Site Loader

Магнитная индукция

2

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — существует вокруг электрического заряда, материально. Основное свойство электрического поля: действие с силой на эл.заряд, внесенный в него. Электростатическое поле— поле неподвижного эл.заряда, не меняется со временем. Напряженность электрического поля. — количественная характеристика эл. поля. — это отношение силы, с которой поле действует на внесенный точечный заряд к величине этого заряда. — не зависит от величины внесенного заряда, а характеризует электрическое поле!

Направление вектора напряженности  совпадает с направлением вектора силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

Напряженность поля точечного заряда:

где q0 — заряд, создающий электрическое поле. В любой точке поля напряженность направлена всегда вдоль прямой, соединяющей эту точку и q0.

3

ПРИНЦИП СУПЕРПОЗИЦИИ ( НАЛОЖЕНИЯ ) ПОЛЕЙ

Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3. .. и т.д. создают электрические поля с напряженностью Е1, Е2, Е3 … и т.д., то результирующая напряженность в данной точке поля равна геометрической сумме напряженностей.

Силовые линии эл. поля — непрерывные линии, касательными к которым являются векторы напряженности эл.поля в этих точках. Однородное эл.поле — напряженность поля одинакова во всех точках этого поля. Свойства силовых линий: не замкнуты (идут от + заряда к _ ), непрерывны, не пересекаются, их густота говорит о напряженности поля (чем гуще линии, тем больше напряженность).

Графически надо уметь показать эл.поля: точечного заряда, двух точечных зарядов, обкладок конденсатора ( в учебнике есть).

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ заряженного шара.

Есть заряженный проводящий шар радиусом R.

— заряд равномерно рапределен лишь по поверхности шара!  Напряженность эл. поля снаружи:

Напряженность внутри шара:  Е = 0

12

ЭЛЕКТРОЕМКОСТЬ — характеризует способность двух проводников накапливать электрический заряд.   — не зависит от q и U. — зависит от геометрических размеров проводников, их формы, взаимного расположения, электрических свойств среды между проводниками.

Единицы измерения в СИ: ( Ф — фарад )

КОНДЕНСАТОРЫ

— электротехническое устройство, накапливающее заряд ( два проводника, разделенных слоем диэлектрика ).

где d много меньше размеров проводника. Обозначение на электрических схемах:

Все электрическое поле сосредоточено внутри конденсатора. Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.

Виды конденсаторов: 1. по виду диэлектрика: воздушные, слюдяные, керамические, электролитические 2. по форме обкладок: плоские, сферические. 3. по величине емкости: постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора d — расстояние между пластинами eо — электрическая постоянная e — диэлектрическая проницаемость диэлектрика

Включение конденсаторов в электрическую цепь

параллельное

последовательное

Тогда общая электроемкость (С):

при параллельном включении

. при последовательном включении

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Конденсатор — это система заряженных тел и обладает энергией. Энергия любого конденсатора:

где С — емкость конденсатора q — заряд конденсатора U — напряжение на обкладках конденсатора Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную, или равна работе по разделению положительных и отрицательных зарядов , необходимой при зарядке конденсатора.

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ КОНДЕНСАТОРА

Энергия конденсатора приблизительно равна квадрату напряженности эл. поля внутри конденсатора. Плотность энергии эл. поля конденсатора:

14

Электри́ческий ток — направленное (упорядоченное) движение заряженных частиц[1][2][3]. Такими частицами могут являться: в металлах —электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, вполупроводниках — электроны и дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля].

Сила тока — физическая величина , равная отношению количества заряда , прошедшего через некоторую поверхность за время , к величине этого промежутка времени[1]:

В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A), ампер является одной из семиосновных единиц СИ. 1 А = 1 Кл/с.

По закону Ома сила тока для участка цепи прямо пропорциональна приложенному напряжению к участку цепи и обратно пропорциональнасопротивлению проводника этого участка цепи:

Носителями заряда, движение которых, приводит к возникновению тока, являются заряженные частицы, в роли которых обычно выступаютэлектроны, ионы или дырки. Сила тока зависит от заряда этих частиц, их концентрации , средней скорости упорядоченного движения частиц , а также площади и формы поверхности, через которую течёт ток.

Если и постоянны по объёму проводника, а интересующая поверхность плоская, то выражение для силы тока можно представить в виде

где  — угол между скоростью частиц и вектором нормали к поверхности.

В более общем случае, когда сформулированные выше ограничения не выполняются, аналогичное выражение можно записать только для силы тока , протекающего через малый элемент поверхности площадью :

Тогда выражение для силы тока, протекающего через всю поверхность, записывается в виде интеграла по поверхности

В металлах заряд переносят электроны, соответственно в этом случае выражение для силы тока имеет вид

где e — элементарный электрический заряд.

Вектор называют плотностью электрического тока. Как следует из сказанного выше, его величина равна силе тока, протекающей через малый элемент поверхности единичной площади, расположенный перпендикулярно скорости , а направление совпадает с направлением упорядоченного движения заряженных частиц[2].

Для измерения силы тока используют специальный прибор — амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

В случае переменного тока различают мгновенную силу тока, амплитудную (пиковую) силу тока и эффективную силу тока (равную силе постоянного тока, который выделяет такую же мощность).

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через элемент поверхности единичной площади[1]. Например, при равномерном распределении плотности тока и всюду ортогональности её плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

где I — сила тока через поперечное сечение проводника площадью S (также см. рисунок).

Иногда речь может идти о скалярной[2] плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле.

В общем случае:

,

где  — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу поверхности площадью ; вектор — специально вводимый вектор элемента поверхности, ортогональный элементарной площадке и имеющий абсолютную величину, равную её площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение.

Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность.

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости и имеют одинаковые заряды (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их ,

или

где — плотность заряда этих носителей.

Направление вектора соответствует направлению вектора скорости , с которой движутся заряды, создающие ток, если 

q положительно.

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где — концентрация частиц каждого типа, — заряд частицы данного типа, — вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

15

Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.

В своей оригинальной форме он был записан его автором в виде : ,

Здесь X — показания гальванометра, т.е в современных обозначениях сила тока Ia — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) , l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r[1].

В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает

Закон Ома для полной цепи:

, (2)

где:

  •  — ЭДС источника напряжения,

  •  — сила тока в цепи,

  •  — сопротивление всех внешних элементов цепи,

  •  — внутреннее сопротивление источника напряжения.

Из закона Ома для полной цепи вытекают следствия:

  • При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения

  • При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Часто[2] выражение:

 (3)

(где есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

 (4)

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

К другой записи формулы (3), а именно:

 (5)

применима другая формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Выражение (5) можно переписать в виде:

 (6)

где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо[3], в Международной системе единиц (СИ) единицей измерения проводимости является си́менс (русское обозначение: См; международное: S), величина которого равна обратному ому.

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т. е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж

19

МАГНИТНОЕ ПОЛЕ

— это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

СВОЙСТВА ( стационарного) МАГНИТНОГО ПОЛЯ

Постоянное (или стационарное) магнитное поле — это магнитное поле, неизменяющееся во времени .

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое, т.е. не имеет источника.

— это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

Направление линий магнитной индукции

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки ( в основном для определения направления магнитных линий  внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

Сила ампера

— это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

Примеры:

или 

Действие магнитного поля на рамку с током

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током. Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

22

Магнитный момент витка с током это физическая величина, как и любой  другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Рисунок — 1 круговой виток с током

 Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

Рисунок—  2 Воображаемый полосовой магнит на оси витка

 На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

 Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

 Величину магнитного момента кругового витка с током можно определить по формуле.

Электромагнитная индукция. Правило винта. Эдс индукция. Магнитный поток.

Магнитным потоком Ф через некоторую поверхность S называется скалярная величина, равная произведению модуля вектора магнитной индукции на площадь этой поверхности и косинус угла между нормалью n к ней и направлением вектора магнитной индукции B:Ф=|B|Scos. Если магнитное поле неоднородно, то поверхность S разбивается на элементарные площадки S в пределах каждой из которых поле можно считать однородным. Тогда полный поток через эту поверхность равен сумме потоков вектора магнитной индукции через элементарные площадки. В СИ единицей магнитного потока является 1 вебер (Вб) – магнитный поток через поверхность 1 м2, расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл: 1Вб=1В*с.

Электромагнитная индукция

Возникновение эдс в замкнутом проводящем контуре при изменении магнитного потока через эту поверхность, ограниченную этим контуром, называется электромагнитной индукцией. Также эдс индукции, а следовательно, разность потенциалов возникает на концах разомкнутого проводника, движущеося в магнитном поле и пересекающего силовые линии поля. Опыт показывает, что эдм индукции не зависит от причин изменния магнитного потока, а определяется скоростью его изменения. Согласно закону Фарадея, эдс индукции определяется как предел отношения изменения магнитного потока Ф к промежутку времени t к нулю, или производной по времени магнитного потока Eинд=limt—>0 Ф/t= -Ф’.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура. По правилу Ленца, возникающий в замкнутом контуре индукционный ток направлен так, что создаваемый им магнитный поток через площадь, ограниченную контуром, стремиться препятствовать тому изменению потока, которое вызывает данный ток. Явление ЭИ находит широкое применение в технике. Оно используется в индукционных генераторах тока, индукционных плавильных печах, трансформаторах, в счетчиках электроэнергии и др.

Закон ЭИ формулируется именно для ЭДС индукции, а не для силы индукционного тока: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Ei=модуль(дельта Ф/дельта t). С учетом правила Ленца: Ei=-дельта Ф/дельта t. При изменении магнитного потока в катушке, имеющей n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС одного витка.

Индукция магнитного поля

Индукцией магнитного поля называется характеристика способности магнитного поля оказывать силовое действие на проводник с током. Она является векторной физической величиной.

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Его можно определить по правилу буравчика: если направление поступательного движения буравчика совпадает с направлением силы тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Линией магнитной индукции называется такая линии, в любой точке которой вектор магнитной индукции направлен по касательной.

Если во всех точках некоторой части пространства вектор индукции магнитного поля имеет одинаковое значение по модулю и одинаковое направление, то магнитной поле в этой части пространства называют однородным. Линии магнитной индукции такого поля представляют собой параллельные линии, расположенные на одном расстоянии друг от друга.

Линии индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружностей лежат на оси проводника. Направление индукции в этом случае определяется следующим правилом: если смотреть вдоль проводника с током по направлению тока, то вектор магнитной индукции направлен по ходу часовой стрелки.

Линии индукции магнитного поля, созданного катушкой с током показаны на рисунке. Вектор индукции входит в катушку с той стороны, с какой направление тока в витках катушки представляется соответствующим ходу часовой стрелки.

Линии магнитной индукции не имеют ни начала, ни конца –они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Следовательно, магнитное поле –вихревое. Это позволяет сделать вывод, что магнитное поле не имеет источников. Магнитных зарядов, подобных электрическим, в природе нет.

Опытным путем установлено, что отношение максимального значения модуля силы, действующей на проводник с током (силы Ампера) к силе тока и к длине проводника, не зависит ни от силы в проводнике, ни от длины проводника. Его приняли за характеристику магнитного поля в том месте, где расположен проводник –индукцию магнитного поля:

Единица индукции в этом случае определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока 1 А действует сила Ампера 1 Н. Эта единица называется тесла:

Если исследовать магнитное поле с помощью рамки с током, то модуль вектора магнитной индукции равен отношению момента сил, действующих на рамку с током со стороны поля, к произведению силы тока в рамке на ее площадь:

.

За единицу магнитной индукции принята магнитная индукция такого поля, в котором на контур площадью 1 м2 при силе тока 1 А действует со стороны поля максимальный момент сил 1 .

Индукция магнитного поля зависит от геометрической формы проводника. Модуль индукции поля, создаваемого бесконечным прямолинейным проводником:

, где r –расстояние от проводника.

Модуль индукции поля, созданного проводником в форме кругового витка радиуса R:

.

Модуль индукции поля, созданного соленоидом длиной l и числом витков N:

.

Во всех формулах: I –сила тока, –магнитная постоянная,– относительная магнитная проницаемость среды.

Магнитная индукция Определение и значение

  • Основные определения
  • Викторина
  • Примеры
  • Британский
  • Научный

Показывает уровень оценки в зависимости от сложности слова.

Сохрани это слово!

Показывает уровень оценки в зависимости от сложности слова.


сущ. Электричество.

Также называется плотностью магнитного потока. векторная величина, используемая в качестве меры магнитного поля. Символ: B

намагниченность, индуцированная близостью к магнитному полю.

ВИКТОРИНА

ВЫ ПРОЙДЕТЕ ЭТИ ГРАММАТИЧЕСКИЕ ВОПРОСЫ ИЛИ НАТЯНУТСЯ?

Плавно переходите к этим распространенным грамматическим ошибкам, которые ставят многих людей в тупик. Удачи!

Вопрос 1 из 7

Заполните пропуск: Я не могу понять, что _____ подарил мне этот подарок.

Сравнить электромагнитную индукцию.

Происхождение магнитной индукции

Впервые записано в 1850–1855 гг.

Слова рядом с магнитной индукцией

магнитный поток, плотность магнитного потока, магнитная головка, магнитный гистерезис, магнитное наклонение, магнитная индукция, магнитные чернила, распознавание символов магнитных чернил, напряженность магнитного поля, магнитная линза, магнитная левитация

Dictionary. com Unabridged На основе Random House Unabridged Dictionary, © Random House, Inc. 2023

Как использовать магнитную индукцию в предложении

  • Эта технология основана на магнитной индукции, что в основном означает, что она позволяет электрическому току генерировать магнитное поле для создания напряжения, которое питает телефон без грязных кабелей или шнуров.

    Наслаждайтесь более безопасным и эффективным способом зарядки своего телефона всего за 29,99 долларов США|Куинн Гавронски|18 июля 2021 г.|Popular-Science

  • Введение в должность было бы уместным жестом, даже сейчас, когда честь будет посмертной.

    Величайший рок-голос всех времен принадлежал Джо Кокеру|Ted Gioia|23 декабря 2014|DAILY BEAST

  • В будущем корабль может быть оснащен футуристическими лазерами и электромагнитными рельсотронами.

    Сможет ли удержаться на плаву эсминец-невидимка стоимостью 12 миллиардов долларов?|Дэйв Маджумдар|22 октября 2014 г. |DAILY BEAST

  • Оба являются результатом магнитной активности Солнца, но солнечная вспышка имеет больше энергии, чем КВМ.

    Солнце бьёт Землю. Что теперь? Солнечные бури для чайников|Лиззи Крокер|12 сентября 2014 г.|DAILY BEAST

  • Это показывает работу магнитного поля, защищающего нас от этих высокоэнергетических частиц.

    Об этой солнечной буре, которая закончилась миром…|Николь Гугльуччи|28 июля 2014|DAILY BEAST

  • Их поверхность представляет собой пену магнитных бурь, пропорционально более яростных, чем худшая погода на Солнце.

    Экзопланета, которой не было|Мэттью Р. Фрэнсис|6 июля 2014|DAILY BEAST

  • Он ушел, насвистывая, и Изабель подняла руку и задумчиво посмотрела на нее; его собственные были неожиданно теплыми и магнетическими.

    Предки|Гертруда Атертон

  • Она с легкой улыбкой вошла в маленькую группу, и ее притягательное присутствие немедленно привлекло все внимание.

    Вес короны|Фред М. Уайт

  • Таким образом, появление магнитного телеграфа ожидалось ровно триста лет, прежде чем первый стук клавиш возвестил о его существовании.

    Философия Евангелия|Дж. Х. Уорд

  • Каждое движение мяча внутри клетки, где пересекаются и снова пересекаются магнитные поля, вызывает мгновенную реакцию.

    Поразительные истории, май 1931 года|Разные

  • Его лицо излучало огонь внутренней страсти; его глаза — глубокие, странные, сильные, магнетические — овладевали ею и принуждали ее.

    The Dragon Painter|Mary McNeil Fenollosa

Британский словарь определений магнитной индукции

магнитная индукция


существительное

другое название плотности магнитного потока © William Collins Sons & Co. Ltd., 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012

Научные определения магнитной индукции

магнитная индукция


Процесс, при котором вещество, например железо, намагничивается магнитным полем.

См. плотность магнитного потока.

Научный словарь American Heritage® Авторские права © 2011. Опубликовано издательством Houghton Mifflin Harcourt Publishing Company. Все права защищены.

Магнитная индукция (B) и поток (F). Объяснение закона Фарадея

Компоненты EEE, ПАССИВНЫЕ УСТРОЙСТВА

Магнитная индукция B

Потенциал индуцируется в петле проводника, если магнитное поле, проходящее через петлю проводника, изменяется со временем.

Рекомендуемое изображение Рис. 1.10: Экспериментальная конфигурация для магнитной индукции

Всплеск потенциала на площади контура известен как магнитная индукция B. Как и напряженность магнитного поля, магнитная индукция B является векторной величиной.

Для магнитной индукции В применяется следующее соотношение:

Магнитная индукция (B) представляет собой частное индуцированного выброса потенциала:

и произведения витков обмотки (N) и площади витков (A) индукционной катушки.

Единицей магнитной индукции (В) является Тесла (Тл) = Вс/м2.

Магнитная индукция B и напряженность поля H пропорциональны друг другу.

Константа пропорциональности – это постоянная магнитного поля (µ0), полученная экспериментальным путем.

В вакууме, а также с достаточной точностью для воздуха это приводит к:

Магнитная индукция (BL) в воздухе для приведенного выше примера определяется как:

Магнитный поток F

Магнитный поток (F) представляет собой скалярное произведение плотности магнитного потока (B) и площади вектор (дА).

Если (B) проходит перпендикулярно через область и поле однородно:

Единица измерения магнитного потока (F) такая же, как и у скачка напряжения (Vs) (Вольт-секунда) или Вебера (Вб).

Закон Фарадея

До сих пор мы рассматривали статические магнитные поля. Если магнитный поток изменяется со временем, индуцируется напряжение U (закон Фарадея).

U = индуцированное напряжение
t = время

Полярность напряжения такова, что при замыкании цепи возникает ток, индуцированное магнитное поле которого противодействует исходному магнитному потоку, т. е. имеет тенденцию уменьшать магнитное поле (правило Ленца – Фигура).

Рис. : Представление правила Ленца. Наложенное магнитное поле индуцирует ток в таком направлении, что его индуцированное магнитное поле противодействует наложенному полю

Взяв обмотку из N витков, закон Фарадея можно выразить в следующем виде.

A = поперечное сечение катушки
l = длина катушки или магнитной цепи
I = ток через катушку
L = индуктивность катушки [H(enry) = Vs/A]

Итак, индуктивность ограничивает изменение тока после подачи напряжения. Его можно рассчитать по данным катушки:

AL = значение AL; в основном в нГн/N2

Энергия, запасенная в магнитном поле, подчиняется следующим соотношениям:

Энергия, хранящаяся в объеме V, состоит как из напряженности магнитного поля H, так и из плотности магнитного потока B. Для трансформаторов и дросселей с ферромагнитными сердечниками плотность потока ограничена насыщением (см. главу I/1.5) и постоянна на всем протяжении магнитная цепь. Если вводится воздушный зазор (материал с проницаемостью µ~1), то напряженность поля в этом воздушном зазоре максимальна с H = B/µ. Отсюда следует, что плотность энергии наибольшая в воздушном зазоре. Также говорят об энергии, хранящейся в воздушном зазоре.

При сравнении магнитных полей с электрическими обнаруживаются аналогии между некоторыми параметрами. Они приведены в таблице ниже:

Таб. :  Аналогии между магнитными и электрическими полями
  • Автор
  • Последние сообщения

Томаш Зедничек

Основатель и президент ЕВРОПЕЙСКОГО ИНСТИТУТА ПАССИВНЫХ КОМПОНЕНТОВ ( EPCI)
EPCI | Объединение пассивных профессионалов

Степень в области электротехники, Технический университет Брно, Чешская Республика, 1993 г.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *