Индукционный мотор переменного тока. Принцип работы асинхронного двигателя
Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.
Особенности асинхронных двигателей
Применение
Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.
Асинхронная машина не подключается к сети постоянного тока.
Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.
При выборе асинхронного двигателя зачастую возникают проблемы с определением:
- его мощности;
- характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
- расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
- марки и сечения провода;
- устройств защиты и управления, которыми оснащен преобразователь.
Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.
Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.
Устройство АД
Ротор и статор – главные элементы индукционного двигателя.
Схема устройства асинхронного агрегата
Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).
На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.
Ротор вращается по ходу движения магнитного поля.
Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.
Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.
Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».
Конструкция «беличья клетка»
В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.
В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.
Однофазная индукционная машина
Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.
Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.
Схема работы однофазного двигателя малой мощности
В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.
Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.
В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.
Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.
Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:
- с усиленным сопротивлением фазы пуска;
- агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
- оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
- комбинированные с фазным управлением, короткозамкнутым ротором;
- с экранированными полюсами.
Трехфазный двигатель
В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при вз
Отличия индукционного мотора от роторного. Однофазные электродвигатели
Асинхронные трех фазные двигатели
В рубрике «Общее» рассмотрим устройство и принцип работы трех фазных и одно фазных асинхронных двигателей. Электродвигатели переменного тока очень широко применяются в промышленности, на транспорте, в авиации, в автоматических системах управления и регулирования, а также в народном хозяйстве. В насосном оборудовании применяются асинхронный электрический двигатель переменного тока. Двигатель преобразует электрическую энергию (энергию магнитного поля) в механическую (вращательную) энергию на валу насоса. Насос преобразует механическую энергию в гидравлическую энергию перемещения жидкости. В наше время асинхронные являются наиболее распространенными электродвигателями. Они получили такое широкое распространение из-за своей низкой стоимости, простоты в конструкции и высокой надежности при эксплуатации. Коэффициент полезного действия (КПД): асинхронных двигателей при мощностях более 1 кВт составляет 0,7 — 0,95. Существует различные . Наиболее часто применяемые способы будут рассмотрены в отдельной статье.
Электромагнетизм
Из курса физики известно, что магнит имеет два полюса: северный (отрицательный) и южный (положительный). Противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются друг от друга (см. рис).
При протекании электрического тока по проводнику, вокруг него создается магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы как для постоянных магнитов, так и электромагнитов. Чем выше ток, протыкаемый по проводнику, тем сильнее магнитное поле. Магнитное поле вокруг проводника можно увеличить, если на стальной сердечник намотать катушку. В таком случае линии магнитного потока, образуемого каждым витком, складываются и создают единое магнитное поле вокруг катушки. Чем больше количество витков в катушке, тем сильнее магнитное поле. Это поле имеет такие же свойства и характеристики, что и постоянное магнитное поле, а, следовательно, и у электромагнитов тоже есть северный и южный полюса. Если в катушке поменять направление движения электрического тока, то поменяются местами и полюса электромагнита (см. рис).
Устройство асинхронных электродвигателей переменного тока
Электрический двигатель состоит из двух основных частей – это статор и ротор.
это неподвижная и по цене самая дорогая часть электродвигателя. Сердечник статора представляет собой полый цилиндр. Изготавливают и набирают сердечник из отдельных пластин электротехнической стали толщиной 0,5-0,35 мм. Пластины штампуют со специальными пазами, изолируют лаком или окалиной для уменьшения потерь (вихревые токи), собирают в пакеты. Готовый сердечник запрессовывается в корпус статора. Корпус статора электродвигателя изготавливается из алюминия или чугуна. Затем в продольные пазы статора укладывается обмотка. Если электродвигатель трехфазный, то каждая фаза расположена по отношению к другой фазе под углом 120 градусов. Все обмотки состоят из двух катушек, которые образуют два полюса.
Переменным ток – это электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. При подаче напряжения на катушки статора одна из них становится северным полюсом, а другая – южным. Полярность полюсов все время меняется, так как ток переменный и создается комбинированное электромагнитное поле статора, направленное перпендикулярно проводникам ротора. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.
Подвижная часть электродвигателя, которая вращается на валу электродвигателя, двигаясь за магнитным полем статора. Сердечник ротора тоже набирают из стальных пластин толщиной 0,5 мм, изолированных лаком или окалиной для уменьшения потерь на вихревые токи. Пластины штампуют с пазами, насаживают на вал, и в результате образуется цилиндр. В продольные пазы цилиндра укладывают медные или алюминиевые проводники обмотки ротора. В зависимости от типа обмотки асинхронные двигатели могут быть с фазным и короткозамкнутым ротором. Наибольшее применение нашли роторы с короткозамкнутыми обмотками, или как их еще называют «беличьи колеса» из-за конструкции, которая напоминает барабаны для белок (см. фото).
При подаче переменного тока на обмотки статора в них создается электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Магнитное поле статора индуцирует в обмотках ротора ток, который в свою очередь создает вокруг ротора электромагнитное поле и поляризацию ротора.
Индукция – (латинского inductio — наведение) это явление, которое происходит при движении проводника в магнитном поле, приводящее к появлению в проводнике индукционного электрического тока. Этот ток создает свое магнитное поле вокруг каждого проводника обмотки ротора. Вращающееся магнитное поле создает вращающийся магнитный поток. Магнитное поле пропорционально напряжению, а магнитный поток пропорционален току.
Трёхфазное напряжение на обмотках статора создает магнитное поле. Магнитное поле статора движется быстрее ротора, это способствует наведению тока в проводниках обмотки ротора, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои магнитные потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставит ротор вращаться. Электродвигатели переменного тока очень часто называют еще индукционными электродвигателями. На вал ротора запрессовываются подшипники, которые при сборке электродвигателя вставляются в переднюю и заднюю крышки статора. Затем эти крышки стягиваются с помощью шпилек.
Асинхронные электродвигатели
Электродвигатель, у которого ротор вращается с частотой не равной частоте вращения магнитного поля статора, называют асинхронным. Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать по формуле Ns=120*F/P , где F – частота сети, P – число полюсов электродвигателя. При частоте сети 50 Гц и двух полюсном двигателе, синхронная частота вращения Ns =120*50/2 Ns = 3000 мин –1 .Синхронная частота вращения уменьшается с увеличением количества полюсов. В таблице приведена синхронная частота для различного числа полюсов.
Асинхронные электродвигатели переменного тока производятся на мощность от нескольких десятков ватт до 15000 кВт, и напряжение
Однофазный электродвигатель 220в-принцип работы, устройство
Однофазная энергетическая система широко применяется по сравнению с трёхфазной для домашнего пользования, коммерческих целей и, в какой-то степени, для индустриальных задач. Однофазная система более экономична, энергетические же потребности в большинстве домов, офисов, магазинов весьма невелики. По этой причине однофазная система является очень подходящей в данном случае.
Однофазные электродвигатели просты по своей конструкции. Они недороги, прочны, их легко обслуживать и ремонтировать. Благодаря всем этим достоинствам, однофазный мотор нашёл применение в вентиляторах, пылесосах и т.д.
Данные моторы классифицируют так:
1. Однофазные индукционные двигатели или асинхронные двигатели.
2. Однофазные синхронные двигатели.
3. Коллекторные двигатели.
Устройство электродвигателя.
Как и любой электродвигатель, асинхронный мотор также имеет две главные составляющие. Этими компонентами являются ротор и статор.
Статор
Как можно догадаться из его названия, статор является стационарной частью индукционного мотора. На статор этого двигателя подаётся однофазный переменный ток.
Ротор
Ротор является вращающейся частью индукционного мотора. Ротор соединен с механической нагрузкой за счёт вала. Ротор в однофазном индукционном двигателе относится к типу роторов, который называют клетка для белки.
Конструкция данного электродвигателя почти такая же, как “клетка для белки” трёхфазного двигателя, за исключением того, что в асинхронном двигателе у статора две обмотки, по сравнению с одиночной обмоткой статора у трёхфазного индукционного мотора.
Про статор однофазного индукционного двигателя
Статор этого двигателя имеет многослойную штамповку для уменьшения потерь вихревого тока на его периферии. Слоты, предусмотренные на штамповке, предназначены для удерживания статора или основной обмотки. Для того чтобы уменьшить гистерезисные потери, штамповка сделана из кремнистой стали. Когда на обмотку статора подаётся однофазный переменный ток, образуется магнитное поле и двигатель вращается на скорости, которая несколько меньше синхронной скорости Ns, которая получается за счёт:
Где,
f = частота подающегося напряжения,
P = нормально разомкнутые полюсы мотора.
Конструкция статора асинхронного мотора похожа на конструкцию трёхфазного индукционного двигателя за исключением двух отличий в области обмотки в однофазном индукционном моторе.
1. Во-первых, однофазные индукционные моторы в большинстве своём выпускаются с катушками, имеющими не перекрещивающиеся лобовые соединения. Количество оборотов на катушку может быть легко отрегулировано при помощи катушек с не перекрещивающимися лобовыми соединениями. Распределение магнитодвижущей силы почти синусоидально.
2. За исключением двигателя с экранированным полюсом, асинхронный мотор имеет две обмотки на статоре, а именно основную и вспомогательную. Данные обмотки размещены квадратурно по отношению друг к другу.
О роторе однофазного электродвигателя.
Устройство данной составляющей этого двигателя похоже на “клетку для белки” трёхфазного индукционного мотора. Ротор имеет форму цилиндра. У данной составляющей двигателя есть слоты по всей периферии. Слоты не параллельны по отношению друг к другу, но немного скошены, так как скашивание препятствует магнитной блокировке зубов статора и ротора и делает работу индукционного мотора более гладкой и тихой.
Ротор в форме клетки для белки состоит из стержней. Эти стержни сделаны из одного из трёх металлов. Они могут быть алюминиевыми, могут быть медными, могут латунными. Данные стержни называют проводниками ротора, и они располагаются в слотах на периферии данной составляющей двигателя. Проводники перманентно замкнуты за счёт медных или алюминиевых колец, которые называют замыкающими кольцами. Для того чтобы обеспечивать механическую силу, эти проводники связаны с замыкающим кольцом, и следовательно, они формируют абсолютно замкнутую схему, напоминающую клетку. Поэтому эти двигатели и стали называть индукционными моторами-клетками для белки.
Так как стержни перманентно замкнуты при помощи замыкающих колец, электрическое сопротивление данной части мотора очень невелико, и нет возможности добавить внешнее сопротивление, поскольку стержни, как уже говорилось, перманентно замкнуты. Отсутствие контактного кольца и щёток делает устройство однофазного индукционного мотора очень простым и надёжным.
Принцип работы двигателя
ВНИМАНИЕ: Известно, что для действия любого мотора, который действует за счёт электроэнергии, будь-то мотор, использующий переменный ток или постоянный, нужно два магнитных потока. Взаимодействие между этими вот потоками обеспечивает требуемый крутящий момент, который является желаемым параметром для любого вращающегося мотора.
Когда на обмотку статора мотора приходит однофазный переменный ток, переменный ток начинает проходить через статор или основную обмотку. Этот переменный ток порождает переменный магнитный поток, который называют основным магнитным потоком.
Данный поток также соединен с проводниками ротора и следовательно, отрезает эти проводники. Согласно закону, установленному Фарадеем, об электромагнитной индукции, в роторе возникает электродвижущая сила. Поскольку схема ротора замкнута, электрический ток начинает поступать в ротор.
Этот ток зовётся электрическим током ротора. Данный ток производит собственный магнитный поток, который называют магнитным потоком ротора. Поскольку этот поток начинает производиться согласно принципу индукции, мотор, работающий на этом принципе, называется индукционным мотором. Теперь имеются два магнитных потока, один из них является основным, а другой называют магнитным потоком ротора. Эти два магнитных потока производят желаемый крутящий момент, который требуется мотору для вращения.
Почему данный мотор не является самозапускающимся?
Согласно теории, гласящей о двойном вращающемся поле, любое изменяющееся значение может быть поделено на 2 компонента. Каждый имеет магнитуду, равную половине максимальной магнитуды переменного значения. Оба данных компонента крутятся в противоположном направлении по отношению друг к другу. Например, магнитный поток, φ может быть разделён на 2 составляющие:
Каждый из этих компонентов вращается в противоположном направлении. Если один φm / 2 вращается по часовой стрелке, то другой φm / 2 вращается против. Когда однофазный переменный ток идёт на обмотку статора данного двигателя, он производит собственный магнитный поток магнитуды, φm.
В соответствии с теорией о двойном поле, которое вращается, этот переменный магнитный поток, φm разделён на 2 компонента магнитуды φm / 2. Каждый будет вращаться в противоположном направлении, с синхронной скоростью, Ns. Назовём эти 2 компонента магнитного потока как передний компонент потока, φf и задний компонент потока, φb.
Результат двух компонентов в любой момент даёт значение мгновенного магнитного потока статора в данный конкретный момент.
Теперь при старте, и передняя, и задняя составляющие магнитного потока точно являются противоположными. Также оба компонента магнитного потока равны по магнитуде. Поэтому они аннулируют друг друга, и поэтому получающийся крутящий момент у ротора на старте равен нулю. Поэтому такие вот двигатели не являются самозапускающимися.
Методы, которыми можно сделать данный электродвигатель самостартующим
Эти моторы не запускаются сами, потому что создаваемый магнитный поток статора является изменяющимся по характеру и при запуске 2 компонента этого потока аннулируют друг друга, и поэтому не появляется крутящего момента.
Решить эту проблему можно, если сделать магнитный поток статора потоком вращающегося типа, а не переменного типа, который вращается лишь в одну сторону. Тогда мотор станет самозапускающимся. Теперь, для того чтобы произвести это вращающееся магнитное поле, понадобится два переменных магнитных потока, имеющие угол фазы с некоторой разницей между ними.
Когда эти два потока взаимодействуют, они производят результирующий магнитный поток. Этот поток вращается по своей сути и вращается в пространстве только в одном направлении. Когда двигатель начнёт вращаться, дополнительный магнитный поток может быть удалён.
Мотор будет продолжать вращаться под воздействием только основного магнитного потока. В зависимости от методов превращения асинхронного электродвигателя в самозапускающийся мотор, существует в основном 4 типа однофазных индукционных моторов, а именно:
1. Индукционный электродвигатель с проскальзывающей фазой.
2. Ёмкостной электродвигатель со стартовым индуктором.
3. Емкостной индукционный электродвигатель со стартовым конденсатором.
4. Индукционный электродвигатель со экранированным полюсом.
5. Перманентный емкостной электродвигатель с проскальзыванием или ёмкостной мотор с одним значением.
Сравнение однофазных и трёхфазных индукционных электродвигателей
1. Однофазные электродвигатели надёжны, просты в устройстве, экономичны для маленькой мощности, если сравнивать с трёхфазными.
2. Электрический фактор мощности однофазных электродвигателей низок, если сравнить с трёхфазными.
3. Несмотря на одинаковые размеры, однофазные электродвигатели производят около 50% на выходе, тогда как трёхфазные – меньше.
4. Стартовый крутящий момент также низок для асинхронных моторов / однофазных индукционных моторов.
5. Эффективность однофазных электродвигателей меньше, чем у трёхфазных.
Однофазные индукционные электродвигатели просты, надёжны и дёшевы для маленьких мощностей. Они в целом доступны для мощности в 1 киловатт.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
Какой электродвигатель лучше выбрать?
При выборе бесщеточного электродвигателя для своих разработок инженеры имеют несколько вариантов. Неправильный выбор может привести к провалу проекта не только на этапе разработки – испытания, но и после выхода на рынок, что крайне не желательно. Для облегчения работы инженеров мы сделаем краткое описание преимуществ и недостатков четырех наиболее популярных видов бесщеточных электрических машин: асинхронный электродвигатель (АД), двигатель с постоянными магнитами (ПМ), синхронные реактивные электродвигатели (СРД), вентильные реактивные электродвигатели (ВРД).
Содержание:
Асинхронные электродвигатели
Асинхронные электрические машины смело можно назвать костяком современной промышленности. Благодаря своей простоте, относительно низкой стоимости, минимальным затратам на обслуживание, а также возможности работать напрямую от промышленных сетей переменного тока, они прочно въелись в современные производственные процессы.
Сегодня существует множество различных преобразователей частоты с самыми различными алгоритмами управления, которые позволяют регулировать скорость и момент асинхронной машины в большом диапазоне с хорошей точностью. Все эти свойства позволили асинхронной машине значительно потеснить с рынка традиционные коллекторные двигатели. Вот почему регулируемые асинхронные электродвигатели (АД) легко встретить в самых различных устройствах и механизмах, таких как тяговый асинхронный электропривод, электроприводы стиральных машин, вентиляторов, компрессоров, воздуходувок, кранов, лифтов и многом другом электрооборудовании.
АД создает вращающий момент за счет взаимодействия тока статора с индуцированным током ротора. Но токи ротора нагревают его, что приводит к нагреванию подшипников и снижению их срока службы. Замена традиционной алюминиевой обмотки на медную не устраняет проблему, а приводит к удорожанию электрической машины и может накладывать ограничения на прямой ее пуск.
Статор асинхронной машины имеет довольно большую постоянную времени, что негативно сказывается на реагировании системы управления при изменении скорости или нагрузки. К сожалению, потери связанные с намагничиванием не зависят от нагрузки машины, что снижает КПД АД при работе с малыми нагрузками. Автоматическое уменьшение потока статора возможно использовать для решения данной проблемы — для этого необходим быстрый отклик системы управления на изменения нагрузки, но как показывает практика, такая коррекция не существенно увеличивает КПД.
На скоростях превышающих номинальную поле статора ослабевает из-за ограниченного напряжения питания. Вращающий момент начинает падать, так как для его поддержания будет требоваться больший ток ротора. Следовательно, управляемые АД ограничиваются диапазоном скорости для поддержания постоянной мощности примерно 2:1.
Механизмы, которые требуют более широкого диапазона регулирования, такие как: станки с ЧПУ, тяговый электропривод, могут снабжаться асинхронными электродвигателями специального исполнения, где для увеличения диапазона регулирования могут уменьшать количество витков обмотки, снижая при этом значения крутящего момента на низких скоростях. Также возможен вариант с использованием более высоких токов статора, что требует установки более дорогих и менее эффективных инверторов.
Немаловажным фактором при работе АД является качество питающего напряжения, ведь максимальный КПД электродвигатель имеет при синусоидальной форме питающего напряжения. В реальности преобразователь частоты обеспечивает импульсное напряжение и ток, похожий на синусоидальный. Проектировщикам стоит иметь ввиду, что КПД системы ПЧ-АД будет меньше, чем сумма КПД преобразователя и двигателя в отдельности. Улучшения качества выходного тока и напряжения повышают увеличением несущей частоты преобразователя, это приводит к снижению потерь в двигателе, но при этом возрастают потери в самом инверторе. Одним из популярных решений, особенно для промышленных мощных электроприводов, является установка фильтров между преобразователем частоты и асинхронной машиной. Однако это приводит к увеличению стоимости, габаритов установки, а также к дополнительным потерям мощности.
Еще одним недостатком асинхронных машин переменного тока является то, что их обмотки распределены на протяжении многих пазов в сердечнике статора. Это приводит к появлению длинных концевых поворотов, которые увеличивают габариты и потери энергии в машине. Эти вопросы исключены в стандартах IE4 или классах IE4. В настоящее время европейский стандарт (IEC60034) специально исключает любые двигатели, требующие электронного управления.
Двигатели с постоянными магнитами
Двигатели с постоянными магнитами (английский PMMS) создают крутящий момент благодаря взаимодействию токов статора с постоянными магнитами внутри или снаружи ротора. Электродвигатели с поверхностным расположением магнитов являются маломощными и используются в IT оборудовании, офисной технике, автомобильном транспорте. Электродвигатели со встроенными магнитами (IPM) распространены в мощных машинах, используемых в промышленности.
Двигатели с постоянными магнитами (ПМ) могут использовать концентрированные (с коротким шагом) обмотки, если пульсации вращающего момента не являются критичными, но распределенные обмотки являются нормой в ПМ.
Поскольку PMMS не имеют механических коммутаторов, то преобразователи играют важную роль в процессе контроля тока обмотки.
В отличии от других видов бесщеточных электродвигателей, PMMS не требуют тока возбуждения, необходимого для поддерживания магнитного потока ротора. Следовательно, они способны обеспечить максимальный крутящий момент на единицу объема и могут быть лучшим выбором, если требования к массо-габаритным показателям выходят на первый план.
К наибольшим недостаткам таких машин можно отнести их очень высокую стоимость. Высокопроизводительные электрические машины с постоянными магнитами используют такие материалы как неодим и диспрозий. Данные материалы относятся к редкоземельным и добываются в геополитически нестабильных странах, что приводит к высоким и нестабильным ценам.
Также постоянные магниты добавляют производительности при работе на низких скоростях, но являются «Ахиллесовой пятой» при работе на высоких. Например, при увеличении скорости машины с постоянными магнитами возрастет и ее ЭДС, постепенно приближаясь к напряжению питания инвертора, при этом снизить поток машины не представляется возможным. Как правило, номинальная скорость является максимальной для ПМ с поверхностно-магнитной конструкцией при номинальном напряжении питания.
На скоростях больше номинальной, для электродвигателей с постоянными магнитами типа IPM, используют подавление активного поля, что достигается путем манипуляций с током статора при помощи преобразователя. Диапазон скорости, в котором двигатель может надежно работать, ограничен примерно 4:1.
Необходимость ослабления поля в зависимости от скорости приводит к потерям независящим от вращающего момента. Это снижает КПД на высоких скоростях, и особенно при малых нагрузках. Этот эффект наиболее актуален при использовании ПМ в качестве тягового автомобильного электропривода, где высокая скорость на автостраде неизбежно влечет за собой необходимость ослабления магнитного поля. Часто разработчики выступают за применение двигателей с постоянными магнитами в качестве тяговых электроприводов электромобилей, однако их эффективность при работе в данной системе довольно сомнительна, особенно после вычислений связанных с реальными циклами вождения. Некоторые производители электромобилей сделали переход от ПМ к асинхронным электродвигателям в качестве тяговых.
Также к существенным недостаткам электродвигателей с постоянными магнитами можно отнести их трудно управляемость в условиях неисправности из-за присущей им противо-ЭДС. Ток будет протекать в обмотках, даже при выключенном преобразователе, пока вращается машина. Это может приводить к перегреву и другим неприятным последствиям. Потеря контроля над ослабленным магнитным полем, например при аварийном отключении источника питания, может привести к неподконтрольной генерации электрической энергии и, как следствие, к опасному возрастанию напряжения.
Рабочие температуры – это еще одна не самая сильная сторона ПМ, кроме машин, изготовленных из самарий-кобальта. Также большие броски тока инвертора могут привести к размагничиванию.
Максимальная скорость PMMS ограничивается механической прочностью крепления магнитов. В случае повреждения ПМ его ремонт, как правило, осуществляется на заводе изготовителе, так как извлечение и безопасная обработка ротора практически невозможна в обычных условиях. И, наконец, утилизация. Да это тоже доставляет немного хлопот после окончания срока службы машины, но наличие редкоземельных материалов в этой машине должно упростить этот процесс в ближайшем будущем.
Несмотря на перечисленные выше недостатки, электродвигатели с постоянными магнитами являются непревзойденными с точки зрения низкоскоростных мелкогабаритных механизмов и устройств.
Реактивные синхронные двигатели
Синхронные реактивные электродвигатели всегда работают только в паре с преобразователем частоты и используют тот же тип управления потоком статора, что и обычный АД. Роторы данных машин изготавливают из тонколистной электротехнической стали с пробитыми пазами таким образом, что бы они намагничивались с одной стороны меньше, чем с другой. Стремление магнитного поля ротора «соединится» с вращающимся магнитным потоком статора и создает вращающий момент.
Основным плюсом реактивных синхронных электродвигателей являются незначительные потери в роторе. Таким образом, хорошо спроектированная и работающая с правильно подобранным алгоритмом управления синхронная реактивная машина вполне способна соответствовать европейским стандартам премиум класса IE4 и NEMA, не используя при этом постоянных магнитов. Снижения тепловых потерь в роторе повышает крутящий момент и увеличивает плотность мощности, по сравнению с асинхронными машинами. Эти двигатели имеют низкий уровень шума благодаря низкому уровню пульсаций момента и вибраций.
Основным недостатком является низкий коэффициент мощности по сравнению с асинхронной машиной, что приводит к большей потребляемой мощности из сети. Это увеличивает затраты и ставит перед инженером сложную задачу, стоит ли применять реактивную машину или нет для конкретной системы?
Сложность в изготовлении ротора и его хрупкость делает невозможным применение реактивных электродвигателей для высокоскоростных операций.
Синхронные реактивные машины хорошо подходят для широкого спектра промышленных применений, которые не требуют больших перегрузок или высоких скоростей вращения, а также все чаще применяются для частотно-регулируемых насосов из-за повышенной их эффективности.
Вентильные реактивные электродвигатели
Вентильный реактивный двигатель (с английского SRM) создает вращающий момент за счет притягивания магнитных полей зубцов ротора к магнитному полю статора. Вентильные реактивные двигатели (ВРД) имеют относительно небольшое количество полюсов обмотки статора. Ротор имеет зубчатый профиль, что упрощает его конструкцию и улучшает создаваемое магнитное поле, в отличии от реактивных синхронных машин. В отличии от синхронных реактивных двигателей (СРД), ВРД используют импульсное возбуждение постоянного тока, что требует обязательное наличие специального преобразователя для их работы.
Для поддержания магнитного поля в ВРД необходимы токи возбуждения, что уменьшает плотность мощности по сравнению с электрическими машинами с постоянными магнитами (ПМ). Однако они все же имеют габаритные размеры меньшие, чем обычные АД.
Основным преимуществом вентильных реактивных машин является то, что ослабления магнитного поля происходит естественным образом при снижении тока возбуждения. Это свойство дает им большое преимущество в диапазоне регулирования при скоростях выше номинальной (диапазон устойчивой работы может достигать 10:1). Высокая эффективность присутствует у таких машин при работе на высоких скоростях и с малыми нагрузками. Также ВРД способны обеспечить удивительно постоянную эффективность в довольно широком диапазоне регулирования.
Вентильные реактивные машины обладают также довольно хорошей отказоустойчивостью. Без постоянных магнитов эти машины не генерируют неуправляемый ток и момент при неисправностях, а независимость фаз ВРД позволяет им работать с уменьшенной нагрузкой, но с повышенными пульсациями момента при выходе из строя какой-то из фаз. Это свойство может быть полезно, если проектировщики хотят повышенной надежности разрабатываемой системы.
Простая конструкция ВРД делает его прочным и недорогим в изготовлении. При его сборке не используются дорогие материалы, а ротор из нелегированной стали отлично подходит для суровых климатических условий и высоких скоростей вращения.
ВРД имеет коэффициент мощности меньший, чем ПМ или АД, но его преобразователю не нужно создавать выходное напряжение синусоидальной формы для эффективной работы машины, соответственно такие инверторы имеют меньшие частоты коммутации. Как следствие – меньшие потери в инверторе.
Основными недостатками вентильных реактивных машин являются наличие акустических шумов и вибрации. Но с этими недостатками довольно хорошо борются путем более тщательного проектирования механической части машины, улучшения электронного управления, а также механическое объединение двигатель – рабочий орган.
ВРД хорошо подходят для широкого спектра применения и их все чаще используют для обработки сверхпрочных материалов из-за большой перегрузочной способности и большого диапазона регулирования скоростей. Большая перегрузочная способность делает их все более привлекательными для использования в качестве тяговых электроприводов современных электромобилей. Также ВРД получили широкое распространение и в электробытовой технике.
Типы однофазных электродвигателей / Пусковой конденсатор
Однофазные индукционные двигатели превращают в двигатели, способные к самозапуску, путём обеспечения дополнительного магнитного потока за счёт дополнительных средств. Сейчас, в зависимости от этих самых дополнительных средств, эти двигатели подразделяются следующим образом:
1. Индукционный электродвигатель с расщеплённой фазой.
2. Индукционный электродвигатель с пусковым конденсатором.
3. Индукционный электродвигатель с двойным пусковым конденсатором (двухзначный конденсаторный метод).
4. Электродвигатель с постоянным разделяющим конденсатором.
5. Индукционный электродвигатель с экранированным полюсом.
Индукционный электродвигатель с расщеплённой фазой
В дополнение к основной обмотке или же к двигающейся обмотке статор однофазного двигателя имеет ещё одну обмотку, которую называют вспомогательной или стартовой. Центробежный выключатель подключен последовательно к вспомогательной обмотке. Задачей этого выключателя является отключение вспомогательной обмотки от основной схемы, когда скорость электродвигателя достигнет от 75% до 80% от синхронной скорости.
Известно, что движущаяся обмотка является индукционной по своей природе. Наша задача заключается в том, чтобы создать разницу фаз между двумя обмотками. Это возможно, если стартовая обмотка имеет большое сопротивление. Допустим, что Irun является электрическим током, который проходит через основную или движущуюся обмотку, Istart является током, проходящим через стартовую обмотку, и VT является напряжением, которое подаётся.
Известно, что для обмотки с большой резистивностью электрический ток почти в фазе с напряжением, а для обмотки с большой индуктивностью ток отстает от напряжения под большим углом. Стартовая обмотка обладает большой резистивностью, поэтому электрический ток, который идёт через стартовую обмотку, отстаёт от приложенного напряжения с очень маленьким углом. Движущаяся обмотка по сути своей очень индукционная, так что ток в этой обмотке отстаёт от напряжения под большим углом.
Результатом этих двух токов является IT. Данный результат производит вращающееся магнитное поле, которое вращается только в одну сторону. В индукционном двигателе с расщепленной фазой стартовый и основной электрический ток разделены друг с другом под определённым углом, поэтому данный двигатель и получил такое называние.
Применение индукционного электродвигателя с расщеплённой фазой
У данных двигателей имеется низкий стартовый электрический ток, средний стартовый крутящий момент. По этой причине данные двигатели нашли своё применение в таких вещах как центробежные насосы, вентиляторы, стиральные машины, а также во множестве других устройств. Эти двигатели доступны в размерах в диапазоне от 1 / 20 киловатт до 1 / 2 киловатт.
Индукционный электродвигатель с пусковым конденсатором и индукционный электродвигатель с двойным пусковым конденсатором
Принцип работы и конструкция индукционного электродвигателя с пусковым конденсатором и индукционного электродвигателя с двойным пусковым конденсатором почти одинаковы. Известно, что однофазный индукционный электродвигатель не способен к запуску самого себя, поскольку магнитное поле, которое возникает в итоге, не относится к вращающемуся типу поля.
Для того чтобы производилось вращающееся магнитное поле, должна быть разница фаз. В случае с индукционным двигателем, имеющим расщеплённую фазу, использовалось сопротивление для того чтобы создать эту разницу фаз, но в данном случае для этой цели используется конденсатор.
Известен тот факт, что электрический ток, проходящий через конденсатор, приводит к возникновению напряжения. Поэтому в данных двух типах электродвигателя используются две обмотки, соответственно, основная обмотка и стартовая обмотка. К стартовой обмотке подключается конденсатор, так что электрический ток, который идёт через конденсатор, Ist приводит к напряжению под определённым углом, φst.
В силу того, что движущаяся обмотка индуктивна по натуре, электрический ток в ней отстает от напряжения под углом, φm. Теперь возникает большой угол фазы, разница между этими двумя электрическими токами, которая производит ток, I, а это уже приводит к образованию вращающегося магнитного поля.
Крутящий момент, производимый этими электродвигателями, зависит от разницы угла фазы, которая почти 90°. Поэтому эти двигатели производят очень большой стартовый крутящий момент. В случае с индукционным мотором со стартовым конденсатором, центробежный выключатель отключает стартовую обмотку, когда двигатель достигает 75-80% от синхронной скорости.
Но в случае с индукционным электродвигателем с двойным пусковым конденсатором отсутствует центробежный выключатель, поэтому конденсатор сохраняется в схеме и помогает улучшить коэффициент мощности и условия движения индукционного однофазного двигателя.
Применение индукционного электродвигателя с пусковым конденсатором и индукционного электродвигателя с двойным пусковым конденсатором
Эти двигатели имеют высокий начальный крутящий момент, поэтому их используют в конвейерах, кондиционерах воздуха, шлифовальных станках и т.д. Они доступны вплоть до 6 киловатт.
Электродвигатель с постоянным разделяющим конденсатором
Он имеет клеткообразный ротор и статор. У статора имеются две обмотки. Одну называют основной, а другую – вспомогательной. Имеется лишь один конденсатор, подключенный последовательно в стартовой обмотке. Стартовый выключатель отсутствует.
Преимущества и способы использования
Центробежный выключатель не нужен. Эффективность в данном случае выше, а крутящий момент достаточно мощный. Данный электродвигатель нашёл себе применение в нагнетателях воздуха в обогревателях и кондиционерах воздуха, а также в вентиляторах. Также он используется и в офисном оборудовании.
Индукционные однофазные электродвигатели с экранированным полюсом
Статор данного двигателя имеет выдающиеся или выступающие полюсы. Эти полюсы экранированы за счёт медной полосы или кольца, которые по природе своей индукционны. Полюсы в данном случае разделены на две неравные части. Более маленькая составляющая несёт медную полосу. Эту область называют экранированной областью полюса.
ДЕЙСТВИЕ: Когда однофазный ток приходит на статор, получается переменный магнитный поток. Эта перемена магнитного потока вызывает электродвижущую силу в экранированной катушке. С того момента как эта экранированная часть замкнута, электрический ток, который в ней производится, будет в таком направлении, которое будет противоположно главному магнитному потоку.
Магнитный поток в экранированном полюсе отстаёт от магнитного потока в не экранированном полюсе. Разница фаз между этими двумя потоками способствует возникновению результирующего вращающегося магнитного потока.
Известно, что электрический ток обмотки статора является переменным по природе, поэтому и магнитный поток, возникающий из-за данного тока, является переменным. Для того чтобы полностью понять то, как работает индукционный двигатель с экранированным полюсом, стоит рассмотреть три участка:
1. Когда магнитный поток меняет своё значение с нуля на почти что максимальное положительное значение.
2. Когда магнитный поток остаётся почти неизменным на своём максимальном значении.
3. Когда магнитный поток уменьшается с максимального положительного значения до нуля.
Участок 1:
На данном участке скорость возрастания магнитного потока, а значит, и электрического тока, является очень высокой. Согласно положению, выдвинутому Фарадеем, когда бы ни происходило изменение магнитного потока, электродвижущая сила всё равно будет возникать. Так как медная полоса замкнута, электрический ток начинает протекать в медной полосе, в силу вызываемой электродвижущей силы. Данный ток производит свой собственный магнитный поток.
Сейчас, согласно положению Ленца, направление этого тока таково, что оно противоположно возрастанию этого тока. Магнитный поток экранирующего кольца противоположен главному магнитному потоку, что приводит, в свою очередь, к скоплению магнитного потока в не экранированной области статора, тогда как магнитный поток в экранированной части слабеет. Такое неравномерное распределение магнитного потока вынуждает магнитную ось сдвигаться в середину не экранированной области.
Участок 2:
На данном участке скорость роста электрического тока, а следовательно, и магнитного потока остаётся практически неизменной. Поэтому электродвижущая сила, которая возникает в экранированной области, очень мала. Магнитный поток, который производится этой силой, не имеет эффекта на главный магнитный поток, и поэтому распределение магнитного потока остается равномерным, и магнитная ось лежит по центру полюса.
Участок 3:
Скорость уменьшения магнитного потока и тока очень высока. Опять же актуален закон, установленный когда-то Фарадеем, который был актуален на первом участке. Раз медная полоса замкнута, ток начинает проходить в этой полосе, в силу возникшей электродвижущей силы. Этот ток производит свой магнитный поток. Направление этого электрического тока обратно его собственному уменьшению (из положения, выдвинутого Ленцем).
Так что магнитный поток экранирующего кольца помогает главному магнитному потоку. Это приводит к скоплению магнитного потока в экранированной части статора и к ослаблению его в не экранированной области. Это неравномерное распространение потока способствуют смещению магнитной оси в середину экранированной части полюса.
Это смещение магнитной оси продлевает отрицательный цикл, а также приводит к производству вращающегося магнитного поля. Направление этого поля лежит из не экранированной части полюса в его экранированную часть.
Преимущества и недостатки электродвигателя с экранированным полюсом
Плюсы такого двигателя состоят в следующем:
1. Он очень экономичен, а также очень надёжен.
2. Конструкция проста и прочна, поскольку отсутствует центробежный выключатель.
К недостаткам такого двигателя относятся:
1. Маленький коэффициент мощности.
2. Стартовый крутящий момент очень слаб.
3. Эффективность очень низка, так как потери меди велики из-за наличия медной полосы.
4. Изменение скорости также непросто осуществить, как, впрочем, и затратно, ведь это требует другого комплекта медных коле
Применение электродвигателя с экранированным полюсом
В силу их слабых стартовых крутящих моментов и приемлемой цены, эти двигатели в основном используются в маленьких инструментах, игрушках, фенах и т.д. Двигатели такого типа обычно доступны в следующем диапазоне: от 1 / 300 до 1 / 20 киловатт.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
однофазный индукционный электродвигатель — патент РФ 2313892
Однофазный индукционный электрический двигатель содержит устройство, предотвращающее потребление мощности, которое включает элемент передачи сигнала и переключатель. Переключатель замыкается/размыкается в зависимости от токового сигала, поступающего от элемента передачи токового сигнала. Предотвращающее потребление мощности устройство не допускает поступление тока к пусковому устройству при работе электродвигателя в нормальном режиме, благодаря чему обеспечивается технический результат — предотвращается потребление мощности пусковым устройством при работе двигателя в нормальном режиме — и не происходит снижение коэффициента полезного действия однофазного индукционного электрического двигателя. 2 н. и 6 з.п. ф-лы, 6 ил.
Область техники, к которой относится изобретение
Настоящее изобретение относится к однофазным индукционным электродвигателям, а более конкретно к однофазным индукционным электродвигателям, имеющим средство для предотвращения прохождения малых токов к пусковому устройству, включающее элемент с положительным температурным коэффициентом (ПТК), или ему подобный, при работе электродвигателя в нормальном режиме для предотвращения снижения коэффициента полезного действия электродвигателя из-за потребления мощности пусковым устройством при работе электродвигателя в нормальном режиме.
Уровень техники
Типовой однофазный индукционный электродвигатель описан со ссылкой на фиг.1.
На фиг.1 представлена принципиальная электрическая схема обычного однофазного индукционного электродвигателя. Как видно на фиг.1, типовой однофазный индукционный электродвигатель запускается от источника электропитания Е и включает основную обмотку М, вспомогательную обмотку S, соединенный последовательно со вспомогательной обмоткой S рабочий конденсатор Cr и соединенный параллельно с рабочим конденсатором Cr элемент с положительным термическим коэффициентом (далее называемый ПТК-элемент). Последовательно с пусковым устройством может быть соединен пусковой конденсатор Cs.
ПТК-элемент, который используется в качестве пускового устройства, представляет собой элемент, сопротивление которого изменяется в зависимости от температуры. При высокой температуре сопротивление элемента является высоким, а при низкой — низким.
Выполненный, как описано выше, типовой однофазный индукционный электродвигатель работает следующим образом.
При запуске электродвигателя от источника электропитания Е сопротивления ПТК-элемент является низким, при этом электрический ток, подаваемый на вспомогательную обмотку S, проходит через ПТК-элемент и пусковой конденсатор Cs. Соответственно, при запуске электродвигателя возникает высокий пусковой крутящий момент.
С другой стороны, когда после прохождения определенного времени от запуска электродвигателя он начинает работать в нормальном режиме, температура ПТК-элемента увеличивается и его сопротивление становится очень высоким, замыкая тем самым соединительную линию пускового устройства, посредством которой ПТК-элемент соединен с электросхемой. Когда соединительная линия пускового устройства замкнута, ток, подаваемый на вспомогательную обмотку S, протекает через рабочий конденсатор Cr и основная обмотка М, вспомогательная обмотка S и рабочий конденсатор Cr создают магнитные поля, взаимодействие которых с ротором (не показано) заставляет последний вращаться с синхронной скоростью.
В идеале, когда электродвигатель находится в нормальном рабочем режиме, сопротивление ПТК-элемент становится очень высоким и электроток не проходит через него. Однако на практике и при нормальном рабочем режиме электродвигателя малые токи все же проходят через ПТК-элемент, вызывая тем самым ненужное потребление мощности, из-за чего снижается общий коэффициент полезного действия электродвигателя.
Одним из вариантов решения этой проблемы является снабжение однофазного индукционного электродвигателя средством для предотвращения потребления ПТК-элементом мощности при нормальной работе электродвигателя.
На фиг.2 показана принципиальная электрическая схема однофазного индукционного электродвигателя, включающего средство для предотвращения потребления мощности пусковым устройством при нормальном режиме работы. Как видно на фиг.2, однофазный индукционный электродвигатель включает основную обмотку М, вспомогательную обмотку S, поисковую катушку 1 и симметричный триодный тиристор 2. Основная обмотка М создает изменяемый по времени магнитный поток, который наводит напряжение в поисковой катушке 1. Наведенное в поисковой катушке 1 напряжение прикладывается к затвору симметричного триодного тиристора 2, который является полупроводниковым коммутационным элементом.
При запуске электродвигателя на основную обмотку М поступают большие электротоки, соответственно, в поисковой катушке 1 наводится высокое напряжение, благодаря чему происходит отпирание симметричного триодного тиристора 2. Как только симметричный триодный тиристор 2 отпирается, электроток, подаваемый на вспомогательную обмотку S, проходит через симметричный триодный тиристор 2 и сопротивление R, соответствующее пусковому устройству.
С другой стороны, когда электродвигатель работает уже в нормальном режиме, на основную обмотку М подается малый электроток, поэтому в поисковой катушке 1 наводится низкое напряжение, запирая тем самым симметричный триодный тиристор 2. При запертом симметричном триодном тиристоре 2 все подаваемые на вспомогательную обмотку S токи проходят через рабочий конденсатор Cr, предотвращая тем самым потребление ПТК-элементом (соответствует сопротивлению R) мощности при работе электродвигателя в нормальном режиме.
Однако при применении вышеуказанного средства для предотвращения потребления мощности ПТК-элементом при работе электродвигателя в нормальном режиме трудно установить поисковую катушку, а также дополнительное устройство для наведения напряжения изменяющимися по времени магнитными полями, что влечет затраты на установку и ведет к снижению коэффициента полезного действия электродвигателя.
Раскрытие изобретения
Настоящее изобретение было сделано с учетом вышеуказанных проблем, и его задачей является создание однофазного индукционного электрического двигателя, в котором можно предотвратить поступление тока к пусковому устройству с тем, чтобы не допустить нежелательное потребление им мощности в нормальном режиме работы, что может быть осуществлено за счет введения устройства для предотвращения нежелательного потребления мощности пусковым устройством, благодаря чему повышается эффективность установки и общий коэффициент полезного действия электродвигателя.
В соответствии с одним из аспектов изобретения эти и другие задачи могут быть решены благодаря созданию однофазного индукционного электродвигателя, имеющего основную обмотку, вспомогательную обмотку и рабочий конденсатор и содержащего также пусковое устройство для создания высокого пускового крутящего момента при запуске электродвигателя; и средство для предотвращения потребления мощности, не позволяющее току проходить к пусковому устройству, чтобы избежать потребление мощности пусковым устройством при работе электродвигателя в нормальном режиме.
Предпочтительно данное средство для предотвращения потребления мощности содержит элемент передачи токового сигнала и переключатель для управления прохождением тока к пусковому устройству в зависимости от токового сигнала, полученного от элемента передачи токового сигнала. При работе электродвигателя в нормальном режиме переключатель разомкнут, предотвращая тем самым прохождение тока к пусковому устройству.
Элемент передачи токового сигнала предпочтительно содержит трансформатор тока, имеющий первичную и вторичную обмотки, при этом во вторичной обмотке наводится ток в зависимости от величины тока, поступающего в первичную обмотку, и трансформатор тока передает наведенный в первичной обмотке ток к внешнему элементу.
Когда трансформатор тока используется как элемент передачи токового сигнала, этот трансформатор соединен последовательно с одним из концов основной обмотки или с одним выходом источника электропитания. Переключатель предпочтительно представляет собой симметричный триодный тиристор с затвором, на который поступает ток, наведенный во вторичной обмотке трансформатора тока, при этом симметричный триодный тиристор отпирается/запирается в зависимости от величины тока, подаваемого на его затвор. В качестве переключателя может быть использовано реле, которое замыкается/размыкается в зависимости от величины тока, полученного со вторичной обмотки трансформатора тока.
В соответствии с другим аспектом изобретения его задачи могут быть решены благодаря созданию однофазного индукционного электродвигателя, имеющего основную обмотку, вспомогательную обмотку и рабочий конденсатор и содержащего также пусковое устройство для создания высокого пускового крутящего момента при запуске электродвигателя; и соленоидный выключатель для управления прохождением тока к пусковому устройству так, что предотвращается поступление тока к пусковому устройству и потребление мощности при работе электродвигателя в нормальном режиме.
Предпочтительно соленоидный выключатель содержит катушку, через которую протекает подаваемый на основную обмотку М ток для обеспечения или предотвращения прохождения тока к пусковому устройству в зависимости от величины протекающего через катушку тока.
Краткое описание чертежей
Указанные выше возможности и преимущества изобретения будут более понятны из последующего подробного описания и прилагаемых чертежей, на которых:
фиг.1 представляет собой принципиальную электрическую схему типового однофазного индукционного электродвигателя;
фиг.2 представляет собой принципиальную электрическую схему типового однофазного индукционного электродвигателя, имеющего средство для предотвращения потребления мощности пусковым устройством в нормальном режиме работы;
фиг.3 представляет собой принципиальную электрическую схему однофазного индукционного электродвигателя в соответствии с первым вариантом выполнения изобретения;
фиг.4 представляет собой принципиальную электрическую схему однофазного индукционного электродвигателя в соответствии со вторым вариантом выполнения изобретения;
фиг.5 представляет собой принципиальную электрическую схему однофазного индукционного электродвигателя в соответствии с третьим вариантом выполнения изобретения;
фиг.6 представляет собой принципиальную электрическую схему однофазного индукционного электродвигателя в соответствии с четвертым вариантом выполнения изобретения.
Осуществление изобретения
Далее варианты выполнения типового однофазного индукционного электродвигателя будут более подробно описаны со ссылкой на прилагаемые чертежи. Одни и те же элементы будут одинаково названы в описании и имеют одинаковые ссылочные номера на чертежах.
На фиг.3-6 представлены принципиальные электрические схемы однофазного индукционного электродвигателя в соответствии с первым, вторым, третьим и четвертым вариантами выполнения изобретения. Однофазные индукционные двигатели в соответствии с настоящим изобретением обычно включают основную обмотку М, вспомогательную обмотку S, рабочий конденсатор Cr и пусковое устройство (например, ПТК-элемент), соединенное параллельно с рабочим конденсатором Cr. Однофазный индукционный электродвигатель может также включать пусковой конденсатор Cs, подключаемый параллельно с пусковым устройством.
На фиг.3 представлена принципиальная электрическая схема однофазного индукционного электродвигателя в соответствии с первым вариантом выполнения изобретения. В этом варианте однофазный индукционный электродвигатель включает средство для предотвращения потребления мощности пусковым устройством из-за невозможности протекания тока через пусковое устройство в нормальном рабочем режиме электродвигателя (т.е. индукционном режиме). Средство для предотвращения нежелательного потребления мощности включает трансформатор тока 10 (токовый трансформатор 10) и переключатель, как показано на фиг.3. В данном варианте выполнения переключатель содержит симметричный триодный тиристор 20.
Трансформатор тока 10 соединен последовательно с одним концом основной обмотки М так, что ток, подаваемый к основной обмотке М, проходит по первичной обмотке трансформатора тока 10, а ток, наводимый во вторичной обмотке трансформатора тока 10 в соответствии с величиной тока на первичной обмотке, поступает на затвор симметричного триодного тиристора 20.
На фиг.4 представлена принципиальная электрическая схема однофазного индукционного электродвигателя в соответствии со вторым вариантом выполнения изобретения. Как видно на фиг.4, однофазный индукционный электродвигатель в соответствии с этим вариантом выполнения также включает переключатель и токовый трансформатор 10, который служит для передачи токового сигнала как переключающего сигнала на переключатель. В данном варианте выполнения переключатель содержит симметричный триодный тиристор 20. В частности, трансформатор тока 10 соединен последовательно с одним выходом источника электропитания Е, поэтому ток от источника электропитания подается на первичную обмотку трансформатора тока 10.
На фиг.5 представлена принципиальная электрическая схема однофазного индукционного электродвигателя в соответствии с третьим вариантом выполнения изобретения. Как видно на фиг.5, в однофазном индукционном электрическом электродвигателе в соответствии с этим вариантом выполнения использован токовый трансформатор 10 для передачи токового сигнала на переключатель точно так же, как и в вышеуказанном варианте. Электродвигатель в соответствии с этим вариантом характеризуется тем, что переключатель содержит реле 21, которое замыкается/размыкается в зависимости от величины тока, полученного со вторичной обмотки токового трансформатора 10.
На фиг.6 представлена принципиальная электрическая схема однофазного индукционного электродвигателя в соответствии с четвертым вариантом выполнения изобретения. Как видно на фиг.6, однофазный индукционный электродвигатель в соответствии с этим вариантом выполнения также содержит основную обмотку М, вспомогательную обмотку S, рабочий конденсатор Cr, пусковой конденсатор Cs и пусковое устройство, а также соленоидный выключатель 40 в качестве средства для предотвращения потребления мощности пусковым устройством при работе электродвигателя в нормальном режиме.
Соленоидный выключатель 40 содержит переключающую часть 41, соленоид 42, пружину 43 и пластину 44. В типичном случае соленоид 42 имеет намотанную вокруг металлического цилиндра обмотку, охватывающую сердечник. Переключающая часть 41, расположенная выше соленоида 42, замыкается/размыкается для открывания или закрывания соединительной линии пускового устройства, посредством которой пусковой конденсатор Cs и ПТК-элемент 30 соединены последовательно. Пружина 43 и пластина 44, имеющая определенный вес, расположены под соленоидом 42. Переключающая часть 41 для осуществления закрывания или открывания соединительной линии пускового устройства соединена последовательно с пусковым устройством так, что ток не может протекать к пусковому устройству когда переключающая часть 41 разомкнута.
Как показано на фиг.3-6, пусковое устройство может содержать ПТК-элемент 30.
Далее будет более подробно описана со ссылкой на фиг.3-6 конструкция и работа однофазного индукционного электродвигателя, выполненного в соответствии с первым — четвертым вариантами выполнения изобретения.
Как показано на фиг.3, однофазный индукционный электродвигатель в соответствии с этим вариантом выполнения содержит основную обмотку М, вспомогательную обмотку S, рабочий конденсатор Cr, пусковой конденсатор Cs и пусковое устройство. При подаче электропитания от источника Е основная обмотка М и вспомогательная обмотка S создают магнитные поля, благодаря взаимодействию которых возникает крутящий момент. Рабочий конденсатор Cr соединен последовательно со вспомогательной обмоткой S, а пусковое устройство соединено параллельно с рабочим конденсатором Cr. К примеру, пусковое устройство содержит ПТК-элемент 30, как показано на фиг.3.
Однофазный индукционный электродвигатель в соответствии с этим вариантом выполнения содержит трансформатор тока 10 и симметричный триодный тиристор 20 для предотвращения ненужного потребления энергии, которое может иметь место в обычных электродвигателях при нормальном режиме работы из-за малых токов, протекающих через ПТК-элемент 30. Благодаря такому выполнению увеличивается общий коэффициент полезного действия электродвигателя.
Трансформатор тока 10 по конструкции аналогичен обычному трансформатору напряжения. То есть, трансформатор тока 10 содержит первичную обмотку с небольшим количеством витков, намотанную на ламинированный сердечник, и вторичную обмотку с большим количеством витков. Ток индуцируется во вторичной обмотке в соответствии с величиной тока, подаваемого на первичную обмотку. Величина тока, индуцируемого во вторичной обмотке, обратно пропорциональна количеству витков вторичной обмотки.
Симметричный триодный тиристор 20 соединен последовательно с ПТК-элементом 30. Ток, возбуждаемый во вторичной обмотке токового трансформатора 10, подается на затвор симметричного триодного тиристора 20, так что симметричный триодный тиристор 20 запирается/отпирается в зависимости от величины тока, поступающего на затвор.
Первый вариант выполнения характеризуется тем, что трансформатор тока 10 соединен последовательно с одним концом основной обмотки М, так что ток, поступающий на основную обмотку М от источника электропитания Е, течет на первичную обмотку токового трансформатора 10.
При запуске электродвигателя ток от источника электропитания Е разделяется и поступает на основную обмотку М и на вспомогательную обмотку S. При этом на основную обмотку М поступает ток большой величины, поэтому и на первичную обмотку токового трансформатора 10 приходит ток большой величины. При поступлении тока большой величины на первичную обмотку токового трансформатора 10 в его вторичной обмотке наводится ток тоже большой величины. При поступлении большого тока от вторичной обмотки на затвор симметричного триодного тиристора 20 последний отпирается. Более того, при запуске электродвигателя ПТК-элемент 30 имеет низкое сопротивление, так что ток, поступивший на вспомогательную обмотку S, протекает через соединительную линию пускового устройства, посредством которой симметричный триодный тиристор 20, пусковой конденсатор Cs и ПТК-элемент 30 соединены последовательно.
Таким способом ток от вспомогательной обмотки S течет через пусковой конденсатор Cs при запуске электродвигателя, тем самым улучшая его пусковые характеристики.
По истечении определенного времени электродвигатель начинает работать в нормальном режиме, при этом величина тока, поступающего от источника Е на основную обмотку М, невелика. После того как электродвигатель проработает какое-то определенное время, температура ПТК-элемента 30 увеличивается, следовательно, увеличивается и его сопротивление. Соответственно, общее эквивалентное сопротивление соединительной линии пускового устройства также увеличивается, из-за чего изменяется протекание тока так, что большая часть подаваемого на вспомогательную обмотку S тока течет через рабочий конденсатор Cr.
В типовом однофазном индукционном электрическом электродвигателе через ПТК-элемент 30 все же протекают небольшие токи даже, когда электродвигатель работает в нормальном режиме, поэтому ПТК-элемент 30 потребляет нежелательную энергию, снижая тем самым коэффициент полезного действия электродвигателя.
Однако в однофазном индукционном электрическом электродвигателе в соответствии с первым вариантом выполнения изобретения используется токовый трансформатор 10 и симметричный триодный тиристор 20 для предотвращения нежелательного потребления энергии ПТК-элементом 30. Более конкретно, когда электродвигатель работает в нормальном режиме, величина тока, поступающего к основной обмотке М, уменьшается, как это было описано выше, поэтому величина тока, текущего к первичной обмотке токового трансформатора 10, также уменьшается, и, соответственно, уменьшается величина тока во вторичной обмотке.
Так как величина тока, наводимого во вторичной обмотке, уменьшается, уменьшается и величина тока, поступающего с вторичной обмотки токового трансформатора 10 на затвор симметричного триодного тиристора 20, из-за чего симметричный триодный тиристор 20 запирается. С запиранием симметричного триодного тиристора 20 предотвращается протекание тока через пусковой конденсатор Cs и ПТК-элемент 30 при работе электродвигателя в нормальном режиме. Следовательно, при выполнении электродвигателя в соответствии с первым вариантом предотвращается нежелательное потребление мощности, вызываемое в типовых электродвигателях небольшими токами, протекающими через пусковой конденсатор Cs и ПТК-элемент 30 при работе электродвигателя в нормальном режиме, соответственно, увеличивается общий коэффициент полезного действия электродвигателя.
Далее будет дано подробное описание однофазного индукционного электродвигателя в соответствии со вторым вариантом выполнения. Как показано на фиг.4, однофазный индукционный электродвигатель в соответствии с этим вариантом содержит основную обмотку М, вспомогательную обмотку S, рабочий конденсатор Cr, пусковой конденсатор Cs и пусковое устройство. Точно так же, как и в первом варианте выполнения, основная обмотка М и вспомогательная обмотка S создают магнитные поля, благодаря взаимодействию которых возникает крутящий момент. Рабочий конденсатор Cr соединен последовательно со вспомогательной обмоткой, а пусковой конденсатор Cs соединен параллельно с рабочим конденсатором Cr. Пусковое устройство содержит, например, ПТК-элемента 30, как показано на фиг.4.
Однофазный индукционный электродвигатель в соответствии с этим вариантом выполнения содержит трансформатор тока 10 и симметричный триодный тиристор 20 для предотвращения протекания тока от ПТК-элемента 30 при нормальном режиме работы электродвигателя. Токовый трансформатор 10 соединен последовательно с одним выходом источника электропитания Е, так что при запуске электродвигателя ток от источника электропитания Е поступает на основную обмотку токового трансформатора 10.
Когда электродвигатель работает в нормальном режиме, величина тока, подаваемого на первичную обмотку токового трансформатора 10, уменьшается и поэтому уменьшается и величина тока, наводимого во вторичной обмотке. С уменьшением величины тока, наводимого во вторичной обмотке, уменьшается и величина тока, поступающего с вторичной обмотки токового трансформатора 10 на затвор симметричного триодного тиристора 20, из-за чего симметричный триодный тиристор 20 запирается. С запиранием симметричного триодного тиристора 20 предотвращается поступление тока к ПТК-элементу 30 при нормальном режиме работы электродвигателя.
Теперь будет дано подробное описание однофазного индукционного электродвигателя в соответствии с третьим вариантом выполнения. Как показано на фиг.5, однофазный индукционный электродвигатель в соответствии с этим вариантом содержит основную обмотку М, вспомогательную обмотку S, рабочий конденсатор Cr, пусковой конденсатор Cs и пусковое устройство (например, ПТК-элемент 30), как и в вышеприведенных вариантах.
Однофазный индукционный электродвигатель в соответствии с третьим вариантом выполнения включает токовый трансформатор 10 и переключатель (в данном варианте — это реле 21), в качестве средства для предотвращения нежелательного потребления мощности ПТК-элементом 30 при работе электродвигателя в нормальном режиме. Реле 21 замыкается/размыкается в зависимости от интенсивности магнитного поля, создаваемого током, полученным с вторичной обмотки токового трансформатора 10. Токовый трансформатор 10 и переключатель (т.е. реле 21) работают точно так же, как и в вышеприведенных вариантах, и предотвращают поступление тока на ПТК-элемент 30 при нормальном режиме работы электродвигателя.
В этом варианте токовый трансформатор 10 может быть соединен последовательно с одним выходом источника электропитания Е, поэтому ток от источника электропитания попадает на первичную обмотку токового трансформатора 10. В ином случае токовый трансформатор 10 может быть соединен последовательно с одним из концов основной обмотки М, так что ток, подающийся на основную обмотку М, поступает на первичную обмотку токового трансформатора 10.
Далее будет дано подробное описание однофазного индукционного электродвигателя в соответствии с четвертым вариантом выполнения. Как показано на фиг.6, однофазный индукционный электродвигатель в соответствии с этим вариантом содержит основную обмотку М, вспомогательную обмотку S, соединенный последовательно со вспомогательной обмоткой рабочий конденсатор Cr и ПТК-элемент 30, соединенный параллельно с рабочим конденсатором Cr. Однофазный индукционный электродвигатель может также включать пусковой конденсатор Cs, соединенный последовательно с ПТК-элементом 30, как и в вышеприведенных вариантах. Эти элементы электродвигателя работают точно так же, как и в вышеприведенных вариантах.
В однофазном индукционном электрическом электродвигателе в соответствии с четвертым вариантом используется соленоидный выключатель 40 в качестве средства для предотвращения потребления мощности ПТК-элементом 30 за счет невозможности прохождения через него тока при работе электродвигателя в нормальном режиме.
Соленоидный выключатель 40 содержит переключающую часть 41, соленоид 42, пружину 43 и пластину 44. Обычный соленоид имеет катушку, накрученную вокруг металлического цилиндра, охватывающего сердечник. Переключающая часть 41, расположенная над соленоидом 42, замыкается или размыкается для открытия или закрытия соединительной линии пускового устройства, посредством которой последовательно соединены пусковой конденсатор Cs и ПТК-элемент 30. Пружина 43 и пластина 44, имеющая определенный вес, расположены под соленоидом 42.
Если через обмотку соленоида 42 проходит небольшой ток, сердечник соленоида из-за веса пластины 44 находится в нижнем положении, сохраняя тем самым переключающую часть разомкнутой. Наоборот, при протекании через обмотку соленоида 42 большого тока обмотка создает сильные магнитные поля, вынуждая сердечник двигаться вверх и входить в металлический цилиндр. Когда сердечник окажется полностью в цилиндре, соединенная с ним переключающая часть 41 становится замкнутой, закрывая тем самым соединительную линию пускового устройства.
В соответствии с настоящим изобретением катушка, через которую поступает ток от источника электропитания Е или ток на основную обмотку М, образует соленоид 42.
На фиг.6 изображен конкретный пример, когда катушка, через которую проходит ток на основную обмотку М, накручена в виде соленоида 42.
Переключающая часть 41, образованная на одном конце соединительной линии пускового устройства, посредством которой соединены пусковой конденсатор Cs и ПТК-элемент 30, замыкается/размыкается в зависимости от величины тока, проходящего через соленоид 42 так, чтобы предотвращать протекание тока через ПТК-элемент 30 при нормальном режиме работы электродвигателя.
При запуске электродвигателя большой ток идет от источника электропитания Е на основную обмотку М, поэтому и через катушку соленоида 42 тоже течет большой ток.
Соответственно, катушка соленоида 42 создает сильные магнитные поля, вынуждающие сердечник двигаться, так что находящаяся выше соленоида 42 переключающая часть 41 замкнута, закрывая тем самым соединительную линию пускового устройства, посредством которой последовательно связаны пусковой конденсатор Cs и ПТК-элемент 30.
С другой стороны, при запуске электродвигателя ПТК-элемент 30 имеет низкое сопротивление, позволяя току, подаваемому на вспомогательную обмотку S, проходить через соединительную линию пускового устройства.
Когда по истечении определенного времени электродвигатель окажется в нормальном режиме работы, величина тока, подаваемого на основную обмотку М, уменьшается и, соответственно, уменьшается также величина тока, подаваемого на катушку соленоида 42, и соленоид 42 создает слабые магнитные поля.
Когда электродвигатель работает в нормальном режиме, сердечник соленоида 42 тянется вниз механизмом пружины 43 и пластиной 44, которые расположены под соленоидом 42. При движении сердечника вниз переключающая часть 41, находящаяся выше соленоида 42, размыкается, предотвращая тем самым прохождение тока к пусковому конденсатору Cs и ПТК-элементу 30.
Как следует из приведенного описания, настоящее изобретение представляет собой однофазный индукционный электродвигатель, содержащий устройство, предотвращающее потребление мощности от источника электропитания, имеющее элемент передачи токового сигнала и переключатель, который находится в замкнутом/разомкнутом положении в зависимости от токового сигнала, полученного от элемента передачи токового сигнала. Устройство, предотвращающее потребление мощности, препятствует прохождению тока к пусковому устройству при работе электродвигателя в нормальном режиме и таким образом позволяет избежать нежелательного потребления мощности пусковым устройством при работе электродвигателя в нормальном режиме, предотвращая уменьшение коэффициента полезного действия однофазного индукционного электродвигателя из-за нежелательного потребления мощности.
Приведенные варианты выполнения изобретения были раскрыты для иллюстрации, и любой специалист понимает, что допускаются различные модификации, дополнения и замены, не нарушая объема и духа изобретения, как оно сформулировано в формуле изобретения.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Однофазный индукционный электродвигатель, содержащий основную обмотку, вспомогательную обмотку и рабочий конденсатор, характеризующийся тем, что он дополнительно содержит пусковое устройство для создания высокого пускового крутящего момента при запуске электродвигателя, пусковой конденсатор и средство для предотвращения потребления мощности, не позволяющее току проходить к пусковому устройству при работе электродвигателя в нормальном режиме, чтобы избежать потребления мощности пусковым устройством, при этом пусковое устройство содержит элемент с положительным температурным коэффициентом, а средство для предотвращения потребления мощности содержит трансформатор тока, имеющий первичную и вторичную обмотки, при этом во вторичной обмотке наводится ток, который зависит от величины тока, поступающего в первичную обмотку, и переключатель для предотвращения прохождения тока к элементу с положительным температурным коэффициентом в зависимости от токового сигнала, полученного со вторичной обмотки трансформатора тока при работе электродвигателя в нормальном режиме.
2. Электродвигатель по п.1, характеризующийся тем, что трансформатор тока соединен последовательно с одним из концов основной обмотки.
3. Электродвигатель по п.1, характеризующийся тем, что переключатель представляет собой симметричный триодный тиристор с затвором, на который поступает ток, наведенный во вторичной обмотке трансформатора тока, при этом симметричный триодный тиристор выполнен с возможностью отпирания/запирания в зависимости от величины тока, подаваемого на его затвор.
4. Электродвигатель по п.1, характеризующийся тем, что переключатель представляет собой реле, которое имеет возможность замыкаться/размыкаться в зависимости от величины тока, полученного со вторичной обмотки трансформатора тока.
5. Электродвигатель по п.1, характеризующийся тем, что трансформатор тока соединен последовательно с одним выходом источника электропитания.
6. Однофазный индукционный электродвигатель, содержащий основную обмотку, вспомогательную обмотку и рабочий конденсатор, характеризующийся тем, что он дополнительно содержит пусковое устройство для создания высокого пускового крутящего момента при запуске электродвигателя, и соленоидный выключатель для управления прохождением тока к пусковому устройству так, что при работе электродвигателя в нормальном режиме предотвращено поступление тока к пусковому устройству и потребление мощности пусковым устройством, при этом соленоидный выключатель содержит катушку для протекания по ней тока, подаваемого на основную обмотку, для обеспечения или предотвращения прохождения тока к пусковому устройству в зависимости от величины протекающего через катушку тока.
7. Электродвигатель по п.6, характеризующийся тем, что дополнительно содержит пусковой конденсатор.
8. Электродвигатель по п.6, характеризующийся тем, что пусковое устройство содержит элемент с положительным температурным коэффициентом.
Индукционный асинхронный мотор
Изобретение относится к области электротехники и может быть использовано в системах электромеханического преобразования энергии. Сущность изобретения: предложенный индукционный асинхронный мотор содержит первый элемент 1, создающий магнитное поле, и второй элемент 2 с токопроводящими стержнями 3, все концы которых с одной торцевой стороны магнитного пакета второго элемента 2 соединены между собой, а с другой торцевой стороны магнитного пакета второго элемента 2 концы стержней 3 соединены с образованием электрически независимых контуров для обеспечения условия эффективного образования электромагнитного момента. Во втором варианте выполнения мотора концы стержней 3 на обеих торцевых сторонах пакета второго элемента 2 могут быть соединены одинаково для получения вышеупомянутого положительного эффекта. Мотор также может быть выполнен в, по меньшей мере, двухроторном исполнении. Технический результат от использования данного изобретения состоит в максимальном улучшении условий действия мгновенных электродвижущих сил всех стержней второго элемента (ротора), уменьшении продольной составляющей «реакции якоря» ротора и в обеспечении более благоприятных условий для образования электромагнитного момента векторами результирующих магнитных полей статора и ротора. 3 з.п. ф-лы, 5 ил.
Изобретение относится к электроэнергетике и может быть использовано в системах электромеханического преобразования энергии.
В системах электромеханического преобразования энергии сегодня широкое применение с постоянно увеличивающимся темпом использования имеют индукционные асинхронные моторы (асинхронные двигатели). Все используемые и известные из научно-технической литературы многочисленные конструкции асинхронных моторов, имеющих классический ротор типа «беличья клетка», выполненные даже по современным методам проектирования, технологии изготовления и с использованием современных материалов, обладают принципиальными недостатками. Причем улучшение одного или нескольких недостатков (показателей) приводит к ухудшению других показателей и, таким образом, удельные технико-экономические показатели асинхронных моторов остаются низкими. Эти недостатки обусловлены классической конструкцией ротора асинхронного мотора. Из изученных аналогов поэтому наиболее близким техническим решением задачи (прототипом) является классический индукционный асинхронный мотор, имеющий первый элемент (статор), создающий магнитное поле, и второй элемент (ротор) с обмоткой типа «беличья клетка», состоящий из симметрично расположенных по периметру магнитного пакета и параллельно оси вращения токопроводящих стержней, находящихся в сквозных пазах магнитного пакета второго элемента на одинаковом удалении в радиальном направлении от оси вращения мотора, при этом на каждой торцевой стороне магнитного пакета второго элемента концы всех стержней соединены между собой короткозамыкающим кольцом (патент Германии 51083 от 31.08.1889). Недостатками прототипа являются низкие технические, энергетические, эксплуатационные и удельные технико-экономические показатели, как например, малые значения коэффициента полезного действия и коэффициента мощности, большой пусковой ток, большой ток холостого хода, малый пусковой момент, малая перегрузочная способность по моменту, мягкая механическая характеристика даже в области рабочих скоростей и большое номинальное скольжение, большой ток и одновременно малый тормозной момент в режиме противовключения, чрезмерное возрастание скорости и тока в режиме рекуперации, необходимый большой постоянный ток и одновременно малый тормозной момент в режиме динамического торможения, большая емкость конденсаторов и одновременно малый тормозной момент в режиме торможения с самовозбуждением. Все указанные недостатки являются следствием сильного изменения результирующего магнитного поля мотора и уменьшения модуля векторного произведения векторов магнитных полей статора и ротора из-за сильного влияния продольной составляющей «реакции якоря» ротора, а также малые степени эффективности образования результирующего электромагнитного момента токопроводящими стержнями, имеющими в данный момент времени электродвижущие силы меньше, чем электродвижущие силы стержней, находящихся на оси магнитного поля статора, из-за блокировки максимальной электродвижущей силой малых электродвижущих сил. В основу изобретения положена задача максимального улучшения условий действия мгновенных электродвижущих сил всех стержней второго элемента (ротора), уменьшения продольной составляющей «реакции якоря» ротора и обеспечения более благоприятных условий для образования электромагнитного момента векторами результирующих магнитных полей статора и ротора. Поставленная задача решается тем, что в индукционном асинхронном моторе, имеющем первый элемент, создавший магнитное поле, и второй элемент, содержащий токопроводящие стержни, расположенные симметрично по периметру в пазах магнитного пакета и параллельно оси вращения мотора, согласно изобретению количество стержней кратно числу полюсов магнитного поля первого элемента, концы всех стержней на одной торцевой стороне магнитного пакета второго элемента соединены между собой, а на противоположной торцевой стороне магнитного пакета, второго элемента конец каждого стержня соединен со всеми теми концами стержней, которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента на одно полюсное деление. Кроме того, в моторе с каждой торцевой стороны магнитного пакета второго элемента конец каждого стержня может быть соединен со всеми теми концами стержней, которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента на одно полюсное деление. Мотор также может содержать по меньшей мере два магнитных пакета второго элемента, расположенных на одном валу, при этом соединения концов стержней на торцевых сторонах каждого магнитного пакета второго элемента электрически изолированы от соединений концов стержней на торцевых сторонах других магнитных пакетов второго элемента. Преимущества заявленного мотора в том, что при вышеупомянутом в основном варианте выполнения соединений концов стержней на торцевых сторонах магнитного пакета второго элемента и при количестве стержней, кратном числу полюсов магнитного поля первого элемента, образуются несколько электрически взаимонезависимых модулей типа «беличья клетка», у которых количество стержней равно числу полюсов магнитного поля первого элемента, при этом стержни, входящие в данный модуль, в любой момент времени имеют одинаковые по величине электродвижущие силы, из-за чего создаются условия для максимально эффективного действия электродвижущих сил всех стержней одновременно, т.е. полностью исключается вышеупомянутый эффект блокировки, имеющий место в классическом роторе типа «беличья клетка», где всегда закороченные с обеих торцевых сторон магнитного пакета все стержни имеют разные электродвижущие силы из-за разных потокосцеплений. Вариант конструктивного выполнения мотора, в котором с каждой торцевой стороны магнитного пакета второго элемента конец каждого стержня может быть соединен со всеми теми концами стержней, которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента на одно полюсное деление (т.е. вариант с одинаковым соединением концов стержней на торцевых сторонах магнитного пакета второго элемента), имеет преимущество в технологии изготовления, особенно в случаях, когда обмотка второго элемента (ротора) выполнена не литьем. Вариант конструктивного выполнения мотора, в котором он содержит по меньшей мере два магнитных пакета второго элемента, расположенных на одном валу, при этом соединения концов стержней на торцевых сторонах каждого магнитного пакета второго элемента электрически изолированы от соединений концов стержней на торцевых сторонах других магнитных пакетов второго элемента, имеет следующие преимущества: дополнительное повышение эффективности и улучшение механических параметров конструкции второго элемента с точки зрения статической и динамической балансировки. На фиг.1 изображен заявленный мотор, вид с одной торцевой стороны; на фиг.2 — заявленный мотор, вид с противоположной торцевой стороны; на фиг.3 — заявленный мотор, вид сбоку; на фиг. 4 — вариант выполнения заявленного мотора с одинаковым соединением концов стержней на обеих торцевых сторонах магнитного пакета второго элемента, вид сбоку; на фиг.5 — вариант выполнения заявленного мотора в двухроторном исполнении, вид сбоку. Индукционный асинхронный мотор имеет первый элемент, создающий магнитное поле, и второй элемент, содержащий токопроводящие стержни, расположенные симметрично по периметру магнитного пакета в пазах и параллельно оси вращения мотора, при этом количество стержней кратно числу полюсов магнитного поля первого элемента, концы всех стержней на одной торцевой стороне магнитного пакета второго элемента соединены между собой, а конец каждого стержня на противоположной торцевой стороне магнитного пакета второго элемента соединен со всеми теми концами стержней, которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента на одно полюсное деление. В моторе, кроме того, с каждой торцевой стороны магнитного пакета второго элемента конец каждого стержня может быть соединен со всеми теми концами стержней, которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента на одно полюсное деление. Мотор также может содержать по меньшей мере два магнитных пакета второго элемента, установленных на одном валу, при этом соединения концов стержней на торцевых сторонах каждого пакета второго элемента электрически изолированы от соединений концов стержней на торцевых сторонах других пакетов второго элемента. В одном из конкретных конструктивных выполнении рассмотрим четырехполюсный мотор (фиг.1-3). Он содержит первый элемент — статор 1, создающий магнитное поле, и второй элемент — ротор 2. Ротор 2 содержит токопроводящие стержни 3 (в рассматриваемом четырехполюсном моторе имеются двенадцать стержней), расположенные симметрично по периметру магнитного пакета и параллельно оси вращения мотора в сквозных пазах магнитного пакета на одинаковом удалении в радиальном направлении от оси вращения ротора 2 в количестве, кратном числу полюсов магнитного поля статора 1. С одной торцевой стороны ротора 2 концы всех стержней 3 соединены между собой известным короткозамыкающим кольцом 4 (фиг.1). С противоположной торцевой стороны ротора 2 конец каждого стержня соединен со всеми теми концами стержней 3, которые сдвинуты относительно упомянутого конца по периметру магнитного пакета ротора 2 на одно полюсное деление, посредством проводников 5, 6, 7 соответственно (фиг.2). Таким образом, образуются три (в рассматриваемом четырехполюсном моторе) одинаковых электрически изолированных контура, состоящие из проводников 5, 6, 7 соответственно (на фиг. 2 эти три контура изображены соответственно сплошной, штриховой и штрихпунктирной линиями). Каждый такой контур представляет собой одно короткозамыкающее кольцо «беличьей клетки». Количество таких контуров составляет n=Z/2P, где Z — количество всех стержней (пазов) ротора. 2Р — число полюсов магнитного поля статора мотора. Система стержней 3, закороченная соответствующим контуром, например, контуром 5 (или контуром 6, или контуром 7) на торцевой стороне магнитного пакета ротора 2, образуют короткозамкнутый модуль — элементарную «беличью клетку». Таким образом, заявленный мотор имеет n электрически взаимонезависимые, содержащие стержни 3 в количестве 2Р штук, модули, причем каждый последующий модуль сдвинут по периметру пакета ротора 2 относительно предыдущего модуля на угол 2/Z (в рассматриваемом четырехполюсном моторе имеются три модуля по четыре стержня 3 в каждом, всего двенадцать стержней 3). Заявленный мотор работает следующим образом. Статор 1 создает вращающееся магнитное поле, которое индуктирует электродвижущие силы в стержнях 3 ротора 2, вследствие чего в стержнях 3 возникают токи. В результате электромагнитного взаимодействия магнитного поля статора 1 с токами стержней 3 образуется электромагнитный момент, под действием которого вращается ротор 2. При этом все стержни 3 каждого модуля «беличьей клетки» в любой момент времени имеют равные по величине электродвижущие силы, действующие с максимальной возможностью, что кардинально улучшает продуктивность образования электромагнитного момента. (В то время как в классическом асинхронном моторе с одной единственной «беличьей клеткой» все стержни, находящиеся под данным полюсом магнитного поля статора, в любой момент времени имеют разные по величине потокосцепления и поэтому индуктированные в них электродвижущие силы имеют одинаковое направление, но они отличны по величине. Следовательно, электродвижущая сила стержня, расположенного на магнитной оси полюса, имеет максимальное значение и блокирует действия электродвижущих сил всех других стержней, меньших по величине. Тем самым ухудшаются условия образования полезного момента токами от этих меньших по величине электродвижущих сил, что в итоге приводит к ухудшению продуктивности образования элементарных электромагнитных моментов от каждого стержня и к резкому уменьшению результирующего элетромагнитного момента мотора). Распределенная по периметру ротора 2 система модулей «беличьей клетки» в магнитном отношении максимально возможно сбалансирована, т.е. минимизирована продольная составляющая «реакции якоря» ротора. 2 и векторы результирующих магнитных полей статора 1 и ротора 2 находятся в пространстве в наиблагоприятном взаимоположении в смысле образования максимального электромагнитного момента. Все это приводит к увеличению коэффициента мощности, уменьшению потребляемого от сети реактивного тока, обеспечивая увеличение номинальной мощности мотора, уменьшение пускового тока и возрастание пускового момента мотора. Во втором варианте конструктивного выполнения заявленного мотора рассмотрим также четырехполосный мотор (фиг.4). Он содержит первый элемент — статор 1, создающий магнитное поле, и второй элемент — ротор 8 с токопроводящими стержнями 3, расположенными симметрично по периметру магнитного пакета и параллельно оси вращения мотора в сквозных пазах магнитного пакета на одинаковом удалении в радиальном направлении от оси вращения ротора 8 в количестве, кратном числу полюсов магнитного поля статора 1. На каждой торцевой стороне пакета ротора 8 конец каждого стержня 3 соединен со всеми теми концами стержней 3, которые сдвинуты относительно упомянутого конца по периметру пакета ротора 8 на одно полюсное деление, посредством проводников 5, 6, 7 соответственно на одной торцевой стороне (см. фиг.2) и проводников 9, 10, 11 соответственно на противоположной торцевой стороне (соединение концов стержней выполнено аналогично соединению, изображенному на фиг.2). Таким образом, образуются три пары (в рассматриваемом четырехполюсном моторе) одинаковых электрически взаимонезависимых контуров, состоящих из проводников 5 и 9, 6 и 10, 7 и 11 соответственно. Каждая такая пара контуров представляет собой два короткозамыкающих кольца «беличьей клетки». Количество таких пар контуров составляет n=Z/2P (как и в вышеописанном основном конструктивном варианте). Система стержней 3, закороченная с обеих торцевых сторон пакета ротора 8 парой контуров, например парой контуров 5 и 9 (или парой контуров 6 и 10, или парой контуров 7 и 11), образует короткозамкнутый модуль — элементарную «беличью клетку». Таким образом, заявленный мотор во втором варианте выполнения имеет n электрически взаимонезависимые, содержащие стержни 3 в количестве 2Р штук, модули, причем каждый последующий модуль сдвинут по периметру пакета ротора 8 относительно предыдущего модуля на угол 2/Z (в рассматриваемом четырехполюсном моторе имеется три модуля по четыре стержня 3 в каждом, всего двенадцать стержней(. Такое конструктивное выполнение ротора 8 обеспечивает улучшение технологии изготовления, особенно в случаях, когда обмотка ротора выполнена не литьем. Второй вариант конструктивного выполнения заявленного мотора работает аналогично вышеописанному основному варианту исполнения. В варианте по меньшей мере двухроторного исполнения также рассмотрим четырехполюсный мотор (фиг.5). Он содержит первый элемент — общий статор 12, создающий магнитное поле, и второй элемент в виде вращающейся части из двух одинаковых роторов, установленных на одном валу и выполненных конструктивно аналогично ротору 2 (или ротору 8), описанному выше. При этом роторы 2 установлены так, что кольца 4 каждого ротора 2 расположены друг против друга, и системы стержней 3 одного ротора 2 повернуты (геометрически сдвинуты) относительно системы стержней 3 второго ротора 2 по оси вращения мотора на угол /Z, равный половине угла между соседними стержнями роторов 2. Такое расположение приводит к уменьшению пульсаций результирующего магнитного потока и электромагнитного момента мотора, а также к повышению степени геометрического и механического симметрирования вращающейся части мотора. Вариант двухроторного исполнения заявленного мотора работает аналогично основному варианту исполнения, описанному выше. При этом дополнительно повышается эффективность и улучшаются механические параметры конструкции вращающейся части мотора с точки зрения ее механической статической и динамической балансировки. Заявленный индукционный асинхронный мотор имеет одновременно высокие технические, энергетические, эксплуатационные и удельные технико-экономические показатели: большие значения коэффициента полезного действия и коэффициента мощности, малый пусковой ток, малый ток холостого хода, большой пусковой момент, большую перегрузочную способность по моменту, жесткую механическую характеристику в области рабочих скоростей и малое номинальное скольжение, малый ток и одновременно большой тормозной момент в режиме противовключения, ограниченное возрастание скорости и тока в режиме рекуперации, необходимый малый постоянный ток и одновременно большой тормозной момент в режиме динамического торможения, малую емкость конденсаторов и одновременно большой тормозной момент в режиме торможения с самовозбуждением, — по сравнению с известным асинхронным мотором с классическим ротором типа «беличья клетка» (прототипом). Вышеуказанный положительный эффект получен в результате экспериментов, проведенных заявителем на асинхронных моторах типа AIC 90 S 2 T 2 со стандартным ротором типа «беличья клетка» и роторами, выполненными согласно изобретению (в основном варианте выполнения).Формула изобретения
1. Индукционный асинхронный мотор, имеющий первый элемент (1), создающий магнитное поле, и второй элемент (2), содержащий токопроводящие стержни (3), расположенные симметрично по периметру в пазах магнитного пакета и параллельно оси вращения мотора, отличающийся тем, что количество стержней (3) кратно числу полюсов магнитного поля первого элемента (1), на одной торцевой стороне магнитного пакета второго элемента (2) концы всех стержней (3) соединены между собой, а на противоположной торцевой стороне магнитного пакета второго элемента (2) конец каждого стержня (3) соединен со всеми теми концами стержней (3), которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента (2) на одно полюсное деление. 2. Индукционный асинхронный мотор по п.1, отличающийся тем, что на каждой торцевой стороне магнитного пакета второго элемента конец каждого стержня (3) соединен со всеми теми концами стержней (3), которые сдвинуты относительно упомянутого конца по периметру магнитного пакета второго элемента на одно полюсное деление. 3. Индукционный асинхронный мотор по пп.1 и 2, отличающийся тем, что он содержит по меньшей мере два магнитных пакета второго элемента, установленных на одном валу, при этом соединения концов стержней (3) на торцевых сторонах каждого магнитного пакета второго элемента электрически изолированы от соединений концов стержней (3) на торцевых сторонах других магнитных пакетов второго элемента.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5