Site Loader

Содержание

индукционный ток — это… Что такое индукционный ток?


индукционный ток
индукцио́нный ток

электрический ток, возникающий вследствие электромагнитной индукции.

* * *

ИНДУКЦИОННЫЙ ТОК

ИНДУКЦИО́ННЫЙ ТОК, электрический ток, возникающий вследствие электромагнитной индукции.

Энциклопедический словарь. 2009.

  • индукционный прибор
  • индукционный ускоритель

Смотреть что такое «индукционный ток» в других словарях:

  • ИНДУКЦИОННЫЙ ТОК — ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. (см. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • ИНДУКЦИОННЫЙ ТОК — электрический ток, возникающий вследствие электромагнитной индукции …   Большой Энциклопедический словарь

  • индукционный ток — — [Интент] Параллельные тексты EN RU из ABB Review. Перевод компании Интент Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup …   Справочник технического переводчика

  • индукционный ток — indukuotoji srovė statusas T sritis automatika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m; Influenzstrom, m rus. индукционный ток, m; индуцированный ток, m; наведённый ток, m pranc. courant …   Automatikos terminų žodynas

  • индукционный ток — indukuotoji srovė statusas T sritis fizika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m rus. индуктируемый ток, m; индукционный ток, m; индуцированный ток, m pranc. courant d’induction, m;… …   Fizikos terminų žodynas

  • Индукционный ток — Индукционный ток  электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и… …   Википедия

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возникающий вследствие электромагнитной индукции …   Большой энциклопедический политехнический словарь

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возни кающий вследствие эл. магн. индукции …   Естествознание. Энциклопедический словарь

  • окислительно-восстановительная реакция на поверхности электрода, возбуждающая индукционный ток — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN electron transfer reaction …   Справочник технического переводчика

  • ТОК — 1. ТОК1, тока, муж. 1. только ед. Действие и состояние по гл. течь (см. течь1 в 1 знач.), течение (устар.). «Не волнуй же, Днепр широкий, быстрый ток студеных вод!» И.Козлов. Ток реки. 2. То, что течет, поток, струя (устар.). «Потянем ка вдвоем… …   Толковый словарь Ушакова

Книги

  • Индукция, взаимоиндукция, самоиндукция — это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 1050 грн (только Украина)
  • Индукция, взаимоиндукция, самоиндукция-это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 820 руб
  • Индукция, взаимоиндукция, самоиндукция — это просто. Теория абсолютности, Г. С. Гуревич, С. Н. Каневский. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 545 руб
Другие книги по запросу «индукционный ток» >>

Зачем нужен индукционный ток и как он получается? Простыми словами

электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и правилом Ленца

Индукционный нагрев также известен как нагревание вихревыми токами. такой способ применяется для плавки металла (печи ИЧТ) . индукционный нагрев производится наведённым током током в проводящем объекте (подобно трансформатору). Переменное эл. маг. поле получают с помощью катушки индуктивности (индуктор) . Металллический предмет, помещённый в эту катушку индуктивности будет нагреваться, а также перемешиваться за счёт электродинамических усилий.

Неведомо это разуму нашему. Некоим божественным образом упорядоченное движение электронов порождает поле, которое в свою очередь порождает упорядоченное движение электронов в другом проводнике.

Индукционный ток не нужен. Он объективно существует, хотим мы того или нет. А получается он из за того, что при возникновении тока в проводнике неизбежно появляется магнитное поле. Но появляется оно не сразу, а постепенно. Причем для его появления затрачивается мощность. Когда ток прекращается, магнитное поле никуда не девается. Оно стремится сгенерировать электрический ток при этом затрачивая накопленную ранее мощность. Представь тяжелый маховик, который ты раскручиваешь. Сначала ты затрачиваешь энергию на его раскрутку (создаем магнитное поле) . А при торможении не можешь его сразу остановить.

Уффф! Троечники. Что такое индукция, знаешь? Это возникновение ЭДС в проводнике под действием магнитного поля. Другими словами, не было бы индукции — не было бы эл. генераторов. А на аккумуляторах и на гальванических эл-тах энергетику не построишь.

Индукционным током снабжаются все потребители электричества. Получается он с помощью генераторов электростанций.

Зачем он нужен — в двух словах не объяснить, потому как применение получил очень широкое. Самое главное — при чтении книг в вечеренее время ты не пользуешься батарейками. А получается просто — магнит движется поперек проводника.

ИНДУКЦИОННЫЙ ТОК — это… Что такое ИНДУКЦИОННЫЙ ТОК?


ИНДУКЦИОННЫЙ ТОК
ИНДУКЦИОННЫЙ ток — электрический ток, возникающий вследствие электромагнитной индукции.

Большой Энциклопедический словарь. 2000.

  • ИНДУКЦИОННЫЙ ПРИБОР
  • ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ

Смотреть что такое «ИНДУКЦИОННЫЙ ТОК» в других словарях:

  • ИНДУКЦИОННЫЙ ТОК — ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. (см. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • индукционный ток — — [Интент] Параллельные тексты EN RU из ABB Review. Перевод компании Интент Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup …   Справочник технического переводчика

  • индукционный ток — электрический ток, возникающий вследствие электромагнитной индукции. * * * ИНДУКЦИОННЫЙ ТОК ИНДУКЦИОННЫЙ ТОК, электрический ток, возникающий вследствие электромагнитной индукции …   Энциклопедический словарь

  • индукционный ток — indukuotoji srovė statusas T sritis automatika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m; Influenzstrom, m rus. индукционный ток, m; индуцированный ток, m; наведённый ток, m pranc. courant …   Automatikos terminų žodynas

  • индукционный ток — indukuotoji srovė statusas T sritis fizika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m rus. индуктируемый ток, m; индукционный ток, m; индуцированный ток, m pranc. courant d’induction, m;… …   Fizikos terminų žodynas

  • Индукционный ток — Индукционный ток  электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и… …   Википедия

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возникающий вследствие электромагнитной индукции …   Большой энциклопедический политехнический словарь

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возни кающий вследствие эл. магн. индукции …   Естествознание. Энциклопедический словарь

  • окислительно-восстановительная реакция на поверхности электрода, возбуждающая индукционный ток — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN electron transfer reaction …   Справочник технического переводчика

  • ТОК — 1. ТОК1, тока, муж. 1. только ед. Действие и состояние по гл. течь (см. течь1 в 1 знач.), течение (устар.). «Не волнуй же, Днепр широкий, быстрый ток студеных вод!» И.Козлов. Ток реки. 2. То, что течет, поток, струя (устар.). «Потянем ка вдвоем… …   Толковый словарь Ушакова

Книги

  • Индукция, взаимоиндукция, самоиндукция — это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 1050 грн (только Украина)
  • Индукция, взаимоиндукция, самоиндукция-это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 820 руб
  • Индукция, взаимоиндукция, самоиндукция — это просто. Теория абсолютности, Г. С. Гуревич, С. Н. Каневский. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 545 руб
Другие книги по запросу «ИНДУКЦИОННЫЙ ТОК» >>

ИНДУКЦИОННЫЙ ТОК — это… Что такое ИНДУКЦИОННЫЙ ТОК?


ИНДУКЦИОННЫЙ ТОК

электрич. ток, возникающий вследствие электромагнитной индукции.

Большой энциклопедический политехнический словарь. 2004.

  • ИНДУКЦИОННЫЙ НАСОС
  • ИНДУКЦИЯ

Смотреть что такое «ИНДУКЦИОННЫЙ ТОК» в других словарях:

  • ИНДУКЦИОННЫЙ ТОК — ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. (см. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • ИНДУКЦИОННЫЙ ТОК — электрический ток, возникающий вследствие электромагнитной индукции …   Большой Энциклопедический словарь

  • индукционный ток — — [Интент] Параллельные тексты EN RU из ABB Review. Перевод компании Интент Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup …   Справочник технического переводчика

  • индукционный ток — электрический ток, возникающий вследствие электромагнитной индукции. * * * ИНДУКЦИОННЫЙ ТОК ИНДУКЦИОННЫЙ ТОК, электрический ток, возникающий вследствие электромагнитной индукции …   Энциклопедический словарь

  • индукционный ток — indukuotoji srovė statusas T sritis automatika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m; Influenzstrom, m rus. индукционный ток, m; индуцированный ток, m; наведённый ток, m pranc. courant …   Automatikos terminų žodynas

  • индукционный ток — indukuotoji srovė statusas T sritis fizika atitikmenys: angl. induced current; induction current vok. Induktionsstrom, m; induzierter Strom, m rus. индуктируемый ток, m; индукционный ток, m; индуцированный ток, m pranc. courant d’induction, m;… …   Fizikos terminų žodynas

  • Индукционный ток — Индукционный ток  электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и… …   Википедия

  • ИНДУКЦИОННЫЙ ТОК — электрич. ток, возни кающий вследствие эл. магн. индукции …   Естествознание. Энциклопедический словарь

  • окислительно-восстановительная реакция на поверхности электрода, возбуждающая индукционный ток — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN electron transfer reaction …   Справочник технического переводчика

  • ТОК — 1. ТОК1, тока, муж. 1. только ед. Действие и состояние по гл. течь (см. течь1 в 1 знач.), течение (устар.). «Не волнуй же, Днепр широкий, быстрый ток студеных вод!» И.Козлов. Ток реки. 2. То, что течет, поток, струя (устар.). «Потянем ка вдвоем… …   Толковый словарь Ушакова

Книги

  • Индукция, взаимоиндукция, самоиндукция — это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 1050 грн (только Украина)
  • Индукция, взаимоиндукция, самоиндукция-это просто. Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 820 руб
  • Индукция, взаимоиндукция, самоиндукция — это просто. Теория абсолютности, Г. С. Гуревич, С. Н. Каневский. Процесс взаимодействия электронов изменяющегося электромагнитного поля с электронами проводников, находящихся в этом электромагнитом поле, называют электромагнитной индукцией. В результате… Подробнее  Купить за 545 руб
Другие книги по запросу «ИНДУКЦИОННЫЙ ТОК» >>

Индукционные силы — Индукционно-динамические силы — Росиндуктор

ИНДУКЦИОННЫЕ СИЛЫ — это одна из трех составляющих сил межмолекулярного взаимодействия (силы Ван-дер-Ваальса). Индукционно-динамические силы возникают между полярной и неполярной молекулами — под действием поля полярной молекулы соседняя приобретает индуцированный дипольный момент. Правило индуцирования (наведения) силы соответственно работает для замкнутого проводника, находящегося под воздействием изменяющегося магнитного поля. Возникающая в этом случае электродвижущая сила заставляет заряды двигаться в определенном направлении. Возникает индукционный ток.

Сила индукционного тока

Сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром проводника. Направление индукционного тока определяет правило Ленца: свое магнитное поле противодействует изменению внешнего магнитного потока. Модуль силы рассчитывается по формуле, предварительно найдя ЭДС индукции из закона Фарадея.

Модуль силы индукционного тока в катушке

Представляет особый интерес изучение индукционного тока в катушках индуктивности. Изучая по приборам возникающий (индуцированный изменяющимся магнитным полем магнита или электромагнита) в катушке ток, установили, что он зависит от:

  • скорости изменения магнитного поля,
  • количества витков катушки (большее число витков соответствует большему значению индуктируемой ЭДС).

Индукционно-динамические силы

Индукционно-динамические системы находят широкое применение на практике в качестве быстродействующих приводов различных устройств. В частности, индукционно-динамические двигатели применяются для создания импульсных механических воздействий на нагрузку и используются при сейсморазведочных работах и при разработке промышленных технологий, требующих применения импульсных механических воздействий. Например, индукционно-динамический привод применяется в ударных устройствах с регулируемым механическим воздействием на рабочее тело при клепке, формовке деталей и в других случаях.

Найти силу индукционного тока

  1. Учесть, что индукционный ток всегда имеет направление, которое препятствует изменению внешнего магнитного потока. То есть знак ЭДС индукции противоположен знаку изменения магнитного поля. Это позволит избавиться от модуля.
  2. Применить формулу закона Ома для полной цепи.

Индукционные токи — Справочник химика 21

    Нагревание индукционными токами. Принцип нагревания индукционными токами заключается в следующем. Через соленоид, внутри которого помещен нагреваемый материал (проводник первого рода), пропускается переменный ток. При этом вокруг соленоида образуется переменное магнитное поле, которое индуцирует в нагреваемом теле электродвижущую силу индукции или вторичный ток, выделяющие тепло. [c.384]
    Удаление гуммированного слоя осуществляется также выжигом, нагревом токами высокой частоты или газопламенным нагревом. Выжиг и нагрев токами высокой частоты применимы и для мелких деталей. Так, удаление резины с бандажей колес осуществляется выжиганием или с помощью индуктора, наводящего в бандаже индукционные токи. При нагреве бандажа резина удаляется. [c.196]

    Электрические индукционные печи (рис. 7-11). Нагревание в этих печах осуществляется индукционными токами. Обогреваемый аппарат 1 является сердечником соленоида 2, охватывающего аппарат по соленоиду пропускается переменный ток, при этом вокруг соленоида возникает переменное магнитное поле, которое индуцирует в стенках обогреваемого аппарата электродвижущую силу. Под действием возникающего вторичного тока нагреваются стенки аппарата. Соленоид выполняется из медной или алюминиевой проволоки, имеющей малое омическое сопротивление. [c.173]

    К нагреванию сопротивлением относится нагревание индукционными токами, которое производится следующим образом. Аппарат окружают обмоткой, через которую пропускается переменный ток. При этом вокруг обмотки образуется переменное магнитное поле, индуцирующее в стенках аппарата электродвижущую силу. В результате в стенках аппарата возникает электрический ток, который и прогревает их по всей толщине. [c.421]

    Отметки верхней и нижней мертвых точек получены при помощи специального индукционного датчика, установленного на ограждении клиноременной передачи компрессора. На шкиве компрессора были установлены специальные флажки, которые наводили индукционны ток в датчике в момент прохода поршня компрессора через мертвые точки. Измерение индукции в датчике [c.145]

    Очищаемое вещество помещают в лодочку из очень чистого графита (при очистке германия) или из кварца (при очистке кремния). Лодочку помещают в горизонтальную трубу, у которой один конец запаян или через него подают инертный газ. Если он запаян, то другой конец трубы соединен с вакуумной установкой. Кварцевую трубу в отдельных местах охватывают двумя-тремя витками тугоплавкого провода, откачивают газы из нее, на витки провода подают напряжение от высокочастотного генератора. Вещество плавится индукционными токами в [c.261]


    Очищаемое вещество помещают в лодочку из очень чистого графита (при очистке германия) или из кварца (при очистке кремния). Лодочку помещают в горизонтальную трубку, у которой один конец запаян или через него подают инертный газ. Если он запаян, то другой конец трубы соединен с вакуумной установкой. Кварцевую трубу в отдельных местах охватывают двумя-тремя витками тугоплавкого провода, откачивают газы из нее, на витки провода подают напряжение от высокочастотного генератора. Вещество плавится индукционными токами в узких областях витков, где возникает непосредственный контакт жидкой н твердой фаз. Затем витки или лодочка перемещаются со скоростью 2—3 см/ч, вместе с тем перемещаются и зоны плавления вдоль лодочки, На рис. 81 указано перемещение лодочки вправо, значит, все три зоны плавления двигаются вдоль лодочки влево. Примеси, для которых /Сзонах плавления и вместе с ними перемещаются к концу слитка влево. Справа от зон плавления образуются слои вещества, более чистого относительно большинства примесей, так как для них /1, наоборот, попадают в слои слитка справа от зон плавлення. Если осуществить прохождение зон плавления справа налево по слитку много раз, то примеси с /С1 метод мало эффективен. Самые чистые части слитка (из середины) используются для изготовления приборов. Таким методом можно очистить германий до образцов с [c.324]

    Учитывая, что между длительностью раздражения и пороговой силой раздражения существует обратная зависимость, для определения порога болевого ощущения применялись одиночные удары индукционного тока. Время между двумя соседними определениями порога равнялось 5—15 минутам. Мы считали, что этот интервал достаточен для исключения влияния изменения порога возбудимости. Разумеется, мы не могли избежать влияния аккомодационного роста порога возбудимости за счет подпороговых раздражений. [c.111]

    Источниками блуждающих токов обычно являются электрифицированные железные дороги, сварочное оборудование, катодные и электролизные установки, а также любые электрические сети, в которых одним из проводов служит земля. В некоторых случаях источниками блуждающих токов являются также линии электропередач на переменном токе при нарушении симметрии напряжения и тока отдельных фаз, замыканий на землю или утечек через изоляторы. Так, в трубопроводах, уложенных параллельно линиям электропередач, наблюдаются индукционные токи, напряжение которых может достигать до 100 В [1]. [c.43]

    Особый интерес для безопасной перекачки представляют магнитно-гидродинамические насосы, применяемые для перекачивания расплавленных металлов. Они пригодны для перекачивания кислот, щелочей, растворов солей и других электропроводных жидкостей. В магнитно-гидродинамических насосах струя жидкости разгоняется бегущим вдоль отрезка труба —насос переменным электромагнитным полем. В электропроводящей жидкости возникают индукционные токи, и она увлекается электромагнитным полем подобно тому, как в асинхронном электромоторе ротор увлекается вращающимся электромагнитным полем. Основанные на новом принципе магнитно-гидродинамические насосы герметичны, не имеют сальников, вращающихся и каких-либо подвижных частей, поэтому они безопасны, если при их электропитании соблюдаются общие требования техники безопасности и противопожарной техники. [c.407]

    Энергию переменного тока высокой частоты (например, 1 МГц) можно при помощи катушки передать находящемуся в ней проводнику, например тиглю из металла или графита, и тем самым нагреть его. Лабораторные индукционные печи позволяют проводить работу в очень чистых условиях , поскольку можно поместить нагреваемый тигель в охлаждаемую кварцевую трубку. Последнюю либо откачивают до высокого вакуума, либо заполняют инертным газом. При этом следует помнить, что в определенном интервале давлений (от 10 до 10 мм рт. ст.) работать нельзя вследствие возникновения тлеющего разряда. В индукционных печах можно за несколько секунд произвести нагревание до 3000 °С. К недостаткам таких печей относится необходимость приобретения большого количества специального электрооборудования и соответственно их высокая стоимость. В продаже имеются генераторы индукционного тока, работающие большей частью с большими передающими трубками. Собственно печь лучше всего -ИЗГОТОВИТЬ самостоятельно в соответствии с конкретной экспериментальной задачей. Индуктивно нагреваемый тигель делают обычно цилиндрическим и окружают защитными экранами для уменьшения тепловых потерь за счет излучения. Для того чтобы сами экраны не воспринимали индукционной энергии, их делают разрезными. Для улучшения условий передачи энергии от индукционной катушки к тиглю между ними помещают кольцеобразный. проводник, служащий концентратором энергии . [c.62]

    Одним из важных методов повышения качества-клеевых соединений и ускорения процессов склеивания является индукционный нагрев. Нагревание склеиваемых детале

Индукционный электромеханический генератор переменного тока

«Физика — 11 класс»

Электрическую энергию можно передавать по проводам на огромные расстояния со сравнительно малыми потерями.
С помощью простых устройств электрическую энергию легко превратить в другие формы энергии: механическую, внутреннюю (нагревание тел), энергию света и т. д.
Переменный ток в отличие от постоянного имеет то преимущество, что напряжение и силу тока можно преобразовывать почти без потерь энергии.
Такие преобразования необходимы при передаче электроэнергии на большие расстояния и во многих электро- и радиотехнических устройствах.

Электрический ток вырабатывается в генераторах — устройствах, преобразующих энергию того или иного вида в электрическую энергию.
К генераторам относятся гальванические элементы (дают большой ток, но продолжительность их действия невелика), электростатические машины (создают высокую разность потенциалов, но не способны создать большую силу тока), термобатареи, солнечные батареи и т. п.

Электромеханические индукционные генераторы переменного тока

В этих генераторах механическая энергия превращается в электрическую.
Их действие основано на явлении электромагнитной индукции.
Электроммеханические генераторы имеют простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

Такой генератор состоит из:
электромагнита или постоянного магнита, создающего магнитное поле, и обмотки, в которой индуцируется переменная ЭДС (вращающаяся рамка).
Так как ЭДС, наводимые в каждом из витков, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу ее витков.
Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, изготовленных из электротехнической стали.
Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого.
Один из сердечников (обычно внутренний) вместе с обмоткой вращают вокруг горизонтальной или вертикальной оси.
Поэтому он называется ротором.
Неподвижный сердечник с обмоткой называют статором.
Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.

В изображенной модели генератора вращают проволочную рамку, которая является ротором (но без железного сердечника).
Магнитное поле создает неподвижный постоянный магнит.
Хотя, можно и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, являющийся ротором, а обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными.

Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов.
Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.
Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.
Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь.
Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту.
Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Производство, передача и использование электрической энергии. Физика, учебник для 11 класса — Класс!ная физика

Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

,

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ?, который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

.

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

ИНДУКЦИОННЫЙ ГЕНЕРАТОР — это преобразователь механической энергии в электрическую. Нужен электромеханический индукционный генератор? Росиндуктор — генератор от профессионалов с нашего склада. Индукционные генераторы работают при возникновении переменного магнитного поля в катушке. Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю.

Принцип действия индукционного генератора

Принцип действия индукционного генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле, или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле. Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нем индуктируется синусоидальная электродвижущая сила.

Индукционный генератор переменного тока

Это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока, например, за счет вращения проволочной катушки в магнитном поле, или, наоборот, за счет вращения магнита. До тех пор, пока силовые линии магнитного поля пересекают проводящую катушку, в ней индуцируется электрический ток. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Устройство индукционного генератора

По конструкции выделяют генераторы:

  • с неподвижными магнитными полюсами и вращающимся якорем,
  • с вращающимися магнитными полюсами и неподвижным статором.

Генераторы с неподвижными магнитными полюсами используются чаще, поскольку при неподвижной статорной обмотке нет необходимости снимать с помощью скользящих контактов (щеток) и контактных колец с ротора большой ток высокого напряжения. Статор (неподвижная часть) собирается из отдельных железных листов, изолированных друг от друга, а на внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора. Ротор (подвижная часть) обычно изготавливают из сплошного железа, а полюсные наконечники магнитных полюсов ротора собирают из листового железа. Для создания максимально возможной магнитной индукции при вращении между статором и полюсными наконечниками ротора желателен минимальный зазор, а геометрическую форму полюсных наконечников подбирают такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному. На сердечники полюсов садят катушки возбуждения, питаемые постоянным током, который подводится с помощью щеток к контактным кольцам, расположенным на валу генератора.

Электромеханический индукционный генератор

Магнитное поле в электромеханическом генераторе создается с помощью постоянного или электромагнита, переменная электродвижущая сила индуцируется в обмотке. В промышленных генераторах поле создается вращающимся магнитом, обмотки остаются неподвижными.

Генератор индукционного тока

Генераторы индукционного тока имеют широкую область применения: чаще всего их используют в местах, в которых требуется непрерывная подача электроэнергии, таких как медицинские учреждения, морозильные склады и т.п. также такие генераторы могут быть востребованы на строительных площадках и для электрификации загородных домов.

Генератор индукционного нагрева

Индукционный нагрев — это нагревание электропроводящих материалов электрическими токами, которые индуцируются переменным магнитным полем. Генераторы индукционного нагрева применяются для:

  • нагрева заготовок из магнитных материалов, в том числе для гибки и термообработки деталей,
  • термической обработки мелких и хрупких деталей,
  • поверхностной закалки изделий,
  • плавки, сварки и пайки металлов,
  • обеззараживания медицинского инструмента.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.