Site Loader

Содержание

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ — это… Что такое ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ?

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ
ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

— то же, что асинхронный двигатель.

Самойлов К. И. Морской словарь. — М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941

.

  • ИНДУКЦИОННАЯ КАТУШКА, КАТУШКА РУМКОРФА
  • ИНДУКЦИЯ

Смотреть что такое «ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ» в других словарях:

  • индукционный двигатель — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN induction motor …   Справочник технического переводчика

  • репульсионно-индукционный двигатель — Репульсионный двигатель, имеющий на роторе дополнительную короткозамкнутую обмотку …   Политехнический терминологический толковый словарь

  • синхронизированный индукционный двигатель — Неявнополюсный синхронный двигатель, у которого индуктор конструктивно выполнен как вторичный якорь фазного асинхронного двигателя …   Политехнический терминологический толковый словарь

  • индукционный мотор — asinchroninis variklis statusas T sritis automatika atitikmenys: angl. asynchronous motor; induction motor vok. Asynchronmotor, m; Induktionsmotor, m rus. асинхронный двигатель, m; индукционный мотор, m pranc. moteur à induction, f; moteur… …   Automatikos terminų žodynas

  • индукционный счетчик электроэнергии — variklinis skaitiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Indukcinis elektros energijos kiekio matuoklis. atitikmenys: angl. motor meter vok. Motorzähler, m; Umlaufzähler, m rus. индукционный счетчик электроэнергии, m;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Бензиновый двигатель внутреннего сгорания — Бензиновый двигатель W16 Bugatti Veyron Бензиновые двигатели  это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической и …   Википедия

  • Четырехтактный двигатель — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • асинхронный двигатель — asinchroninis variklis statusas T sritis automatika atitikmenys: angl. asynchronous motor; induction motor vok. Asynchronmotor, m; Induktionsmotor, m rus. асинхронный двигатель, m; индукционный мотор, m pranc. moteur à induction, f; moteur… …   Automatikos terminų žodynas

  • счетчик-двигатель — variklinis skaitiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Indukcinis elektros energijos kiekio matuoklis. atitikmenys: angl. motor meter vok. Motorzähler, m; Umlaufzähler, m rus. индукционный счетчик электроэнергии, m;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • ЛИД — лидер абзац ЛИД линейный индукционный двигатель линейный индуктивный двигатель Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. ЛИД лист исполнения доставки например: ЛИД для вывоза материала… …   Словарь сокращений и аббревиатур

Индукционный двигатель переменного тока — Инженер ПТО

Класс 214, 17 — 15012

ПАТЕНТ HA ИЗОБРЕТЕНИЕ

ОПИСАНИЕ индукционного двигателя.

К патенту В. C. Еулебакина, заявленному 22 июня

1928 года (заяв. свид. No 29231).

0 выдаче патента опубликовано 30 апреля 1930 года. Действие патента распространяется на 15 лет от 80 апреля 1930 года.

Одним из недостатков, которым обла- дают обычные индукционные двигатели. является то, что эти двигатели в большинстве случаев для создания магнитного поля требуют от сети намагничивающего тока, вследствие чего эти двигатели, в особенности малой мощности, работают с малым коэфициентом мощности. С целью увеличения коэфициента мощности индукционных двигателей прибегают ко всякого рода комйенсационным устройствам. Однако, в большинстве случаев, компенсационные устройства индукционных двигателей обладают наличием коллектора, который является не особенно желательной частью машины.

В связи с этим обстоятельством является необходимым создание таких двигателей переменного тока, которые бы в своем устройстве не имели коллектора и не требовали постоянного тока для создания магнитного поля, как это имеет место в синхронных двигателях.

Предлагаемое изобретение касается индукционного двигателя с ротором, выполненным из постоянного магнита, и имеет целью создание двигателя. который не требовал бы намагничивающего тока из сети и, следовательно, работал бы с коэфицпентом мощности около единицы.

На чертеже фиг. 1 изображает схему пре слагаемого индукционного двигателя; фиг. 2 †видоизменен его ротора.

Первичная цепь предлагаемого двигателя устраивается так же, как и в обычных двигателях, и все устройство этой части статора ничем не отличается от статора обычных двигателей переменного тока (фиг. 1).

Вторичная цепь двигателя, или ротор 2, выполняется в виде беличьего колеса илп с коротко замкнутой обмоткой, но только, тело ротора выполняется не пз обычной динамной или простой стали, а из магнитной стали, при чем тело ротора предварительно соответствующим образом термически обрабатывается и намагничивается.

Таким образом, ротор превращается в сильный двухполюсный, четырехполюсный или многополюсный постоянный магнит (число полюсов выбирается в зависимости от скорости вращения двигателя и делается равным числу полюсов статора).

Последние успехи в области получения специальных сортов сталей дают возможность создать весьма сильные и устойчивые постоянные магниты; так, например, высококобальтовые стали позволяют изготовлять постоянные магниты, обладающие остаточной магнитной индукцией в

9000+10000 CGS, а задерживающей силой до 250 гауссов. Такой высокосортный материал может быть с успехом использован для постоянных магнитов, геометрическая форма которых оказывает сравнительно малое влияние на уменьшение остаточной магнитной индукции при разомкнутом или полузамкнутом состоянии магнитной цепи. ф ф

Пр едм ет п ате нт а.

Тип. Рилрогр. Упр. Управх. В.-M . Сил РККА. Ленинград здание Гл. Адмиралтейства.

С целью увеличения устойчивости работы двигателя ротор рекомендуется снабжать прорезами, которые делают полюсы. постоянного магнита более выявленными.

Тело ротора может делаться из сплошного куска стали или быть составным из отдельных тонких или толстых плит.

В двигателях большей мощности, с целью экономии в дорогом материале, сердечник ротора предлагается выполнять из обычной стали, а зубцы делать из магнитной стали и вставными так, как это указано на фиг. 2.

В этом случае обмотку располагают в пазах, имеющихся между отдельными магнитами.

Пуск в ход такого двигателя представляет собою не что иное, как пуск в ход возбужденного синхронно-индукционного двигателя, снабженного пусковой обмоткой в виде беличьего колеса. Когда скорость вращения достигает почти до синхронной, двигатель автоматически входит в синхронизм. В дальнейшем двигатель работает, как синхронный двигатель.

1. Индукционный двигатель с ротором, выполненным из постоянного магнита, характеризующийся тем, что постоянный магнит имеет цилиндрическую форму и снабжен короткозамкнутою обмоткою (фиг. 1).

2. Видоизменение охарактеризованного в п. 1 двигателя, отличающееся тем, что постоянные магниты в виде зубцов укреплены в теле ротора, а обмотка расположена в пазах, имеющихся между отдельными магнитами (фиг. 2).

Часть 3: История Теслы

Кристи Николсон вспоминает свою первую встречу с Илоном Маском на одной из вечеринок в 1989 году.

«Кажется, со второго предложения он заявил, что очень много раздумывает об электрических автомобилях», – сказала Кристи. «А потом он повернулся ко мне и спросил, думаю ли я тоже об электромашинах?»

В 1989 году электрокары были достаточно странным предметом для размышлений. Чтобы понять причины, по которым Маск так был одержим мыслями об электромашинах, давайте сначала попытаемся разобраться, что вообще такое электромобили и как они работают.

В настоящее время достаточно много типичных современных машин, которые считаются более экологически чистыми по сравнению с их бензиновыми аналогами – гибридные машины, заряжаемые гибридные машины, электрические машины (или электромобили, ЭМ). Также сейчас часто обсуждается другой вид машин – автомобили на водородном топливе. Общей чертой перечисленных выше автомобилей является наличие электродвигателя.

Существует два вида электромоторов – индукционный двигатель переменного тока и вентильный двигатель постоянного тока. Ввиду того, что читающие данные строки вряд ли уже смакуют губы в предвкушении насладиться ликбезом длиной на три абзаца о различиях, давайте для простоты считать их примерно одинаковыми.

Электродвигатель – это своего рода сосиска в тесте, где электричество подаётся на внешнюю неподвижную мучную часть (статор), заставляющее сосиску (ротор) крутиться. Ротор соединён с осью, которая и вращает колёса. Как-то вот так: 29

Как работает индукционный мотор переменного тока

Одним из наиболее типичных электродвигателей является индукционный мотор переменного тока (именно такие установлены в машинах Тесла). Индукционным он называется, т.к. отсутствует физический контакт между ротором и статором – электричество в статоре создаёт вращающееся магнитное поле, которое проникает в ротор посредством электрической индукции и вызывает его вращение.

Статор генерирует вращающееся магнитное поле посылая электричество через трёх-фазовую систему: 30

Всего имеется три различных провода, каждый с чередующейся (переменной) тягой – просто посмотрите на стрелку одного цвета и вы увидите, что она бегает туда-сюда. Но эти три провода расположены таким образом, что направление тяги статора постепенно меняется по кругу. При добавлении ротора в такое магнитное поле заставляет его вращаться:

Следующие типы машин используют электродвигатель.

Гибридные машины (гибриды, гибридные электрические автомобили) несут на своём борту одновременно и электродвигатель, и бензиновый двигатель внутреннего сгорания. Гибриды не втыкают в розетку – горящий бензин заряжает их батарею. Также батарея заряжается с помощью электромотора при торможении автомобиля. Как правило, джоули кинетической энергии машины во время движения оказываются потерянными при торможении и уходят в виде тепла. При регенеративном торможении часть этой кинетической энергии посылается обратно в аккумулятор, чтобы использоваться позднее. Электрический компонент гибридной машины замещает часть потребности в сжигании бензина, увеличивая расстояние, которое способна проехать машина при том же расходе топлива. Снижаются выхлопы, уменьшаются расходы на бензин. Гибриды – огромный технологический шаг по сравнению с обыкновенными автомобилями.

Но гибриды всё равно не ахти. Почему? Они только частично улучшают ситуацию с выхлопами, но не решают её – им же всё равно необходим бензин для движения. Мир, где люди на 100% передвигаются с помощью Приусов, всё равно остаётся миром в 100%-ой зависимости от нефти.

Втыкаемые в розетку гибридные машины слегка получше обыкновенных гибридов. Подобные машины (Шеви Вольт, Хонда Аккорд, Форд Фьюжн Энерджи) позволяют подзаряжать батарею автомобиля дома и, как правило, способны проехать около 16-64 км на заряде батареи, прежде чем начнётся потребление бензина. Обычно этого оказывается достаточно для большинства людей с их ежедневными потребностями – иными словами, водители могут обходиться без нужды заправляться бензином длительное время.

Но если мы подобрались так близко с электромоторами и батареями – почему же не пойти до самого конца?

Водородные машины являются полностью электрическими, но они не используют батарею. Вместо этого их нужно заправлять топливом наподобие бензиновой машины – только вместо бензина они потребляют сжатый водород. Водород смешивается с кислородом воздуха для генерирования электроэнергии, которая и питает двигатель автомобиля. Данные машины не выделяют выхлопов, т.к. продуктом сгорания является чистая вода. Здорово ведь.

Маск же не понимает, как некоторые могут приводить доводы за использования водородных автомобилей – в свою очередь большое число автомобильных компаний (Тойота, Хонда, Дженерал Моторз) в настоящее время вливают огромные средства в производство водородных машин. Чтобы разобраться в противоречиях, я прочитал 12 статей за и против данной технологии. В результате я не остался сильно убеждённым, почему водородные автомобили ждёт многообещающее будущее по сравнению с электрокарами.

Из массы недостатков водородных машин по сравнению с электрическими можно ограничиться лишь следующими:

1) Водородные машины для производства их топлива в итоге оказываются зависимы от природного газа (ископаемое горючее), в то время как производство электричества для электромобилей становится со временем только чище.

2) Запас энергии, расстояние пробега и стоимость водородных топливных элементов оказываются очень схожими с показателями батарей для электромашин, а батареи электромобилей со временем будут улучшаться и дешеветь в производстве.

3) Водород является достаточно опасным и непростым в обращении веществом, особенно очевидным это становится в сравнении с электророзетками для подзарядки электромашин.

4) В будущем, когда в норму войдёт подзарядка машины в собственном гараже, заезд на заправку будет казаться чем-то нелепым и архаичным.

А вот мнение Маска из нашей имейл переписки касательно водородных машин: «Если вы используете электричество солнечной панели для зарядки аккумулятора, то можно достичь 90% производительности. Просто и дёшево. Ежели вы попытаетесь с помощью электричества сперва разложить воду, затем отделить водород до немыслимой чистоты, сжать его до невероятного давления (или что хуже – перевести в жидкую форму), перекачать в огромный (даже для жидкого варианта) водородный бак машины и, в конце-концов, соедините топливо с кислородом – то при большом везении, вам удастся добиться 20% производительности. Дорого, сложно, громоздко и супер неэффективно. Водород проигрывает на всех уровнях, включая время заправки бака по сравнению с заменой батареи Теслы на заряженную. Стоимость водородных топливных элементов высока. Подумайте сами – если бы топливные элементы хоть в чём-то превосходили литиевые батареи – их бы как минимум использовали в спутниках, некоторые из которых стоят более $500 миллионов. Но этого не происходит.»

Наконец, мы подобрались к электромобилям (или ЭМ) типа Ниссан Лиф, БМВ ай3, Форд Форкус Электрик и Тесла Модел Эс. Электрокары просты в устройстве – они состоят из большой батареи, которую вы периодически заряжаете, и электромотора питающегося от неё. И никакой жидкости.

В теории ЭМ вполне оправданы. Давайте попробуем забыть все остальные машины на секунду и взглянем на преимущества электромотора по сравнению с бензиновым двигателем внутреннего сгорания:

Электродвигатели в большинстве случаев более удобны, чем их бензиновые аналоги. Машины на бензине вынуждены ездить на заправку. Обладатели ЭМ, как и свой телефон, втыкают свои транспортные средства на ночь в розетку для подзарядки – никаких остановок для покупки бензина. Бензиновый двигатель гораздо более сложен в устройстве по сравнению с электромотором. Бензиновый мотор состоит из более чем 200 деталей, электрический – менее чем из десяти. Бензиновым двигателям необходима коробка передач (трансмиссия), система выхлопа, шестерёнки и куча других покрытых маслом херовин. В ЭМ все эти компоненты отсутствуют, если вы заглянете под капот – вы обнаружите пустое пространство вроде багажника. Бензиновые двигатели нуждаются в моторном масле – отсюда необходимы периодические заезды на сервис для его замены. ЭМ это ни к чему. Дополнительная сложность в устройстве бензиновых машин означает, что они требуют больше обслуживания по сравнению с электромобилями.

Стоимость питания электромотора гораздо ниже стоимости питания бензинового двигателя. Даже без учёта дополнительных расходов на замену масла и ремонт, сам по себе бензин стоит гораздо дороже электричества. Давайте взглянем на цифры.

В среднем электромобиль может проехать 5 км потратив один киловатт-час (кВт⋅ч) электричества. В США стоимость кВт⋅ч составляет 12 центов. Отсюда получается, что проехать один километр на электромобиле стоит около 2,5 цента.

Высчитать стоимость для бензиновой машины немного сложнее, т.к. цены на бензин нестабильны, а расход топлива бензиновых машин сильно варьирует. При лучших раскладах в условиях необычно дешёвого бензина ($0,40 за литр) и низкого расхода топлива (скажем, 15 км/л) стоимость проехать один километр составляет те же 2,5 цента. В худшем случае при ценах на бензин в $1.08 за литр и расходе в 6 км/л проехать один километр уже стоит 18 центов. При характерном годовом пробеге в 19 тысяч км в самом лучшем варианте бензиновые машины показывают такие же результаты, как и электромобили, а в плохом варианте кататься год на бензине стоит на $3000 дороже.

Автомобили с бензиновыми двигателями являются одной из двух наиболее значимых причин в развитии энергетического и климатического кризисов. Выше мы уже обсуждали данный аспект – транспорт, сжигающий нефть, ответственен за треть всех мировых выбросов, ведёт к загрязнению городов, ставит одни страны в зависимость от других. Электромоторы функционируют без выхлопов. Да, они потребляют электроэнергию, произведённую в том числе и грязным способом, но мы обсудим этот вопрос немного позднее.

Очевидно именно поэтому Маск поведал Кристи Киколсон о своих раздумьях об электромашинах. Электромотор определённо проще, чище и является более разумным долговременным решением для использования в автомобилях.

Но при своём первом появлении, произошедшем более ста лет назад, электромоторы обладали рядом существенных недостатков, которые и предотвратили их широкое применение. А ввиду того, что электромашины перестали производиться ещё тогда, недостаточно времени и денег оказалось вложено для решения всё тех же самых недостатков. Как правило, выделяют три основных беспокойства касательно жизнеспособности электроавтомобилей:

1) Дальность. В действительности здесь заключены три следующих проблемы:

А) Хватит ли заряда батареи для поездок на дальние расстояния? Или же ЭМ годятся только для местных поездок?

Б) Куда податься в случае необходимости подзарядить батарею в пути? Не окажусь ли я на нуле посреди поля?

В) Если всё-таки удастся отыскать станцию подзарядки в пути, придётся ли мне ждать пять часов для полного заряда батареи?

Вышеперечисленные вопросы потенциальных покупателей электромашин относятся к т.н. «беспокойствам о дальности».

2) Разгон. Наиболее распространённый электромобиль в нынешние дни – машинка для перемещения по полю для игры в гольф, что не особо возбуждает автовладельцев. Никто не хочет авто, которое управляется как кусок кала, а если говорить о стремительном ускорении, на ум, как правило, приходят мощные бензиновые двигатели, а не электромоторы.

3) Цена. С самого начала электромобили стоили дороже своих бензиновых аналогов, в основном из-за высокой стоимости батареи.

Сто лет назад, в 1910 году, люди указывали на те же самые три основных проблемы электромобилей, что отчасти является причиной, почему бензиновые автомобили со временем стали доминировать на рынке. У бензиновых автомобилей имелась куча собственных проблем, но Форд умело разобрался, как с ними можно справится – он в своё время совершил то, чего никто не смог сделать для электромашин.

Я поинтересовался мнением Маска о Генри Форде. Вот его ответ: «Форд был человеком, который при появлении препятствий на своём пути, умел находить обходы – он просто-напросто решал проблемы. Он был способен сфокусироваться на нуждах потребителя, даже если сам потребитель толком не мог сообразить, что же ему нужно.»

Когда же в 2003 году Маск завершил раздумья об электромашинах и взялся, собственно, их делать, шансы были отнюдь не на его стороне. Продолжали существовать слишком большие препятствия для входа на рынок, не позволяющие автомобильным стартапам преуспеть практически в течение целого века. В условиях неучтённой стоимости углеродных выбросов, открывать компанию по продвижению электрокаров было сродни игры в баскетбол, где все остальные игроки кроме тебя могут безнаказанно совершать фолы. Доминирующие гигантские нефтяные компании делали всё в своих силах, чтобы срезать на корню любую попытку в продвижении электромашин. Более того, электрокары являлись новым типом автомобилей, развитие которых фактически оказалось остановлено с момента, когда первые производители опустили руки век назад. Дорогостоящий и долгий процесс по навёрстыванию упущенного всё ещё предстояло пройти – все из трёх перечисленных недостатков ЭМ всё ещё нужно было каким-то образом преодолеть.

Встаёт главный вопрос – электромашины не смогли преуспеть в прошлом из-за наличия неразрешимых проблем или же просто до сих пор не нашлось человека, который бы оказался своего рода Генри Фордом для электромобилей?

Что можно сказать об электродвигателе? Такой мотор является таким электромеханическим девайсом, который преобразует электрическую энергию в механическую энергию. В случае работы переменного тока, который является трёхфазным, наиболее часто применяющимся мотором является трехфазный индукционный мотор, ведь данный вид мотора не требует никакого стартового устройства. Можно также сказать, что данный двигатель является самозапускающимся индукционным мотором.

Для того чтобы лучше понять принцип действия трёхфазного индукционного двигателя , необходимо иметь достаточно чёткое представление об основной особенности, которая присуща конструкции данного мотора. Данный электродвигатель имеет две части, которые можно назвать основными. А именно, это статор и ротор. Чтобы хорошо представлять себе работу данного устройства нужно знать достаточно об этих составляющих.

Статор

Статор данного индукционного двигателя сделан из определённого количества слотов, для того чтобы получилась трёхфазная обмотка, которая подключена к источнику переменного тока, являющегося трёхфазным. Трёхфазная обмотка размещена в слотах таким образом, что она производит магнитное поле, которое является вращающимся. Это происходит после третьей фазы. Обмотка должна получать питание в виде переменного тока.

Ротор

Ротор данного индукционного мотора содержит многослойный сердечник, который имеет цилиндрическую форму. Этот сердечник с параллельными слотами, которые могут держать элементы, проводящие электрический ток. В роли таких элементов в данном случае выступают тяжёлые медные или алюминиевые стержни, которые подходят к каждому слоту и они замкнуты конечными кольцами.

Слоты не то что бы абсолютно параллельны оси вала. Они несколько скошены. Это обусловлено тем, что такое расположение уменьшает магнитный гудящий шум и может помочь избежать потери скорости данного мотора

О том, как работает этот двигатель

Создание магнитного поля, которое вращается

Статор мотора содержит смещённые перекрытые обмотки. Электрический угол смещения составляет 120º. Тут основная обмотка или же статор подключены к источнику тока, который является переменным и трёхфазным. Это обстоятельство уже, в свою очередь, служит причиной возникновения такого магнитного поля, которое вращается, причём вращается оно с синхронной скоростью.

Секреты вращения:

Согласно закону Фарадея “электродвижущая сила, которая вызвана в какой-либо электрической схеме, является следствием процента изменения магнитного потока, который идёт через схему”. Так как обмотка ротора в индукционном моторе тоже замкнута через внешнее сопротивление или прямо замкнуто замыкающим кольцом, и отрезает магнитное поле статора (вращающееся), электродвижущая сила появляется на медном стержне ротора, и благодаря этой силе электрический ток течёт через элемент ротора, который специально для этого предназначен.

Здесь относительная скорость между вращающемся магнитным потоком и статичным проводящим элементом ротора является причиной возникновения электрического тока. Отсюда, исходя из закона Ленца, ротор будет вращаться непосредственно в том же направлении, чтобы относительная скорость уменьшилась.

Таким образом, исходя из принципа действия этого электрического двигателя, можно заметить, что скорость, которую имеет ротор, не должна достигать синхронной скорости, которая производится статором. Если скорости были бы равны, то не было бы такой относительной скорости, так что не возникало бы и электродвижущей силы в роторе, не было бы потока электрического тока, и поэтому не было бы крутящего момента.

Следовательно, ротор не может достичь синхронной скорости. Разница между скоростью статора (синхронная скорость) и скоростью ротора называется проскальзыванием. Вращение магнитного поля в индукционном двигателе имеет преимущество, что не нужны никакие электрические связи с ротором.

Пора подвести итоги. Из перечисленных выше особенностей трехфазного индукционного мотора следует, что:

— Данный электродвигатель самозапускающийся и не нуждается в помощи какого-то другого элемента для своего старта.

— Этот мотор имеет меньше противодействия арматуры и искрообразования на щётках в силу того, что отсутствуют коммутаторы и щётки, которые могут вызывать образование искр.

— Электродвигатель данного типа прочен по конструкции, что, конечно же, является большим плюсом.

— Мотор экономичный, что делает его интересным решением во многих областях; соответственно, данный двигатель имеет неплохие перспективы, ведь он будет достаточно популярен и востребован.

— Данный электродвигатель довольно лёгок в обслуживании, что опять же позволяет назвать его перспективным, ведь данное качество интересно любому пользователю подобных устройств, который понимает важность этого нюанса.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Индукционный электродвигатель переменного тока. Электродвигатели: какие они бывают

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.

Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая — вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.


Следует помнить, что использование однофазного электродвигателя — это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.


Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

Выделяют четыре основных типа электродвигателей:

Индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

Индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),

Индукционный двигатель с реостатным пуском (RSIR) и

Двигатель с постоянным разделением емкости (PSC).

На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.



Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.

Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.



Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.

Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.


Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.


Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.

Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.

Электродвигатели CSCR — самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.


Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как «электродвигатели с расщеплённой фазой». Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.

Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление — выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.



Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.

Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.


Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.



Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов — обычно меньше 200% от номинального тока нагрузки, — что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.

Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).

Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.


Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.


Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.

Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.



О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.


Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:


Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения — например 200 В.

Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ — например, пусковой момент будет ниже.

Заключение

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.

Особенности асинхронных двигателей

Применение

Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.

Асинхронная машина не подключается к сети постоянного тока.

Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.

При выборе асинхронного двигателя зачастую возникают проблемы с определением:

  • его мощности;
  • характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
  • расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
  • марки и сечения провода;
  • устройств защиты и управления, которыми оснащен преобразователь.

Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.

Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.

Устройство АД

Ротор и статор – главные элементы индукционного двигателя.

Схема устройства асинхронного агрегата

Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).

На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.

Ротор вращается по ходу движения магнитного поля.

Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.

Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.

Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».

Конструкция «беличья клетка»

В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.

В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.

Однофазная индукционная машина

Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.

Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.

Схема работы однофазного двигателя малой мощности

В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.

Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.

В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.

Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.

Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:

  • с усиленным сопротивлением фазы пуска;
  • агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
  • оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
  • комбинированные с фазным управлением, короткозамкнутым ротором;
  • с экранированными полюсами.

Трехфазный двигатель

В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при взаимодействии с фазным магнитным вращающимся полем статора вызывает вращение определенной частоты вслед за полями между ним и ротором.

Схема работы индукционного трехфазного агрегата

Данный принцип разработал академик из Франции Араго. Иными словами, если подковообразный магнит установить вблизи металлического диска свободно закрепленным на оси и вращать его с поддержанием определенной частоты оборотов, то металлический диск без дополнительного управления начнет движение за магнитом, однако скорость его вращения будет меньше, чем скорость движения магнита.

Данное явление обусловлено правилами электромагнитной индукции. Во время вращения около поверхности металлического диска полюсов магнита в контурах под полюсом образуется электродвижущая сила соответствующей частоты, и возникают токи, создающие магнитное поле металлического диска. Магнитное поле диска начинает взаимодействовать с полем полюсов вращающегося магнита, в результате чего диск «увлекается» своим магнитным полем.

Так и в асинхронном агрегате, в качестве металлического диска выступает короткозамкнутая обмотка ротора, а в качестве магнита – магнитопровод и обмотка статора.

Чтобы облегчить управление и запуск трехфазного электродвигателя при к однофазной сети (переменного, а не постоянного тока), на момент пуска дополнительно устанавливается параллельно с рабочим и пусковой конденсатор. Им компенсируют отсутствие фазы и соответствующей частоты поля.

Запуск трехфазного двигателя

Двигатель в работе. Видео

О том, как работает асинхронный двигатель в режиме генератора, можно посмотреть в этом видео. Здесь представлены дельные советы по оптимизации процесса, в том числе и те, которые относятся к схемам управления фазным вращением.

Таким образом, зная особенности работы индукционной машины, с уверенностью можно сказать, что преобразование в механическую энергию электрической происходит в результате вращения вала электродвигателя (ротора).

Скорость вращения магнитного поля ротора и статора напрямую зависит от частоты питающей сети и количества пар полюсов. В случае, когда тип двигателя ограничивает число пар полюсов, то для управления изменением частоты питающей сети в больший диапазон используют частотный преобразователь.

Выше рассмотрены особенности управления фазным вращением. Также приведены отличия конструкции с короткозамкнутым минимальным ротором, который используется для уменьшения сопротивления. Следует помнить, что устройство некоторых агрегатов подразумевает возможность их применения только в цепях постоянного тока. Преобразователи с фазным вращением работают при питании переменным током.

Cтраница 4

На этом первом изобретении я показал, как практическая польза может отступить перед изящным решением, венчающим задачу. В подобной ситуации нетрудно погрязнуть в анализе и убить на это годы. И наоборот, можно, как произошло со мной, провести эти годы с большой пользой, выясняя такие подробности работы индукционных двигателей, какие невозможно извлечь из книг, научных статей или лекций.  

При поступлении сигнала в управляющую обмотку возникает вращающееся эл-л ИПТичеСкое магнитное. Это поле наводит токи в теле цилиндра ротора индукционного двигателя. В результате взаимодействия наведенных токов с вращающимся полем создается вращающий момент. Величина и направление скорости вращения индукционного двигателя зависит ч от величины и фазы управляющего напряжения. С изменением фазы управляющего напряжения с 90 на — 90 (фаза управляющего напряжения при этом должна повернуться на 180) направление вращения ротора меняется на обратное.  

Вследствие неполной трансформаторной связи между обмотками возникает добавочное рассеяние через воздушный зазор. Величина добавочного рассеяния зависит от углового положения ротора. Поэтому эквивалентные параметры двигателя при неподвижном роторе могут значительно зависеть от углового положения ротора, что приводит к изменению пускового момента. Это явление будет наиболее ощутимо для исполнительных индукционных двигателей с небольшим числом пазов ротора.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 — 0 05 сек, а для двигателей на 400 гц — около 0 1 — 0 2 сек.  

Согласно формулам (3 — 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 — 0 07 сек, а для двигателей на 400 гц — около 0 2 — 0 3 сек.  

В случае же значительного кранового и транспортного оборудования вопрос о ходе тока является менее определенным. Окончательное право коллекторные двигатели переменного тока отвоевали себе пови-димому лишь в регулируемых приводах текстильной пром-сти (кольцевой ватер), хотя вопрос о приводе ситцепечатных машин с пределами регулирования от 1: 4 до 1: 10 от двигателей постоянного или переменного тока является пока спорным. Здесь возможно применение как постоянного тока по принципу прямого и обратного включения, так и шунтовых коллекторных двигателей с возбуждением со статора. Регулируемый многомоторный привод рогулечных ватеров конструируется, как указано выше, в форме регулируемых индукционных двигателей с изменением частоты питающего тока при помощи особого преобразователя частоты. Борьба между постоянным и переменным током идет и в металлообрабатьтвающей промышленности. Надлежащее использование электрически регулируемых металлообрабатывающих станков современной конструкции требует регулируемых двигателей. Коллекторные двигатели переменного тока в силу высокой стоимости и большого веса совершенно не привились для металлообрабатывающих станков. Борьба постоянного тока, имеющего в случае регулируемых реверсивных и часто пускаемых приводов ряд технич.  

Одно из плеч моста включает емкостный датчик, переменная емкость которого может быть пропорциональна измеряемой величине. Во второе плечо моста включена постоянная емкость. Два противоположных плеча моста составлены из омических сопротивлений, одно из которых переменно. Нагрузкой выходного каскада усиления является трансформатор Тр %, во вторичной обмотке которого включена управляющая обмотка индукционного двигателя.  

К настоящему времени положение сильно изменилось. Рост мощности станций и отдельг-ных распределительных трансформаторов говорит за возможность применения коротко-замкнутых двигателей значительно бблыпих мощностей, чем допускалось в Европе и у нас до сих пор. Те преимущества, которыми обладают короткозамкнутые двигатели по сравнению с двигателями с кольцами (простота обслуживания, более высокий коэфици-ент мощности и кпд, меньшая стоимость), вызвали широкое применение короткозам-кнутых индукционных двигателей как в Европе, так и в СССР.  

Механические характеристики серводвигателя оказывают большое влияние на его поведение. Форма механической характеристики в значительной степени зависит от значения полного сопротивления ротора. На рис. 7 — 6 показаны кривые механических характеристик для нескольких значений сопротивления ротора. Сопротивление ротора обычно изменяется с увеличением удельного сопротивления проводящего материала, используемого в роторе. Индукционные двигатели, применяемые в качестве силовых, проектируются с минимальным сопротивлением ротора, что дает максимальный момент при малых значениях скольжения. Увеличение роторного сопротивления линеаризует механическую характеристику.  

Cтраница 2

В нулевую группу входят однофазные системы с трех-и двухлучевыми индукционными двигателями, а также системы с магнесинами и с ферродинамометрами.  

Асинхронные машины, в виде трехфазных асинхронных двигателей (индукционные двигатели), приобретают в: е большее значение. Причиной является простая конструкция их и главным образом все большее распространение районных станций, распределяющих электрическую энергию в форме трехфазного тока.  

В том случае, когда пуск станка может производиться включением индукционного двигателя нормальной конструкции и мощности, близкой к той, которая потребляется станком во время его работы, вопрос должен решаться в принципе в сторону отказа от главной сцепной муфты. В остальных случаях необходимо принять в расчет при сравнении варианта с муфтой и без нее удорожание двигателя (если оно имеет место), стоимость вспомогательных устройств и аппаратуры управления, а также специфические недостатки, присущие указанным выше способам пуска. Решение в пользу сохранения муфты или отказа от нее определяется результатами технико-экономического расчета для сравниваемых вариантов. Так как главная фрикционная муфта станка является одновременно элементом, предохраняющим станок от поломок при случайном возрастании крутящего момента сныше установленной нормы, то в случае отказа от муфты обязательно должны быть предусмотрены автоматически действующие механические предохранительные устройства или электрическая аппаратура, выполняющая ту же функцию.  

В системах с несущей частотой этот метод получения резонансных комплексных нулей посредством присоединения параллельных ветвей осуществляется индукционным двигателем для демодуляции, схемой из массы, пружины и демпфера для создания резонансного контура п демодулирующим индукционным датчиком. Выходной сигнал индукционного датчика вычитается из сигнала входа. Это также создает два комплексных нуля относительно частоты сигнала информации (огибающей) или четыре комплексных нуля относительно модулированной несущей.  

Трансформаторы с подвижной обмоткой (потен-циал-регуля-юры), предназначенные для более высоких напряжений, выполняются в форме индукционного двигателя с закрепленным якорем, который переставляется в зависимости от требующегося дополнительного напряжения, складывающегося последовательно с основным.  

В качестве двигателей для следящих систем могут быть использованы как сериесные, так и шунтовые двигатели постоянного тока, а также индукционные двигатели переменного тока.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами 7 и Т2, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами Тг и 7, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 — 0 05 сек, а для двигателей на 400 гц — около 0 1 — 0 2 сек.  

Согласно формулам (3 — 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 — 0 07 сек, а для двигателей на 400 гц — около 0 2 — 0 3 сек.  

Сложнее дело обстоит в случае регулируемых приводов. Индукционный двигатель трехфазного тока сам по себе следует считать практически почти нерегулируемым. Однофазные репульсионные двигатели, конкурирующие при малых мощностях с трехфазными коллекторными, в силу худшего использования материала постепенно вытесняются трехфазными. Подобно тому как это имело место в области электрической тяги, в ряде промышленных установок происходит борьба между постоянным и переменным током у регулируемых приводов. В случае единичных регулируемых установок порядка нескольких сот kW, например нереверсивные прокатные станы, шахтные вентиляторы, регулируемые воздуходувки, когда пределы регулировки не превышают 1: 2, применяются каскадные агрегаты в виде сист. Установки трехфазных коллекторных двигателей большой мощности (300 — 400 kW) чрезвычайно редки. Реверсивные прокатные станы (номинальной мощностью в 2 000 — 5 000 kW), требующие регулировки в широких пределах (до 200 — 300 %) номинальной скорости, приводятся исключительно двигателями постоянного тока, питаемыми от трехфазной сети по сист. В случае нескольких регулируемых установок большой и средней мощности, расположенных вместе, применяются теперь двигатели постоянного тока (напр, бумагоделательные машины, прокатные металлургич. При пределах регулировки больше чем 1: 3, для регулирования широко применяется система Леонарда; она же используется в таких случаях и для пуска в ход. США и Франции применяется постоянный ток; этот род тока принят и в СССР для вновь строящихся металлургич. В Германии эк е динамостроительные з-ды усиленно пропагандируют внедрение в эту область индукционных двигателей. Коллекторные двигатели переменного тока, для таких тяжелых условий работы непригодны.  

Известным недостатком двигателей переменного тока является их сравнительно большой вес, в 2 — 3 раза превышающий вес двигателей постоянного тока той же мощности. Однако высокая надежность индукционных двигателей (отсутствие щеток, требующих осмотра я смены) во многих случаях компенсируют указанный недостаток.  

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

То же, что асинхронный двигатель.

  • — ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. …

    Физическая энциклопедия

  • — электрич. ток, возни кающий вследствие эл.-магн. индукции…

    Естествознание. Энциклопедический словарь

  • -) — геофиз…

    Геологическая энциклопедия

  • — электрич. ток, возникающий вследствие электромагнитной индукции…

    Большой энциклопедический политехнический словарь

  • — относительный лаг, принцип действия которого основан на возникновении при движении судна дополнительной эдс в контуре, находящемся в магнитном поле, создаваемом специальным соленоидом…

    Морской словарь

  • — ИНДУКЦИОННЫЙ ток — электрический ток, возникающий вследствие электромагнитной индукции…

    Большой энциклопедический словарь

  • — …

    Орфографический словарь русского языка

  • — ИНДУ́К-ИЯ, -и,…

    Толковый словарь Ожегова

  • — ИНДУКЦИО́ННЫЙ, индукционная, индукционное…

    Толковый словарь Ушакова

  • Толковый словарь Ефремовой

  • — индукцио́нный I прил. соотн. с сущ. индукция I, связанный с ним II прил. соотн. с сущ. индукция II, связанный с ним III прил. соотн…

    Толковый словарь Ефремовой

  • — …

    Орфографический словарь-справочник

  • — индукци»…

    Русский орфографический словарь

  • — индукцио́нный относящийся к индукции2, и-ная катушка — состоит из двух обмоток на сердечнике из магнитного материала; служит для возбуждения путем индукции токов высокого напряжения…

    Словарь иностранных слов русского языка

  • — …

    Формы слова

  • — индуктивный, наведенный,…

    Словарь синонимов

«ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ» в книгах

ДВИГАТЕЛЬ

Из книги Огненный Подвиг. часть I автора Уранов Николай Александрович

ДВИГАТЕЛЬ «Величайшая мощь лежит в магните сердца. Им мы ищем, им мы творим, им мы находим, им мы притягиваем. Так запомним. Так утверждаю».Беспред., § 558От рождения тела стучит физическое сердце, и тело живет лишь постольку, поскольку сердце не перестанет стучать. Можно

6. Двигатель

Из книги Техобслуживание и мелкий ремонт автомобиля своими руками. автора Гладкий Алексей Анатольевич

6. Двигатель 6.1. Содержание вредных веществ в отработавших газах и их дымность превышают величины, установленные ГОСТ Р 520332003 и ГОСТ Р 52160-2003.6.2. Нарушена герметичность системы питания.6.3. Неисправна система выпуска отработавших газов.6.4. Нарушена герметичность системы

Индукционный измерительный прибор

автора Коллектив авторов

Индукционный измерительный прибор Индукционный измерительный прибор – электроизмерительный прибор, работа которого основана на возникновении вращающего момента его подвижной части при воздействии на нее двух (или более) переменных магнитных потоков. Индукционным

Индукционный ракетный двигатель

Из книги Большая энциклопедия техники автора Коллектив авторов

Индукционный ракетный двигатель Индукционный ракетный двигатель – разновидность электротермического ракетного двигателя, в котором нагрев рабочего тела осуществляется посредством воздействия высокочастотного магнитного поля, которое создается индукционной

1847 г. Гальске, индукционный телеграф братьев фон Сименс

Из книги Популярная история — от электричества до телевидения автора Кучин Владимир

1847 г. Гальске, индукционный телеграф братьев фон Сименс В 1847 году берлинский электромеханик ИоганнГальске (1814–1890) сконструировал специальный пресс для бесшовной изоляции медных проводов с помощью гуттаперчи.В этом же 1847 году немецкий электротехник и предприниматель

Индукционный нагрев

БСЭ

Индукционный насос

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный прибор

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный ускоритель

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Двигатель

Из книги Большая Советская Энциклопедия (ДВ) автора БСЭ

2.2.6. Двигатель

Из книги 100 способов избежать аварии. Спецкурс для водителей категории В автора Каминский Александр Юрьевич

2.2.6. Двигатель Нарушена герметичность системы питания(п. 6.2 Приложения).Под этой неисправностью надо понимать протекание бензина. Очевидно, что неисправность очень опасна, ведь пары бензина могут загореться в любой момент. Казалось бы, об этом не имеет смысла говорить,

11 Электростатический индукционный генератор переменного тока

Из книги Статьи автора Тесла Никола

11 Электростатический индукционный генератор переменного тока Около полутора лет тому назад, будучи занят изучением переменных токов с коротким периодом, я пришел к мысли, что такие токи можно получать, вращая заряженные поверхности на малом расстоянии от проводников. И

Двигатель регресса Двигатель регресса Нынешняя система налогообложения — удавка для экономики России 13.02.2013

Из книги Газета Завтра 950 (7 2013) автора Завтра Газета

автора Коллектив авторов

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ — ДВИГАТЕЛЬ (ТП — Д) И ИСТОЧНИК ТОКА — ДВИГАТЕЛЬ (ИТ — Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их

Принцип работы трёхфазного индукционного двигателя

Что можно сказать об электродвигателе? Такой мотор является таким электромеханическим девайсом, который преобразует электрическую энергию в механическую энергию. В случае работы переменного тока, который является трёхфазным, наиболее часто применяющимся мотором является трехфазный индукционный мотор, ведь данный вид мотора не требует никакого стартового устройства. Можно также сказать, что данный двигатель является самозапускающимся индукционным мотором.

Для того чтобы лучше понять принцип действия трёхфазного индукционного двигателя, необходимо иметь достаточно чёткое представление об основной особенности, которая присуща конструкции данного мотора. Данный электродвигатель имеет две части, которые можно назвать основными. А именно, это статор и ротор. Чтобы хорошо представлять себе работу данного устройства нужно знать достаточно об этих составляющих.

Статор

Статор данного индукционного двигателя сделан из определённого количества слотов, для того чтобы получилась трёхфазная обмотка, которая подключена к источнику переменного тока, являющегося трёхфазным. Трёхфазная обмотка размещена в слотах таким образом, что она производит магнитное поле, которое является вращающимся. Это происходит после третьей фазы. Обмотка должна получать питание в виде переменного тока.

Ротор

Ротор данного индукционного мотора содержит многослойный сердечник, который имеет цилиндрическую форму. Этот сердечник с параллельными слотами, которые могут держать элементы, проводящие электрический ток. В роли таких элементов в данном случае выступают тяжёлые медные или алюминиевые стержни, которые подходят к каждому слоту и они замкнуты конечными кольцами.

Слоты не то что бы абсолютно параллельны оси вала. Они несколько скошены. Это обусловлено тем, что такое расположение уменьшает магнитный гудящий шум и может помочь избежать потери скорости данного мотора

О том, как работает этот двигатель

Создание магнитного поля, которое вращается

Статор мотора содержит смещённые перекрытые обмотки. Электрический угол смещения составляет 120º. Тут основная обмотка или же статор подключены к источнику тока, который является переменным и трёхфазным. Это обстоятельство уже, в свою очередь, служит причиной возникновения такого магнитного поля, которое вращается, причём вращается оно с синхронной скоростью.

Секреты вращения:

Согласно закону Фарадея “электродвижущая сила, которая вызвана в какой-либо электрической схеме, является следствием процента изменения магнитного потока, который идёт через схему”. Так как обмотка ротора в индукционном моторе тоже замкнута через внешнее сопротивление или прямо замкнуто замыкающим кольцом, и отрезает магнитное поле статора (вращающееся), электродвижущая сила появляется на медном стержне ротора, и благодаря этой силе электрический ток течёт через элемент ротора, который специально для этого предназначен.

Здесь относительная скорость между вращающемся магнитным потоком и статичным проводящим элементом ротора является причиной возникновения электрического тока. Отсюда, исходя из закона Ленца, ротор будет вращаться непосредственно в том же направлении, чтобы относительная скорость уменьшилась.

Таким образом, исходя из принципа действия этого электрического двигателя, можно заметить, что скорость, которую имеет ротор, не должна достигать синхронной скорости, которая производится статором. Если скорости были бы равны, то не было бы такой относительной скорости, так что не возникало бы и электродвижущей силы в роторе, не было бы потока электрического тока, и поэтому не было бы крутящего момента.

Следовательно, ротор не может достичь синхронной скорости. Разница между скоростью статора (синхронная скорость) и скоростью ротора называется проскальзыванием. Вращение магнитного поля в индукционном двигателе имеет преимущество, что не нужны никакие электрические связи с ротором.

Пора подвести итоги. Из перечисленных выше особенностей трехфазного индукционного мотора следует, что:

— Данный электродвигатель самозапускающийся и не нуждается в помощи какого-то другого элемента для своего старта.

— Этот мотор имеет меньше противодействия арматуры и искрообразования на щётках в силу того, что отсутствуют коммутаторы и щётки, которые могут вызывать образование искр.

— Электродвигатель данного типа прочен по конструкции, что, конечно же, является большим плюсом.

— Мотор экономичный, что делает его интересным решением во многих областях; соответственно, данный двигатель имеет неплохие перспективы, ведь он будет достаточно популярен и востребован.

— Данный электродвигатель довольно лёгок в обслуживании, что опять же позволяет назвать его перспективным, ведь данное качество интересно любому пользователю подобных устройств, который понимает важность этого нюанса.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Индукционный электродвигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Индукционный электродвигатель

Cтраница 1

Индукционные электродвигатели превосходят размерами двигатели постоянного тока, но отсутствие коллектора делает их более надежными и уменьшает трение, а следовательно, и всегда имеющуюся в действительности ( хотя и не всегда учитываемую) зону нечувствительности.  [1]

Ткацкий станок, на основе индукционного электродвигателя по любому из предшествующих пунктов, осуществляющего рабочее перемещение челнока, причем челнок состоит из тонкой полоски неферромагнитного электропроводного материала, на которой укреплена челночная бобина.  [2]

Постоянство натяжения обеспечивается с помощью однофазного индукционного электродвигателя, работающего на режиме торможения.  [4]

При помощи зубчатого венца и шестерни 2 шпуля соединена с двухфазным индукционным электродвигателем 3, вращение которого направлено в сторону, противоположную вращению шпули от воздействия на нее провода при намотке. Электродвигатель питается пониженным ( не более 80 % от рабочего) напряжением. Провод при сматывании преодолевает стремление шпули, вызванное электродвигателем, поворачиваться по стрелке А, благодаря чему и создается требуемое натяжение провода.  [6]

После усиления этого сигнала он подается на питание обмотки управления ОУ двухфазного индукционного электродвигателя.  [7]

Я попробовал вставить в алюминиевую пластину, служившую подвижной частью, несколько постоянных магнитов, с помощью которых пластина могла разгоняться до номинальной скорости между двумя статорами линейного индукционного электродвигателя. Но в первых же двух испытаниях два комплекта так называемых постоянных магнитов совершенно размагнитились — а стоили они недешево.  [8]

Осенью 1888 г. Доливо-Добровольский, тогда еще молодой инженер, познакомился с содержанием доклада Феррариса и обратил свое внимание именно на ту часть доклада, где Феррарис делает вывод о практической непригодности индукционного электродвигателя. Доли — о — Доброволъекий не-согласился с таким выводом Феррариса.  [9]

Средняя часть ротора / / соединена с полостью внутреннего полукольца ротора / черпательной трубой ( пунктир), конец к-рой IV треугольного сечения загнут против направления потока вращаемой ротором / жидкости. Характеристика вращающего момента центробежной гидромуфты подобна характеристике трехфазного индукционного электродвигателя, ротор к-рого работает всегда с нек-рым скольжением.  [10]

Мое первое профессиональное изобретение, которое начало формироваться в моем сознании еще в студенческие годы, относилось к той самой не вполне обычной ситуации, когда теория опережает практику. Получив, если можно так выразиться, двойную порцию лекций по индукционным электродвигателям ( вначале в политехнической школе в Лондоне, где я проходил подготовку на звание офицера Королевских военно-воздушных сил, а затем в Манчестерском университете, куда я поступил после увольнения из армии в запас), я стал выделять их среди прочих электрических машин.  [11]

В начале работы по созданию нового типа электропривода для герметичной аппаратуры высокого давления важно было установить принципиальную возможность осуществления такого привода. В НИИТВЧ был испытан макет электродвигателя с экранированным ротором, специально изготовленный из обычного индукционного электродвигателя с короткозамкнутым ротором.  [12]

С предварительного усилителя сигнал поступает на основной усилитель, в качестве которого используют стандартный усилитель от электронного потенциометра. Этот усилитель имеет три ступени усиления напряжения и двухтактный усилитель мощности, который является фазочувствительным; он управляет работой двухфазного индукционного электродвигателя.  [13]

Электрооборудование — для работы с комплексными гидридами должно быть изготовлено во взрывобезопасном исполнении. Для этой цели удобно использовать индукционные электродвигатели. Одним из наиболее безопасных способов перемешивания является применение магнитных мешалок. В этом случае удобно использовать эрленмейеровские колбы с нормальным шлифом. Перемешивание проводится плоскими магнитами; при этом происходит также измельчение, что особенно важно для проведения реакций в гетерогенной среде.  [15]

Страницы:      1    2

Индукционный двигатель. Большая энциклопедия нефти и газа

Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.

Особенности асинхронных двигателей

Применение

Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.

Асинхронная машина не подключается к сети постоянного тока.

Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.

При выборе асинхронного двигателя зачастую возникают проблемы с определением:

  • его мощности;
  • характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
  • расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
  • марки и сечения провода;
  • устройств защиты и управления, которыми оснащен преобразователь.

Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.

Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.

Устройство АД

Ротор и статор – главные элементы индукционного двигателя.

Схема устройства асинхронного агрегата

Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).

На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.

Ротор вращается по ходу движения магнитного поля.

Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.

Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.

Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».

Конструкция «беличья клетка»

В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.

В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.

Однофазная индукционная машина

Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.

Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.

Схема работы однофазного двигателя малой мощности

В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.

Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.

В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.

Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.

Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:

  • с усиленным сопротивлением фазы пуска;
  • агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
  • оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
  • комбинированные с фазным управлением, короткозамкнутым ротором;
  • с экранированными полюсами.

Трехфазный двигатель

В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при взаимодействии с фазным магнитным вращающимся полем статора вызывает вращение определенной частоты вслед за полями между ним и ротором.

Схема работы индукционного трехфазного агрегата

Данный принцип разработал академик из Франции Араго. Иными словами, если подковообразный магнит установить вблизи металлического диска свободно закрепленным на оси и вращать его с поддержанием определенной частоты оборотов, то металлический диск без дополнительного управления начнет движение за магнитом, однако скорость его вращения будет меньше, чем скорость движения магнита.

Данное явление обусловлено правилами электромагнитной индукции. Во время вращения около поверхности металлического диска полюсов магнита в контурах под полюсом образуется электродвижущая сила соответствующей частоты, и возникают токи, создающие магнитное поле металлического диска. Магнитное поле диска начинает взаимодействовать с полем полюсов вращающегося магнита, в результате чего диск «увлекается» своим магнитным полем.

Так и в асинхронном агрегате, в качестве металлического диска выступает короткозамкнутая обмотка ротора, а в качестве магнита – магнитопровод и обмотка статора.

Чтобы облегчить управление и запуск трехфазного электродвигателя при к однофазной сети (переменного, а не постоянного тока), на момент пуска дополнительно устанавливается параллельно с рабочим и пусковой конденсатор. Им компенсируют отсутствие фазы и соответствующей частоты поля.

Запуск трехфазного двигателя

Двигатель в работе. Видео

О том, как работает асинхронный двигатель в режиме генератора, можно посмотреть в этом видео. Здесь представлены дельные советы по оптимизации процесса, в том числе и те, которые относятся к схемам управления фазным вращением.

Таким образом, зная особенности работы индукционной машины, с уверенностью можно сказать, что преобразование в механическую энергию электрической происходит в результате вращения вала электродвигателя (ротора).

Скорость вращения магнитного поля ротора и статора напрямую зависит от частоты питающей сети и количества пар полюсов. В случае, когда тип двигателя ограничивает число пар полюсов, то для управления изменением частоты питающей сети в больший диапазон используют частотный преобразователь.

Выше рассмотрены особенности управления фазным вращением. Также приведены отличия конструкции с короткозамкнутым минимальным ротором, который используется для уменьшения сопротивления. Следует помнить, что устройство некоторых агрегатов подразумевает возможность их применения только в цепях постоянного тока. Преобразователи с фазным вращением работают при питании переменным током.

Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.

Устройство асинхронного двигателя

Начнем простейшим распространенным вариантом: питание переменным током подается на обмотки статора. Посмотрите фото: типичный образчик статора. Вынув ротор, нельзя сказать, какому типу двигателей принадлежит сердечник, увитый медью. Получили главный вывод: статор не определяет методику формирования движущей силы. Скорее выступает опорой, относительно которой действует статор.

Видим составной сердечник, содержащий две катушки. Направление намотки создает два явных полюса. Нельзя назвать сгущения напряженности поля северным или южным, поскольку направление линий постоянно меняется (с удвоенной частотой сети 100 Гц). Сборка ведется следующим образом:

  1. Катушки мотают отдельно. Конструкторы знают, сколько витков нужно, каким проводом вести.
  2. Полученный моток надевают аккуратно на распорки магнитопровода (традиционной формы буквы Т). Для изоляции прокладывают слой винила, другого полимера.
  3. Затем концы обмоток чуть пригибают к периферии, витки плотно упираются в основание буквы Т.
  4. В нашем случае сердечник составной, внутренняя часть катушками вставлена во внешнее кольцо. Но чаще конструкция попроще.

Сердечник собирается из пластин, изолированных друг от друга при помощи лака. Идет работа асинхронного электродвигателя на 230 вольт, переменное поле наводит вихревые токи, вызывая эффект перемагничивания. Чтобы снизить потери, сердечник разбивается на пластины. Специальная сталь, легированная добавками кремния обеспечивает низкий коэффициент электропроводности.

Статор электрического двигателя

В бытовых асинхронных электродвигателях полюсов статора два. Встречаются исключения из правила. На другом снимке видим статор асинхронного двигателя напольного вентилятора с тремя скоростями. Полюсов восемь, чтобы запитать такую кучу железа, понадобился конденсатор. Сдвигает фазу напряжения на минус 90 градусов относительно тока. Становится возможным создать переменное вращающееся поле внутри статора. Данный тип асинхронных двигателей называется конденсаторным.

Первым две фазы использовать предложил Никола Тесла.

Схема выглядит следующим образом:

  1. Четыре обмотки, лежащие в вершинах креста запитываются сетью 230 вольт. Две – противолежащие – имеют один знак полюса, прочие – другой. Получается, поле вращается с половинной скоростью сети (25 Гц). Этого хватает исправной работе вентилятора.
  2. Плавный пуск асинхронного электродвигателя и работы возможны только в условиях, когда поле сглажено. Для этих целей применяются четыре обмотки, лежащие по диагоналям. Здесь напряжение сдвинуто на 90 градусов. Использованием вспомогательных катушек технические характеристики улучшаются.

Как подстраиваются обороты? Регуляторы скорости асинхронного электродвигателя коммутируют обмотку. Клавиатура управления устроена в каждый момент времени допускать нажатие одной кнопки, либо никакой. Восемь обмоток имеют пару отводов. Статором производится нужная коммутация, некоторые ветви запитываются конденсатором. Нажатие каждой кнопки включает в работу часть обмотки. Полностью статор работает на высшей скорости.

Принцип работы схемы

Примерная схема, демонстрирующая принцип работы, иллюстрируется фото. Скорость вращения задается коммутацией обмоток кнопками 1, 2, 3. Необходимость защиты от одновременного включения диктуется требованиями к нормальной работе устройства. В результате реализуется простейшими методами управление по скорости.

Сердечник магнитопровода составлен листами электротехнической стали, снижающей потерь на нагрев. Температура может достигать значительных размеров, поэтому ротор асинхронного двигателя вентилятора снабжается лопастями (см. фото). Любой вентилятор реально может только разогревать воздух, никак не наоборот.

Роторы асинхронных двигателей

Ротор асинхронного двигателя

В данном случае двигатель обеспечит долговременную работу. Поэтому ротор снабжен лопастями тангенциального вентилятора. Помогает охладить конструкцию жаркими летними ночами. Хозяин может спокойно спать, игнорируя возможность пожара. Любой хороший прибор работает аналогичным образом (себя охлаждает). В данном случае двигатель сконструирован по схеме с короткозамкнутым ротором. На валу сидит барабан, где в силумин утоплены медные жилы. Закорочены друг на друга кольцевым соединителем. Подобное техническое решение в литературе традиционно называется беличьей клеткой (колесом) в силу очевидных причин.

Асинхронный короткозамкнутый электродвигатель является доминирующим в быту. Поля в проводниках наводятся статором, затем происходит сцепление через эфир, вал набирает обороты. Никогда не догонит частоту сети. Потому что индукционные токи обращаются в нуль, сцепление нарушается. Вал тормозит, снова подхватывается полем. Подобным образом действуют однофазные асинхронные электродвигатели, любые другие. В сущности, нет разницы, при помощи чего создается переменное поле.

Выделяют ещё одно большое семейство. Устройство асинхронного электродвигателя принципиально иное. Ротор снабжен обмотками, как коллекторный мотор. Обычно трехфазные. Это позволит навести гораздо более сильные поля, возникает крупная проблема: сложно стронуть с места вал. Огромная напряженность поля образует невероятной силы сцепление, за счет чего имеется возможность выхода оборудования из строя. Кроме того вал вообще так не раскрутится.

Вот поэтому для уменьшения силы наведенных токов (напряженности поля) в цепи всех фаз ротора врубается реостат. Активное сопротивление мешает ЭДС развить мощность на валу: некоторая доля рассеивается джоулевым теплом, формируемым активным сопротивлением. Стартовый момент асинхронного двигателя с фазным ротором достаточно велик, срыва оборотов не происходит. Понятно, что значение сопротивлений реостата для каждой конструкции свое. Определяют цифру ротор асинхронного электродвигателя, заданные характеристики, стартовая нагрузка.

Обратите внимание, что во всех случаях с асинхронными двигателями наблюдаем большие потери. Особенно хорошо видно на примере реостата. Мощность асинхронного электродвигателя напрямую тратится на рассеиваемое тепло. Главным достоинство рассматриваемого класса приборов все-таки считаются простота конструкции и обслуживания. В противном случае любые типы асинхронных электродвигателей заброшены бы были на помойку истории.

Как работает асинхронный двигатель

Статор создает вращающееся магнитное поле. Направление линий напряженности определяется правилом буравчика (правой руки). Поэтому статор пока отложим в сторону, попробуем понять, что параллельно происходит на роторе. Начнем беличьей клеткой.

Внутри статора находится поле, линии напряженности которого в первом приближении направлены к центру, где находится вал. Пересекают проводник беличьей клетки под углом близким 90 градусам. По правилу правой руки переменное поле индуцирует ЭДС, порождающую ток. В результате возникает ответ.

Любая пара проводников беличьей клетки обращается в рамку. Вокруг вращается поле статора. По правилу руки возникает ответное поле, направленное противоположно исходному:

  1. Ротор движется медленнее статора. Пусть вращение описывает часовую стрелку.
  2. В какой-то момент северный полюс начинает догонять один из проводников беличьей клетки.
  3. Ток направлен так, что круговые линии напряженности ответного магнитного поля идут навстречу полюсу.
  4. Получается, впереди по курсу полюс наталкивается на одноименный знак заряда, начинает толкать его. Позади образуется «юг», старающийся бежать вслед полю.

Простое краткое объяснение того, почему беличья клетка, в конце концов, начинает вращаться. Ротор не должен быть слишком тяжелым, сцепление полей не очень сильное. Это объясняет низкое тяговое усилие, развиваемое асинхронным двигателем на старте. Пусковой ток высок, поскольку ничто не препятствует генерации поля внутри статора. Обратите внимание: в роторе однофазного асинхронного двигателя, показанного на фото в начале статьи, проводники беличьей клетки чуть наклонены к оси барабана. Помогает создать более равномерный магнитный полюс, компенсируя недостатки (в первую очередь неравномерность) вращения поля статора.

Фазный ротор состоит из обмоток, нормаль которых направлена примерно на центр двигателя (вал). Можно каждую представить гипертрофированной ячейкой беличьей клетки. Витков много (в дрелях, к примеру, порядка 40), сила поля намного выше. За счет резкого скачка на старте потребляемая энергия стала бы слишком большой. Уровень ЭДС значителен (определен скоростью изменения магнитного потока). Цепь ротора дополняется реостатом, пытаются компенсировать недостаток. Активное сопротивление понижает ток, закономерно снижая ответное поле, генерируемое проводниками.

Фазный ротор может улучшить характеристики асинхронных электродвигателей, два-три проводника (грубо говоря) дают большее тяговое усилие. К минусам технического решения относят наличие токосъемников, щеточного аппарата. Для снижения износа в некоторых асинхронных двигателях после набора оборотов ротор закорачивается специальным механизмом. Намного продляется жизнь оборудования.

Не видим причин рассматривать подробнее фазный ротор, лучшей иллюстрацией послужит усиленная беличья клетка. Представьте себе: вместо одной стало сорок штук! Количество (от 40 и вниз) регулируется сопротивлением реостата.

Как задать обороты асинхронного двигателя

Любой, в том числе асинхронный трехфазный, электродвигатель неспособен развить обороты близкие частоте поля. Количество полюсов стремятся снизить. Но даже в этом случае редко удается достичь желанных 3000 об/мин (50 Гц х 60 сек). В принципе невозможно. Увеличение количества полюсов статора практикуется для понижения оборотов, как показано выше на примере напольного вентилятора.

Чаще практикуется подключение асинхронного электродвигателя с короткозамкнутым ротором на трехфазный регулятор амплитуды. Методика позволит максимально просто добиться результата. Токи асинхронных электродвигателей велики на старте, «благодаря» потерям сердечника ротора (с ростом оборотов снижаются). Нельзя сказать, что ремонт своими руками статоров относится к категории простых, но намного лучше, нежели перематывать ротор коллектора. Простотой конструкции объясняется любовь промышленности к этому роду устройств.

Что можно сказать об электродвигателе? Такой мотор является таким электромеханическим девайсом, который преобразует электрическую энергию в механическую энергию. В случае работы переменного тока, который является трёхфазным, наиболее часто применяющимся мотором является трехфазный индукционный мотор, ведь данный вид мотора не требует никакого стартового устройства. Можно также сказать, что данный двигатель является самозапускающимся индукционным мотором.

Для того чтобы лучше понять принцип действия трёхфазного индукционного двигателя , необходимо иметь достаточно чёткое представление об основной особенности, которая присуща конструкции данного мотора. Данный электродвигатель имеет две части, которые можно назвать основными. А именно, это статор и ротор. Чтобы хорошо представлять себе работу данного устройства нужно знать достаточно об этих составляющих.

Статор

Статор данного индукционного двигателя сделан из определённого количества слотов, для того чтобы получилась трёхфазная обмотка, которая подключена к источнику переменного тока, являющегося трёхфазным. Трёхфазная обмотка размещена в слотах таким образом, что она производит магнитное поле, которое является вращающимся. Это происходит после третьей фазы. Обмотка должна получать питание в виде переменного тока.

Ротор

Ротор данного индукционного мотора содержит многослойный сердечник, который имеет цилиндрическую форму. Этот сердечник с параллельными слотами, которые могут держать элементы, проводящие электрический ток. В роли таких элементов в данном случае выступают тяжёлые медные или алюминиевые стержни, которые подходят к каждому слоту и они замкнуты конечными кольцами.

Слоты не то что бы абсолютно параллельны оси вала. Они несколько скошены. Это обусловлено тем, что такое расположение уменьшает магнитный гудящий шум и может помочь избежать потери скорости данного мотора

О том, как работает этот двигатель

Создание магнитного поля, которое вращается

Статор мотора содержит смещённые перекрытые обмотки. Электрический угол смещения составляет 120º. Тут основная обмотка или же статор подключены к источнику тока, который является переменным и трёхфазным. Это обстоятельство уже, в свою очередь, служит причиной возникновения такого магнитного поля, которое вращается, причём вращается оно с синхронной скоростью.

Секреты вращения:

Согласно закону Фарадея “электродвижущая сила, которая вызвана в какой-либо электрической схеме, является следствием процента изменения магнитного потока, который идёт через схему”. Так как обмотка ротора в индукционном моторе тоже замкнута через внешнее сопротивление или прямо замкнуто замыкающим кольцом, и отрезает магнитное поле статора (вращающееся), электродвижущая сила появляется на медном стержне ротора, и благодаря этой силе электрический ток течёт через элемент ротора, который специально для этого предназначен.

Здесь относительная скорость между вращающемся магнитным потоком и статичным проводящим элементом ротора является причиной возникновения электрического тока. Отсюда, исходя из закона Ленца, ротор будет вращаться непосредственно в том же направлении, чтобы относительная скорость уменьшилась.

Таким образом, исходя из принципа действия этого электрического двигателя, можно заметить, что скорость, которую имеет ротор, не должна достигать синхронной скорости, которая производится статором. Если скорости были бы равны, то не было бы такой относительной скорости, так что не возникало бы и электродвижущей силы в роторе, не было бы потока электрического тока, и поэтому не было бы крутящего момента.

Следовательно, ротор не может достичь синхронной скорости. Разница между скоростью статора (синхронная скорость) и скоростью ротора называется проскальзыванием. Вращение магнитного поля в индукционном двигателе имеет преимущество, что не нужны никакие электрические связи с ротором.

Пора подвести итоги. Из перечисленных выше особенностей трехфазного индукционного мотора следует, что:

— Данный электродвигатель самозапускающийся и не нуждается в помощи какого-то другого элемента для своего старта.

— Этот мотор имеет меньше противодействия арматуры и искрообразования на щётках в силу того, что отсутствуют коммутаторы и щётки, которые могут вызывать образование искр.

— Электродвигатель данного типа прочен по конструкции, что, конечно же, является большим плюсом.

— Мотор экономичный, что делает его интересным решением во многих областях; соответственно, данный двигатель имеет неплохие перспективы, ведь он будет достаточно популярен и востребован.

— Данный электродвигатель довольно лёгок в обслуживании, что опять же позволяет назвать его перспективным, ведь данное качество интересно любому пользователю подобных устройств, который понимает важность этого нюанса.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Cтраница 2

В нулевую группу входят однофазные системы с трех-и двухлучевыми индукционными двигателями, а также системы с магнесинами и с ферродинамометрами.  

Асинхронные машины, в виде трехфазных асинхронных двигателей (индукционные двигатели), приобретают в: е большее значение. Причиной является простая конструкция их и главным образом все большее распространение районных станций, распределяющих электрическую энергию в форме трехфазного тока.  

В том случае, когда пуск станка может производиться включением индукционного двигателя нормальной конструкции и мощности, близкой к той, которая потребляется станком во время его работы, вопрос должен решаться в принципе в сторону отказа от главной сцепной муфты. В остальных случаях необходимо принять в расчет при сравнении варианта с муфтой и без нее удорожание двигателя (если оно имеет место), стоимость вспомогательных устройств и аппаратуры управления, а также специфические недостатки, присущие указанным выше способам пуска. Решение в пользу сохранения муфты или отказа от нее определяется результатами технико-экономического расчета для сравниваемых вариантов. Так как главная фрикционная муфта станка является одновременно элементом, предохраняющим станок от поломок при случайном возрастании крутящего момента сныше установленной нормы, то в случае отказа от муфты обязательно должны быть предусмотрены автоматически действующие механические предохранительные устройства или электрическая аппаратура, выполняющая ту же функцию.  

В системах с несущей частотой этот метод получения резонансных комплексных нулей посредством присоединения параллельных ветвей осуществляется индукционным двигателем для демодуляции, схемой из массы, пружины и демпфера для создания резонансного контура п демодулирующим индукционным датчиком. Выходной сигнал индукционного датчика вычитается из сигнала входа. Это также создает два комплексных нуля относительно частоты сигнала информации (огибающей) или четыре комплексных нуля относительно модулированной несущей.  

Трансформаторы с подвижной обмоткой (потен-циал-регуля-юры), предназначенные для более высоких напряжений, выполняются в форме индукционного двигателя с закрепленным якорем, который переставляется в зависимости от требующегося дополнительного напряжения, складывающегося последовательно с основным.  

В качестве двигателей для следящих систем могут быть использованы как сериесные, так и шунтовые двигатели постоянного тока, а также индукционные двигатели переменного тока.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами 7 и Т2, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами Тг и 7, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 — 0 05 сек, а для двигателей на 400 гц — около 0 1 — 0 2 сек.  

Согласно формулам (3 — 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 — 0 07 сек, а для двигателей на 400 гц — около 0 2 — 0 3 сек.  

Сложнее дело обстоит в случае регулируемых приводов. Индукционный двигатель трехфазного тока сам по себе следует считать практически почти нерегулируемым. Однофазные репульсионные двигатели, конкурирующие при малых мощностях с трехфазными коллекторными, в силу худшего использования материала постепенно вытесняются трехфазными. Подобно тому как это имело место в области электрической тяги, в ряде промышленных установок происходит борьба между постоянным и переменным током у регулируемых приводов. В случае единичных регулируемых установок порядка нескольких сот kW, например нереверсивные прокатные станы, шахтные вентиляторы, регулируемые воздуходувки, когда пределы регулировки не превышают 1: 2, применяются каскадные агрегаты в виде сист. Установки трехфазных коллекторных двигателей большой мощности (300 — 400 kW) чрезвычайно редки. Реверсивные прокатные станы (номинальной мощностью в 2 000 — 5 000 kW), требующие регулировки в широких пределах (до 200 — 300 %) номинальной скорости, приводятся исключительно двигателями постоянного тока, питаемыми от трехфазной сети по сист. В случае нескольких регулируемых установок большой и средней мощности, расположенных вместе, применяются теперь двигатели постоянного тока (напр, бумагоделательные машины, прокатные металлургич. При пределах регулировки больше чем 1: 3, для регулирования широко применяется система Леонарда; она же используется в таких случаях и для пуска в ход. США и Франции применяется постоянный ток; этот род тока принят и в СССР для вновь строящихся металлургич. В Германии эк е динамостроительные з-ды усиленно пропагандируют внедрение в эту область индукционных двигателей. Коллекторные двигатели переменного тока, для таких тяжелых условий работы непригодны.  

Известным недостатком двигателей переменного тока является их сравнительно большой вес, в 2 — 3 раза превышающий вес двигателей постоянного тока той же мощности. Однако высокая надежность индукционных двигателей (отсутствие щеток, требующих осмотра я смены) во многих случаях компенсируют указанный недостаток.  

Часть 3: История Теслы

Кристи Николсон вспоминает свою первую встречу с Илоном Маском на одной из вечеринок в 1989 году.

«Кажется, со второго предложения он заявил, что очень много раздумывает об электрических автомобилях», – сказала Кристи. «А потом он повернулся ко мне и спросил, думаю ли я тоже об электромашинах?»

В 1989 году электрокары были достаточно странным предметом для размышлений. Чтобы понять причины, по которым Маск так был одержим мыслями об электромашинах, давайте сначала попытаемся разобраться, что вообще такое электромобили и как они работают.

В настоящее время достаточно много типичных современных машин, которые считаются более экологически чистыми по сравнению с их бензиновыми аналогами – гибридные машины, заряжаемые гибридные машины, электрические машины (или электромобили, ЭМ). Также сейчас часто обсуждается другой вид машин – автомобили на водородном топливе. Общей чертой перечисленных выше автомобилей является наличие электродвигателя.

Существует два вида электромоторов – индукционный двигатель переменного тока и вентильный двигатель постоянного тока. Ввиду того, что читающие данные строки вряд ли уже смакуют губы в предвкушении насладиться ликбезом длиной на три абзаца о различиях, давайте для простоты считать их примерно одинаковыми.

Электродвигатель – это своего рода сосиска в тесте , где электричество подаётся на внешнюю неподвижную мучную часть (статор), заставляющее сосиску (ротор) крутиться. Ротор соединён с осью, которая и вращает колёса. Как-то вот так:

Как работает индукционный мотор переменного тока

Одним из наиболее типичных электродвигателей является индукционный мотор переменного тока (именно такие установлены в машинах Тесла). Индукционным он называется, т.к. отсутствует физический контакт между ротором и статором – электричество в статоре создаёт вращающееся магнитное поле, которое проникает в ротор посредством электрической индукции и вызывает его вращение.

Статор генерирует вращающееся магнитное поле посылая электричество через трёх-фазовую систему:

Всего имеется три различных провода, каждый с чередующейся (переменной) тягой – просто посмотрите на стрелку одного цвета и вы увидите, что она бегает туда-сюда. Но эти три провода расположены таким образом, что направление тяги статора постепенно меняется по кругу. При добавлении ротора в такое магнитное поле заставляет его вращаться:

Идея в том, что ротор никогда не может оказаться там, где он «хочет» находится – он постоянно вынужден бегать за направлением поля статора. Эта «погоня» и приводит автомобиль в движение. Индукционный мотор переменного тока был изобретён Николя Теслой, именно поэтому Тесла Моторз и названа в его честь (открывший индукцию Фарадей был на втором месте в списке кандидатов в название).

Следующие типы машин используют электродвигатель.

Гибридные машины (гибриды, гибридные электрические автомобили) несут на своём борту одновременно и электродвигатель, и бензиновый двигатель внутреннего сгорания. Гибриды не втыкают в розетку – горящий бензин заряжает их батарею. Также батарея заряжается с помощью электромотора при торможении автомобиля. Как правило, джоули кинетической энергии машины во время движения оказываются потерянными при торможении и уходят в виде тепла. При регенеративном торможении часть этой кинетической энергии посылается обратно в аккумулятор, чтобы использоваться позднее. Электрический компонент гибридной машины замещает часть потребности в сжигании бензина, увеличивая расстояние, которое способна проехать машина при том же расходе топлива. Снижаются выхлопы, уменьшаются расходы на бензин. Гибриды – огромный технологический шаг по сравнению с обыкновенными автомобилями.

Но гибриды всё равно не ахти. Почему? Они только частично улучшают ситуацию с выхлопами, но не решают её – им же всё равно необходим бензин для движения. Мир, где люди на 100% передвигаются с помощью Приусов, всё равно остаётся миром в 100%-ой зависимости от нефти.

Втыкаемые в розетку гибридные машины слегка получше обыкновенных гибридов. Подобные машины (Шеви Вольт, Хонда Аккорд, Форд Фьюжн Энерджи) позволяют подзаряжать батарею автомобиля дома и, как правило, способны проехать около 16-64 км на заряде батареи, прежде чем начнётся потребление бензина. Обычно этого оказывается достаточно для большинства людей с их ежедневными потребностями – иными словами, водители могут обходиться без нужды заправляться бензином длительное время.

Но если мы подобрались так близко с электромоторами и батареями – почему же не пойти до самого конца?

Водородные машины являются полностью электрическими, но они не используют батарею. Вместо этого их нужно заправлять топливом наподобие бензиновой машины – только вместо бензина они потребляют сжатый водород. Водород смешивается с кислородом воздуха для генерирования электроэнергии, которая и питает двигатель автомобиля. Данные машины не выделяют выхлопов, т.к. продуктом сгорания является чистая вода. Здорово ведь.

Маск же не понимает , как некоторые могут приводить доводы за использования водородных автомобилей – в свою очередь большое число автомобильных компаний (Тойота, Хонда, Дженерал Моторз) в настоящее время вливают огромные средства в производство водородных машин. Чтобы разобраться в противоречиях, я прочитал 12 статей за и против данной технологии. В результате я не остался сильно убеждённым, почему водородные автомобили ждёт многообещающее будущее по сравнению с электрокарами.

Из массы недостатков водородных машин по сравнению с электрическими можно ограничиться лишь следующими:

1) Водородные машины для производства их топлива в итоге оказываются зависимы от природного газа (ископаемое горючее), в то время как производство электричества для электромобилей становится со временем только чище.

2) Запас энергии, расстояние пробега и стоимость водородных топливных элементов оказываются очень схожими с показателями батарей для электромашин, а батареи электромобилей со временем будут улучшаться и дешеветь в производстве.

3) Водород является достаточно опасным и непростым в обращении веществом, особенно очевидным это становится в сравнении с электророзетками для подзарядки электромашин.

4) В будущем, когда в норму войдёт подзарядка машины в собственном гараже, заезд на заправку будет казаться чем-то нелепым и архаичным.

А вот мнение Маска из нашей имейл переписки касательно водородных машин: «Если вы используете электричество солнечной панели для зарядки аккумулятора, то можно достичь 90% производительности. Просто и дёшево. Ежели вы попытаетесь с помощью электричества сперва разложить воду, затем отделить водород до немыслимой чистоты, сжать его до невероятного давления (или что хуже – перевести в жидкую форму), перекачать в огромный (даже для жидкого варианта) водородный бак машины и, в конце-концов, соедините топливо с кислородом – то при большом везении, вам удастся добиться 20% производительности. Дорого, сложно, громоздко и супер неэффективно. Водород проигрывает на всех уровнях, включая время заправки бака по сравнению с заменой батареи Теслы на заряженную. Стоимость водородных топливных элементов высока. Подумайте сами – если бы топливные элементы хоть в чём-то превосходили литиевые батареи – их бы как минимум использовали в спутниках, некоторые из которых стоят более $500 миллионов. Но этого не происходит.»

Наконец, мы подобрались к электромобилям (или ЭМ) типа Ниссан Лиф, БМВ ай3, Форд Форкус Электрик и Тесла Модел Эс. Электрокары просты в устройстве – они состоят из большой батареи, которую вы периодически заряжаете, и электромотора питающегося от неё. И никакой жидкости.

В теории ЭМ вполне оправданы. Давайте попробуем забыть все остальные машины на секунду и взглянем на преимущества электромотора по сравнению с бензиновым двигателем внутреннего сгорания:

Электродвигатели в большинстве случаев более удобны, чем их бензиновые аналоги . Машины на бензине вынуждены ездить на заправку. Обладатели ЭМ, как и свой телефон, втыкают свои транспортные средства на ночь в розетку для подзарядки – никаких остановок для покупки бензина. Бензиновый двигатель гораздо более сложен в устройстве по сравнению с электромотором. Бензиновый мотор состоит из более чем 200 деталей, электрический – менее чем из десяти. Бензиновым двигателям необходима коробка передач (трансмиссия), система выхлопа, шестерёнки и куча других покрытых маслом херовин. В ЭМ все эти компоненты отсутствуют, если вы заглянете под капот – вы обнаружите пустое пространство вроде багажника. Бензиновые двигатели нуждаются в моторном масле – отсюда необходимы периодические заезды на сервис для его замены. ЭМ это ни к чему. Дополнительная сложность в устройстве бензиновых машин означает, что они требуют больше обслуживания по сравнению с электромобилями.

Стоимость питания электромотора гораздо ниже стоимости питания бензинового двигателя. Даже без учёта дополнительных расходов на замену масла и ремонт, сам по себе бензин стоит гораздо дороже электричества. Давайте взглянем на цифры.

В среднем электромобиль может проехать 5 км потратив один киловатт-час (кВт⋅ч) электричества. В США стоимость кВт⋅ч составляет 12 центов. Отсюда получается, что проехать один километр на электромобиле стоит около 2,5 цента.

Высчитать стоимость для бензиновой машины немного сложнее, т.к. цены на бензин нестабильны, а расход топлива бензиновых машин сильно варьирует. При лучших раскладах в условиях необычно дешёвого бензина ($0,40 за литр) и низкого расхода топлива (скажем, 15 км/л) стоимость проехать один километр составляет те же 2,5 цента. В худшем случае при ценах на бензин в $1.08 за литр и расходе в 6 км/л проехать один километр уже стоит 18 центов. При характерном годовом пробеге в 19 тысяч км в самом лучшем варианте бензиновые машины показывают такие же результаты, как и электромобили, а в плохом варианте кататься год на бензине стоит на $3000 дороже.

Автомобили с бензиновыми двигателями являются одной из двух наиболее значимых причин в развитии энергетического и климатического кризисов. Выше мы уже обсуждали данный аспект – транспорт, сжигающий нефть, ответственен за треть всех мировых выбросов, ведёт к загрязнению городов, ставит одни страны в зависимость от других. Электромоторы функционируют без выхлопов. Да, они потребляют электроэнергию, произведённую в том числе и грязным способом, но мы обсудим этот вопрос немного позднее.

Очевидно именно поэтому Маск поведал Кристи Киколсон о своих раздумьях об электромашинах. Электромотор определённо проще, чище и является более разумным долговременным решением для использования в автомобилях.

Но при своём первом появлении, произошедшем более ста лет назад, электромоторы обладали рядом существенных недостатков, которые и предотвратили их широкое применение. А ввиду того, что электромашины перестали производиться ещё тогда, недостаточно времени и денег оказалось вложено для решения всё тех же самых недостатков. Как правило, выделяют три основных беспокойства касательно жизнеспособности электроавтомобилей:

1) Дальность. В действительности здесь заключены три следующих проблемы:

А) Хватит ли заряда батареи для поездок на дальние расстояния? Или же ЭМ годятся только для местных поездок?

Б) Куда податься в случае необходимости подзарядить батарею в пути? Не окажусь ли я на нуле посреди поля?

В) Если всё-таки удастся отыскать станцию подзарядки в пути, придётся ли мне ждать пять часов для полного заряда батареи?

Вышеперечисленные вопросы потенциальных покупателей электромашин относятся к т.н. «беспокойствам о дальности».

2) Разгон. Наиболее распространённый электромобиль в нынешние дни – машинка для перемещения по полю для игры в гольф, что не особо возбуждает автовладельцев. Никто не хочет авто, которое управляется как кусок кала, а если говорить о стремительном ускорении, на ум, как правило, приходят мощные бензиновые двигатели, а не электромоторы.

3) Цена. С самого начала электромобили стоили дороже своих бензиновых аналогов, в основном из-за высокой стоимости батареи.

Сто лет назад, в 1910 году, люди указывали на те же самые три основных проблемы электромобилей, что отчасти является причиной, почему бензиновые автомобили со временем стали доминировать на рынке. У бензиновых автомобилей имелась куча собственных проблем, но Форд умело разобрался, как с ними можно справится – он в своё время совершил то, чего никто не смог сделать для электромашин.

Я поинтересовался мнением Маска о Генри Форде. Вот его ответ: «Форд был человеком, который при появлении препятствий на своём пути, умел находить обходы – он просто-напросто решал проблемы. Он был способен сфокусироваться на нуждах потребителя, даже если сам потребитель толком не мог сообразить, что же ему нужно.»

Когда же в 2003 году Маск завершил раздумья об электромашинах и взялся, собственно, их делать, шансы были отнюдь не на его стороне. Продолжали существовать слишком большие препятствия для входа на рынок, не позволяющие автомобильным стартапам преуспеть практически в течение целого века. В условиях неучтённой стоимости углеродных выбросов, открывать компанию по продвижению электрокаров было сродни игры в баскетбол, где все остальные игроки кроме тебя могут безнаказанно совершать фолы. Доминирующие гигантские нефтяные компании делали всё в своих силах, чтобы срезать на корню любую попытку в продвижении электромашин. Более того, электрокары являлись новым типом автомобилей, развитие которых фактически оказалось остановлено с момента, когда первые производители опустили руки век назад. Дорогостоящий и долгий процесс по навёрстыванию упущенного всё ещё предстояло пройти – все из трёх перечисленных недостатков ЭМ всё ещё нужно было каким-то образом преодолеть.

Встаёт главный вопрос – электромашины не смогли преуспеть в прошлом из-за наличия неразрешимых проблем или же просто до сих пор не нашлось человека, который бы оказался своего рода Генри Фордом для электромобилей?

какие они бывают / Хабр

В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?

Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».


С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.

Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Почему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ. Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.


Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся.

Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.


Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана

отдельная статья

. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.

Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.


Про принцип работы синхронного двигателя также

была отдельная статья

. Синхронных приводов бывает несколько подвидов – с магнитами (PMSM) и без (с обмоткой возбуждения и контактными кольцами), с синусоидальной ЭДС или с трапецеидальной (бесколлекторные двигатели постоянного тока, BLDC). Сюда же можно отнести некоторые шаговые двигатели. До эры силовой полупроводниковой электроники уделом синхронных машин было применение в качестве генераторов (почти все генераторы всех электростанций – синхронные машины), а также в качестве мощных приводов для какой-либо серьезной нагрузки в промышленности.


Все эти машины выполнялись с контактными кольцами (можно увидеть на фото), о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется «синхронный двигатель не вошел в синхронизм». Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя «беличью клетку» асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм.

И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.

Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался «бум» синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.


У него много названий. Обычно его коротко называют вентильно-индукторный двигатель (ВИД) или вентильно-индукторная машина (ВИМ) или привод (ВИП). В английской терминологии это switched reluctance drive (SRD) или motor (SRM), что переводится как машина с переключаемым магнитным сопротивлением. Но чуть ниже будет рассматриваться другой подвид этого двигателя, отличающийся по принципу действия. Чтобы не путать их друг с другом, «обычный» ВИД, который рассмотрен в этом разделе, мы на кафедре электропривода в МЭИ, а также на фирме ООО «НПФ ВЕКТОР» называем «вентильно-индукторный двигатель с самовозбуждением» или коротко ВИД СВ, что подчеркивает принцип возбуждения и отличает его от машины, рассмотренной далее. Но другие исследователи его также называют ВИД с самоподмагничиванием, иногда реактивный ВИД (что отражает суть образования вращающего момента).


Конструктивно это самый простой двигатель и по принципу действия похож на некоторые шаговые двигатели. Ротор – зубчатая железка. Статор – тоже зубчатый, но с другим числом зубцов. Проще всего принцип работы поясняет вот эта анимация:


Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):


Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую «на сеть» его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.

Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.

Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются «вверх» от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.
Мы на фирме ООО «НПФ ВЕКТОР» выполнили несколько проектов на базе этого двигателя. Например, делали небольшой привод для насосов горячего водоснабжения, а также недавно закончили разработку и отладку системы управления для мощных (1,6 МВт) многофазных резервируемых приводов для обогатительных фабрик АК «АЛРОСА». Вот машинка на 1,25 МВт:

Вся система управления, контроллеры и алгоритмы были сделаны у нас в ООО «НПФ ВЕКТОР», силовые преобразователи спроектировала и изготовила фирма ООО «НПП «ЦИКЛ+». Заказчиком работы и проектировщиком самих двигателей являлась фирма ООО «МИП «Мехатроника» ЮРГТУ (НПИ)».

Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.


На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).

Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит «посередине» между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.

Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).

С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как «черный ящик», то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:

Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.

Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

На основе данного двигателя мы также сделали несколько успешных проектов. Например, один из них – это серия приводов насосов и вентиляторов для районных теплостанций г. Москвы мощностью 315-1200кВт (ссылка на проект). Это низковольтные (380В) ВИД НВ с резервированием, где одна машина «разбита» на 2, 4 или 6 независимых трехфазных секций. На каждую секцию ставится свой однотипный преобразователь с векторным бездатчиковым управлением. Таким образом можно легко наращивать мощность на базе однотипной конструкции преобразователя и двигателя. При этом часть преобразователей подключено к одному вводу питания районной теплостанции, а часть к другому. Поэтому если происходит «моргушка питания» по одному из вводов питания, то привод не встает: половина секций кратковременно работают в перегрузке, пока питание не восстановится. Как только оно восстанавливается, на ходу в работу автоматически вводятся отдыхавшие секции. Вообще, наверное, этот проект заслуживал бы отдельной статьи, поэтому пока про него закончу, вставив фото двигателя и преобразователей:

К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.

Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.

Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может «отсрочить» переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.

Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой «безмагнитный» привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.

Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):

На рисунке по горизонтальной оси отложен момент двигателя, по вертикальной – частота вращения. Звездочкой отмечена точка номинального режима, например, пусть это будет 60кВт. Заштрихованный прямоугольник – это диапазон, где возможно регулирование синхронной машины без проблем – т.е. «вниз» по моменту и «вниз» по частоте от номинала. Красной линией отмечено, что можно выжать из синхронной машины сверх номинала – небольшое повышение частоты вращения за счет так называемого ослабления поля (на самом деле это создание лишнего реактивного тока по оси d двигателя в векторном управлении), а также показана некоторая возможная форсировка по моменту, чтобы было безопасно для магнитов. Всё. А теперь давайте поставим эту машину в легковое транспортное средство без коробки передач, где батарея рассчитана на отдачу 60кВт. Желаемая тяговая характеристика изображена синим. Т.е. начиная с самой низкой скорости, скажем, с 10км/ч привод должен развивать свои 60кВт и продолжать их развивать вплоть до максимальной скорости, скажем 150км/ч. Синхронная машина и близко не лежала: её момента не хватит даже чтобы заехать на бордюр у подъезда (или на поребрик у парадной, для полит. корректности), а разогнаться машина сможет лишь до 50-60км/ч.

Что же это значит? Синхронная машина не подходит для электротяги без коробки передач? Подходит, конечно же, просто надо по-другому её выбрать. Вот так:


Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60кВт, а 540кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60кВт придется установить синхронную машину и инвертор на 540кВт, просто чтобы «пройти» по требуемому моменту и частоте вращения.

Конечно же, так как описано, никто не делает. Никто не ставит машину на 540кВт вместо 60кВт. Синхронную машину модернизируют, пытаясь «размазать» её механическую характеристику из оптимума в одной точке вверх по скорости и вниз по моменту. Например, прячут магниты в железо ротора (делают инкорпорированными), это позволяет не бояться размагнитить магниты и ослаблять поле смелее, а также перегружать по току побольше. Но от таких модификаций синхронная машина набирает вес, габариты и становится уже не такой легкой и красивой, какой она была раньше. Появляются новые проблемы, такие как «что делать, если в режиме ослабления поля инвертор отключился». ЭДС машины может «накачать» звено постоянного тока инвертора и выжечь всё. Или что делать, если инвертор на ходу пробился — синхронная машина замкнется и может токами короткого замыкания убить и себя, и водителя, и всю оставшуюся живой электронику — нужны схемы защиты и т.п.

Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.

Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?

К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через «теплопроводность» отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным «термосом» — единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.

Здесь нужно отметить, как мастерски обе проблемы асинхронного двигателя обошли в Тесла в своей Model S. Проблему с отводом тепла из ротора они решили… заведя во вращающийся ротор жидкость (у них есть соответствующий патент, где вал ротора полый и он омывается внутри жидкостью, но достоверно я не знаю, применяют ли они это). А вторую проблему с резким уменьшением момента при ослаблении поля… они не решали. Они поставили двигатель с тяговой характеристикой, почти как у меня нарисована для «избыточного» синхронного двигателя на рисунке выше, только у них не 540кВт, а 300кВт. Зона ослабления поля в тесле очень маленькая, где-то два крата. Т.е. они поставили «избыточный» для легкового автомобиля двигатель, сделав вместо бюджетного седана по сути спорт-кар с огромной мощностью. Недостаток асинхронного двигателя обратили в достоинство. Но если бы они попытались сделать менее «производительный» седан, мощностью 100кВт или меньше, то асинхронный двигатель, скорее всего, был бы точно таким же (на 300кВт), просто его искусственно задушили электроникой бы под возможности батареи.

А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее, так как мы на фирме им очень плотно занимаемся. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую мы по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.

Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая «висит» между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, «кинуть» трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – «работают» только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо «работает». Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.

Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

UPD:
Обобщая замечания в комментариях, необходимо дополнить некоторые важные, как оказалось, вещи, которые я изначально опустил как маловажные.
1. Асинхронные двигатели до эры преобразователей частоты регулировали за счет применения так называемого фазного ротора — когда ротор делался в виде обмотки, а не беличьей клетки, а через контактные кольца (как у синхронной машины) фазы ротора выводились наружу. Включая в цепь ротора резисторы можно было мягко пускать АД и безопасно регулировать частоту вращения, изменяя сопротивление. Проблема в том, что очень много энергии при этом терялось в резисторах — иногда до половины от подводимой к приводу мощности.

2. В статье не упомянуты синхронные реактивные машины и их совмещение с синхронными машинами с постоянными магнитами. Если сделать ротор синхронной машины с магнитами явнополюсным — например таким, как нарисован ротор SRD двигателя на gif анимации, то развиваемый момент может быть не только активным, но и реактивным — как у SRD. Подбирая оптимальное сочетание активного и реактивного момента можно частично исключить проблемы классической синхронной машины с магнитами, значительно расширив диапазон работы с постоянством мощности. Получается некий гибрид реактивной машины и синхронной с магнитами.

3. Шаговые двигатели не рассмотрены, потому что по принципу действия они в первом приближении схожи либо с синхронными машинами с постоянными магнитами, либо с SRD двигателями — зависит от конкретного типа шаговика. Только шаговые двигатели, в отличие от «силовых» приводов, имеют гораздо большее количество пар полюсов (зубцов) для увеличения коэффициента электрической редукции: чтобы одному периоду тока соответствовало меньшее угловое перемещение вала. Управление шаговиками обычно тривиальное — последовательный перебор фаз друг за другом (шаги). Более продвинутые системы дробят шаг, подавая в двигатель «микрошаги» — по сути приближая управление к синусоидальному. Еще более продвинутые используют датчик положения ротора и применяют полноценное векторное управление. Но в таком случае и машину нужно делать более качественную, а называться в сумме это будет уже настоящим сервоприводом.

Асинхронные двигатели переменного тока

| Как работают электродвигатели переменного тока Асинхронные электродвигатели переменного тока

| Как работают двигатели переменного тока — объясните это Рекламное объявление

Вы знаете, как работают электродвигатели? Ответ, наверное, да и нет! Хотя многие из нас узнали, как базовые моторные работы, из простых научных книг и веб-страниц, таких как эта, многие из моторы, которые мы используем каждый день — от заводских машин до электропоезда — вообще-то так не работают.Какие книги рассказывают нам о простых двигателях постоянного тока (DC), которые имеют петля из проволоки, вращающаяся между полюсами постоянного магнита; в реальной жизни, в большинстве двигателей большой мощности используется переменный ток (AC) и работают совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте посмотрим внимательнее!

Фотография: Обычный асинхронный двигатель переменного тока со снятыми корпусом и ротором, демонстрирующий медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (подвижную часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / NREL.

Как работает обычный двигатель постоянного тока?

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки, согнутый в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током сидит в магнитном поле.) Когда вы подключаете такой провод к батарее, через него течет постоянный ток (DC), создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, в результате чего провод перевернуть. Обычно провод останавливался в этой точке, а затем снова переворачивался, но если мы воспользуемся хитроумным вращающимся соединением называется коммутатором, мы можем сделать обратный ток каждый раз, когда проволока переворачивается, а это значит, что проволока будет продолжать вращаться в в том же направлении, пока течет ток.Это суть простого электродвигателя постоянного тока, задуманного в 1820-е годы Майкла Фарадея и превратился в практическое изобретение о десять лет спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Изображение: Электродвигатель постоянного тока основан на проволочной петле, вращающейся внутри фиксированного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют направление электрического тока каждый раз, когда провод перекручивается, что позволяет ему вращаться в одном и том же направлении.

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро резюмируйте, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю статическую часть двигатель (статор), а катушка с проводом, несущая электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который представляет собой постоянный магнит, пока вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянными магнитами поле статора и временное магнитное поле, создаваемое ротором, равно что заставляет мотор крутиться.

Рекламные ссылки

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, большинство домов, офисов, фабрики и другие здания не питаются от маленьких батареек: на них подается не постоянный ток, а переменный ток (AC), который меняет направление примерно 50 раз в секунду. (с частотой 50 Гц). Если вы хотите запустить двигатель от домашней электросети переменного тока, вместо батареи постоянного тока нужна другая конструкция двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляя статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединений (например, вращающиеся клетки, которым иногда удается развлечь мышей), или другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию во внутренний ротор, в двигателе переменного тока вы посылаете энергию на внешние катушки, которые составляют статор. Катушки запитываются попарно, последовательно, создавая магнитное поле, вращающееся вокруг двигателя.

Фото: Статор создает магнитное поле с помощью туго намотанных катушек из медной проволоки, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим электродвигателем. Иногда легче заменить обмотки двигателя новым проводом — это умелая работа, называемая перемоткой, что и происходит здесь. Фото Сета Скарлетта любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (точнее, закону Фарадея), магнитное поле создает (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи. В любом случае индуцированный ток производит собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает — вращающееся магнитное поле — также вращаясь.(Вы можете думать о роторе отчаянно пытается «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция — это ключ к тому, почему такой двигатель вращается, и поэтому он называется асинхронным.

Фото: эффективный асинхронный двигатель переменного тока. Фото Аль-Пуэнте любезно предоставлено NREL.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары катушек электромагнита, показанные здесь красным и синим цветом, по очереди получают питание от источника переменного тока (не показан, но поступает на провода справа).Две красные катушки соединены последовательно и запитаны вместе, а две синие катушки катушки подключаются таким же образом. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается внезапно (как предполагает эта анимация), а плавно повышается и падает в форме синусоидальной волны: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (не совпадают по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между ними, индуцирует электрический ток в роторе.Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться.
  3. Когда магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

Фотография: Двигатель с регулируемой частотой.Фото Уоррена Гретца любезно предоставлено NREL.

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером так называемого асинхронного двигателя переменного тока. Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля.На практике нагрузка на двигатель (независимо от того, чем он управляет) также играет роль, замедляя ротор. Чем больше нагрузка, тем больше «пробуксовка» между скоростью вращающегося магнитного поля и фактической скоростью ротора. Чтобы контролировать скорость двигателя переменного тока (чтобы он работал быстрее или медленнее), вы должны увеличивать или уменьшать частоту источника переменного тока, используя так называемый частотно-регулируемый привод. Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, питаемой от асинхронного двигателя переменного тока, вы на самом деле управляете схемой, которая изменяет частоту тока, приводящего в движение двигатель, вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить в движение ротор с четырьмя катушками (двумя противоположными парами), как показано здесь. Можно построить асинхронные двигатели с любым другим расположением катушек. Чем больше у вас катушек, тем плавнее будет работать мотор. Количество отдельных электрических токов, возбуждающих катушки независимо, не в шаге, известно как фаза двигателя, поэтому конструкция, показанная выше, представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают не в шаге в двух парах. ).В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включается и выключается одновременно тремя отдельными противофазными токами.

Анимация: Трехфазный двигатель, питаемый тремя токами (обозначенными красным, зеленым и синие пары катушек), сдвиг по фазе на 120 °.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота.У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ двигатели, напротив, имеют коллектор и угольные щетки, которые изнашиваются выходят и нуждаются в замене время от времени. Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Иллюстрации: Электродвигатели чрезвычайно эффективны, обычно преобразуют около 85 процентов поступающей электроэнергии в полезную исходящую механическую работу.Даже в этом случае довольно много энергии теряется в виде тепла внутри обмоток, поэтому двигатели могут сильно нагреваться. Большинство двигателей переменного тока промышленной мощности имеют встроенные системы охлаждения. Внутри корпуса находится вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который приводит в движение любую машину, к которой прикреплен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса, минуя ребра вентиляции. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), причина в том, что они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, приводящего его в действие, он вращается со скоростью постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного легче контролировать, просто повышая или понижая напряжение питания. Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника постоянного тока (например, солнечных батарей) без использования инвертора (устройства, которое преобразует постоянный ток в переменный).Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Изображение: оригинальный дизайн Николы Теслы для асинхронного двигателя переменного тока. Он работает точно так же, как и на анимации выше, с двумя синими и двумя красными катушками, поочередно запитываемыми от генератора справа. Это произведение взято из оригинального патента Tesla, депонированного в Бюро патентов и товарных знаков США, с которым вы можете ознакомиться в приведенных ниже ссылках.

Никола Тесла (1856–1943) был физиком. и плодовитый изобретатель, чей огромный вклад в науку и технику никогда не были полностью признаны. После того, как он приехал в Соединенные Штаты в возрасте 28 лет, он начал работал на известного пионера электротехники Томаса Эдисона. Но двое мужчин поссорились катастрофически и вскоре стали непримиримыми соперниками. Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал обратное. Со своим партнером Джорджем Westinghouse, Тесла отстаивал AC, в то время как Эдисон был полон решимости управлять миром на DC и придумал всевозможные рекламные трюки, чтобы доказать, что кондиционер слишком опасен для широкого использования (изобретение электрического стула, чтобы доказать, что переменный ток может быть смертельным, и даже ударил током слона Топси с помощью переменного тока, чтобы показать, насколько это было смертельно опасно и жестоко).Битва между этими двумя очень разные взгляды на электроэнергию иногда называют Войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Tesla победила, и теперь электричество переменного тока питает большую часть мира. Во многом именно поэтому многие электродвигатели, которые приводить в действие бытовую технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Никола Тесла сконструировал в 1880-х годах (его патент, проиллюстрированный здесь, был выдан в мае 1888 года).Итальянский физик по имени Галилео Феррарис независимо друг от друга придумал ту же идею примерно в то же время, но история обошлась с ним еще более жестоко, чем Тесла и его имя теперь почти забыты.

Рекламные ссылки

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
Для младших читателей
  • Электроэнергия для молодых производителей: забавные и легкие проекты «Сделай сам» Марка де Винка.Maker Media / O’Reilly, 2017. Отличное практическое введение в электричество, включая несколько занятий, связанных с созданием электродвигателей с нуля. Возраст 9–12 лет.
  • Эксперименты с электродвигателем Эда Соби. Enslow, 2011. Это отличное общее введение в электродвигатели с большим количеством более широкого научного и технологического контекста. Однако по очевидным практическим соображениям и соображениям безопасности он ориентирован только на проекты с двигателями постоянного тока и лучше всего подходит для детей в возрасте от 11 до 14 лет.
  • Сила и энергия Криса Вудфорда.Факты в файле, 2004. Одна из моих книг, рассказывающих об усилиях человека по использованию энергии с древних времен до наших дней. Возраст 10+.
  • Никола Тесла: разработчик электроэнергии Крис Вудфорд, в «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткую биографию Теслы я написал несколько лет назад. На момент написания все это было доступно в Интернете по этой ссылке в Google Книгах. Возраст 9–12 лет.

Патенты

Патенты

предлагают более глубокие технические детали и собственные идеи изобретателя о своей работе.Вот очень небольшая подборка многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель Николы Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2,959,721: Многофазные асинхронные двигатели Томаса Бартона и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 г. Асинхронный двигатель с улучшенным контролем скорости.
  • Патент США 4311932: Жидкостное охлаждение для асинхронных двигателей, Рэймонд Н. Олсон, Sundstrand Corporation, 19 января 1982 г.Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, разработанный Умешом К. Гупта, Vickers, Inc., 12 мая 1998 г. Современный двигатель с высоким начальным крутящим моментом.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Медиа-запросы?

Вы журналист, у вас есть вопрос для СМИ или просьба об интервью? Вы можете связаться со мной для получения помощи здесь.

Цитируйте эту страницу

Вудфорд, Крис.(2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают асинхронные двигатели переменного тока?

Если вы когда-либо включали вентилятор в жаркий день или загружали белье в стиральную машину, вы на собственном опыте испытали на себе индукционный двигатель переменного тока. Это одни из самых универсальных и широко используемых двигателей в мире, а также один из многих типов электродвигателей, которые мы настраиваем в соответствии с вашими потребностями.

Несмотря на то, что асинхронные двигатели просты по конструкции, принципы работы требуют небольшого пояснения.

Асинхронные двигатели переменного тока

: богатая история использования

Асинхронный двигатель был изобретен более 100 лет назад. Хотя несколько человек внесли свой вклад в его разработку, Никола Тесла часто приписывают его изобретение. Он был первым, кто подал заявку на патент в США в 1887 году.

В то же время Джордж Вестингауз разрабатывал систему для получения электроэнергии от переменного тока, которая имела решающее значение для успеха асинхронного двигателя.Westinghouse заключила контракт с Tesla на разработку двигателя, но только через 10 лет General Electric получила лицензию и усовершенствовала конструкцию, и родился двигатель, который мы используем сегодня.

Асинхронные двигатели переменного тока

: богатая история использования

Асинхронный двигатель был изобретен более 100 лет назад. Хотя несколько человек внесли свой вклад в его разработку, Никола Тесла часто приписывают его изобретение. Он был первым, кто подал заявку на патент в США в 1887 году.

В то же время Джордж Вестингауз разрабатывал систему для получения электроэнергии от переменного тока, которая имела решающее значение для успеха асинхронного двигателя.Westinghouse заключила контракт с Tesla на разработку двигателя, но только через 10 лет General Electric получила лицензию и усовершенствовала конструкцию, и родился двигатель, который мы используем сегодня.

Две основные части: статор и ротор

Асинхронный двигатель переменного тока состоит из двух основных компонентов:

Как следует из их названия, статор представляет собой внешнюю неподвижную камеру, в которой вращается ротор. Статор создает магнитную силу через переменный ток, который «побуждает» ротор вращаться.

Статор

Статор образован кольцом электромагнитов. Он состоит из тонких слоев стали или железа с прорезями, уложенных вместе в виде цилиндра. Медная проволока наматывается в чередующихся направлениях через внутреннюю часть цилиндра, создавая магнитные полюса.

Когда через эти проволочные катушки протекает переменный ток, они образуют пары чередующихся полюсов, северный и южный. Этот ток заставляет направленный поток и полярность полюсов перескакивать между северным и южным полюсами с каждым полупериодом.Это приводит к переменному магнитному полю, которое вращается с единой силой.

Ротор

Ротор также состоит из группы электромагнитов, расположенных вокруг цилиндра. Этот осевой аппарат располагается внутри статора. Магнитные поля, индуцированные внутри ротора, притягиваются к магнитному полю, создаваемому статором, следуя за ним, когда он вращается с каждым полупериодом переменного тока.

Этот тип двигателя называется асинхронным, потому что магнитное поле, создаваемое в статоре, индуцирует магнитное поле в роторе.В роторе асинхронного двигателя нет постоянных магнитов.

Типы и удивительные области применения асинхронных двигателей

Индукционные машины — наиболее часто используемый тип двигателей в жилых, коммерческих и промышленных помещениях. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.

Princy A. J | 4 июня 2020 г.

Асинхронный двигатель — это обычно используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.

Асинхронные двигатели, используемые в различных приложениях, также называются асинхронными двигателями. Это связано с тем, что асинхронный двигатель всегда работает с меньшей скоростью, чем синхронная скорость. Скорость вращающегося магнитного поля в статоре называется синхронной скоростью.

Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. Эти трехфазные двигатели переменного тока имеют следующие характерные особенности:

  • Простая и грубая конструкция
  • Доступное и низкое обслуживание
  • Высокая надежность и профессионализм
  • Нет необходимости в дополнительном пусковом двигателе и необходимости в синхронизации

Два типа асинхронных двигателей

Однофазный асинхронный двигатель

Однофазный асинхронный двигатель не запускается самостоятельно.Основная обмотка пропускает спорадический ток, когда двигатель подключен к однофазному источнику питания. Вполне логично, что самый дешевый, самый дешевый механизм сортировки должен использоваться наиболее регулярно. В зависимости от способа запуска эти машины классифицируются по-разному. К этим типам относятся двигатели с экранированными полюсами, двигатели с разделенной фазой и конденсаторные двигатели. Кроме того, конденсаторные двигатели запускаются с конденсатора, работают с конденсатором и имеют двигатели с постоянным конденсатором.

В этих однофазных двигателях пусковая обмотка может иметь последовательный конденсатор и центробежный выключатель.Когда подается напряжение питания, ток в основной обмотке удерживает напряжение питания из-за полного сопротивления основной обмотки. И ток в пусковой обмотке опережает / отстает, напряжение питания зависит от импеданса пускового механизма. Угол между двумя обмотками равен разности фаз, достаточной для создания вращающегося магнитного поля для создания пускового момента. В момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.

Применение однофазных асинхронных двигателей

Однофазные асинхронные двигатели используются в системах с малой мощностью. Эти двигатели широко используются в быту и промышленности. Некоторые из приложений упомянуты ниже:

  • Насосы
  • Компрессоры
  • Вентиляторы малые
  • Миксеры
  • Игрушки
  • Пылесосы скоростные
  • Электробритвы
  • Станки сверлильные

Трехфазный асинхронный двигатель:

Трехфазные асинхронные двигатели, будучи самозапускающимися, не имеют пусковой обмотки, центробежного переключателя, конденсатора или другого пускового устройства.Трехфазные асинхронные двигатели переменного тока находят различное применение в коммерческих и промышленных приложениях. Два типа трехфазных асинхронных двигателей — это двигатели с короткозамкнутым ротором и с контактным кольцом. Особенности, которые делают двигатели с короткозамкнутым ротором широко применяемыми, заключаются в основном в их простой конструкции и прочной конструкции. С внешними резисторами двигатели с контактным кольцом могут иметь высокий пусковой момент.

Трехфазные асинхронные двигатели широко используются в бытовых и промышленных приборах, поскольку они имеют прочную конструкцию, не требуют технического обслуживания, сравнительно дешевле и требуют питания только на статоре.

Применение трехфазного асинхронного двигателя

  • Подъемники
  • Краны
  • Подъемники
  • Вытяжные вентиляторы большой мощности
  • Станки токарные приводные
  • Дробилки
  • Маслоэкстракционные заводы
  • Текстиль и др.

Как работает 3-фазный асинхронный двигатель переменного тока

Эта статья и видео будут посвящены основам трехфазного асинхронного двигателя переменного тока, одного из наиболее распространенных на сегодняшний день типов промышленных электродвигателей.Этот обзор объяснит, что такое трехфазная мощность, как работает закон Фарадея, поймет основные компоненты асинхронного двигателя и влияние количества полюсов статора на номинальную скорость и крутящий момент двигателя.

Вы также можете посмотреть видео ниже с обзором трехфазных асинхронных двигателей переменного тока.


Что такое трехфазное питание?

Первое, что нам нужно понять о трехфазном асинхронном двигателе, — это первая часть его названия — трехфазная мощность.Однофазный источник питания использует два провода для обеспечения синусоидального напряжения. В трехфазной системе используются три провода для обеспечения одинакового синусоидального напряжения, но каждая фаза сдвинута на 120 °. В любой момент времени, если вы сложите напряжение каждой фазы, сумма будет постоянной. Однофазное питание подходит для жилых домов или других приложений с низким энергопотреблением, но трехфазное питание [JS2] обычно требуется для промышленных приложений или приложений с более высокой мощностью. Это потому, что он может передавать в три раза больше мощности, используя только 1.В 5 раз больше провода. Это делает энергоснабжение более эффективным и экономичным.


Что такое закон Фарадея?

Другой принцип, лежащий в основе асинхронных двигателей переменного тока, исходит из закона Фарадея. Британский ученый Майкл Фарадей обнаружил, что изменяющееся магнитное поле может индуцировать ток и, наоборот, ток может индуцировать магнитное поле. Используя правило правой руки, вы можете предсказать направление магнитного поля.Для этого представьте, что вы берете прямой провод, указав большим пальцем в направлении тока. Ваши пальцы будут сгибаться в направлении линий магнитного потока.


Майк сжимает маркер, чтобы продемонстрировать правило правой руки

Компоненты асинхронного двигателя

Асинхронный двигатель состоит из двух основных компонентов: статора и ротора. Статор состоит из внешних обмоток или магнитов и неподвижен.Статор неподвижен. Ротор — это внутреннее ядро, которое фактически вращается в двигателе. Ротор вращается.

Трехфазный асинхронный двигатель — ротор внутри статора

Беличья конструкция является наиболее распространенным типом асинхронных двигателей, поскольку они самозапускаются, надежны и экономичны. В этой конструкции ротор похож на колесо для хомяка или «беличью клетку», отсюда и название. Ротор состоит из внешнего цилиндра из металлических стержней, закороченных на концах. Внутренняя часть состоит из шахты и прочного сердечника, сделанного из стальных пластин.

Как это работает

Для достижения крутящего момента на валу двигателя через статор подается ток. Это создает вращающееся магнитное поле, которое, в свою очередь, индуцирует ток в роторе. Из-за этого индуцированного тока ротор также создает магнитное поле и начинает следовать за статором из-за магнитного притяжения. Ротор будет вращаться медленнее, чем поле статора, и это называется «проскальзыванием». Если бы ротор вращался с той же скоростью, что и статор, ток не индуцировался бы, следовательно, не было бы крутящего момента.Разница в скорости колеблется в пределах 0,5-5% в зависимости от обмотки двигателя.


Обмотки и полюса

Трехфазные двигатели доступны в конфигурациях с 2, 4, 6, 8 и более полюсами. Количество полюсов в обмотках определяет идеальную скорость двигателя. Двигатель с большим числом полюсов будет иметь меньшую номинальную скорость, но более высокий номинальный крутящий момент. Из-за этого двигатели с высоким полюсом иногда называют моментными двигателями и могут использоваться для замены двигателя с редуктором.Идеальное соотношение между числом полюсов, частотой и скоростью определяется следующим:

Взаимосвязь между количеством полюсов и частотой вращения асинхронного двигателя.


Преимущества асинхронных двигателей

Асинхронные двигатели

обладают множеством преимуществ, включая снижение первоначальных затрат и затрат на техническое обслуживание. Из-за своей базовой и экономичной конструкции асинхронные машины обычно стоят меньше, чем синхронные двигатели и двигатели постоянного тока. Это делает их идеальным выбором для промышленных применений с фиксированной скоростью, таких как ветроэнергетика и ветряные генераторы.

Абсолютная простота асинхронных двигателей также упрощает и сокращает частоту технического обслуживания, что со временем снижает эксплуатационные расходы. Эта экономическая эффективность дает асинхронным машинам значительное преимущество перед синхронными двигателями и двигателями постоянного тока, которые имеют множество дополнительных компонентов, таких как контактные кольца, коммутаторы и щетки.

Прочность — еще одна сильная сторона асинхронных двигателей. Эти прочные машины могут работать в течение нескольких лет при минимальном внимании и обслуживании даже в сложных условиях.Отсутствие щеток (и искр) позволяет асинхронным двигателям безопасно работать во взрывоопасных или других условиях окружающей среды, создавая гибкое решение для нефтегазовой отрасли, погрузочно-разгрузочных работ и многого другого.

Трехфазные асинхронные двигатели

также обладают уникальными преимуществами, включая самозапускающийся момент. Эта функция устраняет необходимость в пусковых конденсаторах, которые обычно требуются для однофазных двигателей. Трехфазные машины также обеспечивают исключительную регулировку скорости и перегрузочную способность, что делает их пригодными для широкого спектра применений.


Применения для трехфазных асинхронных двигателей переменного тока

Преобразуя электрическую энергию в механическую, трехфазные асинхронные двигатели переменного тока могут приводить в действие огромное количество компонентов — от насосов и вентиляторов до компрессоров и конвейеров — в промышленных или более мощных приложениях.

3-фазные асинхронные двигатели переменного тока

представляют собой недорогой выбор премиум-класса для простых односкоростных приложений. Сюда входят поворотные столы, конвейеры для транспортировки материалов, промышленные вентиляторы и другие простые системы.


Трехфазные асинхронные двигатели также хорошо подходят для приложений eMobility, включая коммерческие электрические и гибридные автомобили. Асинхронные двигатели сводят к минимуму затраты и потенциальные точки отказа в горнодобывающем и сельскохозяйственном оборудовании, грузовиках и школьных автобусах, одновременно оптимизируя характеристики управления двигателями, обеспечивая комплексное решение для машиностроителей eMobility.


Заключение 3-фазные асинхронные двигатели переменного тока

состоят из статора и ротора.Во время работы через статор пропускается ток, который индуцирует магнитное поле и приводит к вращению ротора. Скорость вращения вала и приложенный крутящий момент зависят от рабочей частоты и количества пар полюсов в обмотках двигателя. Если вас интересует наша линейка асинхронных двигателей, мотор-редукторов или даже серводвигателей, свяжитесь с инженером KEB, заполнив контактную форму ниже.

Трехфазный асинхронный двигатель

: типы, работа и применение

Трехфазный асинхронный двигатель

— конструкция, работа и типы трехфазных асинхронных двигателей

Двигатель используется для преобразования электрической формы энергии в механическую.По типу питания двигатели классифицируются как двигатели переменного тока и двигатели постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с рабочими и приложениями.

Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для выработки механической энергии в промышленных приложениях. Почти 80% двигателей — это трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Следовательно, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

Что такое трехфазный асинхронный двигатель?

Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного источника питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный питающий ток создает электромагнитное поле в обмотке статора, которое приводит к созданию крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

Конструкция трехфазного асинхронного двигателя

Конструкция асинхронного двигателя очень проста и надежна.Он состоит в основном из двух частей;

Статор

Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

  • Рама статора
  • Сердечник статора
  • Обмотка статора
Рама статора

Рама статора является внешней частью двигателя. Рама статора служит опорой для сердечника статора и обмотки статора.

Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

Рама отлита для малых машин и изготовлена ​​для большой машины. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия / алюминиевых сплавов или нержавеющей стали.

Сердечник статора

Сердечник статора передает переменный магнитный поток, который вызывает гистерезис и потери на вихревые токи.Для минимизации этих потерь сердечник ламинирован штамповкой из высококачественной стали толщиной от 0,3 до 0,6 мм.

Эти штамповки изолированы друг от друга лаком. Все штамповки штампуются вместе в форме сердечника статора и фиксируются его рамой статора.

Внутренний слой сердечника статора имеет несколько пазов.

Обмотка статора

Обмотка статора расположена внутри пазов статора, имеющихся внутри сердечника статора. Трехфазная обмотка размещена как обмотка статора.А на обмотку статора подается трехфазное питание.

Число полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет высокой. Полюса всегда попарно. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в уравнении ниже:

N S = 120 f / P

Где;

  • f = частота питания
  • P = общее количество полюсов
  • N s = синхронная скорость

Как конец обмотки, подключенный к клеммной коробке.Следовательно, в клеммной коробке шесть клемм (по две каждой фазы).

В зависимости от применения и способа запуска двигателей обмотка статора подключается по схеме звезды или треугольника, и это осуществляется путем соединения клемм в клеммной коробке.

Ротор

Как следует из названия, ротор — это вращающаяся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с фазовой обмоткой / асинхронный двигатель с контактным кольцом

Конструкция статора одинакова в обоих типах асинхронных двигателей.Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

Типы трехфазных асинхронных двигателей

Трехфазные двигатели подразделяются в основном на две категории в зависимости от обмотки ротора (обмотки катушки якоря), то есть короткозамкнутого ротора и контактного кольца (двигатель с фазным ротором).

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или с обмоткой ротора

Связанная публикация: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и применение

Асинхронный двигатель с короткозамкнутым ротором Двигатель

По форме этот ротор напоминает клетку белки.Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

Конструкция этого типа ротора очень проста и надежна. Итак, почти 80% асинхронного двигателя — это асинхронный двигатель с короткозамкнутым ротором.

Ротор состоит из многослойного цилиндрического сердечника и имеет пазы на внешней периферии. Прорези не параллельны, но перекошены под некоторым углом. Это помогает предотвратить магнитную блокировку между статором и зубьями ротора. Это обеспечивает плавную работу и снижает гудение.Увеличивает длину проводника ротора, за счет чего увеличивается сопротивление ротора.

Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Штанги ротора изготовлены из алюминия, латуни или меди.

Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полностью закрытый путь в цепи ротора. Стержни ротора приварены или скреплены концевыми кольцами для обеспечения механической поддержки.

Короткое замыкание стержней ротора. Следовательно, невозможно добавить внешнее сопротивление в цепь ротора.

В роторах этого типа не используются контактные кольца и щетки. Следовательно, конструкция этого типа двигателя проще и надежнее.

Асинхронный двигатель с контактным кольцом или фазным ротором

Асинхронный двигатель с контактным кольцом также известен как двигатель с фазным ротором . Ротор состоит из пластинчатого цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора совпадает с числом полюсов обмотки статора.Обмотка ротора может быть соединена звездой или треугольником.

Концевые выводы обмоток ротора соединены с контактными кольцами. Итак, этот двигатель известен как асинхронный двигатель с контактным кольцом.

Внешнее сопротивление может легко подключаться к цепи ротора через контактное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

Электрическая схема трехфазного асинхронного двигателя с контактным кольцом и внешним сопротивлением показана на рисунке ниже.

Внешнее сопротивление используется только для пусковых целей. Если он остается подключенным во время работы, это приведет к увеличению потерь в меди в роторе.

Высокое сопротивление ротора хорошо для начальных условий. Таким образом, внешнее сопротивление подключено к цепи ротора во время запуска.

Когда двигатель работает со скоростью, близкой к фактической, контактные кольца замыкаются накоротко из-за металлической манжеты. Благодаря такому расположению щетки и внешнее сопротивление удаляются из цепи ротора.

Это снижает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложна по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

Обслуживание этого мотора больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В противном случае асинхронный двигатель с короткозамкнутым ротором предпочтительнее асинхронного двигателя с контактным кольцом.

Принцип работы трехфазного асинхронного двигателя

Обмотки статора перекрываются под углом 120 ° (электрически) друг к другу.Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (RMF).

Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).

Согласно закону Фарадея, ЭДС индуцируется в проводнике из-за скорости изменения магнитного потока (dΦ / dt). Схема ротора отсекает магнитное поле статора и ЭДС, индуцированную в стержне или обмотке ротора.

Цепь ротора — закрытый путь. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

Теперь мы знаем, что проводник с током индуцирует магнитное поле. Таким образом, ток ротора индуцирует второе магнитное поле.

Относительное движение между магнитным потоком статора и магнитным потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.

Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцированного статором.

Здесь ток ротора создается за счет индуктивности.Поэтому этот двигатель известен как асинхронный двигатель.

Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не улавливает. Следовательно, скорость ротора немного меньше скорости синхронной скорости.

Синхронная скорость зависит от количества полюсов и частоты питания. Разница между фактической скоростью ротора и синхронной скоростью называется скольжением.

Почему в асинхронном двигателе скольжение никогда не бывает нулевым?

Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю.Для асинхронного двигателя этого никогда не будет.

Потому что, когда скольжение равно нулю, обе скорости равны и относительного движения нет. Следовательно, в цепи ротора не индуцируется ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

Асинхронный двигатель широко используется в промышленности. Потому что преимуществ больше, чем недостатков.

Преимущества и недостатки асинхронных двигателей

Преимущества

Ниже перечислены преимущества асинхронных двигателей:

  • Конструкция двигателя очень проста и надежна.
  • Асинхронный двигатель работает очень просто.
  • Может работать в любых условиях окружающей среды.
  • КПД мотора очень высокий.
  • Асинхронный двигатель требует меньшего обслуживания по сравнению с другими двигателями.
  • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
  • Асинхронный двигатель — это самозапускающийся двигатель. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для запуска.
  • Стоимость этого мотора очень меньше по сравнению с другими моторами.
  • Срок службы этого двигателя очень высок.
  • Реакция якоря меньше.

Связанное сообщение: Прямой онлайн-пускатель — Схема подключения стартера прямого включения для двигателей

Недостатки

Недостатки двигателя перечислены ниже;

  • В условиях небольшой нагрузки коэффициент мощности очень низкий. И он потребляет больше тока.Таким образом, потери в меди больше, что снижает эффективность при небольшой нагрузке.
  • Пусковой момент этого двигателя (асинхронный двигатель с короткозамкнутым ротором) не меньше.
  • Асинхронный двигатель — это двигатель с постоянной скоростью. В приложениях, где требуется регулировка скорости, этот двигатель не используется.
  • Управление скоростью этого мотора затруднено.
  • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

Применение трехфазных асинхронных двигателей

Асинхронный двигатель в основном используется в промышленности.Асинхронные двигатели с короткозамкнутым ротором используются в жилых и промышленных помещениях, особенно там, где не требуется регулирование скорости двигателей, например:

  • Насосы и погружные
  • Прессовочный станок
  • Токарный станок
  • Шлифовальный станок
  • Конвейер
  • Мукомольные мельницы
  • Компрессор
  • И другие устройства с низкой механической мощностью

Двигатели с контактным кольцом используются в тяжелых нагрузках, где требуется высокий начальный крутящий момент, например:

  • Сталелитейные заводы
  • Подъемник
  • Крановая машина
  • Подъемник
  • Линейные валы
  • и другие тяжелые механические мастерские и т. Д.

Связанные сообщения:

Асинхронный двигатель

(Этот документ состоит из двух основных частей: принцип работы и характеристики асинхронного двигателя)
Асинхронные двигатели или асинхронные двигатели часто называют рабочими лошадками отрасли.Это результат многих преимуществ асинхронного двигателя по сравнению с другими технологиями. Двигатель не требует особого обслуживания. Единственные детали, которые могут изнашиваться, — это подшипники. Если асинхронный двигатель не используется чрезмерно (из-за высокого напряжения, тока или механического воздействия), подшипники определяют жизненный цикл асинхронного двигателя. В отличие от двигателя постоянного тока, нет необходимости в угольных щетках для коммутации тока. Асинхронный двигатель может быть изготовлен легко и при этом его цена довольно низкая по сравнению с другими технологиями.Асинхронный двигатель не использует процесс сгорания для передачи энергии, поэтому нет необходимости (дозаправлять) топливо или воздух. Охлаждение может быть интегрировано, так что асинхронный двигатель может работать в герметичной среде, например, под водой. Асинхронный двигатель имеет высокое отношение мощности к массе. Еще одно преимущество — высокий пусковой крутящий момент, поэтому возможен запуск под нагрузкой. С момента развития частотно-регулируемых приводов и систем векторного управления этот асинхронный двигатель также легко регулируется по скорости и крутящему моменту.Это дало много возможностей для автоматизации процессов. В следующей статье объясняются принцип, характеристики и контроль индукции.

Принцип работы асинхронного двигателя



Принцип асинхронного двигателя заключается в создании вращающегося магнитного поля в статоре и индукции тока в роторе, так что оба элемента вместе дают мощность на ротор, что приводит к круговому движению с определенной скоростью и крутящим моментом.

Статор
Теоретически статор представляет собой трехфазную обмотку, разделенную на цилиндрическую поверхность, так что при приложении трехфазного напряжения индуцируется вращающееся магнитное поле.Обмотки размещены в металлической цилиндрической конструкции для направления силовых линий магнитного поля и предотвращения движения обмоток. Эта конструкция состоит из ламинированных перфорированных пластин. Это предотвращает циркуляцию сильных вихревых токов в статоре. Идеальная ситуация — это синусоидальное магнитное поле, но для объяснения принципов работы статора достаточно одной обмотки на фазу. Это показано на следующем рисунке.

Рисунок 1: Теоретическая конструкция статора с одной обмоткой на фазу


Рисунок 2: Трехфазный ток i s1 , i s2 и i s3 , которые будут подключены к катушкам U, V и W

Здесь три обмотки смещены более чем на 120 °, так что это симметрично.Обмотки часто называют по фазам; U 1 — U 2 , V 1 — V 2 и W 1 — W 2 . На этом рисунке есть два полюса на фазу. Три обмотки могут быть соединены звездой или треугольником. Это часто делается через мостовые соединения вне асинхронного двигателя, потому что в зависимости от конфигурации меняются такие характеристики, как ток, напряжение и направление вращения.

Рисунок 3: Конфигурация звезды и треугольника с мостовыми соединениями


Рисунок 4: Асинхронный двигатель со звездой

На три обмотки подается трехфазное симметричное синусоидальное напряжение.Обмотки имеют определенную проводимость, поэтому через обмотки протекает трехфазный симметричный синусоидальный ток. Токи создают вокруг себя различные магнитные поля. На рис. 5 показана эволюция этих магнитных полей за один период.

Рисунок 5: Магнитная ситуация в момент времени с 1 по 7 (Рисунок 2)

Ток положительный, когда он течет со стороны 1 на сторону 2 (U 1 — U 2 , V 1 — V 2 и W 1 — W 2 ).Различные магнитные поля на фазу приводят к общему магнитному полю, показанному на рисунке mkl. Это магнитное поле вращается в этом примере по часовой стрелке. Каждый период синуса напряжения магнитное поле совершает вращение на 360 ° через весь статор. Если на каждую фазу помещается больше обмоток, так что создается 2 * p полюса на фазу, магнитные поля совершают вращение на 360 ° / p за период напряжения. Если частота системы напряжения f s , частота магнитного поля f s / p или количество оборотов в минуту равно

n s = (60f s ) / p
Как упоминалось ранее, ситуация с одной обмоткой на фазу на полюс является упрощенной моделью.Фактическое распределение содержит больше обмоток на прорезь в статоре. По фазе это распределение выполняется как синусоида. Если линия с севера на юг в соответствии с индуцированным магнитным полем от фазы называется опорной линией статора, то оптимальное распределение проводов N s для одной фазной катушки определяется выражением:
n s = (N s /2) sin α
Из этого выражения в соответствии с выводом магнитной индукции в воздушном пространстве между статором и ротором получается:
B δs1 (α) = (u 0 N s i s1 cos α) / 2δ
Также из нее можно записать следующую формулу для действующего значения магнитного поля в воздушной подушке:
B δ = (3 N se u 0 I u ) / 4δ
Чтобы найти поток статора, индуктивность намагничивания и наведенную ЭДС, воспользуйтесь предыдущими формулами и выражением для потока в одной обмотке.Итак, допустим один виток катушки U 1 — U 2 . Этот поворот составляет определенный угол α с опорной линией статора. Пусть статор имеет следующие характеристики: радиус r и осевую длину l. Тогда поток за один виток определяется по следующей формуле:
ф поворот = 2 B δ I r sin α
Из этого выражения можно найти максимум всего индуцированного потока от катушки U 1 — U 2 , интегрировав его по всему распределению обмоток этой фазы:

Индуцированный поток ф с1 пропорционален току намагничивания I и .Это включает в себя то, что поток и ток находятся в фазе. Исходя из этого, индуктивность намагничивания может быть определена как:

Наведенная ЭДС в одной катушке такова:


Ротор
Ротор состоит из разных частей. В основном есть два типа роторов. Асинхронные двигатели с фазным ротором имеют ротор, содержащий обычные трехфазные обмотки из изолированного провода. Другой тип, который будет использоваться далее в этой статье, — это асинхронный двигатель с короткозамкнутым ротором.Он имеет ротор с короткозамкнутым ротором. Для обоих типов кожух ротора состоит из перфорированных пластин. В них есть прорези для трехфазных обмоток или беличьей клетки. Беличья клетка изготовлена ​​из металлических (обычно медных или алюминиевых) стержней с соединением на обоих концах металлическим кольцом короткого замыкания. Вариации обычны, но принцип остается тем же. Процесс передачи крутящего момента в роторе основан на законе Фарадея и силе Лоренца. Объяснить процесс, происходящий в роторе. Представьте себе токопроводящую лестницу, состоящую из длинных металлических сторон и проводящих ступенек, как на рисунке 6.

Рисунок 6: Лестничный эквивалент ротора

Ступени имеют длину l. Перпендикулярно плоскости, образованной ступенями и проводящей стороной, расположен постоянный магнит. Затем магнит перемещается параллельно сторонам по ступеням лестницы, не касаясь их. Магнит имеет определенное магнитное поле B и скорость v согласно лестнице. Если этот воображаемый эксперимент проводится достаточно быстро, можно заметить несколько событий. Основываясь на законе Фарадея, будет индуцироваться ЭДС, что приведет к возникновению напряжения в проводнике прямо под магнитом.

E = B.l.v
Это потому, что проводник отсекает поток. Этот проводник вместе со сторонами лестницы и соседними проводящими ступенями образует замкнутый контур. Из-за напряжения на центральной ступеньке по этому контуру будет течь ток. Направление напряжения и тока таково, что противодействует изменению поля магнетита. В этом примере, если магнит движется вправо, а его отрицательный полюс находится над лестницей, ток будет течь в центральном проводнике вперед, а в соседних ступенях — назад.
I = E / Z
Где Z — импеданс, видимый потенциалом над центральным проводником. Поскольку существует магнитное поле B, пересекающее ступеньку, и электрический ток, протекающий через ступеньку, сила Лоренца будет действовать на лестницу.
F = BlI

Рисунок 7: Ротор с короткозамкнутым ротором

Эта сила действует в том же направлении, что и движение магнита, потому что это индуцированная сила, которая противодействует ее источнику !. Если лестница может двигаться свободно, она начнет ускоряться, чтобы уменьшить разницу в скорости между лестницей и магнитом.Когда разница скоростей уменьшается, ЭДС уменьшится, что приведет к снижению тока, силы и ускорения. Если лестница и магнит работают с одинаковой скоростью, сила будет равна нулю. Чтобы сделать шаг к асинхронному двигателю с короткозамкнутым ротором, ротор с короткозамкнутым ротором эквивалентен лестнице, которая изогнута к цилиндру, а движущийся магнит воспроизводится вращающимся магнитным полем из-за трех фазных обмоток. Такой цилиндр показан на рисунке 7. На этом примере объясняется принцип работы асинхронного двигателя.Исходя из формулы ЭДС в одной катушке, можно провести аналогию.

E s1 = jw s ф s1 = jw s L 0 I u
Если пренебречь индуктивным и резистивным падением напряжения на катушке, ЭДС равна установленному напряжению U c1 . Вращающееся поле индуцирует ЭДС E r1-rest в обмотке ротора. Когда асинхронный двигатель не вращается, статор и ротор действуют как первичная и вторичная обмотки трансформатора.Обе частоты равны:
f r = f s
Обмотки связаны магнитным потоком, который действует как вращательное поле. Как и в случае с реальным трансформатором, для асинхронного двигателя можно определить коэффициент трансформации в этом случае, когда он не вращается.
k = E s1 / E r1-отдых
Основное различие между асинхронным двигателем в этой ситуации и реальным трансформатором — это нулевой ток нагрузки.Поскольку сопротивление асинхронного двигателя намного выше из-за воздушной заслонки, ток намагничивания и, следовательно, ток нулевой нагрузки значительно выше. В асинхронном двигателе этот ток составляет 20-50% от тока полной нагрузки, тогда как в реальном трансформаторе он составляет лишь несколько процентов от тока полной нагрузки. Сила Лоренца на роторе дает на валу определенный крутящий момент.

Этот крутящий момент максимален, когда ток ротора находится в фазе с магнитным потоком статора. Ток ротора имеет большое отставание от ЭДС ротора из-за его высокой собственной индуктивности.

загар φ = (wL r ) / R r
Это ситуация, когда ротор стоит, например, когда стоит асинхронный двигатель. Создаваемый крутящий момент на роторе вызовет ускорение. По мере того как скорость ротора увеличивается по направлению к скорости вращения магнитного поля, также называемой синхронной скоростью, ЭДС E r1 уменьшается точно так же, как частота напряжения ротора f r . Если асинхронный двигатель достигнет синхронной скорости, на ротор больше не будет действовать сила, поэтому это невозможно.Вот почему асинхронный двигатель также называют асинхронным двигателем. Когда нагрузка увеличивается, скорость уменьшается, а крутящий момент увеличивается. В нагруженной ситуации, например, когда приложена номинальная нагрузка, скорость асинхронного двигателя обозначается буквой n.

Характеристики асинхронного двигателя

Накладка
Из предыдущей главы ясно, что ротор никогда не может достичь той же скорости вращения, что и вращательное магнитное поле статора.Резюмируя: синхронная скорость потока статора n s зависит от частоты f s приложенного напряжения и количества пар полюсов p:

n s = (60f s ) / p
Поскольку ротор никогда не достигает этой скорости, определяется коэффициент, указывающий относительную разницу между обеими скоростями. Этот коэффициент, скольжение g, определяется следующим образом:
г = (п с — п) / п с
Проскальзывание часто указывается в процентах.В системе координат скольжение будет иметь направление, противоположное скорости вращения ротора. Проскальзывание будет нулевым, когда скорость ротора равна синхронной скорости, будет равняться единице, если асинхронный двигатель остановится, будет отрицательным во время генерации и будет больше единицы, когда вращающееся магнитное поле приложено в направлении, противоположном направлению вращения. ротора. Это электрическое торможение.

Характеристики ротора

Частота ротора
Частота ЭДС в роторе зависит от разницы между скоростью вращения ротора и скоростью магнитного поля в статоре:

f r = p (n s — n) / 60 = pn s g / 60 = f s g
ЭДС ротора
Когда ротор остановился, разница! по скорости ротора и магнитному полю статора равна синхронной скорости.В этой ситуации EMF E r1-rest выдается по:
E = Blv s
Когда ротор вращается с определенной скоростью n, ЭДС, зависящая от разницы скоростей, будет ниже:
E = Bl (v s — v r ) = gBlv s
Таким образом, при заданном скольжении g ЭДС в роторе определяется по формуле:
E r = gE r1-остальные
Скорость магнитного поля ротора
В роторе течет ток из-за наведенного напряжения.Этот ток дает, следуя закону Гопкинсона, магнитодвижущую силу. Эта сила создает магнитное поле, которое из-за вращающегося характера текущей системы также будет вращаться. Ранее было показано, что частота напряжения системы ротора f r пропорциональна частоте частоты статора f s с коэффициентом скольжения g:
f r = gf s
Таким образом, скорость вращения магнитного поля ротора w r определяется следующими формулами:
w r = gw s = 2πf r
Сам ротор вращается со скоростью
w = (2πn / 60) рад / с
Таким образом, w равно
ш = (1 — г) ш с
Таким образом, когда скорость вращения ротора и его поле объединяются, в результате получается магнитное поле ротора, которое вращается с той же синхронной скоростью в соответствии с опорной линией статора.
w s = w + w r
Мощность и крутящий момент

Активный поток мощности
Чтобы лучше понять электрические процессы в асинхронном двигателе, полезно рассмотреть эквивалентную схему асинхронного двигателя, как показано на рисунке 8. Таким образом, гальванически разделенные процессы статора и ротора объединены в одну электрическую эквивалентную схему одной фазы. Индекс s указывает количество статора, индекс r количество ротора. Акценты используются там, где количество ротора относится к статору.

Рисунок 8: Эквивалентная схема асинхронного двигателя

Помимо всех электрических параметров асинхронного двигателя, основная цель состоит в том, чтобы передать определенный крутящий момент на вал при определенной угловой скорости. Принимая во внимание электрические характеристики, можно рассмотреть блок-схему, показанную на рисунке 9. Напряжение U, приложенное к обмоткам, известно. В простых, неконтролируемых приложениях это напряжение сети. В процессах с частотным регулированием это напряжение, подаваемое частотно-регулируемым приводом.Асинхронный двигатель требует определенного тока I. Асинхронный двигатель имеет индуктивный характер из-за использования различных катушек. Это означает, что ток и напряжение через обмотки не совпадают по фазе. Хотя важно знать, каково приложенное напряжение, чтобы знать влияние на изоляцию обмоток, напряжение для дальнейших отводов мощности не так важно.

Рисунок 9: Поток мощности в асинхронном двигателе

Рисунок 9 начинается с активной мощности, подаваемой на статор

P e = √3U l I l cos φ = 3U p I p cos φ
Где φ — угол между вектором напряжения и тока в векторном представлении.Индексы I и p указывают, является ли использованное количество линейным или фазовым количеством. Далее используются количества фаз, поскольку они согласуются с количествами статора. Первая часть активной мощности, поступающей в асинхронный двигатель, теряется в тепле в обмотках статора. Эта часть, называемая потерями в меди статора P js , зависит от сопротивления статора и тока:
P js = 3I p 2 R s
Другая часть рассеивается в виде тепла в сердечнике статора.Эти потери представляют собой потери в стали из-за вихревых токов в сердечнике:
P f = 3V p 2 / R м ≈ 3V s 2 / R m
Оставшаяся часть мощности — это мощность зазора P r , которая передается от статора к ротору через воздушный зазор:
P r = 3 (I r ) 2 R s ‘ / g
От мощности зазора часть рассеивается в виде тепла в обмотках ротора, что называется потерями в меди в роторе:
P младший = 3 (I r ) 2 R s ‘ = gR r
Теперь остается механическая мощность двигателя:
P м = (1 — г) P r
Часть механической мощности теряется из-за трения вращающихся и движущихся частей с воздухом и особенно с неподвижными частями двигателя.Эта часть, обозначенная как P v , соответствует мощности без нагрузки:
P v = P без нагрузки
Исходя из всех этих мощностей, общий КПД асинхронного двигателя можно выразить как:
η = P выход / P дюйм = (P m — P v ) / (P m + P f + P js + P fr ) = P нагрузка / P e
В таблице 1 приведены абсолютные и относительные значения нескольких асинхронных двигателей.Малые двигатели имеют мощность менее 11 кВт, большие двигатели — более 1100 кВт.
Нагрузка
Текущий родственник
Крутящий момент относительный
Скользящий родственник
Абсолютный КПД
Абсолютный коэффициент мощности
Размер двигателя
Маленький
Большой
Маленький
Большой
Маленький
Большой
Маленький
Большой
Маленький
Большой
Полная нагрузка
1
1
1
1
0.03
0,004
0,7-0,9
0,96-0,98
0,8-0,85
0,87-0,9
Без нагрузки
0,5
0,3
0
0
~ 0
~ 0
0
0
0.2
0,05
Ротор с заторможенным ротором
5-9
4-6
1,5-3
0,5-1
1
1
0
0
0,4
0.1

Кривая зависимости крутящего момента от скорости
Когда крутящий момент вычисляется исходя из мощности зазора P r и синхронной угловой скорости w s , можно предпринять следующие шаги, чтобы найти общее выражение для крутящего момента в зависимости от скорости:

Где
X r = w s σ r L 0
— индуктивность рассеяния ротора относительно статора.С этого момента все упомянутые термины … r заменены терминами … R для ясности. С
U s1 ≈ E s1 = φ s1 w s
Крутящий момент становится:
T = (3pR R / w r ) φ s1 2 / ((R R / w r ) 2 + (σ R L 0 ) 2 )
Максимальный крутящий момент достигается при
dT / dw r = 0 (это происходит, когда w r = R R / σ R L 0 )
Когда это заполнено в формуле крутящего момента, это дает выражение максимального крутящего момента или крутящего момента пробоя:
T = 3pφ s1 2 / 2σ R L 0
График зависимости крутящего момента от скорости хорошо представлен на рисунке 10.

Рисунок 10: Кривая зависимости крутящего момента от скорости асинхронного двигателя

Рисунок 10 также дает выражение для скорости при максимальном крутящем моменте. Как было доказано до пробоя крутящий момент достигается при частоте вращения ротора

w r = R R / σ R L 0
Скорость ротора дает разницу между синхронной скоростью и фактической скоростью. Таким образом, пробойный момент достигается при частоте вращения
w = w s — (1 / p) R R / σ R L 0
или указано в оборотах в минуту об / мин:
n b = n s — (30 / πp) R R / σ R L 0
Скорость зависит от сопротивления ротора.Сама величина пробивного момента не зависит от сопротивления ротора. Когда скорость ротора в соответствии с опорной линией статора выше, чем синхронная скорость, значение скорости ротора w r становится отрицательным. Поток энергии будет идти от ротора к статору. Это происходит, когда ротор работает или асинхронная машина работает как генератор вместо двигателя. Следует принять во внимание, что крутящий момент, заданный предыдущими выражениями, является крутящим моментом на затворе, поэтому потери ротора, потери на трение и вентиляционные потери еще не принимаются во внимание.Теоретически асинхронный двигатель может передавать максимальный крутящий момент на нагрузку. Обычно номинальный крутящий момент в 1,75–3 раза меньше. Это дает несколько эффектов. Номинальный ток будет ниже, рабочая точка, вероятно, будет намного более стабильной, номинальная скорость почти соответствует синхронной скорости, а асинхронный двигатель поддерживает большой момент ускорения. На рисунке 11 визуализирована концепция ускоряющего момента.

Рисунок 11: Графический пример ускоряющего момента

Из состояния покоя нагрузка с противодействующим моментом T c1 будет ускоряться до точки P, где в каждый момент времени

T — T c1 = T α = J m dw / dt
Фактическая причина этого последнего выражения будет более подробно объяснена в главе о механике.Если противодействующий крутящий момент 01f, нагрузка следует курсу T c2 , асинхронный двигатель не может самостоятельно разогнать нагрузку. Чтобы получить более высокий пусковой и ускоряющий момент без использования завышенного асинхронного двигателя, решение состоит в более высоком сопротивлении ротора.

Это может быть сделано вне асинхронного двигателя в случае асинхронного двигателя с фазным ротором или внутри двигателя с использованием двухклеточного асинхронного двигателя или стержней ротора с более высоким сопротивлением. Ротор с обмоткой и принцип стержня ротора с более высоким сопротивлением напрямую влияют на сопротивление ротора.Влияние на кривую зависимости крутящего момента от скорости показано на рисунке 12.

Рис. 12: Крутящий момент в зависимости от скорости для различных значений сопротивления ротора

На пробойный момент не влияет, как было сказано ранее, только когда сопротивление действительно велико. В роторе с обмоткой с зажимами внешнего сопротивления сопротивление можно регулировать, когда асинхронный двигатель работает на более высокой скорости, чтобы уменьшить скольжение. В двухклеточном двигателе концентрически установлены две беличьи клетки. Это показано на рисунке 13.Внутренняя клетка содержит толстые стержни и почти полностью окружена железным сердечником.

Имеет высокую индуктивность и низкое сопротивление. Наружная клетка состоит из более тонких стержней, которые размещаются рядом с воздушным зазором между ротором и статором. Сопротивление выше, чем во внутренней клетке. Поток вокруг внешних стержней частично закрывается в воздушной заслонке. Благодаря этому он имеет более низкую индуктивность. При запуске асинхронного двигателя частота вращения ротора w r максимальна.

Рисунок 5.13: Принцип двухклеточного ротора

Очень важно реактивное сопротивление ротора. Ток ротора будет высоким во внешней клетке и низким во внутренней клетке. Это клетка с более высоким сопротивлением, что означает более высокий момент ускорения. Когда асинхронный двигатель набирает скорость, скорость ротора уменьшается и достигает небольшого значения (f r ~ 1–4 Гц). Реактивное сопротивление больше не так важно, и ток будет в основном течь во внутренней клетке, потому что ее сопротивление намного ниже, чем у внешней клетки.Сопротивление ротора полностью регулируется электрически. В основном есть три возможных ситуации, как показано на рисунке 14. Первая кривая дает асинхронный двигатель с низким сопротивлением ротора, более низким пусковым моментом, но более высокой эффективностью. Вторая кривая иллюстрирует наиболее распространенный асинхронный двигатель с повышенным пусковым моментом. Третья кривая называется седловой кривой и используется, когда требуется действительно высокий пусковой крутящий момент, здесь пусковой крутящий момент может даже быть выше, чем! момент пробоя.

Рисунок 5.14: Уровни крутящего момента ротора с двойной обоймой

Пусковой ток
Когда асинхронный двигатель запускается путем прямого подключения к сети, от сети будет запрашиваться высокий пусковой ток. Кроме того, на нормальный периодический синусоидальный ток будет накладываться сильный выброс тока. Сетевое напряжение передается на статор, когда ротор неподвижен. Это эквивалентно принципу трансформатора с короткозамкнутой вторичной обмоткой. Когда асинхронный двигатель ускоряется, разница между ротором и статором уменьшается, а наведенная ЭДС в роторе (вторичная обмотка эквивалентного трансформатора) уменьшается.Подобно принципу трансформатора, вторичный ток и, следовательно, первичный ток уменьшаются. Соотношение между скачком пускового тока и номинальным током находится где-то между 3 и 7. Это сделано для ограничения воздействия на сеть и упрощения защиты асинхронного двигателя предохранителями.

Покажите и расскажите: асинхронные двигатели переменного тока

Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения. По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности.В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.

Немного истории

Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей. Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен. В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»).В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную. Первые трехфазные асинхронные двигатели переменного тока без коммутатора были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году. Оба опубликовали статьи в 1888 году, чтобы объяснить эти технологии. Тесла подал заявку на патенты США в 1887 году и получил некоторые из этих патентов в 1888 году.Джордж Вестингауз, который в то время разрабатывал систему переменного тока, лицензировал патенты Tesla в 1888 году и приобрел в США вариант патента на концепцию асинхронного двигателя Ferraris для дальнейшего развития технологии. General Electric (GE) начала разработку трехфазных асинхронных двигателей в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о взаимном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором. Та же концепция используется и сегодня.

Асинхронные двигатели

идеально подходят для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на длительный режим работы и обычно служат долгое время из-за своей простой конструкции.

Конструкция и теория эксплуатации

На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами.Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора. Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества.

Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока.Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

Теория работы асинхронного двигателя переменного тока может быть объяснена с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга.

Хотите узнать больше о теории работы двигателей переменного тока?

Однофазные асинхронные двигатели

Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира. Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.

Для стандартного 3-проводного двигателя цвета проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора.Когда ток (L) подключен к черному или красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.

Подключение конденсатора

Для однофазных двигателей конденсатор важен для запуска. Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал.Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.

Вот пример подключения 4-контактного конденсатора и однофазного двигателя.

Количество выводов на конденсаторе вас не смущает. На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны.

Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.

Трехфазные асинхронные двигатели

Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц. В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T). Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W.Теория работы такая же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.

При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.

Вы, наверное, заметили, что на схеме подключения нет конденсатора . Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не нужен.Мы также сняли видео, чтобы продемонстрировать правильную проводку.

И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *