Site Loader

Содержание

Тест по физике Электромагнитная индукция для 11 класса

Тест по физике Электромагнитная индукция для 11 класса с ответами. Тест включает 2 варианта, в каждом по 6 заданий.

1 вариант

A1. Индукционный ток — это направленное движение:

1) заряженных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил неэлектрического происхождения
2) нейтральных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил электрического происхождения
3) заряженных частиц, по своим действиям отличает­ся от электрического тока, проявляется за счет сил неэлектрического происхождения
4) нейтральных частиц, по своим действиям в прин­ципе отличается от электрического тока, проявляет­ся за счет сил электрического происхождения

А2. Магнит вводится в алюминиевое кольцо так, как по­казано на рисунке. Направление тока в кольце указано стрелкой. Каким полюсом магнит вводится в кольцо?

1) положительным

2) отрицательным
3) северным
4) южным

А3. Три одинаковые катушки включены последователь­но в электрическую цепь постоянного тока. Катушка 1 без сердечника, в катушке 2 сердечник из кобальта, в ка­тушке 3 сердечник из трансформаторной стали. В какой из катушек индукция магнитного поля будет наименьшей? (Магнитная проницаемость воздуха равна 1, кобальта — 175, трансформаторной стали — 8000.)

1) 1
2) 2
3) 3
4) во всех катушках одинакова

А4. Прямой проводник длиной 80 см движется в магнит­ном поле со скоростью 36 км/ч под углом 30° к вектору магнитной индукции. В проводнике возникает ЭДС 5 мВ. Чему равна магнитная индукция?

1) 3 мТл
2) 0,8 кТл

3) 2,5 мТл
4) 1,25 мТл

B1. К катушке с индуктивностью L = 0,25 Гн приложена постоянная разность потенциалов Δφ 10 В. На сколько возрастет сила тока в катушке за время Δt 1 с? (Сопро­тивлением катушки пренебречь.)

C1. Проводник массой m = 1 кг и дли­ной l = 1 м подвешен при помощи двух одинаковых металлических пружин же­сткостью k 100 Н/м каждая. Провод­ник находится в однородном магнит­ном поле, индукция которого В = 100 Тл и перпендикулярна плоскости, в ко­торой лежат проводник и пружины. (См. рисунок.)

Про­водник сместили в вертикальной плоскости от положения равновесия и отпустили. Определите период колебаний проводника, если к верхним концам пружин присоединен конденсатор емкостью

С = 100 мкФ. (Сопротивлением проводника и пружин пренебречь.)

2 вариант

A1. С помощью какого опыта можно показать возникно­вение индукционного тока?

1) проводник, концы которого присоединены к гальва­нометру, надо поместить в магнитное поле
2) проводник, концы которого присоединены к гальва­нометру, надо двигать вдоль магнитных линий
3) магнит или проводник, концы которого присоеди­нены к гальванометру, надо двигать так, чтобы маг­нитные линии пересекали проводник
4) с помощью опыта показать невозможно

А2.

Когда металлический стержень присоединили к одному из полюсов источника тока, то вокруг него обра­зовалось поле:

1) электрическое и магнитное
2) магнитное
3) электрическое
4) при таком условии поле не об­разуется

А3. Индуктивность численно равна:

1) магнитному потоку, охватываемому проводником, если сила тока, протекающая по проводнику, равна 1A
2) силе тока, протекающего по проводнику, если маг­нитный поток, охватываемый проводником, равен 1 Вб
3) магнитному потоку, охватываемому проводником, при изменении силы тока на 1 А за 1 с
4) силе тока, протекающего по проводнику, если магнитная индукция равна 1 Тл

А4.

Чему равна ЭДС самоиндукции в катушке с индуктив­ностью 0,4 Гн при равномерном уменьшении силы тока с 15 до 10 А за 0,2 с?

1) 0
2) 10 В
3) 50 В
4) 0,4 В

В1. Катушка с сопротивлением R = 20 Ом и индуктив­ностью L = 10-2 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличивается на ΔΦ = 10-3 Вб, сила тока в катушке воз­растает ΔI = 0,05 А. Какой заряд проходит за это время по катушке?

C1. На непроводящем клине с углом наклона α = 30° параллельно ребру клина лежит тонкий проводник массой m = 5 г и длиной l = 10 см. Концы проводника соединены с неподвижными стойками двумя одинаковыми пружи­нами жесткостью

k = 0,2 Н/м так, как показано на рисун­ке.

К клеммам стоек подводят постоянное напряжение U = 4 В. Определите максимальное удлинение пружины, если в пространстве создать однородное магнитное поле с индукцией В = 0,1 Тл, направленное вертикально вверх. (Коэффициент трения проводника о плоскость клина µ = 0,1, его сопротивление R = 20 Ом. Сопротивление пружин не учитывать.)

Ответы на тест по физике Электромагнитная индукция для 11 класса
1 вариант
А1-1
А2-3
А3-1
А4-4
В1. На 10 А
С1. 0,63 с
2 вариант
А1-2
А2-3
А3-3
А4-2

В1. 2,5 ⋅ 10-5 Кл
С1. 11 см

Что такое полюс источника тока.

Тест по физике Электромагнитная индукция для 11 класса с ответами. Тест включает 2 варианта, в каждом по 6 заданий.

1 вариант

A1. Индукционный ток — это направленное движение:

1) заряженных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил неэлектрического происхождения
2) нейтральных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил электрического происхождения
3) заряженных частиц, по своим действиям отличает­ся от электрического тока, проявляется за счет сил неэлектрического происхождения
4) нейтральных частиц, по своим действиям в прин­ципе отличается от электрического тока, проявляет­ся за счет сил электрического происхождения

А2. Магнит вводится в алюминиевое кольцо так, как по­казано на рисунке. Направление тока в кольце указано стрелкой. Каким полюсом магнит вводится в кольцо?

1) положительным
2) отрицательным
3) северным
4) южным

А3. Три одинаковые катушки включены последователь­но в электрическую цепь постоянного тока. Катушка 1 без сердечника, в катушке 2 сердечник из кобальта, в ка­тушке 3 сердечник из трансформаторной стали. В какой из катушек индукция магнитного поля будет наименьшей? (Магнитная проницаемость воздуха равна 1, кобальта — 175, трансформаторной стали — 8000.)

1) 1
2) 2
3) 3
4) во всех катушках одинакова

А4. Прямой проводник длиной 80 см движется в магнит­ном поле со скоростью 36 км/ч под углом 30° к вектору магнитной индукции. В проводнике возникает ЭДС 5 мВ. Чему равна магнитная индукция?

1) 3 мТл
2) 0,8 кТл
3) 2,5 мТл
4) 1,25 мТл

B1. К катушке с индуктивностью L = 0,25 Гн приложена постоянная разность потенциалов Δφ 10 В. На сколько возрастет сила тока в катушке за время Δt 1 с? (Сопро­тивлением катушки пренебречь.)

C1. Проводник массой m = 1 кг и дли­ной l = 1 м подвешен при помощи двух одинаковых металлических пружин же­сткостью

k 100 Н/м каждая. Провод­ник находится в однородном магнит­ном поле, индукция которого В = 100 Тл и перпендикулярна плоскости, в ко­торой лежат проводник и пружины. (См. рисунок.)

Про­водник сместили в вертикальной плоскости от положения равновесия и отпустили. Определите период колебаний проводника, если к верхним концам пружин присоединен конденсатор емкостью С = 100 мкФ. (Сопротивлением проводника и пружин пренебречь.)

2 вариант

A1. С помощью какого опыта можно показать возникно­вение индукционного тока?

1) проводник, концы которого присоединены к гальва­нометру, надо поместить в магнитное поле
2) проводник, концы которого присоединены к гальва­нометру, надо двигать вдоль магнитных линий

3) магнит или проводник, концы которого присоеди­нены к гальванометру, надо двигать так, чтобы маг­нитные линии пересекали проводник
4) с помощью опыта показать невозможно

А2. Когда металлический стержень присоединили к одному из полюсов источника тока, то вокруг него обра­зовалось поле:

1) электрическое и магнитное
2) магнитное
3) электрическое
4) при таком условии поле не об­разуется

А3. Индуктивность численно равна:

1) магнитному потоку, охватываемому проводником, если сила тока, протекающая по проводнику, равна 1A
2) силе тока, протекающего по проводнику, если маг­нитный поток, охватываемый проводником, равен 1 Вб

3) магнитному потоку, охватываемому проводником, при изменении силы тока на 1 А за 1 с
4) силе тока, протекающего по проводнику, если магнитная индукция равна 1 Тл

А4. Чему равна ЭДС самоиндукции в катушке с индуктив­ностью 0,4 Гн при равномерном уменьшении силы тока с 15 до 10 А за 0,2 с?

1) 0
2) 10 В
3) 50 В
4) 0,4 В

В1. Катушка с сопротивлением R = 20 Ом и индуктив­ностью L = 10 -2 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличивается на ΔΦ = 10 -3 Вб, сила тока в катушке воз­растает ΔI = 0,05 А. Какой заряд проходит за это время по катушке?

C1. На непроводящем клине с углом наклона α = 30° параллельно ребру клина лежит тонкий проводник массой m = 5 г и длиной l = 10 см. Концы проводника соединены с неподвижными стойками двумя одинаковыми пружи­нами жесткостью k = 0,2 Н/м так, как показано на рисун­ке.

К клеммам стоек подводят постоянное напряжение U = 4 В. Определите максимальное удлинение пружины, если в пространстве создать однородное магнитное поле с индукцией В = 0,1 Тл, направленное вертикально вверх. (Коэффициент трения проводника о плоскость клина µ = 0,1, его сопротивление R = 20 Ом. Сопротивление пружин не учитывать.)

Ответы на тест по физике Электромагнитная индукция для 11 класса
1 вариант
А1-1
А2-3
А3-1
А4-4
В1. На 10 А
С1. 0,63 с
2 вариант
А1-2
А2-3
А3-3
А4-2
В1. 2,5 ⋅ 10 -5 Кл
С1. 11 см

Когда говорят об использовании электрической энергии в быту, на производстве или транспорте, то имеют в виду работу электрического тока. Электрический ток подводят к потребителю от электростанции по проводам. Поэтому, когда в домах неожиданно гаснут электрические лампы или прекращается движение электропоездов, троллейбусов, говорят, что в проводах исчез ток.

Чтобы электрический ток в проводниках существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.Разделенные частицы накапливаются на полюсах источника тока. Так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно , другой — отрицательно . Если полюсы источника соединить проводником, то под действием электрического поля свободные заряженные частицы в проводнике начнут двигаться в определенном направлении, возникнет электрический ток.

Существуют различные виды источников тока:

Механический источник тока

Механическая энергия преобразуется в электрическую энергию.

К ним относятся: электрофорная машина (диски машины приводятся во вращение в противоположных направлениях. В результате трения щеток о диски на кондукторах машины накапливаются заряды противоположного знака), динамо-машина, генераторы.

Тепловой источник тока

Внутренняя энергия преобразуется в электрическую энергию.

Например, термоэлемент — две проволоки из разных металлов необходимо спаять с одного края, затем нагреть место спая, тогда между другими концами этих проволок появится напряжение.

Применяются в термодатчиках и на геотермальных электростанциях.

Световой источник тока

Энергия света преобразуется в электрическую энергию.

Например, фотоэлемент — при освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

Применяются в солнечных батареях, световых датчиках, калькуляторах, видеокамерах.

Химический источник тока

В результате химических реакций внутренняя энергия преобразуется в электрическую.


Гальванические элементы — самые распространенные в мире источники постоянного тока. Их достоинством является удобство и безопасность в использовании. Изобретены батарейки были очень давно, еще на заре освоения электроэнергии. Тогда ток еще и передавать-то на большие расстояние не умели, использовали только в рамках лаборатории. Но и по сей день разнообразные варианты батареек не утратили своей актуальности. Различают одноразовые и многоразовые батарейки – аккумуляторы.

Одноразовые батарейки в процессе эксплуатации вырабатывают весь свой потенциал и более непригодны.

В быту часто применяют батарейки, которые можно подзаряжать многократно — аккумуляторы (от лат. слова аккумуляторе — накоплять). Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещенных в раствор серной кислоты.

Чтобы аккумулятор стал источником тока, его надо зарядить. Для зарядки через аккумулятор пропускают постоянный ток от какого-нибудь источника. В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой — отрицательно. Когда аккумулятор зарядится, его можно использовать как самостоятельный источник тока. Полюсы аккумуляторов обозначены знаками «+» и «-». При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный — с отрицательным полюсом.

Способ электрической защиты подземных металлических сооружений от коррозии путем сообщения им отрицательного потенциала по отношению к окружающей среде при помощи соединения их с отрицательным полюсом источника постоянного тока катодной установки …

ПОЛЮС — (от греч. polos конечность оси, на которой вертится колесо). Оконечность воображаемой земной оси: южный и северный полюсы. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПОЛЮС 1) оконечности оси земного шара; 2)… … Словарь иностранных слов русского языка

ПОЛЮС — (1) особая, высшая, крайняя точка чего либо; (2) П. географический (Северный и Южный) воображаемая точка пересечения оси вращения Земли с земной поверхностью. Географические П. это единственные точки земной поверхности, не участвующие в суточном… … Большая политехническая энциклопедия

Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

ГОСТ Р 50345-2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока — Терминология ГОСТ Р 50345 2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока оригинал документа: 3.5.12… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52565-2006: Выключатели переменного тока на напряжения от 3 до 750 кВ. Общие технические условия — Терминология ГОСТ Р 52565 2006: Выключатели переменного тока на напряжения от 3 до 750 кВ. Общие технические условия оригинал документа: А.2 Выключатели, их составные части А.2.1 выключатель: Контактный коммутационный аппарат, способный включать … Словарь-справочник терминов нормативно-технической документации

катод — 1) электрод электровакуумного прибора или газоразрядного ионного прибора, служащий источником электронов, обеспечивающих проводимость междуэлектродного пространства в вакууме либо поддерживающих стационарность прохождения электрического тока в… … Энциклопедия техники

Катод — (от греч. káthodes ход вниз, от katá вниз и hodós путь, движение; предложено английским физиком М. Фарадеем в 1834) 1) электрод электровакуумного прибора или газоразрядного ионного прибора, служащий источником электронов, обеспечивающих… … Большая советская энциклопедия

Медь — (Copper) Металл медь, месторождения и добыча меди, получение и применение Информация о металле медь, свойства меди, месторождения и добыча металла, получение и применение меди Содержание — (лат. Cuprum), Cu, химический элемент I группы… … Энциклопедия инвестора

АНОД — положительный полюс источника тока или цепи. При электролизе металл. пластинка (электрод), через к рую в электролит входит электр. ток. Технический железнодорожный словарь. М.: Государственное транспортное железнодорожное издательство. Н. Н.… … Технический железнодорожный словарь

Электрические аккумуляторы* — Русский академик Якоби впервые (в 1860 г.) применил для телеграфных целей принцип вторичных батарей, т. е. батарей, которые становятся источниками Э. энергии после того, как через них пропущен ток от другого источника тока. Гастон Планте… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

«Тест по электродинамике» — Электрон. Сила электрического тока. Молярная масса. Однородное магнитное поле. Стрелка. Постоянный магнит. Прямолинейный проводник. Основы электродинамики. Проволочный виток. Горизонтальный проводник. Сила тока равномерно увеличивается. Электрическая цепь. Электрон влетает в область однородного магнитного поля.

«Одиночный заземлитель» — Метод электростатической аналогии. Сопротивление растеканию тока. Распределение потенциала вокруг полушарового заземлителя. Хорольский В.Я. Ток замыкания. Защита от поражения электрическим током. Заземляющий проводник. Учебные вопросы Введение 1.Шаровой заземлитель. Потенциал. Снижение потенциала. Стержневой заземлитель.

«Гальванические элементы» — Равновесные электродные процессы. Ион-селективные электроды. Проводники первого рода. Гальванические элементы. Комбинация констант. Электрическая работа. Газовые электроды. Один и тот же по природе металл. Растворы электродов. Диффузионный потенциал. Величины, которые могут варьироваться. Гальванический элемент.

«Постоянный ток» — Электрический ток. Электрическая цепь. Дольные и кратные единицы. Условные обозначения. Опыт по взаимодействию двух проводников с током. Тепловое действие тока. Опыт. Включение амперметра. Единицы силы тока. Упорядоченное движение заряженных частиц. Схемы. Взаимодействие между проводником с током и магнитом.

«Электрический ток в проводниках» — Сила тока. Главные условия существования электрического тока. Интенсивность движения заряженных частиц. Движение электронов. Движущийся электрический заряд. Виды взаимодействия. Опорные понятия. Сила тока в проводнике. Электрический ток. Направление электрического тока.

«Классическая электродинамика» — Физическая величина. Закон Ома. Специальные приборы. Электрический ток в металлах. Средняя скорость. Электродинамика. Сила тока. Электрический ток в полупроводниках. Электрический ток. Работа и мощность тока. Немецкий физик. Правила Кирхгофа. Отношение. Проводник. Последовательное и параллельное соединение проводников.

Всего в теме 19 презентаций

Заряженные частицы электрического тока. Что такое электрический ток и каковы условия его существования

Направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. — Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. — Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест — дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE , которая перемещает заряд в направлении вектора этой силы.

На рисунке показано, что вектор силы F — = -qE , действующей на отрицательный заряд -q , направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

I = Q/t .

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2:

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ 1 и φ 2 между этими точками из расчёта:

U = A/Q = φ 1 — φ 2

Электрический ток может быть постоянным или переменным.

Постоянный ток — электрический ток, направление и величина которого не меняются во времени.

Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R :

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. — Электролиз.
Анионы — положительные ионы. Перемещаются к отрицательному электроду — катоду.
Катионы — отрицательные ионы. Перемещаются к положительному электроду — аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах — плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах — лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного I n и дырочного I p токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Заряд в движении. Он может принимать форму внезапного разряда статического электричества, такого как, например, молния. Или это может быть контролируемый процесс в генераторах, батареях, солнечных или топливных элементах. Сегодня мы рассмотрим само понятие «электрический ток» и условия существования электрического тока.

Электрическая энергия

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электрической сети. Он создается генераторами, работающими по закону индукции Фарадея, благодаря которому изменяющееся магнитное поле может индуцировать электрический ток в проводнике.

Генераторы имеют вращающиеся катушки провода, которые проходят через магнитные поля по мере их вращения. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и создают электрический ток, меняющий направление на каждом повороте. Ток проходит через полный цикл вперед и назад 60 раз в секунду.

Генераторы могут питаться от паровых турбин, нагретых углем, природным газом, нефтью или ядерным реактором. Из генератора ток проходит через ряд трансформаторов, где растет его напряжение. Диаметр проводов определяет величину и силу тока, которую они могут переносить без перегрева и потери энергии, а напряжение ограничено только тем, насколько хорошо линии изолированы от земли.

Интересно отметить, что ток переносится только одним проводом, а не двумя. Две его стороны обозначаются как положительная и отрицательная. Однако, поскольку полярность переменного тока изменяется 60 раз в секунду, они имеют и другие названия — горячие (магистральные линии электропередач) и заземленные (проходящие под землей для замыкания цепи).

Зачем нужен электрический ток?

Существует масса возможностей применения электротока: он может осветить ваш дом, вымыть и высушить одежду, поднять дверь вашего гаража, заставить вскипеть воду в чайнике и дать возможность работать другим бытовым предметам, которые значительно облегчают нам жизнь. Тем не менее все более важным становится способность тока передавать информацию.

При подключении к Интернету компьютером используется лишь небольшая часть электрического тока, но это то, без чего современный человек не представляет своей жизни.

Понятие об электрическом токе

Подобно речному течению, потоку молекул воды, электрический ток — это поток заряженных частиц. Что это такое, что его вызывает, и почему он не всегда идет в одном направлении? Когда вы слышите слово «течет», о чем вы думаете? Возможно, это будет река. Это хорошая ассоциация, потому что именно по этой причине электрический ток получил свое название. Он очень похож на поток воды, только вместо молекул воды, движущихся по руслу, заряженные частицы движутся по проводнику.

Среди условий, необходимых для существования электрического тока, есть пункт, предусматривающий наличие электронов. Атомы в проводящем материале имеют много этих свободных заряженных частиц, которые плавают вокруг и между атомами. Их движение является случайным, поэтому поток в каком-либо заданном направлении отсутствует. Что же нужно, чтобы существовал электрический ток?

Условия существования электрического тока включают в себя наличие напряжения. Когда оно применяется к проводнику, все свободные электроны будут двигаться в одном направлении, создавая ток.

Любопытно об электрическом токе

Интересно то, что когда электрическая энергия передается через проводник со скоростью света, сами электроны движутся намного медленнее. На самом деле, если бы вы не спеша прошли рядом с токопроводящей проволокой, ваша скорость была бы в 100 раз быстрее, чем двигаются электроны. Это обусловлено тем, что им не нужно преодолевать огромные расстояния, чтобы передавать энергию друг другу.

Прямой и переменный ток

Сегодня широко используются два разных типа тока — постоянный и переменный. В первом электроны движутся в одном направлении, с «отрицательной» стороны на «положительную». Переменный ток толкает электроны назад и вперед, изменяя направление потока несколько раз в секунду.

Генераторы, используемые на электростанциях для производства электроэнергии, предназначены для производства переменного тока. Вы, наверное, никогда не обращали внимание на то, что свет в вашем доме на самом деле мерцает, поскольку текущее направление меняется, но это происходит слишком быстро, чтобы глаза смогли это распознать.

Каковы условия существования постоянного электрического тока? Зачем нам нужны оба типа и какой из них лучше? Это хорошие вопросы. Тот факт, что мы все еще используем оба типа тока, говорит о том, что они оба служат определенным целям. Еще в XIX веке было понятно, что эффективная передача мощности на большие расстояния между электростанцией и домом была возможна лишь при очень высоком напряжении. Но проблема заключалась в том, что отправка действительно высокого напряжения была чрезвычайно опасной для людей.

Решение этой проблемы состояло в том, чтобы уменьшить напряжение вне дома, прежде чем отправлять его внутрь. И по сей день постоянный электрический ток используется для передачи на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.

Как работает электрический ток

Условия существования электрического тока включают в себя наличие заряженных частиц, проводника и напряжения. Многие ученые изучали электричество и обнаружили, что существует два его типа: статическое и текущее.

Именно второе играет огромную роль в повседневной жизни любого человека, так как представляет собой электрический ток, который проходит через цепь. Мы ежедневно используем его для питания наших домов и многого другого.

Что такое электрический ток?

Когда в цепи циркулируют электрические заряды из одного места в другое, возникает электрический ток. Условия существования электрического тока включают в себя, помимо заряженных частиц, наличие проводника. Чаще всего это провод. Схема его представляет собой замкнутый контур, в котором ток проходит от источника питания. Когда же цепь разомкнута, он не может закончить путь. Например, когда свет в вашей комнате выключен, цепь разомкнута, но когда цепь замкнута, свет горит.

Мощность тока

На условия существования электрического тока в проводнике большое влияние оказывает такая характеристика напряжения, как мощность. Это показатель того, сколько энергии используется в течение определенного периода времени.

Существует много разных единиц, которые могут использоваться для выражения данной характеристики. Однако электрическая мощность почти измеряется в ваттах. Один ватт равен одному джоулю в секунду.

Электрический заряд в движении

Каковы условия существования электрического тока? Он может принимать форму внезапного разряда статического электричества, такого как молния или искра от трения с шерстяной тканью. Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, благодаря которой горит свет и работают приборы. Большая часть электрического заряда переносится отрицательными электронами и положительными протонами внутри атома. Однако вторые в основном иммобилизованы внутри атомных ядер, поэтому работа по переносу заряда из одного места в другое проделывается электронами.

Электроны в проводящем материале, таком как металл, в значительной степени свободны для перехода от одного атома к другому вдоль их зон проводимости, которые являются высшими электронными орбитами. Достаточная электродвижущая сила или напряжение создает дисбаланс заряда, который может вызвать движение электронов через проводник в виде электрического тока.

Если провести аналогию с водой, то возьмем, к примеру, трубу. Когда мы открываем клапан на одном конце, чтобы вода попала в трубу, то нам не нужно ждать, пока эта вода проложит весь путь до ее конца. Мы получаем воду на другом конце почти мгновенно, потому что входящая вода толкает воду, которая уже находится в трубе. Это то, что происходит в случае электрического тока в проводе.

Электрический ток: условия существования электрического тока

Электрический ток обычно рассматривается как поток электронов. Когда два конца батареи соединены друг с другом с помощью металлической проволоки, эта заряженная масса через провод попадает из одного конца (электрода или полюса) батареи на противоположный. Итак, назовем условия существования электрического тока:

  1. Заряженные частицы.
  2. Проводник.
  3. Источник напряжения.

Однако не все так просто. Какие условия необходимы для существования электрического тока? На этот вопрос можно ответить более подробно, рассмотрев следующие характеристики:

  • Разность потенциалов (напряжение). Это одно из обязательных условий. Между 2 точками должна быть разница потенциалов, означающая, что отталкивающая сила, которая создается заряженными частицами в одном месте, должна быть больше, чем их сила в другой точке. Источники напряжения, как правило, не встречаются в природе, и электроны распределяются в окружающей среде достаточно равномерно. Все же ученым удалось изобрести определенные типы приборов, где эти заряженные частицы могут накапливаться, тем самым создавая то самое необходимое напряжение (например, в батарейках).
  • Электрическое сопротивление (проводник). Это второе важное условие, которое необходимо для существования электротока. Это путь, по которому перемещаются заряженные частицы. В качестве проводников выступают только те материалы, которые дают возможность электронам свободно перемещаться. Те же, у которых этой способности нет, называются изоляторами. Например, проволока из металла будет отличным проводником, в то время как ее резиновая оболочка будет превосходным изолятором.

Тщательно изучив условия возникновения и существования электрического тока, люди смогли приручить эту мощную и опасную стихию и направить ее на благо человечества.

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон — «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока . Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение . Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц — электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление . После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника — L, площадь поперечного сечения — S. В этом случае можно сопротивление записать в виде формулы:

R = р * L/S

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал р, Ом х м2/м Материал р, Ом х м2/м
Медь0,017Платино-иридиевый сплав0,25
Золото0,024Графит13
Латунь0,071Уголь40
Олово0,12Фарфор1019
Свинец0,21Эбонит1020
Металл или сплав
Серебро0,016Манганин (сплав)0,43
Алюминий0,028Константан (сплав)0,50
Вольфрам0,055Ртуть0,96
Железо0,1Нихром (сплав)1,1
Никелин (сплав)0,40Фехраль (сплав)1,3
Хромель (сплав)1,5

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое — сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость . Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников — не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока . Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение — в вольтах, сила тока — амперах, время — в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома . Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии — для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца . Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

А = Uit

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Р = A/t = Ui

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

U = ir

где r — сопротивление проводника. В таком случае:

А = rt2i

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.

Закон электромагнитной индукции . В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца . Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Электрическим током называется упорядоченный поток отрицательно заряженных элементарных частиц – электронов. Электрический ток необходим для освещения домов и улиц, обеспечения работоспособности бытовой и производственной техники, движения городского и магистрального электротранспорта и.т.п.

Электрический ток

  • R н – сопротивление нагрузки
  • A – индикатор
  • К – коммутатор цепи

Ток – количество зарядов прошедших в единицу времени через поперечное сечение проводника.

  • I – сила тока
  • q – количество электричества
  • t – время

Единицу силы тока называют амперам А, по имени французского учёного Ампера .

1А = 10 3 мА = 10 6 мкА

Плотность электрического тока

Электрическому току присущ ряд физических характеристик, имеющих количественные значения, выражаемые в определенных единицах. Основными физическими характеристиками электротока являются его сила и мощность. Сила тока количественно выражается в амперах, а мощность тока – в ваттах. Не менее важной физической величиной считается векторная характеристика электрического тока, или плотность тока. В частности, понятием плотности тока пользуются при проектировании линий электропередач.

  • J – плотность электрического тока А / ММ 2
  • S – площадь поперечного сечения
  • I – ток

Постоянный и переменный ток

Электропитание всех электрических устройств осуществляется постоянным либо переменным током .

Электрический ток , направление и значение которого не меняются, называется постоянным .

Электрический ток , направление и значение которого способны изменяться называется переменным .

Электропитание многих электротехнических устройств осуществляется переменным током , изменение которого графически представлено в виде синусоиды.

Использование электрического тока

Можно с уверенностью констатировать, что самым великим достижением человечества является открытие электрического тока и его использование. От электрического тока зависят тепло и свет в домах, поступление информации из внешнего мира, общение людей, находящихся в различных точках планеты, и многое другое.

Современную жизнь невозможно представить без повсеместного наличия электричества. Электричество присутствует абсолютно во всех сферах жизнедеятельности людей: в промышленности и сельском хозяйстве, в науке и космосе.

Электричество также является неизменной составляющей повседневного быта человека. Такое повсеместное распространение электричества стало возможным благодаря его уникальным свойствам. Электрическая энергия может мгновенно передаваться на огромные расстояния и преобразовываться в различные виды энергий иного генезиса.

Основными потребителями электрической энергии являются промышленная и производственная сферы. При помощи электроэнергии приводятся в действие различные механизмы и устройства, осуществляются многоэтапные технологические процессы.

Невозможно переоценить роль электроэнергии в обеспечении работы транспорта. Практически полностью электрифицирован железнодорожный транспорт. Электрификация железнодорожного транспорта сыграла значительную роль в обеспечении пропускной способности дорог, увеличении скорости передвижения, снижении себестоимости пассажироперевозок, решении проблемы экономии топлива.

Наличие электричества является непременным условием обеспечения комфортных условий жизни людей. Вся бытовая техника: телевизоры, стиральные машины, микроволновые печи, нагревательные приборы – нашла свое место в жизни человека только благодаря развитию электротехнического производства.

Главенствующая роль электроэнергии в развитии цивилизации неоспорима. Нет такой области в жизни человечества, которая обходилась бы без потребления электрической энергии и альтернативу которой могла бы составить мускульная сила.

На сегодняшней встрече мы поведем разговор об электричестве, которое стало неотъемлемой частью современной цивилизации. Электроэнергетика вторглась во все сферы нашей жизни. А присутствие в каждом доме бытовых приборов, использующих электрический ток настолько естественная и неотъемлемая часть быта, что мы принимаем это как должное.

Итак, вниманию наших читателей предлагаются основные сведения об электрическом токе.

Что такое электрический ток

Под электрическим током понимают направленное движение заряженных частиц. Вещества, содержащие достаточное количество свободных зарядов, называют проводниками. А совокупность всех устройств, соединенных между собой помощью проводов называют электрической цепью.

В повседневной жизни мы используем электричество, проходящее по металлическим проводникам. Носителями заряда в них являются свободные электроны.

Обычно они хаотично мечутся между атомами, но электрическое поле вынуждает их двигаться в определенном направлении.

Как это происходит

Поток электронов в цепи можно сравнить с потоком воды, ниспадающей с высокого уровня на низкий. Роль уровня в электрических цепях играет потенциал.

Для Протекания тока в цепи на её концах должна поддерживаться постоянная разность потенциалов, т.е. напряжение.

Его принято обозначать буквой U и измерять в вольтах (B).

Благодаря приложенному напряжению в цепи устанавливается электрическое поле, которое и придаёт электронам направленное движение. Чем больше напряжение, тем сильнее электрическое поле, а значит и интенсивность потока направленно движущихся электронов.

Скорость распространения электрического тока равна скорости установления в цепи электрического поля, т. е. 300 000 км/с, однако скорость электронов едва достигает лишь нескольких мм в секунду.

Принято считать, что ток течёт от точки с большим потенциалом, т. е. от (+) к точке с меньшим потенциалом, т. е. к (−). Напряжение в цепи поддерживается источником тока, например батарейкой. Знак (+) на её конце означает, недостаток электронов, знак (−) их избыток, поскольку электроны — носители именно отрицательного заряда. Как только цепь с источником тока становиться замкнутой, электроны устремляются от места, где их избыток, к положительному полюсу источника тока. Их путь пролегает через провода, потребители, измерительные приборы и другие элементы цепи.

Обратите внимание, направление тока противоположно направлению движения электронов.

Просто направление тока по договоренности учёных определили до того как была установлена природа тока в металлах.

Некоторые величины, характеризующие электрический ток

Сила тока. Электрический заряд, проходящий через поперечное сечение проводника за 1 сек, называют силой тока. Для её обозначения используют букву I, измеряют в амперах (A).

Сопротивление. Следующая величина, о которой необходимо знать — это сопротивление. Оно возникает из-за столкновений направленно движущихся электронов с ионами кристаллической решетки. В результате таких столкновений электроны передают ионам часть своей кинетической энергии. В результате чего проводник нагревается, а сила тока уменьшается. Сопротивление обозначается буквой R и измеряется в омах (Ом).

Сопротивление металлического проводника тем больше, чем длиннее проводник и меньше площадь его поперечного сечения. При одинаковой длине и диаметре провода наименьшим сопротивлением обладают проводники из серебра, меди, золота и алюминия. По вполне понятным причинам на практике используют провода из алюминия и меди.

Мощность. Выполняя расчёты для электрических цепей, иногда требуется определить потребляемую мощность (P).

Для этого следует силу тока, протекающую по цепи умножить на напряжение.

Единицей измерения мощности служит ватт (Вт).

Постоянный и переменный ток

Ток, даваемый разнообразными батарейками и аккумуляторами, является постоянным. Это означает, что силу тока в такой цепи можно изменять лишь по величине, меняя различными способами её сопротивление, а его направление при этом сохраняется неизменным.

Но большинство электробытовых приборов потребляют переменный ток, т. е. ток величина и направление которого непрерывно изменяются по определенному закону.

Он вырабатывается на электростанциях, а затем через линии высоковольтных передач попадает в наши дома и на предприятия.

В большинстве стран частота изменения направления тока равна 50 Гц, т. е происходит 50 раз в секунду. При этом каждый раз сила тока постепенно нарастает, достигает максимума, затем убывает до 0. Затем этот процесс повторяется, но уже при противоположном направлении тока.

В США все приборы работают на частоте 60 Гц. Интересная ситуация сложилась в Японии. Там на одной трети страны используют переменный ток с частотой в 60 Гц, а на остальной части — 50 Гц.

Осторожно — электричество

Поражения электрическим током можно получить при использовании электробытовых приборов и от ударов молнии, поскольку человеческий организм хороший проводник тока. Нередко электротравмы получают, наступив на лежащий на земле провод или отодвинув руками отвисшие электрические провода.

Напряжение свыше 36 В считается опасным для человека. Если через тело человека пройдет ток всего лишь в 0,05 А, он может вызвать непроизвольное сокращение мышц, которое не позволит человеку самостоятельно оторваться от источника поражения. Ток в 0,1 А смертелен.

Ещё опаснее переменный ток, поскольку оказывает более сильное воздействие на человека. Этот наш друг и помощник в ряде случаев превращается в беспощадного врага, вызывая нарушение дыхания и работу сердца, вплоть до его полной остановки. Он оставляет страшные метки на теле в виде сильнейших ожогов.

Как помочь пострадавшему? Прежде всего, отключить источник поражения. А затем уже позаботиться об оказании первой медицинской помощи.

Наше знакомство с электричеством подходит к концу. Добавим лишь несколько слов о морских обитателях, обладающих «электрическим оружием». Это некоторые виды рыб, морской угорь и скат. Самым опасным из них является морской угорь.

Не стоит подплывать к нему на расстояние менее 3 метров. Удар его не смертелен, но сознание можно потерять.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Рекомендуем также

Электромагнитная индукция

Тест по физике Электромагнитная индукция для 11 класса с ответами. Тест включает 2 варианта, в каждом по 6 заданий. A1. Индукционный ток – это направленное движение:

1 вариант

A1. Индукционный ток — это направленное движение:

1) заряженных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил неэлектрического происхождения
2) нейтральных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил электрического происхождения
3) заряженных частиц, по своим действиям отличает­ся от электрического тока, проявляется за счет сил неэлектрического происхождения
4) нейтральных частиц, по своим действиям в прин­ципе отличается от электрического тока, проявляет­ся за счет сил электрического происхождения

А2. Магнит вводится в алюминиевое кольцо так, как по­казано на рисунке. Направление тока в кольце указано стрелкой. Каким полюсом магнит вводится в кольцо?

1) положительным
2) отрицательным
3) северным
4) южным

А3. Три одинаковые катушки включены последователь­но в электрическую цепь постоянного тока. Катушка 1 без сердечника, в катушке 2 сердечник из кобальта, в ка­тушке 3 сердечник из трансформаторной стали. В какой из катушек индукция магнитного поля будет наименьшей? (Магнитная проницаемость воздуха равна 1, кобальта — 175, трансформаторной стали — 8000.)

1) 1
2) 2
3) 3
4) во всех катушках одинакова

А4. Прямой проводник длиной 80 см движется в магнит­ном поле со скоростью 36 км/ч под углом 30° к вектору магнитной индукции. В проводнике возникает ЭДС 5 мВ. Чему равна магнитная индукция?

1) 3 мТл
2) 0,8 кТл
3) 2,5 мТл
4) 1,25 мТл

B1. К катушке с индуктивностью L = 0,25 Гн приложена постоянная разность потенциалов Δφ 10 В. На сколько возрастет сила тока в катушке за время Δt 1 с? (Сопро­тивлением катушки пренебречь.)

C1. Проводник массой m = 1 кг и дли­ной l = 1 м подвешен при помощи двух одинаковых металлических пружин же­сткостью k 100 Н/м каждая. Провод­ник находится в однородном магнит­ном поле, индукция которого В = 100 Тл и перпендикулярна плоскости, в ко­торой лежат проводник и пружины. (См. рисунок.)

Про­водник сместили в вертикальной плоскости от положения равновесия и отпустили. Определите период колебаний проводника, если к верхним концам пружин присоединен конденсатор емкостью С = 100 мкФ. (Сопротивлением проводника и пружин пренебречь.)

Индукционный ток правило

Определяющее направление индукционного тока правило звучит следующим образом: «Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван». Правая рука развернута ладонью навстречу магнит¬ным силовым линиям, при этом большой палец направлен в сторону движения проводника, а четыре пальца по-казывают, в каком направлении будет течь индукционный ток. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Направление индукционного тока

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Индукционный ток в катушке

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.

Индукционный ток возникает

Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

Как создать индукционный ток

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • – перемещение постоянного магнита или электромагнита относительно катушки,
  • – перемещение сердечника относительно вставленного в катушку электромагнита,
  • – замыкание и размыкание цепи,
  • – регулирование тока в цепи.

Сила индукционного тока

Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.

Магнитный поток

Понятие магнитного потока как раз и является характеристикой количества линий магнитного поля, пронизывающих контур.

Для простоты мы ограничиваемся случаем однородного магнитного поля. Рассмотрим контур площади , находящийся в магнитном поле с индукцией .

Пусть сначала магнитное поле перпендикулярно плоскости контура (рис. 1).

Рис. 1.

В этом случае магнитный поток определяется очень просто — как произведение индукции магнитного поля на площадь контура:

(1)

Теперь рассмотрим общий случай, когда вектор образует угол с нормалью к плоскости контура (рис. 2).

Рис. 2.

Мы видим, что теперь сквозь контур «протекает» лишь перпендикулярная составляющая вектора магнитной индукции (а та составляющая, которая параллельна контуру, не «течёт» сквозь него). Поэтому, согласно формуле (1), имеем . Но , поэтому

(2)

Это и есть общее определение магнитного потока в случае однородного магнитного поля. Обратите внимание, что если вектор параллелен плоскости контура (то есть ), то магнитный поток становится равным нулю.

А как определить магнитный поток, если поле не является однородным? Укажем лишь идею. Поверхность контура разбивается на очень большое число очень маленьких площадок, в пределах которых поле можно считать однородным. Для каждой площадки вычисляем свой маленький магнитный поток по формуле (2), а затем все эти магнитные потоки суммируем.

Единицей измерения магнитного потока является вебер (Вб). Как видим,

Вб = Тл · м = В · с. (3)

Почему же магнитный поток характеризует «количество линий» магнитного поля, пронизывающих контур? Очень просто. «Количество линий» определяется их густотой (а значит, величиной — ведь чем больше индукция, тем гуще линии) и «эффективной» площадью, пронизываемой полем (а это есть не что иное, как ). Но множители и как раз и образуют магнитный поток!

Теперь мы можем дать более чёткое определение явления электромагнитной индукции, открытого Фарадеем.

Электромагнитная индукция — это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита.
Б. От того, каким полюсом вносят магнит в катушку.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита
Б. от того, каким полюсом вносят магнит в катушку

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

1) только в катушке А
2) только в катушке Б
3) в обеих катушках
4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

Индукционный ток

1) возникает только в эбонитовом кольце
2) возникает только в медном кольце
3) возникает в обоих кольцах
4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток.
Б. Малую катушку вынимают из большой.

1) только в опыте А
2) только в опыте Б
3) в обоих опытах
4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с
2) 1 с-2 с и 3 с-4 с
3) 0-1 с и 2 с-3 с
4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени
2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с
3) индукционный ток не возникнет ни в какой промежуток времени
4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды.
Б. Радиоволны.
B. Световые волны.

Укажите правильный ответ.

1) только А
2) только Б
3) только В
4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

A. ​( v=lambdanu )​
Б. ( v=frac{lambda}{nu} )
В. ( v=frac{lambda}{T} )
Г. ( v=lambda T )

1) только А
2) только Б
3) А и В
4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) опыты Фарадея
Б) опыт Эрстеда
B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ
1) действие проводника с током на магнитную стрелку
2) электромагнитная индукция
3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА
A) генератор электрического тока
Б) электрический двигатель
B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) взаимодействие постоянных магнитов
2) взаимодействие проводников с током
3) возникновение электрического тока в проводнике при его движении в магнитном поле
4) магнитное действие проводника с током
5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц
2) 106,2 МГц
3) 847,5 кГц
4) 847,5 МГц

ЭДС индукции

Каков механизм возникновения индукционного тока? Это мы обсудим позже. Пока ясно одно: при изменении магнитного потока, проходящего через контур, на свободные заряды в контуре действуют некоторые силы — сторонние силы, вызывающие движение зарядов.

Как мы знаем, работа сторонних сил по перемещению единичного положительного заряда вокруг контура называется электродвижущей силой (ЭДС): . В нашем случае, когда меняется магнитный поток сквозь контур, соответствующая ЭДС называется ЭДС индукции и обозначается .

Итак, ЭДС индукции — это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура.

Природу сторонних сил, возникающих в данном случае в контуре, мы скоро выясним.

Закон электромагнитной индукции Фарадея

Сила индукционного тока в опытах Фарадея оказывалась тем больше, чем быстрее менялся магнитный поток через контур.

Если за малое время изменение магнитного потока равно , то скорость изменения магнитного потока — это дробь (или, что тоже самое, производная магнитного потока по времени).

Опыты показали, что сила индукционного тока прямо пропорциональна модулю скорости изменения магнитного потока:

Модуль поставлен для того, чтобы не связываться пока с отрицательными величинами (ведь при убывании магнитного потока будет ). Впоследствии мы это модуль снимем.

Из закона Ома для полной цепи мы в то же время имеем: . Поэтому ЭДС индукции прямо пропорциональна скорости изменения магнитного потока:

(4)

ЭДС измеряется в вольтах. Но и скорость изменения магнитного потока также измеряется в вольтах! Действительно, из (3) мы видим, что Вб/с = В. Стало быть, единицы измерения обеих частей пропорциональности (4) совпадают, поэтому коэффициент пропорциональности — величина безразмерная. В системе СИ она полагается равной единице, и мы получаем:

(5)

Это и есть закон электромагнитной индукции или закон Фарадея. Дадим его словесную формулировку.

Закон электромагнитной индукции Фарадея. При изменении магнитного потока, пронизывающего контур, в этом контуре возникает ЭДС индукции, равная модулю скорости изменения магнитного потока.

Ответы

Электромагнитная индукция. Опыты Фарадея. Электромагнитные колебания и волны

Оценка

Правило Ленца

Магнитный поток, изменение которого приводит к появлению индукционного тока в контуре, мы будем называть внешним магнитным потоком. А само магнитное поле, которое создаёт этот магнитный поток, мы будем называть внешним магнитным полем.

Зачем нам эти термины? Дело в том, что индукционный ток, возникающий в контуре, создаёт своё собственное магнитное поле, которое по принципу суперпозиции складывается с внешним магнитным полем.

Соответственно, наряду с внешним магнитным потоком через контур будет проходить собственный магнитный поток, создаваемый магнитным полем индукционного тока.

Оказывается, эти два магнитных потока — собственный и внешний — связаны между собой строго определённым образом.

Правило Ленца . Индукционный ток всегда имеет такое направление, что собственный магнитный поток препятствует изменению внешнего магнитного потока .

Правило Ленца позволяет находить направление индукционного тока в любой ситуации.

Рассмотрим некоторые примеры применения правила Ленца.

Предположим, что контур пронизывается магнитным полем, которое возрастает со временем (рис. (3)). Например, мы приближаем снизу к контуру магнит, северный полюс которого направлен в данном случае вверх, к контуру.

Магнитный поток через контур увеличивается. Индукционный ток будет иметь такое направление, чтобы создаваемый им магнитный поток препятствовал увеличению внешнего магнитного потока. Для этого магнитное поле, создаваемое индукционным током, должно быть направлено против внешнего магнитного поля.

Индукционный ток течёт против часовой стрелки, если смотреть со стороны создаваемого им магнитного поля. В данном случае ток будет направлен по часовой стрелке, если смотреть сверху, со стороны внешнего магнитного поля, как и показано на (рис. (3)).

Рис. 3. Магнитный поток возрастает

Теперь предположим, что магнитное поле, пронизывающее контур, уменьшается со временем (рис. 4). Например, мы удаляем магнит вниз от контура, а северный полюс магнита направлен на контур.

Рис. 4. Магнитный поток убывает

Магнитный поток через контур уменьшается. Индукционный ток будет иметь такое направление, чтобы его собственный магнитный поток поддерживал внешний магнитный поток, препятствуя его убыванию. Для этого магнитное поле индукционного тока должно быть направлено в ту же сторону , что и внешнее магнитное поле.

В этом случае индукционный ток потечёт против часовой стрелки, если смотреть сверху, со стороны обоих магнитных полей.

Взаимодействие магнита с контуром

Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?

Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.

1. Магнит приближаем к контуру, северный полюс направлен на контур.
2. Магнит удаляем от контура, северный полюс направлен на контур.
3. Магнит приближаем к контуру, южный полюс направлен на контур.
4. Магнит удаляем от контура, южный полюс направлен на контур.

Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.

Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .

Уж во всяком случае вы должны запомнить этот факт — вдруг такой вопрос попадётся в части А1

Результат этот можно объяснить и из совершенно общих соображений — при помощи закона сохранения энергии.

Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте — мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.

Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .

Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.

Закон Фарадея + Правило Ленца = Снятие модуля

Выше мы обещали снять модуль в законе Фарадея (5). Правило Ленца позволяет это сделать. Но сначала нам нужно будет договориться о знаке ЭДС индукции — ведь без модуля, стоящего в правой части (5), величина ЭДС может получаться как положительной, так и отрицательной.

Прежде всего, фиксируется одно из двух возможных направлений обхода контура. Это направление объявляется положительным . Противоположное направление обхода контура называется, соответственно, отрицательным . Какое именно направление обхода мы берём в качестве положительного, роли не играет — важно лишь сделать этот выбор.

Магнитный поток через контур считается положительным , если магнитное поле, пронизывающее контур, направлено туда, глядя откуда обход контура в положительном направлении совершается против часовой стрелки. Если же с конца вектора магнитной индукции положительное направление обхода видится по часовой стрелке, то магнитный поток считается отрицательным .

ЭДС индукции считается положительной , если индукционный ток течёт в положительном направлении. В этом случае направление сторонних сил, возникающих в контуре при изменении магнитного потока через него, совпадает с положительным направлением обхода контура.

Наоборот, ЭДС индукции считается отрицательной , если индукционный ток течёт в отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль отрицательного направления обхода контура.

Итак, пусть контур находится в магнитном поле . Фиксируем направление положительного обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положительный обход совершается против часовой стрелки. Тогда магнитный поток положителен: .

Предположим, далее, что магнитный поток увеличивается . Согласно правилу Ленца индукционный ток потечёт в отрицательном направлении (рис. 5).

Рис. 5. Магнитный поток возрастает

Стало быть, в данном случае имеем . Знак ЭДС индукции оказался противоположен знаку скорости изменения магнитного потока. Проверим это в другой ситуации.

А именно, предположим теперь, что магнитный поток убывает . По правилу Ленца индукционный ток потечёт в положительном направлении. Стало быть, (рис. 6).

Рис. 6. Магнитный поток возрастает

Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца всегда приводит к тому, что знак ЭДС индукции противоположен знаку скорости изменения магнитного потока :

(6)

Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.

Вихревое электрическое поле

Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?

Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.

Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.

Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с конца вектора . Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.

Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора , (рис. 7).

Рис. 7. Вихревое электрическое поле при увеличении магнитного поля

Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис. 8).

Рис. 8. Вихревое электрическое поле при уменьшении магнитного поля

Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.

Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.

1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.

Итак, ЭДС индукции в неподвижном контуре — это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .

Пусть, например, контур является кольцом радиуса и пронизывается однородным переменным магнитным полем. Тогда напряжённость вихревого электрического поля одинакова во всех точках кольца. Работа силы , с которой вихревое поле действует на заряд , равна:

Следовательно, для ЭДС индукции получаем:

ЭДС индукции в движущемся проводнике

Если проводник перемещается в постоянном магнитном поле, то в нём также появляется ЭДС индукции. Однако причиной теперь служит не вихревое электрическое поле (оно не возникает — ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды проводника.

Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости расположены параллельные рельсы, расстояние между которыми равно . Рельсы находятся в вертикальном однородном магнитном поле . По рельсам движется тонкий проводящий стержень со скоростью ; он всё время остаётся перпендикулярным рельсам (рис. 9).

Рис. 9. Движение проводника в магнитном поле

Возьмём внутри стержня положительный свободный заряд . Вследствие движения этого заряда вместе со стержнем со скоростью на заряд будет действовать сила Лоренца:

Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами — не забывайте правило часовой стрелки или левой руки!).

Сила Лоренца играет в данном случае роль сторонней силы: она приводит в движение свободные заряды стержня. При перемещении заряда от точки к точке наша сторонняя сила совершит работу:

(Длину стержня мы также считаем равной .) Стало быть, ЭДС индукции в стержне окажется равной:

(7)

Таким образом, стержень аналогичен источнику тока с положительной клеммой и отрицательной клеммой . Внутри стержня за счёт действия сторонней силы Лоренца происходит разделение зарядов: положительные заряды двигаются к точке , отрицательные — к точке .

Допустим сначала,что рельсы непроводят ток.Тогда движение зарядов в стержне постепенно прекратится. Ведь по мере накопления положительных зарядов на торце и отрицательных зарядов на торце будет возрастать кулоновская сила, с которой положительный свободный заряд отталкивается от и притягивается к — и в какой-то момент эта кулоновская сила уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная ЭДС индукции (7).

Теперь предположим, что рельсы и перемычка являются проводящими. Тогда в цепи возникнет индукционный ток; он пойдёт в направлении (от «плюса источника» к «минусу» N). Предположим, что сопротивление стержня равно (это аналог внутреннего сопротивления источника тока), а сопротивление участка равно (сопротивление внешней цепи). Тогда сила индукционного тока найдётся по закону Ома для полной цепи:

Замечательно, что выражение (7) для ЭДС индукции можно получить также с помощью закона Фарадея. Сделаем это.
За время наш стержень проходит путь и занимает положение (рис. 9). Площадь контура возрастает на величину площади прямоугольника :

Магнитный поток через контур увеличивается. Приращение магнитного потока равно:

Скорость изменения магнитного потока положительна и равна ЭДС индукции:

Мы получили тот же самый результат, что и в (7). Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно, раз ток течёт в направлении , то его магнитное поле направлено противоположно внешнему полю и, стало быть, препятствует возрастанию магнитного потока через контур.

На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле, можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с помощью закона Фарадея. Результаты будут получаться одинаковые.

Электромагнитная индукция в физике — формулы и определения с примерами решения задач

Содержание:

  1. Электромагнитная индукция
  2. Потокосцепление и индуктивность
  3. Явление электромагнитной индукции
  4. ЭДС индукции, возникающая в прямолинейном проводнике при его движении в магнитном поле. Правило правой руки
  5. Опыты Фарадея
  6. Закон Ленца для электромагнитной индукции. Объяснение диамагнитных явлений
  7. Величина ЭДС индукции
  8. Вихревое электрическое поле и его связь с магнитным полем
  9. Вихревые токи
  10. Роль магнитных полей в явлениях, происходящих на Солнце и в космосе
  11. Явление самоиндукции ЭДС самоиндукции
  12. Энергия магнитного поля

Электромагнитная индукция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении магнитного поля во времени или при движении материальной среды в магнитном поле. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Электромагнитная индукция

Электромагнитная индукция — это явление возникновения тока в замкнутом проводнике при прохождении через него магнитного потока, изменяющегося со временем.

Потокосцепление и индуктивность

Была приведена формула (22.10), которую можно использовать для вычисления работы при повороте контура с током во внешнем магнитном поле. Выясним теперь, как подсчитать работу при повороте соленоида во внешнем магнитном поле, если он имеет  витков.

Поскольку работа при повороте одного витка равна а в рассматриваемом случае магнитный поток пронизывает витков, то работа при повороте соленоида выразится формулой

Если обозначить произведение через  (греч. «пси»), то для работы получим формулу

или     (23.1)

Величину характеризующую связь («сцепление») магнитного потока с замкнутой цепью, сквозь которую он проходит, называют потокосцеплением. Если магнитный поток Ф пронизывает катушку с числом витков то потокосцепление равно произведению числа витков на магнитный поток:

   (23.2)

(Покажите, что единицей потокосцепления в СИ является вебер; §22.12.)

Теперь представим себе любую замкнутую цепь, по которой течет ток I. Этот ток создает свое собственное магнитное поле вокруг цепи. Пусть сквозь поверхность, охваченную проводниками замкнутой цепи, проходит собственный поток Ф. Если эта цепь представляет собой один плоский контур, то равно Ф. Если же проводники цепи образуют катушку с витками, то  Таким образом, собственное потокосцепление цепи зависит от ее конфигурации, т. е. от расположения проводников в пространстве.

Опыт показал, что когда в замкнутой цепи нет ферромагнетиков, то собственное потокосцепление этой цепи изменяется прямо пропорционально силе тока в ней:

    (23.3)

Коэффициент пропорциональности L остается постоянным только при неизменной конфигурации проводов замкнутой цепи и неизменной окружающей среде. Коэффициент L, характеризующий зависимость собственного потокосцепления замкнутой цепи от ее формы и от окружающей среды, называется индуктивностью цепи.

Выведем единицу индуктивности L в СИ:

За единицу индуктивности в СИ принимают генри (Гн). Генри называют индуктивность такой цепи, в которой возникает потокосцепление в 1 Вб при токе в 1 А.

Вспомним, что единица магнитной проницаемости в СИ имеет наименование (§22.8) или (§22.14). Так как (§22.12), то Обычно используют последнее наименование — генри на метр.

В качестве примера определим индуктивность соленоида Lcoл. Из (23.3) имеем

Так как Фсол определяется соотношением (22.15), то

    (23.4)

Таким образом, индуктивность соленоида определяется средой, размерами и числом витков соленоида.

Явление электромагнитной индукции

Было установлено, что электрический ток и его магнитное поле всегда существуют одновременно. Фарадей, зная о тесной связи между током и магнитным полем, был уверен, что с помощью магнитного поля можно создать в замкнутом проводнике электрический ток. Он провел многочисленные опыты и доказал это, открыв в 1831 г. явление электромагнитной индукции.

Возникновение в замкнутом проводнике электрического тока, обусловленное изменением магнитного поля, называют явлением электромагнитной индукции. Полученный таким способом ток называют индукционным (наведенным), а создающую его э. д. с. называют э. д. с. индукции.

Всесторонние исследования явления электромагнитной индукции показали, что с помощью этого явления можно получить электрический ток практически любой мощности, что позволяет широко использовать электрическую энергию в промышленности. В настоящее время почти вся электрическая энергия, используемая на производстве, получается с помощью индукционных генераторов, принцип работы которых основан на явлении электромагнитной индукции. Поэтому Фарадей по праву считается одним из основателей электротехники.

Рассмотрим подробнее явление электромагнитной индукции.

ЭДС индукции, возникающая в прямолинейном проводнике при его движении в магнитном поле. Правило правой руки

Пусть в однородном магнитном поле с индукцией В находится прямолинейный металлический проводник длиной (рис. 23.1). Если этот проводник привести в движение со скоростью  так, чтобы угол  между векторами В и составлял 90°, то вместе с проводником будут направленно двигаться и его собственные электроны. Так как их движение происходит в магнитном поле, то на них должна действовать сила Лоренца.

Рис. 23.1.

С помощью правила левой руки можно установить, что свободные электроны будут смещаться к концу провода А. Напряжение U, которое при этом возникает между концами провода A и В, создаст в нем электрическую силу которая уравновесит силу Лоренца Итак, смещение электронов к концу А прекратится при Поскольку a  имеем откуда

Так как напряжение на полюсах при разомкнутой цепи равно э. д. с., то э. д. с. индукции, возникающая в проводнике при его движении в магнитном поле, выражается формулой

   (23.5)

Заметим, что сторонними силами, создающими э. д. с., здесь являются магнитные силы, действующие на свободные электроны в проводнике. Если этот проводник включить в цепь, то в ней возникнет индукционный ток; это можно установить по показанию гальванометра G.

Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется по правилу правой руки (рис. 23.2): если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Рис. 23.2.

Опыты Фарадея

Рассмотрим опыты Фарадея, с помощью которых он открыл явление электромагнитной индукции.

1. Возьмем соленоид, соединенный с гальванометром (рис. 23.3), и будем вдвигать в него постоянный магнит. Оказывается, что при движении магнита стрелка гальванометра отклоняется. Если же магнит останавливается, то стрелка гальванометра возвращается в нулевое положение. То же самое получается при выдвижении магнита из соленоида или при надевании соленоида на неподвижный магнит. Такие опыты показывают, что индукционный ток возникает в соленоиде только при относительном’ перемещении соленоида и магнита.

Рис. 23.3. 

2. Будем опускать в соленоид В катушку с током А (рис. 23.4). Оказывается, что и в этом случае в соленоиде В возникает индукционный ток только при относительном перемещении соленоида В и катушки А.

Рис. 23.4.

3. Вставим катушку А в соленоид В и закрепим их неподвижно (рис. 23.5). При этом тока в соленоиде нет. Но в моменты замыкания или размыкания цепи катушки А в соленоиде В появляется индукционный ток. То же самое получается в моменты усиления или ослабления тока в катушке А с помощью изменения сопротивления R.

Рис. 23.5.

В дальнейшем цепь катушки А, соединенную с источником электрической энергии, будем называть первичной, а цепь соленоида В, в которой возникает индукционный ток, — вторичной. Эти же названия будем применять и к самим катушкам.

4. Включим первичную катушку в сеть переменного тока, а вторичную катушку соединим с лампой накаливания (рис. 23.6). Оказывается, лампа непрерывно горит, пока в первичной катушке течет переменный ток.

Рис. 23.6.

Нетрудно заметить, что общим для всех описанных опытов является изменение магнитного поля в соленоиде, которое и создает в нем индукционный ток.

Выясним теперь, всякое ли изменение магнитного поля вокруг замкнутого контура наводит в нем индукционный ток. Возьмем плоский контур в виде рамки, соединенной с гальванометром. Поместим рядом с рамкой магнит так, чтобы его линии индукции не проходили внутри рамки, а находились в ее плоскости (рис. 23.7, а).

Рис. 23.7.

Оказывается, что при перемещении рамки или магнита вдоль плоскости рисунка .стрелка гальванометра не отклоняется. Если же рамку поворачивать вокруг оси 00′ (рис. 23.7, б), то в ней возникает индукционный ток.

На основании описанных опытов можно сделать следующий вывод: индукционный ток (и э. д. с. индукции) в замкнутом контуре появляется только в том случае, когда изменяется магнитный поток, который проходит через площадь, охваченную контуром.

Закон Ленца для электромагнитной индукции. Объяснение диамагнитных явлений

Индукционный ток создает собственное магнитное поле. Связь между направлением индукционного тока в контуре и индуцирующим магнитным полем была установлена Ленцем.

В опыте, изображенном, на рис. 23.3, индукционный ток в соленоиде создает магнитное поле, полюсы которого указаны в отверстии соленоида. Проследив взаимодействие между магнитными полюсами соленоида и магнита во всех четырех случаях, приведенных на рисунке, и сравнив его с направлением движения магнита, можно видеть, что взаимодействие между полюсами всегда препятствует движению магнита. Ленцу удалось обобщить эту закономерность на все случаи электромагнитной индукций. Найденную им связь называют законом (правилом) Ленца для электромагнитной индукции: э. д. с. индукции создает в замкнутом контуре такой индукционный ток, который своим магнитным полем препятствует причине, вызывающей появление этой э. д. с.

Используя закон Ленца для определения направления индукционного тока, следует поступать следующим образом:

1)  найти причину, создающую индукционный ток;

2)  считая, что индукционный, ток противодействует этой причине, найти направление его магнитного поля;

3)  определить направление индукционного тока по направлению его магнитного поля.

Приведем пример. Причиной, вызывающей появление индукционного тока во вторичной катушке при размыкании цепи первичной катушки (рис. 23.5), является исчезновение поля первичной катушки. Мешая этому исчезновению, индукционный ток во_вторичной катушке должен создавать магнитное поле такого же направления, как у поля первичной катушки. Следовательно, направление индукционного тока во вторичной катушке будет совпадать с направлением тока, который протекал в первичной катушке до размыкания. (Покажите, что при замыкании цепи первичной катушки во вторичной возникает ток обратного направления.)

Из закона Ленца можно установить, что энергия индукционного тока в проводнике получается за счет той энергии, которая затрачивается на преодоление противодействия магнитного поля индукционного тока. Например, если разомкнуть цепь катушки, изображенной на рис. 23.3, и подсчитать работу, нужную для того, чтобы вставить в нее и вынуть магнит определенное число раз, а затем повторить этот опыт при замкнутой цепи, то во втором случае работа будет заметно больше, чем в первом. Это объясняется тем, что в первом случае собственного магнитного поля вокруг катушки нет, так как в ней нет тока, а во втором случае поле есть. Лишняя работа во втором случае идет на преодоление противодействия этого поля и равна энергии индукционного тока в катушке. Нетрудно видеть, что с помощью явления электромагнитной индукции можно превращать механическую энергию в электрическую, а также передавать электрическую энергию из одной цепи в другую.

Когда индукционный ток возникает вследствие какого-либо механического движения, то электрическая энергия получается за счет механической. Такое превращение энергии происходит в индукционных генераторах, установленных на электростанциях. Когда же индукционный ток возникает при отсутствии механического движения, то электрическая энергия переходит из одной цепи в другую. Такая передача энергии происходит в трансформаторах (§ 26.5).

Явлением электромагнитной индукции объясняют диамагнитный эффект. Когда вещество попадает в магнитное поле, на каждый движущийся по орбите электрон начинает действовать сила Лоренца, которая увеличивает или уменьшает (в зависимости от направления вращения электрона) центростремительную силу, действующую на электрон. Это приводит к изменению орбиты и частоты обращения электрона, что равносильно уменьшению или увеличению кругового тока, соответствующего движению электрона по орбите, причем получается, что круговые токи электронов усиливаются, если их магнитные поля направлены против внешнего поля, и уменьшаются, если они направлены по полю.

Таким образом, если в отсутствие внешнего поля круговые токи электронов в молекуле диамагнетика уравновешивают друг друга и молекула не имеет магнитного момента, то во внешнем поле это равновесие нарушается и возникает результирующий магнитный момент молекулы, направленный против внешнего поля. Этот результат, вообще говоря, прямо следует и из закона Ленца: изменение круговых токов в молекуле является индукционным током, и его магнитное поле должно быть направлено против вызвавшего его внешнего поля.

Диамагнитный эффект возникает во всех веществах, но если молекулы вещества имеют собственные магнитные моменты, которые ориентируются по направлению внешнего магнитного поля и усиливают его, то диамагнитный эффект перекрывается более сильным парамагнитным эффектом и вещество оказывается парамагнетиком.

Сильный диамагнитный эффект наблюдается при сверхпроводимости. Когда сверхпроводник попадает в магнитное поле, в нем, как и в обычном проводнике, наводятся индукционные токи, но, в отличие от молекулярных индукционных токов, их образуют свободные электроны. В сверхпроводнике эти индукционные токи не встречают сопротивления и циркулируют, пока существует внешнее магнитное поле, противодействуя его проникновению внутрь сверхпроводника. Сверхпроводники, как и все диамагнетики, выталкиваются из магнитного поля.

Величина ЭДС индукции

При выполнении опытов Фарадея можно видеть, что стрелка гальванометра отклоняется тем дальше, чем быстрее вдвигается в соленоид магнит или катушка с током (§ 23.4). То же самое получится, если усилить магнитное поле первичной катушки, увеличив в ней ток. Подробное изучение этого явления показало, что э. д. с. индукции, возникающая в какой-либо цепи, прямо пропорциональна скорости изменения потокосцепления магнитного поля с этой цепью:

   (23.6)

Отметим, что когда цепь состоит из одного витка, т. е. является простым контуром, то формула (23.6) принимает вид

    (23.6а)

В этих формулах  — время, за которое происходит изменение потокосцепления на Если очень мало, то формулы (23.6) дают мгновенное значение э. д. с. индукции. Если же велико, то при подсчете по этим формулам получается среднее значение э. д. с. индукции.

Знак минус в формулах показывает, что, когда потокосцепление уменьшается ( отрицательно), э. д. с. создает индукционный ток, увеличивающий потокосцепление, и наоборот. Таким образом, знак минус показывает, что в соответствии с законом Ленца э. д. с. индукции должна препятствовать причине, вызывающей ее появление.

Из формулы (23.6а) видно, что единицу магнитного потока в СИ можно назвать вольт-секундой, так как

Вихревое электрическое поле и его связь с магнитным полем

Появление э. д. с. индукции в прямолинейном проводнике, движущемся в магнитном поле, было объяснено действием силы Лоренца на подвижные носители зарядов. Однако объяснить таким способом появление э. д. с. индукции во вторичной цепи при неподвижной относительно нее первичной цепи (четвертый опыт в § 23.4) оказалось невозможным, поскольку магнитное поле не действует на покоящиеся заряды.

Вспомним, что на покоящиеся заряды действует электрическое поле. Не оно ли создает индукционный ток во вторичной цепи? Если это так, то откуда это электрическое поле берется? Объяснить это можно тем, что переменное магнитное поле может создавать электрическое поле, которое уже и возбуждает в замкнутом проводнике индукционный ток.

Такое объяснение явления электромагнитной индукции впервые дал Д. Максвелл. Развивая эту идею, он создал теорию электромагнитного поля, которая была подтверждена многими опытами. По теории Максвелла в пространстве, в котором изменяется магнитное поле, обязательно возникает электрическое поле с замкнутыми линиями напряженности, независимо от присутствия вещества.

На рис. 23.8 прямые линии изображают изменяющееся магнитное поле с индукцией В, возрастающей (а) и убывающей (б), а замкнутые линии — возникшее электрическое поле, напряженность которого Е. Если в этом пространстве окажется проводник, то в нем возникнет индукционный ток. Например, при выдвижении магнита из катушки на рис. 23.3, г возникает электрическое поле, изображенное на рис. 23.8, б, которое и создает ток в соленоиде. (Объясните, как возникает ток в других случаях, показанных на рис. 23.3.)

Рис. 23.8.

На рис. 23.8 видно, что линии электрического и магнитного полей расположены во взаимно перпендикулярных плоскостях. Исследования показали, что вектор напряженности (индукции) магнитного поля в каждой точке пространства перпендикулярен вектору напряженности созданного им электрического поля. Именно поэтому наибольшая э. д. с. индукции в прямолинейном проводнике возникает тогда, когда он движется перпендикулярно к линиям индукции магнитного поля.

Вихревые токи

Возьмем катушку с выступающим сердечником из мягкого ферромагнетика и положим на его конец металлический предмет. Если катушку включить в сеть переменного тока, то предмет быстро и сильно нагревается.

Заменим предмет алюминиевым кольцом К, надетым на сердечник (рис. 23.9), и снова включим катушку в сеть. Если кольцо держать, то оно сильно нагревается, а если не держать, то при включении катушки в сеть оно соскакивает с сердечника. Описанные явления объясняются тем, что изменяющееся магнитное поле вокруг сердечника создает электрическое поле, поэтому в теле и в кольце возникают сильные индукционные токи, так как сопротивление тела и кольца очень маленькое. Эти токи и нагревают их. Соскакивает кольцо потому, что индукционный ток в кольце направлен противоположно току в катушке, а такие токи отталкиваются друг от друга.

Рис. 23.9.

Индукционные токи, которые возникают в сплошных металлических телах, находящихся в переменном магнитном поле, и замыкаются внутри этих тел, называют вихревыми токами или токами Фуко (в честь французского ученого Ж. Фуко, который их исследовал).

Якорь электродвигателя и сердечник трансформатора по условиям

своей работы находятся в переменном магнитном поле, поэтому в них должны циркулировать вихревые токи. Энергия, затраченная на создание вихревых токов, превращается во внутреннюю энергию якоря и сердечника, т. е. идет на их нагревание (кроме потерь энергии на нагревание вихревыми токами, в них возникают еще и потери, обусловленные гистерезисом). Для ослабления вредного действия вихревых токов тела, которые должны находиться в переменном магнитном поле, делают из отдельных листов, изолированных друг от друга (рис. 23.10).

Рис. 23.10.

Заметим, что ферриты имеют очень большое удельное сопротивление, поэтому вихревые токи в них практически не возникают, и это значительно уменьшает потери энергии в них. Поскольку потери энергии, вызванные гистерезисом, в ферритах тоже очень малы, их применение заметно повышает к. п. д. приборов, например трансформаторов.

Если вихревой ток вызывается движением тела в магнитном поле, то согласно закону Ленца этот ток должен тормозить движение тела. Тормозящее действие вихревых токов можно проиллюстрировать с помощью следующего опыта.

Если медную пластинку Р (рис. 23.11) заставить колебаться при выключенном токе в электромагните М, а затем при включенном токе в нем, то будет видно, что во втором случае колебания прекращаются почти мгновенно. Внешне кажется, что в этом случае пластинка как бы вязнет в густой жидкости. Тормозящее действие вихревых токов используется в измерительных приборах для успокоения колебаний стрелки измерительного механизма.

Рис. 23.11.

В современной технике нагревание вихревыми токами используется для закалки деталей и для изготовления сплавов в индукционных печах.

Роль магнитных полей в явлениях, происходящих на Солнце и в космосе

Изучение Солнца показало, что оно имеет магнитное поле, напряженность которого примерно в два раза выше, чем у поля Земли. Многие явления, происходящие в атмосфере Солнца (образование темных пятен, факелов и др.), тесно связаны с возникновением и развитием в отдельных областях сильных местных магнитных полей. Эти области получили название активных.

Как отмечалось выше, в слое, лежащем под фотосферой, происходит интенсивное перемешивание газа — конвекция. Исследования показали, что в области пятна всегда существует сильное магнитное поле, напряженность которого в тысячу раз больше, чем в других, невозмущенных областях. Это поле отклоняет заряженные частицы плазмы и препятствует образованию конвекционных потоков. В этой области подъем горячего газа из глубины прекращается, и газ в пятне сильно охлаждается.

В области факела магнитное ноле далеко не такое сильное, чтобы остановить вертикальные конвекционные потоки плазмы. Однако оно подавляет беспорядочные движения плазмы в потоке и уменьшает внутреннее трение. Таким образом, создается устойчивый восходящий поток горячего газа — факел.

Многие явления, наблюдаемые в атмосфере Солнца, связаны с изменяющимися магнитными полями. Как было показано выше, при движении заряженной частицы в постоянном магнитном поле изменяется только направление скорости ее движения. Оказывается, что изменяющееся во времени магнитное поле, пронизывающее плазму, изменяет не только направление, но и величину скорости заряженных частиц и может создавать направленное движение плазмы. Так иногда образуются мощные потоки плазмы, которые выбрасывают огромные массы газа в корону и образуют протуберанцы — гигантские облака газа, простирающиеся далеко в корону (рис. 6.4).

Сильное магнитное поле, изменяющееся при развитии группы пятен, оказывает давление на плазму, и в хромосфере над областью пятен иногда происходит резкое сжатие плазмы, вызывающее сильное повышение температуры газа. В этой зоне хромосферы наблюдается внезапное резкое усиление свечения газа, называемое хромосферной вспышкой.

Изменяющееся магнитное поле выбрасывает в космическое пространство потоки частиц плазмы, движущихся со скоростью около 1000 км/с, которые называют корпускулярными потоками. Некоторые частицы разгоняются до огромных скоростей (сравнимых со скоростью света), образуя солнечные космические лучи.

Многолетние наблюдения показали, что число и общая площадь пятен периодически изменяются, достигая максимума в среднем через каждые 11 лет. В это время увеличивается число факелов, количество протуберанцев, чаще, чем обычно, наблюдаются вспышки, в десятки раз возрастает интенсивность корпускулярного излучения. Все эти явления объединяются под общим названием — солнечная активность.

Потоки выброшенных Солнцем заряженных частиц, долетая до Земли, отклоняются ее магнитным полем и в свою очередь воздействуют на магнитное поле Земли. В периоды максимума солнечной активности наблюдаются сильные возмущения магнитного поля Земли — магнитные бури, вызывающие беспорядочные колебания стрелки компаса. Часть заряженных частиц проникает в магнитное поле Земли и, двигаясь по спиралям вдоль силовых линий, оказывается как бы в ловушке. Скапливаясь в кольцевых зонах вокруг Земли, заряженные частицы образуют радиационные пояса, обнаруженные с помощью спутников. В области полюсов космические частицы легко проникают в атмосферу, вызывая полярные сияния.

Магнитные поля существуют и в межзвездном пространстве. Они в десятки тысяч раз слабее земного магнитного поля, но обладают огромной протяженностью и поэтому оказывают большое влияние на характер движения заряженных частиц в межзвездном пространстве.

Явление самоиндукции ЭДС самоиндукции

Вспомним, что собственное магнитное поле в цепи постоянного тока изменяется в моменты замыкания и размыкания цепи, а также при изменении в ней силы тока. Это означает, что в указанные моменты в такой цепи должна возникать э. д. с. индукции. Возникновение э. д. с. индукции в цепи, которое вызвано изменением магнитного поля тока, текущего в этой же цепи, называют явлением самоиндукции, а появляющуюся электродвижущую силу — э. д. с. самоиндукции.

Выясним подробнее, что происходит при замыкании цепи. Пусть имеется разомкнутая цепь (рис. 23.12), состоящая из источника электрической энергии Б и последовательно соединенных ключа К, лампочки М и катушки с сердечником из ферромагнетика S. При замыкании цепи лампочка загорается с некоторым запозданием. Это объясняется возникновением в катушке значительной э. д. с. самоиндукции, которая согласно закону Ленца мешает быстрому нарастанию тока в цепи (см. рис. 23.13; I0 — сила постоянного тока в цепи).

Рис. 23.12.

Рис. 23.13.

Заметим, что энергия источника, затраченная на преодоление противодействия э. д. с. самоиндукции, накапливается в магнитном поле этой цепи, главным образом внутри катушки с сердечником S. (Почему?) Когда сила тока в цепи становится постоянной, то и энергия магнитного поля цепи не изменяется. Энергия магнитного поля цепи зависит не только от силы тока, но и от вида цепи, т. е. от ее индуктивности L. В сильных электромагнитах магнитная энергия особенно велика.

Для наблюдения явления самоиндукции при размыкании составляют цепь, показанную на рис. 23.14. При размыкании этой цепи ключом К остается замкнутой цепь катушки S и лампочки М. Так как ток в катушке начинает быстро спадать (рис. 23.15), то в ней создается э. д. с. самоиндукции, которая замедляет спад тока. При этом катушка на короткое время становится источником энергии, который создает ток в лампочке М. В момент размыкания цепи ток в лампе спадает до нуля и, изменив направление, скачком увеличивается до такой величины, которая может быть значительно больше, чем сила тока в лампе до размыкания. Поэтому лампа в момент размыкания может ярко вспыхнуть и даже перегореть.

Рис. 23.14.

Рис. 23.15.

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, в которых запасена большая магнитная энергия, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются масляными выключателями и применяются другие меры предосторожности.

Выведем формулу для вычисления э. д. с. самоиндукции. Так как всякая э. д. с. индукции может быть найдена по формуле (23.6)  а то откуда

 (23.7)

Э. д. с. самоиндукции в цепи пряно пропорциональна скорости изменения силы тока в этой цепи.

Энергия магнитного поля

В предыдущем параграфе говорилось, что энергия магнитного поля цепи зависит от силы тока в ней и от ее формы. Уточним эту зависимость. Вспомним, что энергия магнитного поля цепи равна работе, которая затрачивается на преодоление э. д. с. самоиндукции, возникающей при замыкании цепи. Если среднее значение э. д. с. самоиндукции при этом равно а по цепи за время нарастания тока в ней прошел заряд q, то работа по преодолению э. д. с. самоиндукции равна Тогда

Знак минус означает, что заряды при этом движутся против э. д. с. самоиндукции. Так как — то

Поскольку ток в цепи возрастает от 0 до получаем, что a есть средняя сила тока за время его нарастания. Приняв среднюю силу тока за  и подставляя значения и в приведенное выше соотношение, найдем формулу для вычисления энергии магнитного поля цепи, в которой идет.ток

    (23.8)

Энергия магнитного поля цепи прямо пропорциональна квадрату величины тока в ней и зависит от ее индуктивности L. Поскольку индуктивность соленоида с сердечником из ферромагнетика особенно велика, большая магнитная энергия получается в цепи, содержащей электромагниты.

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Масса
  7. Взаимодействия тел
  8. Механическая энергия
  9. Импульс
  10. Вращение твердого тела
  11. Криволинейное движение тел
  12. Колебания
  13. Колебания и волны
  14. Механические колебания и волны
  15. Бегущая волна
  16. Стоячие волны
  17. Акустика
  18. Звук
  19. Звук и ультразвук
  20. Движение жидкости и газа
  21. Молекулярно-кинетическая теория
  22. Молекулярно-кинетическая теория строения вещества
  23. Молекулярно — кинетическая теория газообразного состояния вещества
  24. Теплота и работа
  25. Температура и теплота
  26. Термодинамические процессы
  27. Идеальный газ
  28. Уравнение состояния идеального газа
  29. Изменение внутренней энергии
  30. Переход вещества из жидкого состояния в газообразное и обратно
  31. Кипение, свойства паров, критическое состояние вещества
  32. Водяной пар в атмосфере
  33. Плавление и кристаллизация
  34. Тепловое расширение тел
  35. Энтропия
  36. Процессы перехода из одного агрегатного состояния в другое
  37. Тепловое расширение твердых и жидких тел
  38. Свойства газов
  39. Свойства жидкостей
  40. Свойства твёрдых тел
  41. Изменение агрегатного состояния вещества
  42. Тепловые двигатели
  43. Электрическое поле
  44. Постоянный ток
  45. Переменный ток
  46. Магнитное поле
  47. Электромагнитное поле
  48. Электромагнитное излучение
  49. Электрический заряд (Закон Кулона)
  50. Электрический ток в металлах
  51. Электрический ток в электролитах
  52. Электрический ток в газах и в вакууме
  53. Электрический ток в полупроводниках
  54. Работа, мощность и тепловое действие электрического тока
  55. Термоэлектрические явления
  56. Распространение электромагнитных волн
  57. Интерференционные явления
  58. Рассеяние
  59. Дифракция рентгеновских лучей на кристалле
  60. Двойное лучепреломление
  61. Магнитное поле и электромагнитная индукция
  62. Электромагнитные колебания и волны
  63. Природа света
  64. Распространение света
  65. Отражение и преломление света
  66. Оптические приборы и зрение
  67. Волновые свойства света
  68. Действия света
  69. Линзы и получение изображений с помощью линз
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома

Ток и все о нем. Что такое электрический ток? Природа электричества

Электрический ток образуется в веществе только при условии наличия свободных заряженных частиц. Заряд может находиться в среде изначально или же формироваться при условии содействия внешних факторов (температуры, электромагнитного поля, ионизаторов). Движение заряженных частиц хаотичны при условии отсутствия электромагнитного поля, а при подключении к двум точкам вещества, разности потенциалов превращаются в направленные — от одного вещества к другому.

Понятие, сущность и проявления электрического тока

Определение 1

Электрический ток – это упорядоченное и направленное движение заряженных частиц.

Такими частицами могут быть:

  • в газах – ионы и электроны,
  • в металлах – электроны,
  • в электролитах – анионы и катионы,
  • в вакууме – электроны (при определенных условиях),
  • в полупроводниках – дырки и электроны (электронно-дырочная проводимость).

Замечание 1

Часто используют такое определение. Электрический ток – это ток смещения, который возникает в результате изменения электрического поля во времени.

Электрический ток может выражаться в следующих проявлениях:

  1. Нагрев проводников. Выделение теплоты не происходит в сверхпроводниках.
  2. Изменение химического состава некоторых проводников. Данное проявление преимущественно можно наблюдать в электролитах.
  3. Формирование электрического поля. Проявляется у всех проводников без исключения.

Рисунок 1. Электрический ток — упорядоченное движение заряженных частиц. Автор24 — интернет-биржа студенческих работ

Классификация электрического тока

Определение 2

Электрический ток проводимости – это явление, при котором заряженные частицы движутся внутри макроскопических элементов той или иной среды.

Конвекционный ток – явление, при котором движутся макроскопические заряженные тела (к примеру, заряженные капли осадков).

Различают постоянный, переменный и пульсирующий электрические токи и их всевозможные комбинации. Однако в таких комбинациях часто опускают термин «электрический».

Существует несколько разновидностей электрического тока:

  1. Постоянный ток – это ток, величина и направление которого слабо изменяются во времени.
  2. Переменный ток – это ток, направление и величина которого прогрессивно меняются во времени. Под переменным током понимается ток, который не является постоянным. Среди всех разновидностей переменного тока основным является тот, величина которого может изменяться только по синусоидальному закону. Потенциал каждого конца проводника в данном случае изменяется по отношению к другому концу попеременно с отрицательного на положительный, и наоборот. При этом он проходит через все промежуточные потенциалы. В результате формируется ток, который непрерывно изменяет направление. Двигаясь в одном направлении, ток возрастает, достигая своего максимума, который именуется амплитудным значением. После чего он идет на спад, на какой-то период приравнивается к нулю, после чего цикл возобновляется.
  3. Квазистационарный ток – это переменный ток, который изменяется относительно медленно, для его мгновенных значений выполняются законы постоянных токов с достаточной точностью. Подобными законами являются правила Кирхгофа и закон Ома. Квазистационарный то во всех сечениях неразветвленной сети имеет одинаковую силу. При расчете цепей данного тока учитываются сосредоточенные параметры. Квазистационарные промышленные токи – это те, в которых условие квазистационарности вдоль линии не выполняется (кроме токов в линиях дальних передач).
  4. Переменный ток высокой частотности – это электрический ток, в котором уже не выполняется условие квазистационарности. Он проходит по поверхности проводника и обтекает его со всех сторон. Такой эффект получил название скин-эффект.
  5. Пульсирующий ток – это электрический ток, у которого направление остается постоянным, а изменяется только величина.
  6. Вихревые токи или токи Фуко – это замкнутые электрические токи, которые расположены в массивном проводнике и возникают при изменении магнитного потока. Исход из этого, вихревые токи являются индукционными. Чем скорее магнитный поток изменяется, тем сильнее становятся вихревые токи. По проводам они не текут по определенным путям, а замыкаются в проводнике и образуют вихреобразные контуры.

Благодаря существованию вихревых токов, осуществляется скин-эффект, когда магнитный поток и переменный электрический ток распространяются по поверхностному слою проводника. Из-за нагрева вихревыми токами происходит потеря энергии, особенно в сердечниках катушек переменного тока. Чтобы уменьшить потерю энергии для вихревых потоков применяется деление магнитных проводов переменного тока на отдельные пластины, которые изолированы друг от друга и располагаются перпендикулярно по направлению вихревых токов. Из-за этого ограничиваются возможные контуры их путей, и стремительно уменьшается величина этих токов.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света. Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра. Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжения. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы. Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы. В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Что мы действительно знаем на сегодняшний день об электричестве? Согласно современным взглядам многое, но если более детально углубиться в суть данного вопроса, то окажется, что человечество широко использует электричество, не понимая истинной природы этого важного физического явления.

Целью данной статьи не является опровержение достигнутых научно-технических прикладных результатов исследований в области электрических явлений, которые находят широкое применение в быту и промышленности современного общества. Но человечество непрерывно сталкивается с рядом феноменов и парадоксов, которые не укладываются в рамки современных теоретических представлений относительно электрических явлений ‒ это указывает на отсутствие всецелого понимания физики данного явления.

Также на сегодняшний день науке известны факты, когда, казалось бы, изученные вещества и материалы проявляют аномальные свойства проводимости () .

Такое явление как сверхпроводимость материалов также не имеет полностью удовлетворительной теории в настоящее время. Существует лишь предположение, что сверхпроводимость является квантовым явлением , которое изучается квантовой механикой. При внимательном изучении основных уравнений квантовой механики: уравнения Шрёдингера, уравнения фон Неймана, уравнения Линдблада, уравнения Гейзенберга и уравнения Паули, то станет очевидной их несостоятельность. Дело в том, что уравнение Шрёдингера не выводится, а постулируется методом аналогии с классической оптикой, на основе обобщения экспериментальных данных. Уравнение Паули описывает движение заряженной частицы со спином 1/2 (например, электрона) во внешнем электромагнитном поле, но понятие спина не связано с реальным вращением элементарной частицы, а также относительно спина постулируется то, что существует пространство состояний, никак не связанных с перемещением элементарной частицы в обычном пространстве.

В книге Анастасии Новых «Эзоосмос» есть упоминание относительно несостоятельности квантовой теории: «А вот квантомеханическая теория строения атома, которая рассматривает атом как систему микрочастиц, не подчиняющихся законам классической механики, абсолютно не актуальна . На первый взгляд доводы немецкого физика Гейзенберга и австрийского физика Шрёдингера кажутся людям убедительными, но если всё это рассмотреть с другой точки зрения, то их выводы верны лишь отчасти, а в целом, так и вовсе оба не правы. Дело в том, что первый описал электрон, как частицу, а другой как волну. Кстати и принцип корпускулярно-волнового дуализма также неактуален, поскольку не раскрывает перехода частицы в волну и наоборот. То есть куцый какой-то получается у учёных господ. На самом деле всё очень просто. Вообще хочу сказать, что физика будущего очень проста и понятна. Главное дожить до этого будущего. А что касательно электрона, то он становится волной только в двух случаях. Первый — это когда утрачивается внешний заряд, то есть когда электрон не взаимодействует с другими материальными объектами, скажем с тем же атомом. Второй, в предосмическом состоянии, то есть когда снижается его внутренний потенциал» .

Те же электрические импульсы, сгенерированные нейронами нервной системы человека, поддерживают активное сложное многообразное функционирование организма. Интересно отметить, что потенциал действия клетки (волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки) находится в определённом диапазоне (рис. 1).

Нижняя граница потенциала действия нейрона находится на уровне -75 мВ, что очень близко к значению окислительно-восстановительного потенциала крови человека. Если проанализировать максимальное и минимальное значение потенциала действия относительно нуля, то оно очень близко к процентному округлённому значению золотого сечения , т.е. деление интервала в отношении 62% и 38%:

\(\Delta = 75 мВ+40 мВ = 115 мВ\)

115 мВ / 100% = 75 мВ / х 1 или 115 мВ / 100% = 40 мВ / х 2

х 1 = 65,2%, х 2 = 34,8%

Все, известные современной науке, вещества и материалы проводят электричество в той или иной мере, поскольку в их составе присутствуют электроны, состоящие из 13 фантомных частичек По, которые, в свою очередь, являются септонными сгустками («ИСКОННАЯ ФИЗИКА АЛЛАТРА» стр. 61) . Вопрос заключается только в напряжении электрического тока, которое необходимо для преодоления электрического сопротивления.

Поскольку электрические явления тесно связаны с электроном, то в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» приведена следующая информация относительно этой важной элементарной частицы: «Электрон является составной частью атома, одним из основных структурных элементов вещества. Электроны образуют электронные оболочки атомов всех известных на сегодняшний день химических элементов. Они участвуют почти во всех электрических явлениях, о которых ведают ныне учёные. Но что такое электричество на самом деле, официальная наука до сих пор не может объяснить, ограничиваясь общими фразами, что это, например, «совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов». Известно, что электричество не является непрерывным потоком, а переносится порциями ‒ дискретно ».

Согласно современным представлениям: «электрический ток — это совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов». Но что такое электрический заряд?

Электрический заряд (количество электричества) — это физическая скалярная величина (величина, каждое значение которой может быть выражено одним действительным числом), определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Электрические заряды разделяют на положительные и отрицательные (данный выбор считается в науке чисто условным и за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм).

Электродинамика изучает электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля.

Квантовая электродинамика изучает электромагнитные поля, которые обладают прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.

Стоит задуматься, почему магнитное поле появляется вокруг проводника с током, или же вокруг атома, по орбитам которого перемещаются электроны? Дело в том, что «то, что сегодня называют электричеством ‒ это на самом деле особое состояние септонного поля , в процессах которого электрон в большинстве случаев принимает участие наравне с другими его дополнительными «компонентами» » («ИСКОННАЯ ФИЗИКА АЛЛАТРА» стр. 90) .

А тороидальная форма магнитного поля обусловлена природой его происхождения. Как сказано в статье : «Учитывая фрактальные закономерности во Вселенной, а также тот факт, что септонное поле в материальном мире в пределах 6-ти измерений является тем фундаментальным, единым полем, на котором основаны все известные современной науке взаимодействия, то можно утверждать, что все они также имеют форму тора. И это утверждение может представлять особый научный интерес для современных исследователей» . Поэтому электромагнитное поле всегда будет принимать форму тора, подобно тору септона.

Рассмотрим спираль, через которую протекает электрический ток и как именно формируется её электромагнитное поле (https://www.youtube.com/watch?v=0BgV-ST478M).

Рис. 2. Силовые линии прямоугольного магнита

Рис. 3. Силовые линии спирали с током

Рис. 4. Силовые линии отдельных участков спирали

Рис. 5. Аналогия между силовыми линиями спирали и атомов с орбитальными электронами

Рис. 6. Отдельный фрагмент спирали и атом с силовыми линиями

ВЫВОД : человечеству еще только предстоит узнать тайны загадочного явления электричества.

Пётр Тотов

Ключевые слова: ИСКОННАЯ ФИЗИКА АЛЛАТРА, электрический ток, электричество, природа электричества, электрический заряд, электромагнитное поле, квантовая механика, электрон.

Литература:

Новых. А., Эзоосмос, К.: ЛОТОС, 2013. — 312 с. http://schambala.com.ua/book/ezoosmos

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон — «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Основные величины электрического тока

Количество электричества и сила тока . Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение . Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц — электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл). В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление . После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника — L, площадь поперечного сечения — S. В этом случае можно сопротивление записать в виде формулы:

R = р * L/S

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал р, Ом х м2/м Материал р, Ом х м2/м
Медь0,017Платино-иридиевый сплав0,25
Золото0,024Графит13
Латунь0,071Уголь40
Олово0,12Фарфор1019
Свинец0,21Эбонит1020
Металл или сплав
Серебро0,016Манганин (сплав)0,43
Алюминий0,028Константан (сплав)0,50
Вольфрам0,055Ртуть0,96
Железо0,1Нихром (сплав)1,1
Никелин (сплав)0,40Фехраль (сплав)1,3
Хромель (сплав)1,5

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое — сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость . Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников — не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока . Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение — в вольтах, сила тока — амперах, время — в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Основные законы электрического тока

Закон Ома . Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии — для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца . Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

А = Uit

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Р = A/t = Ui

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

U = ir

где r — сопротивление проводника. В таком случае:

А = rt2i

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.

Закон электромагнитной индукции . В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца . Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.


Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м 2 . Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I × R , где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I × U . Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

В металлах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.


Рис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).


Рис 4. Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.


Рис. 5.

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).


Рис. 6. Электрический ток в средах

Проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может даже спустя несколько минут после отключения от сети.

«Электрический ток это упорядоченное движение заряженных частиц, которые называются ЭЛЕКТРОНЫ». Электроны, что же это такое? Не будем вдаваться в подробности школьного учебника по физике и химии. Попробую рассказать простыми словами и на простом примере — Это НЕ сложно Электрон присутствует в любом металле, алюминии, железе, меди во всем из чего сделаны металлические ложки, кружки и провода есть электроны. Электрон — это отрицательно заряженная частица имеющая знак (-) минуc. Электроны, двигаются с огромной скоростью, считай мгновенно и при этом хаотично. Двигаясь в разных направлениях, они сталкиваются друг с другом и с другими частицами которые так же присутствуют в металлах и от этого хаотичного движения электронов, тебе нет никакой пользы. Для того чтобы заработал утюг, загорелась лампочка нужно заставить электроны двигаться в электрических проводах строго в одну сторону, задать им направление. Как это сделать? Да очень просто! Нужно подключить к проводу источник питания, например обычную батарейку. У батарейки имеется плюс и минус, приложив плюс к одному концу провода, а минус к другому мы получим направленное движение электронов. Электроны будут двигаться в проводе строго в одном направлении от плюса к минусу, при этом в проводе возникнет электрический ток.

Работа электрического тока

Конечно, ты понимаешь, что так просто замыкать проводом плюс и минус батарейки нельзя? Батарейка разрядится, провод нагреется и пользы от этого нет никакой, но если провод разорвать и в место разрыва подключить лампочку, то у тебя получится свой источник света, лампочка засветится, т.е электрический ток начал работать для тебя. Загоревшаяся электрическая лампочка как раз подтверждает определение — (работа электрического тока).


Именно за счет работы электрического тока горит лампочка, работает телевизор, микроволновка и т.д.. Если не будет упорядоченного движения электронов то и работать эти электрические устройства не будут.

Если случится обрыв в электрическом проводе, или будет выключен выключатель или произойдет что-то другое, препятствующее движению электрического тока, упорядоченное движение электронов прекратится и вместе с этим прекратится работа электрического тока.

Воздействие электрического тока на организм человека

Хочу обратить твое внимание на то, что человек так же может являться проводником электрического тока. И если подключить человека к электросети (сунуть пальцы в розетку) через тело человека потечет электрический ток.

При подключении электрического тока к электролампочке она просто засветится, с человеком могут произойти очень неприятные последствия. Электрический ток, выше определенного номинала, может нанести человеку такие повреждения как ожег, нарушение дыхания, ритма сердцебиения и смерть. Электрический ток не имеет цвета, звука и запаха, поэтому обращаться с электрическим током нужно очень осторожно, но и слишком бояться его до заикания и холодного пота тоже не следует. Просто нужно знать его физические свойства и соблюдать технику безопасности.

 

закон электромагнитной индукции — формула явления. От чего зависят сила и направление индукционного тока

МАГНИТНОЕ ПОЛЕ

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В — физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция — векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции . В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера F А = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a — угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила м, постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м:

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S — величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) — магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция -явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции ε i .

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Ф = L*I .

Индуктивность контура L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция — частный случай электромагнитной индукции.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I — начальное значение тока, t — промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = I cp t . Так как I cp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1 . Следовательно,

Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.

Рисунок 1 — Проводник перемещается в неизменном магнитном поле

Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.

Рисунок 2 — вихревое электрическое поле

Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия электромагнитной индукции. Если не углубляется в тонкости закона электромагнитной индукции, то в двух словах ее можно описать так. Электромагнитная индукция это явление возникновение тока в проводящем контуре под действие переменного магнитного поля.

С помощью этого закона можно определить и величину индукционного тока. Так как он нам дает значение ЭДС, которая возникает в контуре под действие переменного магнитного поля.

Формула 1 — ЭДС индукции магнитного поля .

Как видно из формулы 1 величина ЭДС индукции, а значит и индукционного тока зависит от скорости изменения магнитного потока пронизывающего контур. То есть чем быстрее будет меняться магнитный поток, тем больший индукционный ток можно получить. В случае, когда мы имеем постоянное магнитное поле, в котором движется проводящий контур, то величина ЭДС будет зависеть от скорости движения контура.

Чтобы определить направление индукционного тока используют правило Ленца. Которое гласит что, индукционный ток направлен навстречу тому току, который его вызвал. Отсюда и знак минус в формуле для определения ЭДС индукции.

Индукционный ток играет важную роль в современной электротехнике. Например, индукционный ток, возникающий в роторе асинхронного двигателя, взаимодействует с током, подводимым от источника питания в его статоре, вследствие чего ротор вращается. На этом принципе построены современные электродвигатели.

Рисунок 3 — асинхронный двигатель.

В трансформаторе же индукционный ток, возникающий во вторичной обмотке, используется для питания различных электротехнических приборов. Величина этого тока может быть задана параметрами трансформатора.

Рисунок 4 — электрический трансформатор.

И наконец, индукционные токи могут возникать и в массивных проводниках. Это так называемые токи Фуко. Благодаря им можно производить индукционную плавку металлов. То есть вихревые токи, текущие в проводнике вызывают его разогрев. В зависимости от величины этих токов проводник может разогреваться выше точки плавления.

Рисунок 5 — индукционная плавка металлов.

Итак, мы выяснили, что индукционный ток может оказывать механическое, электрическое и тепловое действие. Все эти эффекты повсеместно используются в современном мире, как в промышленных масштабах, так и на бытовом уровне.

Если изменения магнитного поля не происходит, то не будет никакого электрического тока. Даже если магнитное поле существует. Мы можем сказать, что индукционный электрический ток прямо пропорционален, во-первых, числу витков, во-вторых, скорости магнитного поля, с которой изменяется это магнитное поле относительно витков катушки.

Рис. 3. От чего зависит величина индукционного тока?

Для характеристики магнитного поля используется величина, которая называется магнитный поток. Она характеризует магнитное поле в целом, мы об этом будем говорить на следующем уроке. Сейчас отметим лишь, что именно изменение магнитного потока, т.е. числа линий магнитного поля, пронизывающих контур с током (катушку, например), приводит к возникновению в этом контуре индукционного тока.

Физика. 9 класс

Тема: Электромагнитное поле

Урок 44.Магнитный поток

Ерюткин Е.С., учитель физики высшей категории ГОУ СОШ №1360

Введение. Опыты Фарадея

Продолжая изучение темы «Электромагнитная индукция» давайте подробнее остановиться на таком понятии, как магнитный поток .

Вы уже знаете, как обнаружить явление электромагнитной индукции — если замкнутый проводник пересекают магнитные линии, в этом проводнике возникает электрический ток. Такой ток называется индукционным.

Теперь давайте обсудим, за счет чего образуется этот электрический ток и что является главным для того, чтобы этот ток появился.

Прежде всего, обратимся к опыту Фарадея и посмотрим еще раз на его важные особенности.

Итак, у нас в наличии есть амперметр, катушка с большим числом витков, которая накоротко прикреплена к этому амперметру.

Берем магнит, и точно так же, как на предыдущем уроке, опускаем этот магнит внутрь катушки. Стрелка отклоняется, то есть в данной цепи существует электрический ток.

Рис. 1. Опыт по обнаружению индукционного тока.

А вот когда магнит находится внутри катушки электрического тока в цепи нет. Но стоит только попытаться этот магнит достать из катушки, как в цепи вновь появляется электрический ток, но направление этого тока изменяется на противоположное.

Обратите внимание также на то, что значение электрического тока, который протекает в цепи, зависит еще и от свойств самого магнита. Если взять другой магнит и проделать тот же эксперимент, значение тока существенно меняется, в данном случае ток становится меньше.

Проведя эксперименты, можно сделать вывод о том, что электрический ток, который возникает в замкнутом проводнике (в катушке), связан с магнитным полем постоянного магнита.

Иными словами, электрический ток зависит от какой-то характеристики магнитного поля. А мы уже ввели такую характеристику — магнитная индукция .

Напомним, что магнитная индукция обозначается буквой , это — векторная величина. И измеряется магнитная индукция в теслах.

⇒ — Тесла — в честь европейского и американского ученого Николы Тесла.

Магнитная индукция характеризует действие магнитного поля на проводник с током, помещенный в это поле.

Но, когда мы говорим об электрическом токе, то должны понимать, что электрический ток, и это вы знаете из 8 класса, возникает под действием электрического поля.

Следовательно, можно сделать вывод о том, что электрический индукционный ток появляется за счет электрического поля, который в свою очередь образуется в результате действия магнитного поля. И такая взаимосвязь как раз осуществляется за счет магнитного потока .

Взаимосвязь электрических и магнитных полей замечена очень давно. Данную связь еще в 19 веке обнаружил английский ученый-физик Фарадей и дал ему название . Она появляется в тот момент, когда магнитный поток пронизывает поверхность замкнутого контура. После того как происходит изменение магнитного потока в течение определенного времени, в этом контуре наблюдается появление электрического тока.

Взаимосвязь электромагнитной индукции и магнитного потока

Суть магнитного потока отображается известной формулой: Ф = BS cos α. В ней Ф является магнитным потоком, S — поверхность контура (площадь), В — вектор магнитной индукции. Угол α образуется за счет направления вектора магнитной индукции и нормали к поверхности контура. Отсюда следует, что максимального порога магнитный поток достигнет при cos α = 1, а минимального — при cos α = 0.

Во втором варианте вектор В будет перпендикулярен к нормали. Получается, что линии потока не пересекают контур, а лишь скользят по его плоскости. Следовательно, определять характеристики будут линии вектора В, пересекающие поверхность контура. Для расчета в качестве единицы измерения используется вебер: 1 вб = 1в х 1с (вольт-секунда). Еще одной, более мелкой единицей измерения служит максвелл (мкс). Он составляет: 1 вб = 108 мкс, то есть 1 мкс = 10-8 вб.

Для исследования Фарадеем были использованы две проволочные спирали, изолированные между собой и размещенные на катушке из дерева. Одна из них соединялась с источником энергии, а другая — с гальванометром, предназначенным для регистрации малых токов. В тот момент, когда цепь первоначальной спирали замыкалась и размыкалась, в другой цепи стрелка измерительного устройства отклонялась.

Проведение исследований явления индукции

В первой серии опытов Майкл Фарадей вставлял намагниченный металлический брусок в катушку, подключенную к току, а затем вынимал его наружу (рис. 1, 2).

1 2

В случае помещения магнита в катушку, подключенную к измерительному прибору, в цепи начинает протекать индукционный ток. Если магнитный брусок удаляется из катушки, индукционный ток все равно появляется, но его направление становится уже противоположным. Следовательно, параметры индукционного тока будут изменены по направлению движения бруска и в зависимости от полюса, которым он помещается в катушку. На силу тока оказывает влияние быстрота перемещения магнита.

Во второй серии опытов подтверждается явление, при котором изменяющийся ток в одной катушке, вызывает индукционный ток в другой катушке (рис. 3, 4, 5). Это происходит в моменты замыкания и размыкания цепи. От того, замыкается или размыкается электрическая цепь, будет зависеть и направление тока. Кроме того, эти действия есть ни что иное, как способы изменения магнитного потока. При замыкании цепи он будет увеличиваться, а при размыкании — уменьшаться, одновременно пронизывая первую катушку.

3 4

5

В результате опытов было установлено, что возникновение электрического тока внутри замкнутого проводящего контура возможно лишь в том случае, когда они помещаются в переменное магнитное поле. При этом, поток может изменяться во времени любыми способами.

Электрический ток, появляющийся под действием электромагнитной индукции, получил название индукционного, хотя это и не будет током в общепринятом понимании. Когда замкнутый контур оказывается в магнитном поле, происходит генерация ЭДС с точным значением, а не тока, зависящего от разных сопротивлений.

Данное явление получило название ЭДС индукции, которую отражает формула: Еинд = — ∆Ф/∆t. Ее значение совпадает с быстротой изменений магнитного потока, пронизывающего поверхность замкнутого контура, взятого с отрицательным значением. Минус, присутствующий в данном выражении, является отражением правила Ленца.

Правило Ленца в отношении магнитного потока

Известное правило было выведено после проведения цикла исследований в 30-х годах 19 века. Оно сформулировано в следующем виде:

Направление индукционного тока, возбуждаемого в замкнутом контуре изменяющимся магнитным потоком, оказывает влияние на создаваемое им магнитное поле таким образом, что оно в свою очередь создает препятствие магнитному потоку, вызывающему появление индукционного тока.

Когда магнитный поток увеличивается, то есть становится Ф > 0, а ЭДС индукции снижается и становится Еинд

Если поток снижается, то наступает обратный процесс, когда Ф 0, то есть действие магнитного поля индукционного тока, происходит увеличение магнитного потока, проходящего через контур.

Физический смысл правила Ленца заключается в отражении закона сохранения энергии, когда при уменьшении одной величины, другая увеличивается, и, наоборот, при увеличении одной величины другая будет уменьшаться. Различные факторы влияют и на ЭДС индукции. При вводе в катушку поочередно сильного и слабого магнита, прибор соответственно будет показывать в первом случае более высокое, а во втором — более низкое значение. То же самое происходит, когда изменяется скорость движения магнита.

На представленном рисунке видно, как определяется направление индукционного тока с применением правила Ленца. Синий цвет соответствует силовым линиям магнитных полей индукционного тока и постоянного магнита. Они расположены в направлении полюсов от севера к югу, которые имеются в каждом магните.

Изменяющийся магнитный поток приводит к возникновению индукционного электрического тока, направление которого вызывает противодействие со стороны его магнитного поля, препятствующее изменениям магнитного потока.Свитый в катушку проводник замыкается на гальванометре (рис. 3.19). Если вдвигать в катушку постоянный магнит, то гальванометр покажет наличие тока в течение всего промежутка времени, пока магнит перемещается относительно катушки. При выдергивании магнита из катушки гальванометр показывает наличие тока противоположного направления. Изменения направления тока происходит при изменении вдвигаемого или выдвигаемого полюса магнита.

Аналогичные результаты наблюдались при замене постоянного магнита электромагнитом (катушкой с током). Если обе катушки закрепить неподвижно, но в одной из них менять значение тока, то в этот момент в другой катушке наблюдается индукционный ток.

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ состоит в возникновении электродвижущей силы (э.д.с.) индукции в проводящем контуре, через который меняется поток вектора магнитной индукции. Если контур является замкнутым, то в нем возникает индукционный ток.

Открытие явления электромагнитной индукции:

1) показало взаимосвязь между электрическим и магнитным полем ;

2) предложило способ получения электрического тока с помощью магнитного поля.

Основные свойства индукционного тока :

1. Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции.

2. Сила индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Опытами Фарадея было установлено, что величина электродвижущей силы индукции пропорциональна скорости изменения магнитного потока, пронизывающего контур проводника (закон электромагнитной индукции Фарадея)

Или , (3.46)

где (dF) – изменение потока в течении времени (dt).МАГНИТНЫМ ПОТОКОМ или ПОТОКОМ МАГНИТНОЙ ИНДУКЦИИ называется величина, которая определяется на основе следующего соотношения: (магнитный поток через поверхность площадью S ): Ф=ВScosα, (3.45), угол a – угол между нормалью к рассматриваемой поверхности и направлением вектора индукции магнитного поля

единица магнитного потока в системе СИ носит название вебер – [Вб=Тл×м 2 ].

Знак «–» в формуле означает, что э.д.с. индукции вызывает индукционный ток, магнитное поле которого противодействует всякому изменению магнитного потока, т.е. при >0 э.д.с. индукции e И

э.д.с. индукции измеряется в вольтах

Для нахождения направления индукционного тока существует правило Ленца (правило установлено в 1833 г.): индукционный ток имеет такое направление, что создаваемое им магнитное поле стремится компенсировать изменение магнитного потока, вызвавшее этот индукционный ток.

Например, если вдвигать северный полюс магнита в катушку, т. е. увеличивать магнитный поток через его витки, в катушке возникает индукционный ток такого направления, что на ближайшем к магниту конце катушки возникает северный полюс (рис.3.20). Итак, магнитное поле индукционного тока стремится нейтрализовать вызвавшее его изменение магнитного потока.

Не только переменное магнитное поле порождает индукционный ток в замкнутом проводнике, но и при движении замкнутого проводника длиной l в постоянном магнитном поле (В) со скоростью v в проводнике возникает эдс:

a (B Ùv) (3.47)

Как вы уже знаете, электродвижущая сила в цепи– это результат действия сторонних сил. При движении проводника в магнитном поле роль сторонних сил выполняет сила Лоренца (которая действует со стороны магнитного поля на движущийся электрический заряд). Под действием этой силы происходит разделение зарядов и на концах проводника возникает разность потенциалов. Э.д.с. индукции в проводнике является работой по перемещению единичных зарядов вдоль проводника.

Направление индукционного тока можно определитьпо правилу правой руки: Вектор В входит в ладонь, отведенный большой палец совпадает с направлением скорости проводника, а 4 пальца укажут направление индукционного тока.

Таким образом переменное магнитное поле вызывает появление индуцированного электрического поля. Оно не потенциально (в отличие от электростатического), т.к. работа по перемещению единичного положительного заряда равна э.д.с. индукции , а не нулю.

Такие поля называются вихревыми. Силовые линии вихревого электрического поля – замкнуты сами на себя, в отличие от линий напряженности электростатического поля.

Э.д.с. индукции возникает не только в соседних проводниках, но и в самом проводнике при изменении магнитного поля тока, идущего по проводнику. Возникновение э.д.с. в каком-либо проводнике при изменении в нем самом силы тока (следовательно, магнитного потока в проводнике) называется самоиндукцией, а ток, индуцируемый в этом проводнике, – током самоиндукции.

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, напряженность которого пропорциональна силе тока I. Поэтому магнитный поток Ф, пронизывающий контур, пропорционален силе тока в контуре

Ф=L×I, (3.48).

L – коэффициент пропорциональности, который носит название коэффициента самоиндукции, или, просто, индуктивности. Индуктивность зависит от размеров и формы контура, а также от магнитной проницаемости среды, окружающей контур.

В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.

Единица индуктивности — генри (Гн) : 1Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1А равен 1Вб (1Гн=1Вб/А=1В·с/А).

Если L=const, то э.д.с. самоиндукции можно представить в следующем виде:

, или , (3.49)

где DI (dI) – изменение тока в цепи, содержащей катушку индуктивности (или контур) L, за время Dt (dt). Знак «–» в этом выражении означает, что э.д.с. самоиндукции препятствует изменению тока (т. е. если ток в замкнутом контуре уменьшается, то э.д.с. самоиндукции приводит к возникновению тока того же направления и наоборот).

Одним из проявлений электромагнитной индукции является возникновение замкнутых индукционных токов в сплошных проводящих средах: металлических телах, растворах электролитов, биологических органах и т.д. Такие токи носят название вихревых токов или токов Фуко. Эти токи возникают при перемещении проводящего тела в магнитном поле и/или при изменении со временем индукции поля, в которое помещены тела. Сила токов Фуко зависит от электрического сопротивления тел, а также от скорости изменения магнитного поля.

Токи Фуко также подчиняются правилу Ленца : их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи.

Поэтому массивные проводники тормозятся в магнитном поле. В электрических машинах, для того чтобы минимизировать влияние токов Фуко, сердечники трансформаторов и магнитные цепи электрических машин собирают из тонких пластин, изолированных друг от друга специальным лаком или окалиной.

Вихревые токи вызывают сильное нагревание проводников. Джоулево тепло, выделяемое токами Фуко , используется в индукционных металлургических печах для плавки металлов, согласно закону Джоуля-Ленца .

Рекомендуем также

Движение заряженной частицы в магнитном поле — University Physics Volume 2

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как заряженная частица во внешнем магнитном поле совершает круговое движение
  • Опишите, как определить радиус кругового движения заряженной частицы в магнитном поле

Заряженная частица испытывает силу при движении через магнитное поле.Что произойдет, если это поле будет однородным при движении заряженной частицы? По какому пути следует частица? В этом разделе мы обсуждаем круговое движение заряженной частицы, а также другое движение, возникающее в результате попадания заряженной частицы в магнитное поле.

Самый простой случай имеет место, когда заряженная частица движется перпендикулярно однородному полю B ((рисунок)). Если поле находится в вакууме, магнитное поле является доминирующим фактором, определяющим движение. Поскольку магнитная сила перпендикулярна направлению движения, заряженная частица следует по кривой траектории в магнитном поле.Частица продолжает следовать по этому изогнутому пути, пока не образует полный круг. Другой способ взглянуть на это состоит в том, что магнитная сила всегда перпендикулярна скорости, поэтому она не действует на заряженную частицу. Таким образом, кинетическая энергия и скорость частицы остаются постоянными. Это влияет на направление движения, но не на скорость.

Отрицательно заряженная частица движется в плоскости бумаги в области, где магнитное поле перпендикулярно бумаге (обозначено маленькими буквами, такими как хвосты стрелок).Магнитная сила перпендикулярна скорости, поэтому скорость изменяется по направлению, но не по величине. Результат — равномерное круговое движение. (Обратите внимание, что поскольку заряд отрицательный, сила противоположна по направлению предсказанию правила правой руки.)

В этой ситуации магнитная сила обеспечивает центростремительную силу.Заметив, что скорость перпендикулярна магнитному полю, величина магнитной силы уменьшается до Поскольку магнитная сила F обеспечивает центростремительную силу, мы имеем

Решение для r дает

Здесь r — радиус кривизны пути заряженной частицы с массой m и зарядом q , движущейся со скоростью v , перпендикулярной магнитному полю с напряженностью B .Время прохождения заряженной частицы по круговой траектории определяется как период, равный пройденному расстоянию (окружности), деленному на скорость. Исходя из этого и (рисунок), мы можем получить период движения как

.

Если скорость не перпендикулярна магнитному полю, то мы можем сравнить каждую составляющую скорости отдельно с магнитным полем. Компонент скорости, перпендикулярный магнитному полю, создает магнитную силу, перпендикулярную как этой скорости, так и полю:

, где — угол между v и B .Компонент, параллельный магнитному полю, создает постоянное движение в том же направлении, что и магнитное поле, что также показано на (Рисунок). Параллельное движение определяет шаг p спирали, то есть расстояние между соседними витками. Это расстояние равно параллельной составляющей скорости, умноженной на период:

В результате получается спиральное движение, как показано на следующем рисунке.

Заряженная частица, движущаяся со скоростью, отличной от направления магнитного поля.Компонента скорости, перпендикулярная магнитному полю, создает круговое движение, тогда как составляющая скорости, параллельная полю, перемещает частицу по прямой. Шаг — это расстояние по горизонтали между двумя последовательными кругами. Результирующее движение — спиральное.

Пока заряженная частица движется по спирали, она может попасть в область, где магнитное поле неоднородно. В частности, предположим, что частица перемещается из области сильного магнитного поля в область более слабого поля, а затем обратно в область более сильного поля.Частица может отразиться до того, как войдет в область с более сильным магнитным полем. Это похоже на волну на струне, которая движется от очень легкой тонкой струны к твердой стене и отражается назад. Если отражение происходит с обоих концов, частица оказывается в так называемой магнитной бутылке.

Захваченные частицы в магнитных полях обнаружены в радиационных поясах Ван Аллена вокруг Земли, которые являются частью магнитного поля Земли. Эти пояса были обнаружены Джеймсом Ван Алленом при попытке измерить поток космических лучей на Земле (частицы высокой энергии, приходящие извне Солнечной системы), чтобы выяснить, похож ли он на поток, измеренный на Земле.Ван Аллен обнаружил, что из-за вклада частиц, захваченных магнитным полем Земли, поток на Земле был намного выше, чем в космическом пространстве. Полярные сияния, как и знаменитое полярное сияние (северное сияние) в Северном полушарии ((Рисунок)), представляют собой прекрасные проявления света, излучаемого при рекомбинации ионов с электронами, входящими в атмосферу, когда они движутся по спирали вдоль силовых линий магнитного поля. (Ионы — это в основном атомы кислорода и азота, которые первоначально ионизируются в результате столкновений с энергичными частицами в атмосфере Земли.) Полярные сияния наблюдались также на других планетах, таких как Юпитер и Сатурн.

(a) Радиационные пояса Ван Аллена вокруг Земли захватывают ионы, образующиеся в результате попадания космических лучей в атмосферу Земли. (b) Великолепное зрелище северного сияния, или северного сияния, сияет в северном небе над Беар-Лейк недалеко от базы ВВС Эйлсон, Аляска. Этот свет, сформированный магнитным полем Земли, создается светящимися молекулами и ионами кислорода и азота. (кредит b: модификация работы старшего летчика ВВС США Джошуа Стрэнга)

Beam Deflector Исследовательская группа занимается изучением короткоживущих радиоактивных изотопов.Им необходимо разработать способ транспортировки альфа-частиц (ядер гелия) от места их создания к месту, где они столкнутся с другим материалом с образованием изотопа. Луч альфа-частиц изгибается в области под углом 90 градусов с однородным магнитным полем 0,050 Тл ((Рисунок)). а) В каком направлении следует приложить магнитное поле? (б) Сколько времени требуется альфа-частицам, чтобы пройти через область однородного магнитного поля?

Установка отражателя балки, вид сверху.

Стратегия

  1. Направление магнитного поля показано RHR-1.Ваши пальцы указывают в направлении v , а большой палец должен указывать в направлении силы, влево. Следовательно, поскольку альфа-частицы заряжены положительно, магнитное поле должно указывать вниз.
  2. Период движения альфа-частицы по окружности


    Поскольку частица движется только по четверти круга, мы можем взять 0,25-кратный период, чтобы найти время, необходимое для обхода этого пути.

Решение

  1. Давайте начнем с фокусировки на альфа-частице, входящей в поле в нижней части изображения.Сначала покажите пальцем вверх по странице. Чтобы ваша ладонь открывалась влево, куда указывает центростремительная сила (и, следовательно, магнитная сила), ваши пальцы должны менять ориентацию, пока они не будут указывать на страницу. Это направление приложенного магнитного поля.
  2. Период движения заряженной частицы по кругу вычисляется с использованием заданных в задаче массы, заряда и магнитного поля. Получается, что это


    Однако для данной задачи альфа-частица проходит четверть круга, поэтому время, необходимое для этого, составит

Значение. Это время может быть достаточно быстрым, чтобы добраться до материала, который мы хотели бы бомбардировать, в зависимости от того, насколько короткоживущий радиоактивный изотоп и продолжает испускать альфа-частицы.Если бы мы могли усилить магнитное поле, приложенное к области, это сократило бы время еще больше. Путь, по которому частицы должны пройти, можно было бы сократить, но это может оказаться неэкономичным, учитывая экспериментальную установку.

Проверьте свое понимание Однородное магнитное поле величиной 1,5 Тл направлено горизонтально с запада на восток. (а) Какая магнитная сила действует на протон в тот момент, когда он движется вертикально вниз в поле со скоростью, равной (б) Сравните эту силу с массой протона w .

а. к югу; б.

Сводка

  • Магнитная сила может создавать центростремительную силу и заставлять заряженную частицу двигаться по круговой траектории радиусом
  • Период кругового движения заряженной частицы, движущейся в магнитном поле, перпендикулярном плоскости движения, равен
  • Спиральное движение возникает, если скорость заряженной частицы имеет компоненту, параллельную магнитному полю, а также компоненту, перпендикулярную магнитному полю.

Концептуальные вопросы

В данный момент электрон и протон движутся с одинаковой скоростью в постоянном магнитном поле. Сравните магнитные силы на этих частицах. Сравните их ускорения.

Величина магнитных сил протона и электрона одинакова, поскольку они имеют одинаковый заряд. Однако направления этих сил противоположны друг другу. Ускорения противоположны по направлению, и электрон имеет большее ускорение, чем протон, из-за его меньшей массы.

Обязательно ли увеличение величины однородного магнитного поля, через которое проходит заряд, увеличение магнитной силы, действующей на заряд? Обязательно ли изменение направления поля означает изменение силы, действующей на заряд?

Электрон проходит через магнитное поле, не отклоняясь. Что вы сделаете по поводу магнитного поля?

Магнитное поле должно быть направлено параллельно или антипараллельно скорости.

Если заряженная частица движется по прямой, можно ли сделать вывод об отсутствии магнитного поля?

Как определить, какой полюс электромагнита северный, а какой южный?

Компас указывает на северный полюс электромагнита.

Проблемы

Электрон космических лучей движется перпендикулярно магнитному полю Земли на высоте, где напряженность поля равна Каков радиус кругового пути, по которому движется электрон?

(a) Зрители «Звездного пути» слышали о двигателе на антиматерии на корабле Starship Enterprise . Одна из возможностей для такого футуристического источника энергии — хранить заряженные частицы антивещества в вакуумной камере, циркулирующие в магнитном поле, а затем извлекать их по мере необходимости.Антивещество уничтожает обычную материю, производя чистую энергию. Какая напряженность магнитного поля необходима, чтобы удерживать антипротоны, движущиеся по круговой траектории радиусом 2,00 м? Антипротоны имеют ту же массу, что и протоны, но имеют противоположный (отрицательный) заряд. (b) Можно ли получить такую ​​напряженность поля с помощью современных технологий или это футуристическая возможность?

(a) Ион кислорода-16 с массой движется перпендикулярно магнитному полю 1,20 Тл, что заставляет его двигаться по дуге окружности с 0.231-метровый радиус. Какой положительный заряд на ионе? б) Каково отношение этого заряда к заряду электрона? (c) Обсудите, почему соотношение, указанное в (b), должно быть целым числом.

а. б. 3; c. Это отношение должно быть целым числом, потому что заряды должны быть целыми числами основного заряда электрона. Никаких бесплатных сборов со значениями меньше, чем этот базовый сбор, не существует, и все сборы являются целыми числами, кратными этому базовому сбору.

Электрон в телевизионном электронно-лучевой трубке движется со скоростью 1 мс в направлении, перпендикулярном полю Земли, которое имеет напряженность а) электрическое поле какой напряженности должно быть приложено перпендикулярно полю Земли, чтобы электрон двигался по прямой линии? (b) Если это делается между пластинами, разделенными 1.00 см, какое напряжение приложено? (Обратите внимание, что телевизоры обычно окружены ферромагнитным материалом для защиты от внешних магнитных полей и исключения необходимости в такой коррекции.)

(а) С какой скоростью протон будет двигаться по круговой траектории того же радиуса, что и электрон в предыдущем упражнении? б) Каким был бы радиус пути, если бы протон имел ту же скорость, что и электрон? (c) Каким был бы радиус, если бы протон имел такую ​​же кинетическую энергию, что и электрон? (г) Тот же импульс?

(а) 3.27 x 10 4 м / с (б) 12,525 м (в) 292 м (г) 6,83 м.

(a) Какое напряжение будет ускорять электроны до скорости (b) Найдите радиус кривизны пути протона, ускоренного через этот потенциал в поле 0,500 Тл, и сравните его с радиусом кривизны электрона, ускоренного через такой же потенциал.

Альфа-частица движется по круговой траектории радиусом 25 см в однородном магнитном поле величиной 1,5 Тл. А) Какова скорость частицы? б) Какова кинетическая энергия в электрон-вольтах? (c) Через какую разность потенциалов должна быть ускорена частица, чтобы придать ей эту кинетическую энергию?

Частица с зарядом q и массой m ускоряется из состояния покоя через разность потенциалов V , после чего встречает однородное магнитное поле B .Если частица движется в плоскости, перпендикулярной B , каков радиус ее круговой орбиты?

Глоссарий

космические лучи
состоит из частиц, которые происходят в основном за пределами Солнечной системы и достигают Земли
винтовой ход
суперпозиция кругового движения с прямолинейным движением, за которым следует заряженная частица, движущаяся в области магнитного поля под углом к ​​полю

8.3 Движение заряженной частицы в магнитном поле — Введение в электричество, магнетизм и электрические схемы

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:
  • Объясните, как заряженная частица во внешнем магнитном поле совершает круговое движение
  • Опишите, как определить радиус кругового движения заряженной частицы в магнитном поле

Заряженная частица испытывает силу при движении через магнитное поле.Что произойдет, если это поле будет однородным при движении заряженной частицы? По какому пути следует частица? В этом разделе мы обсуждаем круговое движение заряженной частицы, а также другое движение, возникающее в результате попадания заряженной частицы в магнитное поле.

Самый простой случай возникает, когда заряженная частица движется перпендикулярно однородному полю (рис. 8.3.1). Если поле находится в вакууме, магнитное поле является доминирующим фактором, определяющим движение. Поскольку магнитная сила перпендикулярна направлению движения, заряженная частица следует по кривой траектории в магнитном поле.Частица продолжает следовать по этому изогнутому пути, пока не образует полный круг. Другой способ взглянуть на это состоит в том, что магнитная сила всегда перпендикулярна скорости, поэтому она не действует на заряженную частицу. Таким образом, кинетическая энергия и скорость частицы остаются постоянными. Это влияет на направление движения, но не на скорость.

(рисунок 8.3.1)

Рис. 8.3.1 Отрицательно заряженная частица движется в плоскости бумаги в области, где магнитное поле перпендикулярно бумаге (обозначено маленькой буквой s — как хвосты стрелок).Магнитная сила перпендикулярна скорости, поэтому скорость изменяется по направлению, но не по величине. Результат — равномерное круговое движение. (Обратите внимание, что поскольку заряд отрицательный, сила противоположна по направлению предсказанию правила правой руки.)

В этой ситуации магнитная сила обеспечивает центростремительную силу. Учитывая, что скорость перпендикулярна магнитному полю, величина магнитной силы уменьшается до. Поскольку магнитная сила обеспечивает центростремительную силу, мы имеем

(8.3.1)

Решение для урожайности

(8.3.2)

Здесь — радиус кривизны пути заряженной частицы с массой и зарядом, движущейся со скоростью, перпендикулярной напряженности магнитного поля. Время прохождения заряженной частицы по круговой траектории определяется как период, равный пройденному расстоянию (окружности), деленному на скорость. На основании этого и 8.3.1 мы можем получить период движения как

.

(8.3.3)

Если скорость не перпендикулярна магнитному полю, то мы можем сравнить каждую составляющую скорости отдельно с магнитным полем. Компонент скорости, перпендикулярный магнитному полю, создает магнитную силу, перпендикулярную как этой скорости, так и полю:

(8.3.4)

где — угол между и. Компонент, параллельный магнитному полю, создает постоянное движение в том же направлении, что и магнитное поле, также показанное на 8.3.4. Параллельное движение определяет шаг и спирали, то есть расстояние между соседними витками. Это расстояние равно параллельной составляющей скорости, умноженной на период:

(8.3.5)

В результате получается спиральное движение , как показано на следующем рисунке.

(рисунок 8.3.2)

Рис. 8.3.2 Заряженная частица движется со скоростью, не совпадающей с направлением магнитного поля. Компонента скорости, перпендикулярная магнитному полю, создает круговое движение, тогда как составляющая скорости, параллельная полю, перемещает частицу по прямой.Шаг — это расстояние по горизонтали между двумя последовательными кругами. Результирующее движение — спиральное.

Пока заряженная частица движется по спирали, она может попасть в область, где магнитное поле неоднородно. В частности, предположим, что частица перемещается из области сильного магнитного поля в область более слабого поля, а затем обратно в область более сильного поля. Частица может отразиться до того, как войдет в область с более сильным магнитным полем. Это похоже на волну на струне, которая движется от очень легкой тонкой струны к твердой стене и отражается назад.Если отражение происходит с обоих концов, частица оказывается в так называемой магнитной бутылке.

Захваченные частицы в магнитных полях находятся в радиационных поясах Ван Аллена вокруг Земли, которые являются частью магнитного поля Земли. Эти пояса были обнаружены Джеймсом Ван Алленом при попытке измерить поток космических лучей на Земле (частицы высокой энергии, приходящие извне Солнечной системы), чтобы увидеть, похоже ли это на поток, измеренный на Земле.Ван Аллен обнаружил, что из-за вклада частиц, захваченных магнитным полем Земли, поток на Земле был намного выше, чем в космическом пространстве. Aurorae , как и знаменитое полярное сияние (северное сияние) в северном полушарии (рис. 8.3.3), представляют собой прекрасные проявления света, излучаемого при рекомбинации ионов с электронами, входящими в атмосферу, по мере их движения вдоль силовых линий магнитного поля. (Ионы — это в основном атомы кислорода и азота, которые первоначально ионизируются в результате столкновений с энергичными частицами в атмосфере Земли.) Полярные сияния наблюдались также на других планетах, таких как Юпитер и Сатурн.

(рисунок 8.3.3)

Рис. 8.3.3 (a) Радиационные пояса Ван Аллена вокруг Земли захватывают ионы, произведенные космическими лучами, падающими на атмосферу Земли. (b) Великолепное зрелище северного сияния, или северного сияния, сияет в северном небе над Беар-Лейк недалеко от базы ВВС Эйлсон, Аляска. Этот свет, сформированный магнитным полем Земли, создается светящимися молекулами и ионами кислорода и азота.(кредит b: модификация работы старшего летчика ВВС США Джошуа Стрэнга)

ПРИМЕР 8.3.1


Дефлектор луча

Группа исследователей занимается изучением короткоживущих радиоактивных изотопов. Им необходимо разработать способ транспортировки альфа-частиц (ядер гелия) от места их создания к месту, где они столкнутся с другим материалом с образованием изотопа. Луч альфа-частиц изгибается через область градусов с однородным магнитным полем (рис. 8.3.4). а) В каком направлении следует приложить магнитное поле? (б) Сколько времени требуется альфа-частицам, чтобы пройти через область однородного магнитного поля?

(рисунок 8.3.4)

Рисунок 8.3.4 Вид сверху на установку дефлектора балки.
Стратегия

а. Направление магнитного поля показано RHR-1. Ваши пальцы указывают в направлении, а большой палец должен указывать в направлении силы, влево. Следовательно, поскольку альфа-частицы заряжены положительно, магнитное поле должно указывать вниз.

г. Период движения альфа-частицы по окружности

.

(8.3.6)

Поскольку частица движется только по четверти круга, мы можем умножить этот период, чтобы найти время, необходимое для обхода этого пути.
Решение

а. Начнем с того, что сфокусируемся на альфа-частице, входящей в поле в нижней части изображения. Сначала покажите пальцем вверх по странице. Чтобы ваша ладонь открывалась влево, куда указывает центростремительная сила (и, следовательно, магнитная сила), ваши пальцы должны менять ориентацию, пока они не будут указывать на страницу. Это направление приложенного магнитного поля.

г. Период движения заряженной частицы по окружности рассчитывается с использованием заданных в задаче массы, заряда и магнитного поля.Получается

.

Однако для данной задачи альфа-частица обходит четверть круга, поэтому время, необходимое для этого, составит

.

Значение

Это время может быть достаточно быстрым, чтобы добраться до материала, который мы хотели бы бомбардировать, в зависимости от того, насколько короткоживущий радиоактивный изотоп и продолжает испускать альфа-частицы. Если бы мы могли усилить магнитное поле, приложенное к области, это сократило бы время еще больше.Путь, по которому частицы должны пройти, можно было бы сократить, но это может оказаться неэкономичным, учитывая экспериментальную установку.

ПРОВЕРЬТЕ ПОНИМАНИЕ 8.2


Однородное магнитное поле магнитуды направлено горизонтально с запада на восток. а) Какова магнитная сила на протоне в момент, когда он движется вертикально вниз в поле со скоростью? б) Сравните эту силу с весом протона.

ПРИМЕР 8.3.2


Движение по спирали в магнитном поле

Протон входит в однородное магнитное поле со скоростью.Под каким углом должно быть магнитное поле относительно скорости, чтобы шаг результирующего спирального движения был равен радиусу спирали?

Стратегия

Шаг движения относится к параллельной скорости, умноженной на период кругового движения, тогда как радиус относится к перпендикулярной составляющей скорости. После установки равных друг другу радиуса и шага найдите угол между магнитным полем и скоростью или.

Решение

Шаг задается уравнением 8.3.5, период определяется уравнением 8.3.3, а радиус кругового движения задается уравнением 8.3.2. Обратите внимание, что скорость в уравнении радиуса связана только с перпендикулярной скоростью, в которой происходит круговое движение. Поэтому мы подставляем синусоидальную составляющую общей скорости в уравнение радиуса, чтобы приравнять шаг и радиус:

Значение

Если бы этот угол был, то имела бы только параллельная скорость и спираль не образовывалась бы, потому что не было бы кругового движения в перпендикулярной плоскости.Если бы этот угол был, то происходило бы только круговое движение, и не было бы движения кругов, перпендикулярных движению. Вот что создает спиральное движение.

Кандела Цитаты

Лицензионный контент CC, особая атрибуция

  • Загрузите бесплатно по адресу http://cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution

11.3 Движение заряженной частицы в магнитном поле — University Physics Volume 2

11.3 Движение заряженной частицы в магнитном поле.

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как заряженная частица во внешнем магнитном поле совершает круговое движение
  • Опишите, как определить радиус кругового движения заряженной частицы в магнитном поле

Заряженная частица испытывает силу при движении через магнитное поле.Что произойдет, если это поле будет однородным при движении заряженной частицы? По какому пути следует частица? В этом разделе мы обсуждаем круговое движение заряженной частицы, а также другое движение, возникающее в результате попадания заряженной частицы в магнитное поле.

Самый простой случай имеет место, когда заряженная частица движется перпендикулярно однородному полю B (рисунок 11.7). Если поле находится в вакууме, магнитное поле является доминирующим фактором, определяющим движение.Поскольку магнитная сила перпендикулярна направлению движения, заряженная частица следует по кривой траектории в магнитном поле. Частица продолжает следовать по этому изогнутому пути, пока не образует полный круг. Другой способ взглянуть на это состоит в том, что магнитная сила всегда перпендикулярна скорости, поэтому она не действует на заряженную частицу. Таким образом, кинетическая энергия и скорость частицы остаются постоянными. Это влияет на направление движения, но не на скорость.

Фигура 11.7 Отрицательно заряженная частица движется в плоскости бумаги в области, где магнитное поле перпендикулярно бумаге (обозначено маленькими × ··· × — как хвосты стрелок). Магнитная сила перпендикулярна скорости, поэтому скорость изменяется по направлению, но не по величине. Результат — равномерное круговое движение. (Обратите внимание, что поскольку заряд отрицательный, сила противоположна по направлению предсказанию правила правой руки.)

В этой ситуации магнитная сила создает центростремительную силу Fc = mv2r.Fc = mv2r. Учитывая, что скорость перпендикулярна магнитному полю, величина магнитной силы уменьшается до F = qvB.F = qvB. Поскольку магнитная сила F обеспечивает центростремительную силу Fc, Fc, мы имеем

Решение для r дает

Здесь r — радиус кривизны пути заряженной частицы с массой m и зарядом q , движущейся со скоростью v , перпендикулярной магнитному полю с напряженностью B .Время прохождения заряженной частицы по круговой траектории определяется как период, равный пройденному расстоянию (окружности), деленному на скорость. Основываясь на этом и уравнении 11.4, мы можем получить период движения как

. T = 2πrv = 2πvmvqB = 2πmqB, T = 2πrv = 2πvmvqB = 2πmqB.

11,6

Если скорость не перпендикулярна магнитному полю, то мы можем сравнить каждую составляющую скорости отдельно с магнитным полем. Компонент скорости, перпендикулярный магнитному полю, создает магнитную силу, перпендикулярную как этой скорости, так и полю:

vperp = vsinθ, vpara = vcosθ.vperp = vsinθ, vpara = vcosθ.

11,7

, где θθ — угол между v и B . Компонент, параллельный магнитному полю, создает постоянное движение в том же направлении, что и магнитное поле, что также показано в уравнении 11.7. Параллельное движение определяет шаг p спирали, то есть расстояние между соседними витками. Это расстояние равно параллельной составляющей скорости, умноженной на период:

В результате получается спиральное движение, как показано на следующем рисунке.

Фигура 11,8 Заряженная частица движется со скоростью, отличной от направления магнитного поля. Компонента скорости, перпендикулярная магнитному полю, создает круговое движение, тогда как составляющая скорости, параллельная полю, перемещает частицу по прямой. Шаг — это расстояние по горизонтали между двумя последовательными кругами. Результирующее движение — спиральное.

Пока заряженная частица движется по спирали, она может попасть в область, где магнитное поле неоднородно.В частности, предположим, что частица перемещается из области сильного магнитного поля в область более слабого поля, а затем обратно в область более сильного поля. Частица может отразиться до того, как войдет в область с более сильным магнитным полем. Это похоже на волну на струне, которая движется от очень легкой тонкой струны к твердой стене и отражается назад. Если отражение происходит с обоих концов, частица оказывается в так называемой магнитной бутылке.

Захваченные частицы в магнитных полях обнаружены в радиационных поясах Ван Аллена вокруг Земли, которые являются частью магнитного поля Земли.Эти пояса были обнаружены Джеймсом Ван Алленом при попытке измерить поток космических лучей на Земле (частицы высокой энергии, приходящие извне Солнечной системы), чтобы выяснить, похож ли он на поток, измеренный на Земле. Ван Аллен обнаружил, что из-за вклада частиц, захваченных магнитным полем Земли, поток на Земле был намного выше, чем в космическом пространстве. Полярные сияния, как и знаменитое полярное сияние (северное сияние) в Северном полушарии (рис. 11.9), представляют собой прекрасные проявления света, излучаемого при рекомбинации ионов с электронами, входящими в атмосферу, когда они движутся по спирали вдоль силовых линий магнитного поля.(Ионы — это в основном атомы кислорода и азота, которые первоначально ионизируются в результате столкновений с энергичными частицами в атмосфере Земли.) Полярные сияния также наблюдались на других планетах, таких как Юпитер и Сатурн.

Фигура 11,9 а) радиационные пояса Ван Аллена вокруг Земли улавливают ионы, образующиеся в результате попадания космических лучей в атмосферу Земли. (b) Великолепное зрелище северного сияния, или северного сияния, сияет в северном небе над Беар-Лейк недалеко от базы ВВС Эйлсон, Аляска.Этот свет, сформированный магнитным полем Земли, создается светящимися молекулами и ионами кислорода и азота. (кредит b: модификация работы старшего летчика ВВС США Джошуа Стрэнга)

Пример 11.2

Дефлектор луча
Группа исследователей занимается изучением короткоживущих радиоактивных изотопов. Им необходимо разработать способ транспортировки альфа-частиц (ядер гелия) от места их создания к месту, где они столкнутся с другим материалом с образованием изотопа. Пучок альфа-частиц (m = 6.64 · 10−27 кг, q = 3,2 · 10−19C) (m = 6,64 · 10−27 кг, q = 3,2 · 10−19C) изгибается через 90-градусную область с однородным магнитным полем 0,050 Тл (рисунок 11.10) . а) В каком направлении следует приложить магнитное поле? (б) Сколько времени требуется альфа-частицам, чтобы пройти через область однородного магнитного поля?

Фигура 11.10 Вид сверху на установку дефлектора балки.

Стратегия
  1. Направление магнитного поля показано RHR-1. Ваши пальцы указывают в направлении v , а большой палец должен указывать в направлении силы, влево.Следовательно, поскольку альфа-частицы заряжены положительно, магнитное поле должно указывать вниз.
  2. Период движения альфа-частицы по окружности

    Поскольку частица движется только по четверти круга, мы можем взять 0,25-кратный период, чтобы найти время, необходимое для обхода этого пути.
Решение
  1. Давайте начнем с фокусировки на альфа-частице, входящей в поле в нижней части изображения. Сначала покажите пальцем вверх по странице.Чтобы ваша ладонь открывалась влево, куда указывает центростремительная сила (и, следовательно, магнитная сила), ваши пальцы должны менять ориентацию, пока они не будут указывать на страницу. Это направление приложенного магнитного поля.
  2. Период движения заряженной частицы по кругу вычисляется с использованием заданных в задаче массы, заряда и магнитного поля. Это оказывается T = 2πmqB = 2π (6,64 · 10−27 кг) (3,2 · 10−19C) (0,050T) = 2,6 · 10−6s.T = 2πmqB = 2π (6,64 · 10−27 кг) (3,2 · 10−19C) ( 0.050T) = 2,6 × 10−6с. Однако для данной задачи альфа-частица проходит четверть круга, поэтому время, необходимое для этого, будет равно t = 0,25 × 2,61 × 10–6 с = 6,5 × 10–7 с. t = 0,25 × 2,61 × 10–6 с = 6,5 × 10–7 с.
Значение
Это время может быть достаточно быстрым, чтобы добраться до материала, который мы хотели бы бомбардировать, в зависимости от того, насколько короткоживущий радиоактивный изотоп и продолжает испускать альфа-частицы. Если бы мы могли усилить магнитное поле, приложенное к области, это сократило бы время еще больше.Путь, по которому частицы должны пройти, можно было бы сократить, но это может оказаться неэкономичным, учитывая экспериментальную установку.

Проверьте свое понимание 11.2

Проверьте свое понимание Однородное магнитное поле величиной 1,5 Тл направлено горизонтально с запада на восток. (а) Какая магнитная сила действует на протон в момент, когда он движется вертикально вниз в поле со скоростью 4 × 107 м / с? 4 × 107 м / с? (b) Сравните эту силу с массой протона w .

Пример 11,3

Движение по спирали в магнитном поле
Протон входит в однородное магнитное поле 1,0 × 10–4Тл1,0 × 10–4Т со скоростью 5 × 105 м / с и 5 × 105 м / с. Под каким углом должно быть магнитное поле относительно скорости, чтобы шаг результирующего спирального движения был равен радиусу спирали?
Стратегия
Шаг движения относится к параллельной скорости, умноженной на период кругового движения, тогда как радиус относится к перпендикулярной составляющей скорости.После установки равных друг другу радиуса и шага найдите угол между магнитным полем и скоростью или θ.θ.
Решение
Шаг задается уравнением 11.8, период — уравнением 11.6, а радиус кругового движения — уравнением 11.5. Обратите внимание, что скорость в уравнении радиуса связана только с перпендикулярной скоростью, в которой происходит круговое движение. Поэтому мы подставляем синусоидальную составляющую общей скорости в уравнение радиуса, чтобы приравнять шаг и радиус: p = rv∥T = mv⊥qBvcosθ2πmqB = mvsinθqB2π = tanθθ = 81.0 ° .p = rv∥T = mv⊥qBvcosθ2πmqB = mvsinθqB2π = tanθθ = 81,0 °.
Значение
Если бы этот угол был 0 °, 0 °, была бы только параллельная скорость, и спираль не образовалась бы, потому что не было бы кругового движения в перпендикулярной плоскости. Если бы этот угол был 90 °, 90 °, было бы только круговое движение, и не было бы движения кругов перпендикулярно движению. Вот что создает спиральное движение.

Электромагнитное излучение и поля

Электромагнитное излучение

Электромагнитное поле (ЭМП) генерируется при ускорении заряженных частиц, например электронов.Заряженные частицы в движении создают магнитные поля. Электрические и магнитные поля присутствуют вокруг любой электрической цепи, будь то электричество переменного (AC) или постоянного (DC) тока. Поскольку постоянный ток статичен, а переменный ток меняется по направлению, поля от источников постоянного и переменного тока существенно различаются. Статические поля, например, не вызывают токов в неподвижных объектах, в отличие от полей переменного тока. Статические магнитные поля не меняются во времени и, следовательно, не имеют частоты (0 герц [Гц]).

Наиболее известные магнитные эффекты возникают в ферромагнитных материалах, которые сильно притягиваются магнитными полями и могут быть намагничены, чтобы стать постоянными магнитами, которые сами создают магнитные поля. Лишь немногие вещества являются ферромагнитными; наиболее распространены железо, никель, кобальт и их сплавы.

Напряженность магнитного поля обычно измеряется в теслах (Тл или мТл) или гауссах (Гс). Бытовые магниты имеют силу порядка нескольких десятков миллитесла (1 мТл = 10 –3 Тл), в то время как напряженность поля оборудования магнитно-резонансной томографии (МРТ) колеблется от 1.От 5 до 10 т.

Статические электрические поля

Электрическое поле — это силовое поле, создаваемое притяжением и отталкиванием электрических зарядов, и оно измеряется в вольтах на метр (В / м). Статическое электрическое поле (также называемое электростатическим полем) создается зарядами, которые фиксируются в пространстве. Сила естественного статического электрического поля в атмосфере варьируется от примерно 100 В / м в хорошую погоду до нескольких тысяч В / м под грозовыми облаками. Другим источником статических электрических полей является разделение зарядов в результате трения или статических электрических токов от различных технологий.В домашних условиях зарядовые потенциалы в несколько киловольт могут накапливаться при ходьбе по непроводящему ковру, создавая локальные поля. Высоковольтные линии электропередачи постоянного тока могут создавать статические электрические поля до 20 кВ / м и более.

Источники с напряженностью поля более 5-7 кВ / м могут создавать широкий спектр опасностей, таких как реакции вздрагивания, связанные с искровыми разрядами, и контактные токи от незаземленных проводников внутри поля.

Статические магнитные поля

Магнитное поле — это силовое поле, создаваемое магнитом или зарядами, которые движутся в устойчивом потоке, как при постоянном токе (DC).Статические магнитные поля оказывают притягивающую силу на металлические предметы, содержащие, например, железо, никель или кобальт. Количество феррита (форма железа) или мартенситной стали (особый тип сплава нержавеющей стали) в объекте влияет на его магнитную способность: чем больше количество этих компонентов, тем выше ферромагнетизм. Все типы нержавеющей стали серии 400 являются магнитными. Аустенитная сталь немагнитна. Большая часть, но не вся нержавеющая сталь серии 300 является аустенитной, а не магнитной.

Источники статических магнитных полей, обнаруженные в лаборатории Беркли, включают оборудование ядерного магнитного резонанса (ЯМР), системы МРТ, системы спектроскопии, ионные насосы, квадруполи и секступоли, изгибные магниты, сверхпроводящие магниты и криостаты.

Статические магнитные поля также могут стирать данные, хранящиеся на магнитных носителях или на полосах кредитных или дебетовых карт и бейджей.

Изменяющиеся во времени магнитные поля

Изменяющиеся во времени магнитные поля — это магнитные поля, которые меняют свое направление с постоянной частотой.Они могут индуцировать электрический ток в проводнике, присутствующем в этом поле, а также в теле человека. Изменяющиеся во времени магнитные поля создаются устройствами, использующими переменный ток, такими как антенны сотовых телефонов, микроволны и т. Д. Общее практическое правило заключается в том, что 1 Тл / сек может индуцировать около 1 микроампер на квадратный сантиметр (мкА / см 2 ) в тело.

Наведенные в теле токи могут вызвать местное нагревание и возможные ожоги, что является основным эффектом изменяющихся во времени полей. Причина — изменяющееся во времени поле высокой радиочастоты.Низкочастотные поля обычно не вносят большого вклада в этот эффект.

Источники электромагнитного излучения

Статические магнитные поля создаются магнитами или потоком постоянного тока. Они также могут быть произведены из многих природных источников. К естественным источникам статических электрических полей относятся земная атмосфера во время шторма, заряд, возникающий при перемещении по ковру, и «статическое прилипание» одежды. Земля имеет электрическое поле около 130 В / м у поверхности из-за разделения зарядов между Землей и ионосферой.Он направлен вертикально. Земля и ионосфера вместе образуют сферический конденсатор, причем двумя проводящими поверхностями являются земля и верхняя атмосфера. Эта разница потенциалов поддерживается за счет молнии, которая несет на землю отрицательные заряды.

Земля сама по себе имеет естественное статическое магнитное поле, которое используется для навигации по компасу. Токи, протекающие глубоко в ядре Земли, создают естественные статические магнитные поля на поверхности Земли. Земля имеет статическую плотность магнитного потока, составляющую в среднем 0.5 Гс при минимальной напряженности поля на экваторе и максимальной на магнитных полюсах.

Общие источники статических магнитных полей включают постоянные магниты (которые используются в бытовой технике, игрушках и медицинских устройствах), приборы с батарейным питанием, сканеры МРТ, некоторые электрифицированные железнодорожные системы и определенные производственные процессы.

Сверхпроводящие магниты

Схематическое изображение магнитного поля, создаваемого индуцированным током.

Сверхпроводящий магнит — это электромагнит, сделанный из катушек сверхпроводящего провода.Во время работы их необходимо охлаждать до криогенных температур. В сверхпроводящем состоянии провод может проводить гораздо большие электрические токи, чем обычный провод, создавая сильные магнитные поля. Сверхпроводящие магниты используются в сканерах МРТ в больницах и в научном оборудовании, таком как спектрометры ядерного магнитного резонанса (ЯМР), масс-спектрометры и ускорители частиц.

Сверхпроводящие магниты, такие как оборудование для ЯМР и МРТ, представляют особую угрозу безопасности. Эти проблемы включают криогенную безопасность, сильные магнитные поля и возможность создания атмосферы с дефицитом кислорода.Самый высокий потенциал для наиболее серьезных из этих опасностей существует во время запуска магнита, наполнения криогеном и работ по техническому обслуживанию. После того, как магниты работают и магнитные поля установлены, риски минимальны, если операторы, обслуживающий персонал, пациенты и / или посетители понимают пределы близости и процедуры, которым необходимо следовать при работе рядом с магнитом.

Ядерный магнитный резонанс

Пример системы ЯМР

В системе ЯМР используется статическое магнитное поле и радиочастотный импульс для выравнивания ядерных спинов в магнитном поле, чтобы максимизировать силу сигнала ЯМР.ЯМР-спектроскопия — это метод исследования, который использует магнитные свойства определенных атомных ядер и может предоставить подробную информацию о структуре, динамике, состоянии реакции и химическом окружении молекул.

ЯМР

— это сверхпроводящие магниты, которые обычно создают поля сердечника от 0,15 Тл до 20 Тл. Эти поля уменьшаются по интенсивности по мере увеличения расстояния от сердечника. Исследовательские ЯМР более мощные, чем медицинские устройства, но их области меньше по объему, сфокусированы и быстро исчезают, что упрощает обеспечение защиты персонала.

Советы по безопасности при использовании ЯМР

Магнитно-резонансная томография

Типичный медицинский сканер МРТ

Метод МРТ используется в радиологии для создания изображений органов тела для диагностической визуализации. МРТ-сканирование основано на науке о ЯМР с использованием сильных магнитных полей, радиоволн и градиентов поля для создания изображений органов в теле. Сканер МРТ состоит из большого мощного магнита, в котором лежит пациент. Радиоволновая антенна используется для передачи сигналов телу, а затем приема сигналов обратно.Эти возвращаемые сигналы преобразуются в изображения компьютером, подключенным к сканеру. Изображение практически любой части тела можно получить в любой плоскости.

Большинство клинических магнитов представляют собой сверхпроводящие магниты, для которых требуется жидкий гелий. Сила магнитного поля МРТ варьируется от 0,15 Тл до 4 Тл. Сверхпроводящие магниты при 1,5 Тл и выше позволяют получать функциональные изображения головного мозга и МР-спектроскопию с улучшенным временным и пространственным разрешением. Такие магниты создают дополнительные проблемы из-за радиочастотного (RF) нагрева объекта.

Советы по безопасности при использовании МРТ

Ионные насосы

Пример распылительного ионного насоса

Ионный насос (также называемый распылительным ионным насосом) представляет собой тип вакуумного насоса, способный достигать давления до 10 −11 миллибар (мбар) в идеальных условиях. Ионный насос ионизирует газ внутри сосуда, к которому он прикреплен, и использует сильный электрический потенциал, обычно 3–7 кВ, что позволяет ионам ускоряться и захватываться твердым электродом и его остатками.

Три основных типа ионных насосов — это обычный или стандартный диодный насос, благородный диодный насос и триодный насос.

Базовая конструкция состоит из двух электродов (анодного и катодного) и магнита. Ионные насосы обычно используются в системах сверхвысокого вакуума (UHV), поскольку они могут достигать предельного давления менее 10 −11 мбар. В отличие от других распространенных сверхвысококачественных насосов, таких как турбомолекулярные и диффузионные насосы, ионные насосы не имеют движущихся частей и не используют масло.Поэтому они чистые, не требуют особого ухода и не производят вибрации. Эти преимущества делают ионные насосы хорошо подходящими для использования в сканирующей зондовой микроскопии и других высокоточных приборах. Кроме того, они не нуждаются в запекании и предназначены для минимизации паразитного магнитного поля.

Большинство ионных насосов, установленных на лучевых линиях ALS, имеют линию 5 G в пределах 20–30 см от поверхности.

Влияние на здоровье

Физические и биологические эффекты в статических электрических и магнитных полях

Безусловно, наиболее важным эффектом является притяжение магнитных объектов в теле или на теле магнитным полем.Такие предметы, как кардиостимуляторы, хирургические зажимы и имплантаты, планшеты, инструменты, украшения, часы, швабры, ведра, ножницы и винты, были задокументированы как потенциальные опасности. Даже маломощные предметы могут стать опасными при движении на высокой скорости. Большая часть этого опыта пришла из медицинских систем МРТ. Магнитные объекты будут пытаться выровняться с линиями магнитного поля. Если имплантированный объект попытается сделать это, крутящий момент может вызвать серьезную травму.

Современные кардиостимуляторы предназначены для тестирования или перепрограммирования с использованием небольшого магнитного поля, внешнего по отношению к телу.Статические поля могут замкнуть герконы и вызвать переход кардиостимулятора в режим тестирования, перепрограммирования, обхода и другие режимы работы с возможной травмой.

На основании данных использования МРТ статические поля могут оказывать небольшое обратимое влияние на данные электрокардиограммы. Причина — взаимодействие движущейся крови (проводящей среды) и поля в сердце. Эффект минимален (ниже примерно 2 Тл) и не считается проблемой.

Имеющаяся в настоящее время информация не указывает на какие-либо серьезные последствия для здоровья в результате острого воздействия статических магнитных полей до 8 Тл, но это может привести к потенциально неприятным эффектам, таким как головокружение во время движений головы или тела.Степень этих ощущений во многом зависит от индивидуальных факторов, таких как личная предрасположенность к укачиванию и скорость передвижения в поле.

Физические и биологические эффекты в изменяющихся во времени и индуцированных электрических полях

Эффекты изменяющихся во времени полей аналогичны эффектам статических полей. В таком поле могут возникать небольшие токи, обычно отсутствующие в теле. Обычно это не вызывает беспокойства, но они могут вызывать головокружение и сенсорные ощущения, такие как тошнота, металлический привкус во рту и слабые мерцающие зрительные ощущения (магнитофосфены).Пользователи кардиостимуляторов также могут подвергаться риску. Индуцированные токи могут привести к неправильному запуску кардиостимулятора или даже к предотвращению стимуляции, когда это действительно необходимо. Наведенные токи могут вызвать локальный нагрев, который является основным эффектом изменяющихся во времени полей.

Основным взаимодействием низкочастотных изменяющихся во времени электрических и магнитных полей с телом человека является индукция электрического поля и токов в соответствии с законом Фарадея: E = πfrB, где E — электрическое поле, f — частота, r — радиус петли, перпендикулярной магнитному полю, а B — плотность магнитного потока.Чем больше радиус r , тем больше электрическое поле и ток. У человека наибольший радиус по периметру тела.

Сообщалось о стимуляции нервной и мышечной ткани при 50–500 мТл (500–5000 G). Выше 500 мТл (5000 G) индуцированные токи могут нарушить сердечный ритм или вызвать фибрилляцию желудочков. Все эти эффекты вызваны индуцированными токами (IRPA, 1990).

Пределы электромагнитного воздействия и оценка

ПДК ACGIH относятся к плотностям потока статического магнитного поля, которым, как считается, почти все рабочие могут подвергаться многократно изо дня в день без неблагоприятных последствий для здоровья.

ПДК для обычного (8-часового) профессионального воздействия статических магнитных полей перечислены в таблице 1. Работники с имплантированными ферромагнитными или электронными медицинскими устройствами не должны подвергаться воздействию статических магнитных полей, превышающих 0,5 мТл (5 G).

Таблица 1. TLV для статических магнитных полей

ПДК Описание
5 г Максимально допустимое поле для имплантированных кардиостимуляторов.
10 г Могут быть повреждены часы, кредитные карты, магнитная лента, компьютерные диски.
30 г Небольшие предметы из черных металлов представляют опасность с кинетической энергией.
20000 г (2Т) Предел потолка для всего тела (воздействие выше этого предела не допускается).
80,000 G (8T) Целостность (специальная подготовка рабочих и контролируемая рабочая среда).
200,000 G (20 зуб.) Предел потолка конечности (воздействие выше этого предела не допускается).

Примечание. Время экспонирования, взвешенное по времени (TWA), обычно вызывает беспокойство только при очень сильном воздействии поля на все тело.

1 гаусс (Г) = 0,1 миллитесла (мТл)

Полный список TLV можно загрузить по указанной ниже ссылке: Полный список пороговых значений.

Пороговые значения (ПДК)

Оценка воздействия

Для оценки опасности и оценки воздействия устройств, генерирующих ЭМП, необходимо выполнить измерение излучения ЭМП и сравнить его с соответствующими ПДК.Оценка должна выполняться во время установки устройства, генерирующего ЭДС, после изменения рабочих параметров, которое увеличивает опасность, или после ремонта, который может изменить рабочие параметры. Уже установленные, но не прошедшие оценку устройства следует оценивать при первой возможности. Если результаты первоначальных оценок значительно ниже ПДК, дальнейший мониторинг не требуется, если только деятельность не изменена так, чтобы ожидать увеличения воздействия. Если установлено, что результаты превышают уровни TLV или очень близки к TLV, периодический мониторинг следует проводить с частотой, достаточной для обеспечения адекватности мер контроля (обычно ежегодно).

Общие правила техники безопасности

Снарядов

Самая непосредственная опасность, связанная с магнитной средой, — это притяжение между магнитом и ферромагнитными объектами. Ферромагнитные металлические предметы могут стать летательными снарядами в сильном магнитном поле. Инструменты и баллоны со сжатым газом могут стать неконтролируемыми и лететь, как ракеты, к магнитам в областях, где существуют сильные статические поля и сильные градиенты поля (изменения напряженности поля на расстоянии).Механические опасности зависят от напряженности поля и градиента поля, а также от того, насколько быстро сила магнитного поля изменяется с расстоянием. Очевидная мера безопасности — не допустить попадания магнитных материалов в рабочую зону.

Никогда не помещайте какие-либо части тела между магнитом и незакрепленными металлическими предметами. Если большой объект притягивается к магниту и ударяется о магнит, выйдите из комнаты, так как это может вызвать гашение магнита. Сообщите своему руководителю. Если произошла травма, немедленно позвоните в службу 911.

Электронные и металлические имплантаты

Лица, носящие металлические имплантаты, такие как костные или суставные протезы, хирургические зажимы, гвозди или винты в сломанных костях, пирсинг или даже зубные пломбы, могут испытывать болезненные ощущения при воздействии сильных магнитных полей. Лица, оснащенные кардиостимуляторами, подвергаются особому риску, поскольку статические или импульсные магнитные поля могут влиять на рабочий режим их имплантированных устройств.

Проблемы криогенного газа

Закалка

Квенч — это (обычно неожиданная) потеря сверхпроводимости в ЯМР-магните, приводящая к быстрому нагреву из-за повышенного сопротивления сильному току.Сверхпроводящий магнит содержит жидкий гелий и жидкий азот. Если магнит погаснет, значительный объем жидкого гелия превратится в газ. При гашении магнита сверхпроводящий магнит теряет способность к сверхпроводимости, и накопленная энергия выделяется в виде тепла, которое выкипает из жидкого гелия. Газообразный гелий выходит из магнитного дьюара и заполняет комнату сверху вниз (гелий легче воздуха) и образует облако под потолком. Тушение очевидно: над магнитом образуется большое облако паров гелия, сопровождаемое громким свистящим звуком, который может создать атмосферу с дефицитом кислорода.Если происходит тушение, немедленно покиньте комнату, включите пожарную сигнализацию, чтобы эвакуироваться из здания, и позвоните по номеру 911.

Закалка может сильно повредить магнит, и предметы из железа попадут в отверстие магнита.

Биоэффекты

Сверхпроводящие магниты, использующие жидкий гелий и / или азот, представляют дополнительную проблему безопасности при работе с криогенными жидкостями. Прямой контакт с кожей или тканями глаза может вызвать серьезные повреждения в результате обморожения (повреждение тканей от замерзания).При сильном обморожении поврежденные ткани могут нуждаться в ампутации. Вдыхание концентрированных криогенных газов может вызвать потерю сознания и (в конечном итоге) смерть из-за кислородного голодания (удушье).

Вентиляция помещения

В целом, пять полных замен воздуха в помещении в час считается достаточным для борьбы с небольшими разливами или выбросами криогенов. В случае серьезного выброса персонал должен немедленно покинуть помещение и держать двери открытыми. Если существует риск катастрофического выброса, следует рассмотреть возможность использования вспомогательной вентиляции для предотвращения образования атмосферы с дефицитом кислорода.

Дьюарс

Емкости для перевозки криогенов должны быть металлическими. Стекло Дьюара может легко взорваться, что приведет к серьезным травмам. Все устройства Дьюара должны иметь соответствующие вентиляционные отверстия. Невентилируемые емкости могут разорваться, когда жидкость нагреется и расширится. Необходимо постоянно следить за всеми перемещениями криогенов, чтобы предотвратить проливание или замерзание клапанов.

Средства индивидуальной защиты

При обращении с криогенами используйте изолирующие перчатки, маску для лица или другие средства защиты глаз / лица от брызг, обувь с закрытым носком и лабораторные халаты.

Вопросы электробезопасности

Источники питания

Хотя источники питания, используемые для магнитов ЯМР, работают при относительно низких напряжениях (примерно 10 В), используемый ток очень высок (примерно 100 А). При контакте с тканями человека высокая сила тока чрезвычайно опасна.

Кабели, провода и соединители

Все кабели, провода и разъемы должны быть должным образом изолированы, чтобы предотвратить контакт с рабочим током. Их следует регулярно проверять, чтобы гарантировать целостность изоляции.Во избежание возникновения дуги никогда не разрывайте соединения, не отключив предварительно питание обрабатываемой цепи.

Блокировка, бирка

При работе с оборудованием, которое приводится в действие опасным источником энергии, необходимо соблюдение процедур блокировки и маркировки.

Прочие вопросы безопасности

Противопожарная защита

Держите поблизости огнетушитель класса C на случай возгорания электрического тока. Перед попыткой тушения электрического пожара необходимо отключить питание.Весь персонал должен быть обучен процедурам противопожарной защиты и эвакуации.

Обеспокоенность землетрясением

Магниты в сборе могут весить несколько тонн и должны быть закреплены, чтобы они не сдвинулись или опрокинулись во время землетрясения; при их размещении следует учитывать конструкционные стальные опоры. Источники питания также должны быть защищены от движения во время землетрясения.

Акустический шум

Переключение градиентов поля вызывает изменение силы Лоренца, действующей на градиентные катушки, вызывая незначительные расширения и сжатия катушки.Поскольку переключение обычно происходит в слышимом диапазоне частот, возникающая в результате вибрация вызывает громкие шумы (щелчки, стук или звуковой сигнал). Это наиболее заметно в машинах с сильным полем и методах быстрого получения изображений, в которых уровни звукового давления могут достигать 120 дБ (A) (децибелы, взвешенные по шкале А), что эквивалентно реактивному двигателю при взлете; Следовательно, во время обследования всем, кто находится в помещении со сканером МРТ, необходима соответствующая защита органов слуха.

Радиочастота

RF сам по себе не вызывает слышимых шумов (по крайней мере, для людей), поскольку современные системы используют частоты 8.5 МГц (система 0,2 Тл) или выше. ВЧ-мощность, которая может быть произведена, соответствует мощности многих небольших радиостанций (15–20 кВт). В результате присутствуют тепловые эффекты со стороны РФ. В большинстве импульсных последовательностей нагрев незначителен и не превышает рекомендаций Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США.

При использовании ВЧ-катушек существует вероятность поражения электрическим током, поэтому необходимо надлежащее заземление и изоляция катушек. Любое повреждение катушек или их кабелей требует незамедлительного внимания. Прикрепление кабеля к катушке может привести к ожогам любого, кто к ним прикоснется.Лучше избегать любого контакта с кабелями РЧ катушки.

Элементы управления воздействием

Два подхода к контролю воздействия — это использование технических средств контроля (например, экранирование) и административных средств контроля (например, средств индивидуальной защиты).

Инженерный контроль

Экранирование

Магнитные поля контролируются с помощью проницаемого сплава, который ограничивает линии магнитного потока и отклоняет их. Магнитное экранирование может быть выполнено с использованием сплавов с высоким содержанием никеля, называемых мю-металлом или мягким железом.Превращение мю-металла в сложный экран стоит дорого, и мю-металл легко повреждается. Такое экранирование лучше всего применять рядом с источником поля, когда это возможно. Другой подход заключается в использовании непроницаемых металлов, таких как медь или алюминий, для создания вихревых токов, которые нейтрализуют исходное магнитное поле.

Закалочная защита

Чтобы избежать ситуации гашения, используйте систему датчиков уровня криогенного вещества для обнаружения гашения и запуска снижения тока и накопленной магнитной энергии, чтобы предотвратить выгорание проводника.Всегда заправляйте или обесточивайте магнит, если на датчиках указывается низкий уровень криогенного вещества.

Примеры технических средств контроля сверхпроводящих магнитов:

  • Установка вентиляционного отверстия для продувки жидким гелием для выхода избыточного газообразного гелия через выхлопное отверстие, выходящее через крышу
  • Внутренние датчики для индикации низкого уровня жидкого гелия
  • Визуальная и звуковая сигнализация
  • Надежный контроль доступа, такой как запертые двери и ограниченный доступ только для уполномоченного персонала
Электрическое заземление

Металлические конструкции, вызывающие удары при контакте, должны быть электрически заземлены или изолированы.

Блокировки

Области, где воздействие полей 60 Гц на все тело превышает 25 кВ / м или 1 мТл (10 G), должны быть ограничены положительными средствами, такими как запертые корпуса, блокировки или предохранительные цепи.

Административный контроль

Обозначение площади
Пример линии 5 Гаусс, обозначенной цепочкой

В рамках процесса проектирования статическое магнитное поле в помещении должно быть определено путем измерения или расчетов, если существует опасность для кардиостимулятора (> 5 G) и опасность кинетической энергии (> 30 G).Также необходимо определить места, где может произойти чрезмерное облучение всего тела (> 600 G).

Инструменты и намагничиваемые предметы нельзя хранить в местах, где присутствуют повышенные статические магнитные поля.

Если установлено, что требуется экранирование, следует нанять опытную консалтинговую фирму для разработки экранирования магнитного поля.

Должны быть приняты меры для защиты и ограничения доступа пользователей кардиостимуляторов к местам, где магнитные поля всего тела превышают 5 G.Линия 5 G представляет собой разграничение между неконтролируемыми и контролируемыми зонами и должна быть четко обозначена. Для полей с экспозицией менее 5 G никаких настроек или проводки не требуется.

В дополнение к предупреждающим знакам, размещенным на дверных проемах, требуется другой способ обозначить линию 5G вокруг магнита. Например, можно использовать нарисованную линию или ленту, размещенную на полу вокруг магнита, где поле составляет 5 G. Другой пример — цепь, веревка или забор, обозначающий линию 5G вокруг магнита.

Какой бы метод ни использовался, выход из зоны в случае возникновения чрезвычайной ситуации не должен блокироваться или предотвращаться.

Предупреждающие знаки

Предупреждающий знак должен быть вывешен у входа в лаборатории или помещения, где магнитные поля превышают любые из указанных выше пределов. Зоны, где существуют потенциальные механические опасности, должны быть четко обозначены. Инструменты, баллоны со сжатым газом и другие изделия из магнитопроницаемого материала не должны находиться в таких местах.

Предупреждающие знаки должны быть вывешены в местах, где напряженность магнитного поля может превышать 0,5 мТл (5 Гс), и / или в местах, где электрические поля 60 Гц превышают 1 кВ / м, что подтверждается измерениями или расчетами, предупреждая людей с кардиостимуляторами или других медицинских работников. электронные имплантаты, чтобы держаться подальше.

Предупреждающие знаки должны быть вывешены там, где электрические поля превышают 5 кВ / м, предупреждая людей о возможности возникновения раздражающих искр.

Люди с кардиостимуляторами не должны находиться в местах, где магнитные поля 60 Гц превышают 0.1 мТл (1 G), что подтверждается измерением или расчетом.

Области, где воздействие полей 60 Гц на все тело превышает 25 кВ / м или 1 мТл (10 G), должны быть ограничены положительными средствами, такими как запертые корпуса, блокировки или предохранительные цепи.

Зоны, где магнитные поля превышают 3 мТл, должны быть обследованы, чтобы определить, где существуют потенциальные механические опасности. Люди с металлическими медицинскими имплантатами не должны находиться в местах, где напряженность поля превышает 3 мТл (30 G).

Руководство по использованию предупреждающих знаков

Примеры знаков, предупреждающих об опасности, показаны ниже.


Оборудование, которое может создавать электрические поля с частотой 60 Гц выше 2,5 кВ / м или магнитные поля выше 0,1 мТл (1 G), должно иметь маркировку или предупреждающий знак.

Примеры этикеток показаны ниже.

Световой сигнализатор

Некоторые электромагниты обозначаются мигающей красной сигнальной лампой, которая загорается, когда на магнит подается напряжение. Магниты, создающие сильное статическое магнитное поле, обычно обесточиваются, когда может произойти облучение персонала (т.например, во время длительных простоев, связанных с работой акселератора).

Индивидуальная защитная одежда

При работе с криогенами надевайте изолирующие перчатки и маску для лица или другие средства защиты глаз / лица от брызг, обувь с закрытыми носками и лабораторные халаты.

Изоляционная одежда и оборудование должны использоваться в зонах, где электрические поля 60 Гц превышают 5 кВ / м, как показывают измерения или вычисления. Изолирующие перчатки или, предпочтительно, специальные средства управления (например, кожух или экранирование источника поля) должны использоваться, чтобы избежать контакта с объектами, которые могут подвергнуть персонал воздействию искр, связанных с напряженностью поля более или равной 5 кВ / м.

Список литературы
  1. 10 CFR 851 Безопасность и здоровье работников — Министерство энергетики, § 851.23 Стандарты безопасности и здоровья.
  2. TLV и BEI Американской конференции государственных специалистов по промышленной гигиене (ACGIH) — 2016 , включенные ссылкой 10 CFR 851 Безопасность и здоровье рабочих — Министерство энергетики, §851.27.
  3. ACGIH TLV и BEI — 2012.
  4. Руководство ICNIRP по пределам воздействия статических магнитных полей .Физика здоровья, Vol. 96 (4): 504-514. 2009.
  5. Руководство ICNIRP по ограничению воздействия электрических полей, вызванных движением человеческого тела в статическом магнитном поле и изменяющимися во времени магнитными полями ниже 1 Гц. Health Physics, Vol. 106 (3): 418-425. 2014.
  6. Плогг Х. и Миллер Г. Основы промышленной гигиены . Четвертое издание, глава 11: Неионизирующее излучение. 2001.
  7. Временные рекомендации IPRA по предельным значениям воздействия электрических и магнитных полей 50/60 Гц .Физика здоровья, Vol. 58 (1): 113-122. 1990.

Как работают ускорители частиц | Министерство энергетики

Будь то медицинские или научные исследования, разработка потребительских товаров или национальная безопасность, ускорители элементарных частиц затрагивают практически все сферы нашей повседневной жизни. С первых дней появления электронно-лучевой трубки в 1890-х годах ускорители частиц внесли важный вклад в научные и технологические инновации. Сегодня в мире действует более 30 000 ускорителей частиц.

Что такое ускоритель элементарных частиц?

Ускоритель частиц — это машина, которая ускоряет элементарные частицы, такие как электроны или протоны, до очень высоких энергий. На базовом уровне ускорители частиц создают пучки заряженных частиц, которые можно использовать для различных исследовательских целей. Есть два основных типа ускорителей частиц: линейные ускорители и круговые ускорители. Линейные ускорители перемещают частицы по линейному или прямому лучу. Круговые ускорители перемещают частицы по круговой траектории.Линейные ускорители используются для экспериментов с неподвижной мишенью, тогда как круговые ускорители могут использоваться как для экспериментов со встречным пучком, так и с неподвижной мишенью.

Как работает ускоритель элементарных частиц?

Ускорители элементарных частиц используют электрические поля для ускорения и увеличения энергии пучка частиц, который направляется и фокусируется магнитными полями. Источник частиц обеспечивает частицы, такие как протоны или электроны, которые должны быть ускорены. Пучок частиц движется внутри вакуума в металлической балочной трубе.Вакуум имеет решающее значение для поддержания среды, свободной от воздуха и пыли, для беспрепятственного перемещения пучка частиц. Электромагниты направляют и фокусируют пучок частиц, пока он проходит через вакуумную трубку.

Электрические поля, расположенные вокруг ускорителя, переключаются с положительного на отрицательный на заданной частоте, создавая радиоволны, которые ускоряют частицы сгустками. Частицы могут быть направлены на фиксированную цель, такую ​​как тонкий кусок металлической фольги, или два пучка частиц могут столкнуться.Детекторы частиц регистрируют и обнаруживают частицы и излучение, возникающие при столкновении пучка частиц с целью.

Как ускорители внесли вклад в фундаментальную науку?

Ускорители элементарных частиц являются важным инструментом открытий для физики элементарных частиц и ядерной физики, а также для наук, использующих рентгеновские лучи и нейтроны, тип нейтральных субатомных частиц.

Физика элементарных частиц, также называемая физикой высоких энергий, задает основные вопросы о Вселенной. Используя ускорители частиц в качестве основного научного инструмента, физики частиц достигли глубокого понимания фундаментальных частиц и физических законов, которые управляют материей, энергией, пространством и временем.

За последние четыре десятилетия источники света — ускорители, производящие фотоны, субатомные частицы, отвечающие за электромагнитное излучение, — и науки, которые их используют, достигли значительных успехов, которые затрагивают многие области исследований. Сегодня около 10 000 ученых в Соединенных Штатах используют рентгеновские лучи для исследований в области физики и химии, биологии и медицины, наук о Земле и многих других аспектов материаловедения и развития.

Как ускорители элементарных частиц улучшили потребительские товары?

По всему миру сотни промышленных процессов используют ускорители частиц — от производства компьютерных микросхем до сшивания пластика для получения термоусадочной пленки и т. Д.

Приложения электронного луча сосредоточены на изменении свойств материалов, таких как изменение пластмасс, для обработки поверхности и для уничтожения патогенов при медицинской стерилизации и облучении пищевых продуктов. Ионно-лучевые ускорители, которые ускоряют более тяжелые частицы, находят широкое применение в полупроводниковой промышленности при производстве микросхем и упрочнении поверхностей материалов, таких как те, которые используются в искусственных соединениях.

Как ускорители частиц используются в медицине?

Десятки миллионов пациентов ежегодно проходят диагностику и терапию на основе ускорителей в больницах и клиниках по всему миру.У ускорителей частиц в медицине есть две основные роли: производство радиоизотопов для медицинской диагностики и терапии и в качестве источников пучков электронов, протонов и более тяжелых заряженных частиц для лечения.

Широкий диапазон периодов полураспада радиоизотопов и их различные типы излучения позволяют оптимизировать их для конкретных приложений. Изотопы, испускающие рентгеновские лучи, гамма-лучи или позитроны, могут служить диагностическими зондами, с инструментами, расположенными вне пациента, для изображения распределения излучения и, следовательно, биологических структур и движения или сужения жидкости (например, кровотока).Излучатели бета-лучей (электроны) и альфа-частиц (ядра гелия) отдают большую часть своей энергии вблизи места излучающего ядра и служат терапевтическими средствами для разрушения раковой ткани.

Лучевая терапия внешними лучами превратилась в высокоэффективный метод лечения онкологических больных. Подавляющее большинство этих облучений в настоящее время выполняется с помощью линейных микроволновых ускорителей, производящих электронные и рентгеновские лучи. Развитие ускорительных технологий, диагностики и методов лечения за последние 50 лет значительно улучшило клинические результаты.Сегодня во всем мире действуют 30 центров обработки протонами и три центра обработки ионно-угольными пучками, и скоро появится много новых центров.

Национальные лаборатории Министерства энергетики сыграли решающую роль в раннем развитии этих технологий. Лос-Аламосская национальная лаборатория помогла разработать линейные ускорители для электронов, которые теперь являются рабочими лошадками дистанционно-лучевой терапии. Национальные лаборатории Ок-Риджа и Брукхейвена внесли значительный вклад в настоящее время в области изотопов для диагностики и терапии. Национальная лаборатория Лоуренса в Беркли впервые применила протоны, альфа-частицы (ядра гелия) и другие легкие ионы для терапии и радиобиологии.

Как ускорители элементарных частиц принесли пользу национальной безопасности?

Ускорители частиц играют важную роль в обеспечении национальной безопасности, включая досмотр грузов, управление запасами и определение характеристик материалов.

В ранних приложениях ускорителей для проверки ядерного топлива использовались коммерческие линейные ускорители электронов низкой энергии для инициирования реакций фотоделения. Эти технологии досмотра расширились до расследования мусорных бочек в 1980-х годах и, в конечном итоге, до досмотра грузов.Изобретение лазера на свободных электронах в 1970-х годах привело к появлению электромагнитного излучения все большей мощности с использованием электронов высокой энергии, что представляло прямой интерес для приложений безопасности и обороны, включая предложенное ВМФ применение лазерной технологии на свободных электронах для защиты кораблей.

Решения для домашних заданий 5

Решения для домашних заданий 5

Глава 20


Q16) Если движущаяся заряженная частица отклоняется в сторону в некоторой области пробел, можем ли мы с уверенностью заключить, что B не равно нулю в том, что область?

РЕШЕНИЕ:
B может быть нулевым, поскольку может быть электрический поле, направленное перпендикулярно скорости.Электрическое поле будет приложить силу к неподвижной заряженной частице и заставить ее отклонить.

Q18) На рис. 20-48 заряженные частицы движутся вблизи тока. несущий провод. Для каждой заряженной частицы стрелка указывает направление движения частицы и + или — указывает знак заряд. Для каждой частицы укажите направление движения магнитная сила из-за магнитного поля, создаваемого проволокой.

РЕШЕНИЕ:



Q29) Немагниченный гвоздь не притянет немагниченную скрепку.Однако, если один конец гвоздя контактирует с магнитом, другой конец привлечет скрепка. Объяснять.

РЕШЕНИЕ:


Магнит вызывает выравнивание спиновых моментов электронов с ось магнита, тем самым эффективно превращая гвоздь в магнит.

P49) Эффект Холла можно использовать для измерения скорости кровотока, потому что кровь содержит ионы, составляющие электрический ток. (а) Есть ли признак влияния ионов на ЭДС? (б) Определите скорость потока в артерия 3.3 мм в диаметре, если измеренная ЭДС 0,10 мВ и B 0,070 Тл. (На практике переменное магнитное поле составляет б / у.)

РЕШЕНИЕ:
(a) Положительные носители заряда будут двигаться вверх; отрицательный Носители заряда также будут двигаться вверх. Отсюда полярность ЭДС
зависит от знака носителя заряда.

(б) l = 3,3 мм, ЭДС = 0,10 мВ, B = 0,20 Тл, электрическое поле
E = v B и (от V = E x d) ЭДС = (E) (l) = ( v ) (B) (l)
v = ЭДС / (B) (l) = 0.10 мВ / [(0,07 Тл) (3,3 мм)] = (10 -4 ) / [(0,07 T) (3,3 x 10 -3 м)] = 0,43 м / с


P50) Протоны движутся по кругу радиусом 5,10 см в магнитном поле 0,566 Тл. поле. Какое значение электрического поля могло сделать их пути прямыми? В каком направлении он должен указывать?

РЕШЕНИЕ:


Нам нужно вычислить E = v B
Протон движется по круговой траектории с силой F = (m) (a cent ) = (m) (v 2 ) / r = e v B
v = e B 2 r / m = 1.57 х 10 6 В / м
E должен указывать перпендикулярно v и B в точке, где протон входит в область
с магнитным полем.

P54) Для контроля загрязнителей воздуха используется масс-спектрометр. это однако трудно разделить молекулы с почти равной массой, такие как CO (28,0106 ед.) И N 2 (28,0134 ед.). Насколько велик радиус кривизну должен иметь спектрометр, если эти две молекулы должны быть разделены на фильм 0.50 мм?

РЕШЕНИЕ:
В области селектора скорости спектрометра E = v B
В области масс-спектрометра сила, с которой частица формирует изогнутую траекторию, равна:
м v 2 / r = q v B ‘
, поэтому r = m v / q B’ = m E / (q B B ‘ ), а радиус кривой равен пропорционально массе частицы.
Для два вида должны быть разделены ( дельта r) = 0,50 мм, нам нужно
( дельта r) = ( дельта м) E / q B B ‘ = ( дельта м) (об / м),
, поэтому r = м ( дельта r) / ( дельта м) = (28.012 u) (0,5 мм) / (0,0028u) = 5,0 м


P58) Прямоугольная петля из проволоки сидит рядом с прямой проволокой, так как показано на рис. 20-59. В обоих проводах есть ток 2,5 А. Что какая величина и направление суммарной силы на петле?

РЕШЕНИЕ:


В петле поле из-за проводов указывает на страница. Силы на сторонах (1) и (3) направлены в противоположные направления
и компенсируются из-за симметрии. Силы на стороны (1) и (4) также направлены в противоположные стороны,
, но они не отменяются.
Поле в точке (2) равно B = µ o (2,5 A) / [(2 пи) (0,03 м)] = 1,7 x 10 -5 T.
Поле в точке (4) равно B = µ o (2,5 A) / [(2 пи) (0,08 м)] = 6,4 x 10 -6 T.
Сила на (2) увеличена и составляет F 2 = ( l 2 ) (I 2 ) (B) = (0,10) (2,5) (1,7 x 10 -5 ) = 4,2 x 10 -6 Н.
Сила на (4) уменьшена и составляет F 4 = ( л 4 ) (I 4 ) (B) = (0.10) (2,5) (6,4 x 10 -6 ) = 1,6 x 10 -6 Н.
Таким образом, чистая сила возрастает и имеет величину 2,6 x 10 -6 Н.

P63) Двухзарядный гелиевый атон, масса которого 6,6 x 10 -27 кг, разгоняется напряжением 2400 В. (а) Каким будет его радиус кривизны в однородном поле 0,240 Тл? (б) Каков его период революция?

РЕШЕНИЕ:
(a) F = m v 2 / r = q v B
m v = q B r
m 2 v 2 = q 2 B 2 r 2 / (2 м) = (2400 В) (3.2 х 10 -19 C) = 7,7 x 10e -16
r = [2 (6,6 x 10 -27 кг) (7,7 x 10 -16 Дж) / [(3,2 x 10 -19 C) 2 (0,24 T) 2 ]] 1/2 = 4,1 x 10 -2 м
(b) T = (2 pi) r / v = (2 pi) rm / (q B r) = ( 2 пи) (6,6 х 10 -27 ) / (3,2 x 10 -19 ) (0,24) с
T = 5,4 x 10 -7

BU CAS PY 106
Эта страница поддерживается Анной Скибинской
askibins @ buphy.bu.edu

Поляризация: ключевое различие между искусственными и естественными электромагнитными полями в отношении биологической активности

Все критические биомолекулы либо электрически заряжены, либо полярны 11 . В то время как естественные неполяризованные ЭМП / ЭМИ любой интенсивности не могут вызвать какие-либо специфические / когерентные колебания на этих молекулах, поляризованные искусственные ЭМП / ЭМИ будут вызывать когерентные вынужденные колебания на каждой заряженной / полярной молекуле в биологической ткани. Это фундаментально для нашего понимания биологических явлений.Эти колебания будут наиболее очевидны для свободных (подвижных) ионов, которые несут чистый электрический заряд и существуют в больших концентрациях во всех типах клеток или внеклеточной ткани, определяя практически все клеточные / биологические функции 11 . Хотя все молекулы колеблются случайным образом с гораздо более высокими скоростями из-за теплового движения, это не имеет никакого биологического эффекта, кроме повышения температуры ткани. Но когерентные поляризованные колебания даже с энергией в миллионы раз меньшей, чем средняя тепловая молекулярная энергия 26 , могут вызвать биологические эффекты.

Вынужденные колебания подвижных ионов, вызванные внешней поляризованной ЭДС, могут привести к нерегулярному закрытию каналов электроприводных ионов на клеточных мембранах. Это подробно описано в Panagopoulos et al . 19,20 . Согласно этой теории — правдоподобие которой в реальных биологических условиях было подтверждено численным тестом 27 — вынужденные колебания ионов в непосредственной близости от датчиков напряжения потенциалозависимых ионных каналов могут оказывать на эти датчики силы, равные или больше, чем известные физиологические силы, закрывающие эти каналы.Нерегулярное закрытие этих каналов может потенциально нарушить электрохимический баланс и функцию любой клетки 11 , что приведет к различным биологическим последствиям / последствиям для здоровья, включая самые пагубные, такие как повреждение ДНК, гибель клеток или рак 28 .

Большинство катионных каналов (Ca +2 , K + , Na + и т. Д.) На мембранах всех клеток животных управляются напряжением 11 . Они взаимно преобразуются между открытым и закрытым состояниями, когда электростатическая сила, действующая на электрические заряды их датчиков напряжения из-за трансмембранного изменения напряжения, превышает некоторое критическое значение.Датчики напряжения этих каналов представляют собой четыре симметрично расположенных трансмембранных положительно заряженных спиральных домена, каждый из которых обозначен как S4. Изменения трансмембранного потенциала порядка 30 мВ обычно требуются для закрытия электропроводных каналов 29,30 . Несколько ионов могут одновременно взаимодействовать с доменом S4 на расстоянии порядка 1 нм, поскольку — за исключением одного иона, который может проходить через поры канала, когда канал открыт — еще несколько ионов связаны близко к поры канала в определенных сайтах связывания ионов (например,г. три в калиевых каналах) 31 . Подробную информацию о структуре и функции катионных электросенсорных каналов можно найти в 11,29,31 .

Рассмотрим, например, четыре иона калия на расстоянии порядка 1 нм от каналов-датчиков (S4) и приложенная извне осциллирующая ЭДС / ЭМИ. Электрическая (и магнитная) сила, действующая на каждый ион из-за любого неполяризованного поля, равна нулю (уравнение 8). Напротив, сила, обусловленная поляризованным полем с электрическим компонентом E , составляет F = Ezq e .Для синусоидального переменного поля Ε = Ε 0 sin ωt уравнение движения свободного иона с массой m i , составляет 19,20 :

, где r — ион смещение из-за вынужденных колебаний, z — валентность иона ( z = 1 для ионов калия), q e = 1,6 × 10 −19 C — элементарный заряд, λ — затухание коэффициент смещения иона (рассчитанный как имеющий значение внутри канала), ω 0 = 2πν 0 0 собственная частота колебаний иона, принятая равной зарегистрированной частоте спонтанных внутриклеточных колебаний иона порядка 0.1 Гц), ω = 2πν (ν частота поля / излучения) и E 0 амплитуда поля 19,20 .

Общее решение уравнения. 22, это 19,20 :

Член в решении представляет постоянное смещение, но не влияет на колеблющийся член. Это постоянное смещение удваивает амплитуду вынужденных колебаний в тот момент, когда поле прикладывается или прерывается, или во время его первого и последнего периодов, и смещение иона будет в два раза больше амплитуды вынужденных колебаний.Для импульсных полей (таких как большинство областей современной цифровой связи) это будет происходить постоянно с каждым повторяющимся импульсом. Таким образом, импульсные поля — теоретически — вдвое более сильные, чем непрерывные / непрерывные поля с теми же другими параметрами, что согласуется с несколькими экспериментальными данными 1,32 .

Амплитуда вынужденных колебаний (без учета постоянного члена в уравнении 23) составляет:

Сила, действующая на эффективный заряд q домена S4 через колеблющийся одновалентно-свободный катион, составляет: , ( r — расстояние свободного иона от эффективного заряда S4).Каждый колебательный катион, смещенный на dr , индуцирует силу на каждом датчике S4:

В то время как в случае неполяризованного приложенного поля и, в случае поляризованного приложенного поля, суммарная сила на датчик канала из всех четыре катиона:

Это даже более важное различие между поляризованными и неполяризованными ЭМП в отношении биологической активности, чем способность интерференции.

Эффективная плата за каждый домен S4 составляет: q = 1.7 q e 30 . Минимальная сила, действующая на этот заряд, обычно необходимая для закрытия канала, равная силе, создаваемой изменением на 30 мВ мембранного потенциала 30 , вычисляется 19 и составляет:

Смещение одного одновалентного катиона внутри канала, необходимое для приложения этой минимальной силы рассчитывается по формуле. 25 должно быть:

Для 4 катионов, колеблющихся в фазе и в параллельных плоскостях из-за внешнего поляризованного поля / излучения, минимальное смещение уменьшается до: dr = 10 −12 м.

Следовательно, любая внешняя поляризованная осциллирующая ЭДС, способная заставить свободные ионы колебаться с амплитудой, способна нерегулярно закрывать катионные каналы на клеточных мембранах. Для z = 1 (ионы калия) и подставляя значения для q e , λ в последнем условии, получаем:

(ν в Гц, 0 в В / м)

Для двухвалентных катионов ( z = 2) (например, Ca +2 ) условие принимает следующий вид:

(ν в Гц, Ε 0 в В / м)

[Подробное описание Кратко представленный механизм можно найти в 19,20 .]

Для электрических полей (ν = 50 Гц) Условие 27 становится,

Таким образом, ЭДС промышленной частоты с интенсивностью, превышающей 5 мВ / м, потенциально способны нарушить функцию клетки. Для количества источников ЭДС N одинаковой поляризации (например, N количества параллельных линий электропередачи) последнее значение делится на N (согласно уравнению 19) в местах конструктивных помех и, таким образом, даже больше. уменьшилось. Такие минимальные значения напряженности поля промышленной частоты распространены в повседневной городской среде и даже ближе к высоковольтным линиям электропередачи 7 .

Для импульсных полей вторая часть условия 27 делится на 2 и становится:

(ν в Гц, Ε 0 в В / м).

Для полей / излучения цифровой мобильной телефонной связи, излучающих импульсы СНЧ с частотой повторения импульсов ν = 217 Гц (среди других частот СНЧ, которые они передают) 33 , Условие 29 становится:

Для частоты повторения импульсов ν = 8,34 Гц ( также включается в сигналы мобильной телефонии) 33,34 , Условие 29 становится:

Как видно из описанного механизма, поле не закрывает канал силами, действующими непосредственно на датчики канала.Для этого потребуется поле порядка трансмембранного поля (10 6 –10 7 В / м). Именно посредничество колеблющихся свободных ионов в непосредственной близости от датчиков канала S4 позволяет таким слабым полям создавать необходимые силы для закрытия канала.

Таким образом, электрические поля СНЧ, излучаемые мобильными телефонами и базовыми станциями сильнее 0,0004 В / м, также потенциально способны нарушить работу любой живой клетки. Это значение интенсивности ELF излучается обычными сотовыми телефонами на расстоянии до нескольких метров и базовыми станциями на расстоянии до нескольких сотен метров 6,34,35 .Для числа вертикально ориентированных антенн мобильной телефонной связи N последнее значение делится на N (согласно уравнению 19) в местах возникновения конструктивных помех.

Мы не делаем различий между ЭМП, прикладываемой извне, и ЭМП, индуцированной внутри живой ткани, особенно в случае СНЧ по следующим причинам: 1. Живая ткань не является металлом для защиты от электрических полей и, конечно же, не является ферромагнитным металлом (Fe, Co, Ni) для защиты от магнитных полей.Более того, известно, что особенно поля КНЧ не могут быть легко экранированы даже клетками Фарадея, и для того, чтобы значительно их минимизировать, рекомендуется полностью заключать их в закрытые металлические коробки 6 . Таким образом, электрические поля СНЧ проникают в живую ткань с определенной степенью затухания, а магнитные поля проникают с нулевым затуханием. 2. Даже в том случае, если поля СНЧ значительно ослаблены во внутренних тканях живого тела, глаза, мозг, клетки кожи или мириады окончаний нервных волокон, которые оказываются на внешнем эпидермисе, подвергаются прямому воздействию интенсивности поля, измеренные снаружи на поверхности живой ткани.

Было показано, что препараты ткани (такие как фибробласты крупного рогатого скота или куриные сухожилия) реагируют на приложенные извне импульсные или синусоидальные электрические поля СНЧ (изменениями скорости синтеза ДНК или белка, скорости пролиферации, выравнивания по направлению поля и т. Д. ), при очень низких порогах ~ 10 −3 В / м 1,36,37,38 . Эти пороговые значения очень близки к прогнозируемым в настоящем исследовании.

За исключением прямого воздействия электрического поля внешним полем, внутри тканей может быть электрическое поле, индуцированное приложенным извне осциллирующим магнитным полем, которое, как объяснялось, проникает в живую ткань с нулевым затуханием.Туор и др. . 34 измерили магнитные поля СНЧ от сотовых телефонов порядка 1 Гс (= 10 −4 Тл) при 217 Гц. Это может индуцировать электрические поля порядка ~ 0,1 В / м в человеческом теле, что можно показать, применяя закон электромагнитной индукции Максвелла:

(,,, напряженности магнитного и индуцированного электрического поля соответственно, приращение длины по замкнутому пути циркуляции индуцированного электрического поля, охватывающего поверхность S.- единичный вектор, вертикальный к поверхности S ).

Допустим, параллельна и независима от l , вертикальна и не зависит от S и l круговая траектория радиуса α, включая поверхность S , уравнение. 32 становится:

, что дает:

( E ind в В / м, B в T, α в м).

Заменяя в последнем уравнении α = 0,20 м (достаточно большой радиус для окружности тела взрослого человека) и [согласно Туору и др.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *