестве отсчета на таком приборе необходимо отметить то максимальное отклонение стрелки αmах от нулевого значения, которое наблюдалось во время ее движения по «баллистической траектории». Теория такого баллистического гальванометра показывает, что этот отсчет по максимальному отклонению стрелки оказывается пропорциональным количеству электричества, прошедшего через рамку такого прибора, т. е.
αmах = Q/С6,
где Сб—баллистическая постоянная, зависящая от конструктивных особенностей гальванометра.
Измерение количества электричества Q на обкладках предварительно заряженного конденсатора можно осуществить, разрядив его через баллистический гальванометр, и по максимальному отклонению его стрелки найти искомое значение количества электричества:
Q = С6αmах
При разработке новых сплавов, предназначенных для использования в электротехнических цепях, возникает необходимость в определении их удельного сопротивления. Под удельным сопротивлением понимают сопротивление проводника сечением 1 мм2
и длиной 1м. Соответственно такое удельное сопротивление р измеряется в единицах Ом — (мм2/м). Для его измерения выбирают отрезок проводника, желательно небольшого сечения, и измеряют его сопротивление любым из рассмотренных выше методов. После этого расчетным путем приводят величину этого сопротивления к сечению 1 мм2 и длине 1 м, что не представляет каких- либо трудностей, и получают значение удельного сопротивления. Для получения большей точности измерения желательно длину проводника брать по возможности большей.
Для многих изоляционных материалов представляет определенную ценность определение их диэлектрической проницаемости ε. Одним из простейших способов ее измерения является способ косвенного измерения с последующим расчетом величины диэлектрической проницаемости. Известно, что емкость простейшего конденсатора, состоящего из двух одинаковых пластин площадью S, расположенных на расстоянии δ друг от друга, с диэлектриком, заполняющим все пространство между пластинами, определяется по формуле
где ε — диэлектрическая проницаемость материала между пластинами.
Рис. 10. Схема для измерения диэлектрической постоянной изоляционных материалов
Измерение диэлектрической проницаемости материала производят с помощью конденсатора (рис. 10), между пластинами которого помещают испытуемый материал, а также измерения емкости такого элементарного конденсатора любым из описанных выше методов. Численную величину диэлектрической проницаемости определяют по формуле
Развитие радиоэлектроники и установок для высокочастотного воздействия на материалы машиностроения привело к тому, что практически все пространство заполнено электромагнитными волнами.
В мире работают миллионы передающих радиостанций, многие из которых излучают значительные мощности (например, радиолокационные станции дальнего обнаружения, вещательные радиостанции и т. п.). Для оценки электромагнитных волн часто возникает необходимость определения их уровня. Обычно об уровне электромагнитных волн судят по напряженности электрического поля, величина которого аналитически может быть пересчитана в мощность электромагнитного поля. Напряженность электрического поля наиболее часто измеряют с помощью рамочной антенны (рис. 11), которая представляет собой плоскую катушку, намотанную на каркас Е из какого- либо диэлектрика. (На рис. 11 для простоты изображен только один виток.)
Рис. 11. Измерение напряженности электрического поля
Диаграмма направленности такой антенны показывает, что максимум принимаемого излучения идет со стороны, лежащей в плоскости витков катушки. Это позволяет не только производить измерение напряженности электрического поля, но и определять направление на источник высокочастотных излучений по максимальной величине напряжения на выходе рамки при ее поворотах относительно вертикальной оси. Напряженность электрического поля определяется по величине напряжения на выходе рамки по следующей формуле, В/м:
где U — напряжение на выходе рамки, В; f — частота принимаемого сигнала, Гц; n — число витков в рамке; S— площадь рамки, м2.
Обычно на геометрические размеры рамки в зависимости от частоты сигнала напряженность поля которого определяется, накладываются определенные ограничения. В частности, на частотах более 30 МГц более точные результаты получаются, если вместо рамочной антенны использовать полуволновый диполь, представляющий собой проводник длиной в половину длины волны, разрезанный посередине. Напряжение с диполя снимается с центральной разрезанной части. Значение напряженности электрического поля можно определить по следующей формуле:
где f— частота, Гц; U— напряжение на выходе диполя, В.
Диполь, так же как и рамка, позволяет определять направление, с которого приходит сигнал, так как обладает определенной направленностью, что видно из диаграммы направленности. Максимум принимаемых сигналов определяется перпендикуляром к плоскости диполя. Именно так ориентированы телевизионные антенны по отношению к телевизионной вышке.
Напряжение на выходе рамки или диполя можно измерять с помощью электронного вольтметра непосредственно при сильных сигналах или применяя электронные усилители. В этом случае, используя селективные свойства усилителей, можно определить уровень напряженности электрического поля определенной частоты. Нужно учесть, что уровень сигнала на выходе рамки и частично диполя складывается из большого числа электромагнитных полей, существующих в пространстве в районе расположения приемного устройства от различных источников (передатчиков).
При необходимости определить частоту высокочастотного сигнала можно, если он сильный, используя непосредственное включение электронного частотомера на выход рамки или диполя. При слабых сигналах и использовании усилителей можно по их частотной настройке определять частоты сигналов, наведенные в рамке или диполе, т. е. так, как обычно по шкале радиоприемника можно определить длину волны или частоту принимаемой станции.