Site Loader

Содержание

Логические элементы — Википедия. Что такое Логические элементы

Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

Всего возможно  x(xn)∗m{\displaystyle \ x^{(x^{n})*m}} логических функций и соответствующих им логических элементов, где  x{\displaystyle \ x} — основание системы счисления,  n{\displaystyle \ n} — число входов (аргументов),  m{\displaystyle \ m} — число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

Всего возможны 2(22)∗1=24=16{\displaystyle 2^{(2^{2})*1}=2^{4}=16} двоичных двухвходовых логических элементов и 2(23)∗1=28=256{\displaystyle 2^{(2^{3})*1}=2^{8}=256} двоичных трёхвходовых логических элементов (Булева функция).

Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элементов и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).

Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.

Из 2(21)=22=4{\displaystyle 2^{(2^{1})}=2^{2}=4} возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания и повторения, причём, операция отрицания имеет большую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.

Отрицание, НЕ

2^{(2^{1})}=2^{2}=4 Инвертор, НЕ (IEC) 2^{(2^{1})}=2^{2}=4 Инвертор, НЕ (ANSI)
A{\displaystyle A}¬A{\displaystyle A}
01
10

Мнемоническое правило для отрицания звучит так: На выходе будет:

Повторение

A
A{\displaystyle A}A{\displaystyle A}
00
11

Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками.

Из 2(22)=24=16{\displaystyle 2^{(2^{2})}=2^{4}=16} возможных бинарных логических операций с двумя знаками c унарным выходом интерес для реализации представляют 10 операций, приведённых ниже.

Конъюнкция (логическое умножение). Операция И

2^{(2^{2})}=2^{4}=16 2^{(2^{2})}=2^{4}=16
A{\displaystyle A}B{\displaystyle B}A∧B{\displaystyle A\land B}
000
010
100
111

Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. Мнемоническое правило для конъюнкции с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «1»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «0»

Словесно эту операцию можно выразить следующим выражением: «Истина на выходе может быть при истине на входе 1 И истине на входе 2».

Дизъюнкция (логическое сложение). Операция ИЛИ

A\land B A\land B
A{\displaystyle A}B{\displaystyle B}A∨B{\displaystyle A\lor B}
000
011
101
111

Мнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «1»,
  • «0» тогда и только тогда, когда на всех входах действуют «0»

Инверсия функции конъюнкции. Операция И-НЕ (штрих Шеффера)

{\displaystyle A\lor B} {\displaystyle A\lor B}
A{\displaystyle A}B{\displaystyle B}A|B{\displaystyle A|B}
001
011
101
110

Мнемоническое правило для И-НЕ с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «0»,
  • «0» тогда и только тогда, когда на всех входах действуют «1»

Инверсия функции дизъюнкции. Операция ИЛИ-НЕ (стрелка Пирса)

В англоязычной литературе NOR.

A
A
A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}↓B{\displaystyle B}
001
010
100
110

Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «0»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «1»

Эквивалентность (равнозначность), ИСКЛЮЧАЮЩЕЕ_ИЛИ-НЕ

B ИСКЛ-ИЛИ-НЕ (IEC) B ИСКЛ-ИЛИ-НЕ (ANSI)
A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}↔B{\displaystyle B}
001
010
100
11
1

Мнемоническое правило эквивалентности с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на входе действует чётное количество,
  • «0» тогда и только тогда, когда на входе действует нечётное количество

Словесная запись: «истина на выходе при истине на входе 1 и входе 2 или при лжи на входе 1 и входе 2».

Сложение (сумма) по модулю 2 (Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

B B

В англоязычной литературе XOR.

A{\displaystyle A}B{\displaystyle B}A⊕B{\displaystyle A\oplus B}
000
011
101
110

Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на входе действует нечётное количество ,
  • «0» тогда и только тогда, когда на входе действует чётное количество

Словесное описание: «истина на выходе — только при истине на входе 1, либо только при истине на входе 2».

Импликация от A к B (прямая импликация, инверсия декремента, A<=B)

A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}→B{\displaystyle B}
001
011
100
111

Мнемоническое правило для инверсии декремента звучит так: На выходе будет:

  • «0» тогда и только тогда, когда на «B» меньше «А»,
  • «1» тогда и только тогда, когда на «B» больше либо равно «А»

Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)

A{\displaystyle A}B{\displaystyle B}B{\displaystyle B}→A{\displaystyle A}
001
010
101
111

Мнемоническое правило для инверсии инкремента звучит так: На выходе будет:

  • «0» тогда и только тогда, когда на «B» больше «А»,
  • «1» тогда и только тогда, когда на «B» меньше либо равно «А»

Декремент. Запрет импликации по B. Инверсия импликации от A к B

A{\displaystyle A}B{\displaystyle B}f(A,B){\displaystyle f(A,B)}
000
010
10
1
110

Мнемоническое правило для инверсии импликации от A к B звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на «A» больше «B»,
  • «0» тогда и только тогда, когда на «A» меньше либо равно «B»

Инкремент. Запрет импликации по A. Инверсия импликации от B к A

A{\displaystyle A}B{\displaystyle B}f(A,B){\displaystyle f(A,B)}
000
011
100
110

Мнемоническое правило для инверсии импликации от B к A звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на «B» больше «A»,
  • «0» тогда и только тогда, когда на «B» меньше либо равно «A»

Примечание 1. Элементы импликаций не имеют промышленных аналогов для функций с количеством входов, не равным 2.
Примечание 2. Элементы импликаций не имеют промышленных аналогов.

Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется функционально полным логическим базисом. Таких базисов 4:

  • И, НЕ (2 элемента)
  • ИЛИ, НЕ (2 элемента)
  • И-НЕ (1 элемент)
  • ИЛИ-НЕ (1 элемент).

Для преобразования логических функций в один из названых базисов необходимо применять Закон (правило) де-Моргана.

Физические реализации

Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:

  • механические,
  • гидравлические,
  • пневматические,
  • электромагнитные,
  • электромеханические,
  • электронные,
  • оптические.

Физические реализации одной и той же логической функции, а также обозначения для истины и лжи, в разных системах электронных и неэлектронных элементов отличаются друг от друга.

Классификация электронных транзисторных физических реализаций логических элементов

Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

  • РТЛ (резисторно-транзисторная логика)
  • ДТЛ (диодно-транзисторная логика)
  • ТТЛ (транзисторно-транзисторная логика)
f(A,B) Упрощённая схема двухвходового элемента И-НЕ ТТЛ .

Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используется в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включённым в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включённым по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160—200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.

Инвертор

Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

Применение логических элементов

Логические элементы входят в состав микросхем, например ТТЛ элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.

Комбинационные логические устройства

Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:

Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.

Последовательностные цифровые устройства

Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

См. также

Примечания

Литература

Ссылки

Логические элементы — Википедия

Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

Всего возможно  x(xn)∗m{\displaystyle \ x^{(x^{n})*m}} логических функций и соответствующих им логических элементов, где  x{\displaystyle \ x} — основание системы счисления,  n{\displaystyle \ n} — число входов (аргументов),  m{\displaystyle \ m} — число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

Всего возможны 2(22)∗1=24=16{\displaystyle 2^{(2^{2})*1}=2^{4}=16} двоичных двухвходовых логических элементов и 2(23)∗1=28=256{\displaystyle 2^{(2^{3})*1}=2^{8}=256} двоичных трёхвходовых логических элементов (Булева функция).

Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элементов и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).

Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.

Из 2(21)=22=4{\displaystyle 2^{(2^{1})}=2^{2}=4} возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания и повторения, причём, операция отрицания имеет большую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.

Отрицание, НЕ

Инвертор, НЕ (IEC) Инвертор, НЕ (ANSI)
A{\displaystyle A}¬A{\displaystyle A}
01
10

Мнемоническое правило для отрицания звучит так: На выходе будет:

Повторение

A{\displaystyle A}A{\displaystyle A}
00
11

Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками.

Из 2(22)=24=16{\displaystyle 2^{(2^{2})}=2^{4}=16} возможных бинарных логических операций с двумя знаками c унарным выходом интерес для реализации представляют 10 операций, приведённых ниже.

Конъюнкция (логическое умножение). Операция И

A{\displaystyle A}B{\displaystyle B}A∧B{\displaystyle A\land B}
000
010
100
111

Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. Мнемоническое правило для конъюнкции с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «1»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «0»

Словесно эту операцию можно выразить следующим выражением: «Истина на выходе может быть при истине на входе 1 И истине на входе 2».

Дизъюнкция (логическое сложение). Операция ИЛИ

A{\displaystyle A}B{\displaystyle B}A∨B{\displaystyle A\lor B}
000
011
101
111

Мнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «1»,
  • «0» тогда и только тогда, когда на всех входах действуют «0»

Инверсия функции конъюнкции. Операция И-НЕ (штрих Шеффера)

A{\displaystyle A}B{\displaystyle B}A|B{\displaystyle A|B}
001
011
101
110

Мнемоническое правило для И-НЕ с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда хотя бы на одном входе действует «0»,
  • «0» тогда и только тогда, когда на всех входах действуют «1»

Инверсия функции дизъюнкции. Операция ИЛИ-НЕ (стрелка Пирса)

В англоязычной литературе NOR.

A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}↓B{\displaystyle B}
001
010
100
110

Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на всех входах действуют «0»,
  • «0» тогда и только тогда, когда хотя бы на одном входе действует «1»

Эквивалентность (равнозначность), ИСКЛЮЧАЮЩЕЕ_ИЛИ-НЕ

ИСКЛ-ИЛИ-НЕ (IEC) ИСКЛ-ИЛИ-НЕ (ANSI)
A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}↔B{\displaystyle B}
001
010
100
111

Мнемоническое правило эквивалентности с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на входе действует чётное количество,
  • «0» тогда и только тогда, когда на входе действует нечётное количество

Словесная запись: «истина на выходе при истине на входе 1 и входе 2 или при лжи на входе 1 и входе 2».

Сложение (сумма) по модулю 2 (Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

В англоязычной литературе XOR.

A{\displaystyle A}B{\displaystyle B}A⊕B{\displaystyle A\oplus B}
000
011
101
110

Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на входе действует нечётное количество ,
  • «0» тогда и только тогда, когда на входе действует чётное количество

Словесное описание: «истина на выходе — только при истине на входе 1, либо только при истине на входе 2».

Импликация от A к B (прямая импликация, инверсия декремента, A<=B)

A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}→B{\displaystyle B}
001
011
100
111

Мнемоническое правило для инверсии декремента звучит так: На выходе будет:

  • «0» тогда и только тогда, когда на «B» меньше «А»,
  • «1» тогда и только тогда, когда на «B» больше либо равно «А»

Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)

A{\displaystyle A}B{\displaystyle B}B{\displaystyle B}→A{\displaystyle A}
001
010
101
111

Мнемоническое правило для инверсии инкремента звучит так: На выходе будет:

  • «0» тогда и только тогда, когда на «B» больше «А»,
  • «1» тогда и только тогда, когда на «B» меньше либо равно «А»

Декремент. Запрет импликации по B. Инверсия импликации от A к B

A{\displaystyle A}B{\displaystyle B}f(A,B){\displaystyle f(A,B)}
000
010
101
110

Мнемоническое правило для инверсии импликации от A к B звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на «A» больше «B»,
  • «0» тогда и только тогда, когда на «A» меньше либо равно «B»

Инкремент. Запрет импликации по A. Инверсия импликации от B к A

A{\displaystyle A}B{\displaystyle B}f(A,B){\displaystyle f(A,B)}
000
011
100
110

Мнемоническое правило для инверсии импликации от B к A звучит так: На выходе будет:

  • «1» тогда и только тогда, когда на «B» больше «A»,
  • «0» тогда и только тогда, когда на «B» меньше либо равно «A»

Примечание 1. Элементы импликаций не имеют промышленных аналогов для функций с количеством входов, не равным 2.
Примечание 2. Элементы импликаций не имеют промышленных аналогов.

Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется функционально полным логическим базисом. Таких базисов 4:

  • И, НЕ (2 элемента)
  • ИЛИ, НЕ (2 элемента)
  • И-НЕ (1 элемент)
  • ИЛИ-НЕ (1 элемент).

Для преобразования логических функций в один из названых базисов необходимо применять Закон (правило) де-Моргана.

Физические реализации

Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:

  • механические,
  • гидравлические,
  • пневматические,
  • электромагнитные,
  • электромеханические,
  • электронные,
  • оптические.

Физические реализации одной и той же логической функции, а также обозначения для истины и лжи, в разных системах электронных и неэлектронных элементов отличаются друг от друга.

Классификация электронных транзисторных физических реализаций логических элементов

Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

  • РТЛ (резисторно-транзисторная логика)
  • ДТЛ (диодно-транзисторная логика)
  • ТТЛ (транзисторно-транзисторная логика)
Упрощённая схема двухвходового элемента И-НЕ ТТЛ .

Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используется в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включённым в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включённым по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160—200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.

Инвертор

Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

Применение логических элементов

Логические элементы входят в состав микросхем, например ТТЛ элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.

Комбинационные логические устройства

Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:

Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.

Последовательностные цифровые устройства

Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

См. также

Примечания

Литература

Ссылки

Логические элементы — Вики

Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (в частности, на диодах или транзисторах), пневматическими, гидравлическими, оптическими и другими.

С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам: вначале — на электронных лампах, позже — на транзисторах. После доказательства в 1946 году теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

Всего возможно x(xn)∗m{\displaystyle x^{\left(x^{n}\right)*m}} логических функций и соответствующих им логических элементов, где x{\displaystyle x} — основание системы счисления, n{\displaystyle n} — число входов (аргументов), m{\displaystyle m} — число выходов; таким образом, количество теоретически возможных логических элементов бесконечно. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

Всего возможны 2(22)∗1=24=16{\displaystyle 2^{\left(2^{2}\right)*1}=2^{4}=16} двухвходовых двоичных логических элементов и 2(23)∗1=28=256{\displaystyle 2^{\left(2^{3}\right)*1}=2^{8}=256} трёхвходовых двоичных логических элементов (Булева функция). Аналогично, для троичной логики возможны 19 683 двухвходовых и 7 625 597 484 987 трёхвходовых логических элементов.

Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.

Унарные операции

Из 2(21)=22=4{\displaystyle 2^{\left(2^{1}\right)}=2^{2}=4} возможных уна

логический элемент и-или-не — с английского на русский

  • ЛОГИЧЕСКИЙ ЭЛЕМЕНТ — ЛОГИЧЕСКИЙ ЭЛЕМЕНТ, в ЭЛЕКТРОНИКЕ и СТРУЙНОЙ АВТОМАТИКЕ цепь, имеющая два или несколько входов, но один выход, который бывает под напряжением только при определенных условиях на входе. Логические элементы чаще всего используются в ЛОГИЧЕСКИХ… …   Научно-технический энциклопедический словарь

  • логический элемент И-НЕ-ИЛИ — loginis IR NE ARBA elementas statusas T sritis automatika atitikmenys: angl. AND NOR gate vok. logisches UND NOR Gatter, n rus. логический элемент И НЕ ИЛИ, m pranc. élément ET OU NON, m; porte ET OU NON, f …   Automatikos terminų žodynas

  • логический элемент ИЛИ-НЕ — loginis ARBA NE elementas statusas T sritis automatika atitikmenys: angl. NOR gate vok. logisches NOR Gatter, n rus. логический элемент ИЛИ НЕ, m pranc. élément OU NON, m; porte OU NON, f …   Automatikos terminų žodynas

  • логический элемент ИЛИ — loginis ARBA elementas statusas T sritis automatika atitikmenys: angl. OR element; OR gate vok. logisches ODER Gatter, n; OR Gatter, n rus. логический элемент ИЛИ, m pranc. élément OU, m; porte OU, f ryšiai: sinonimas – loginis disjunkcijos… …   Automatikos terminų žodynas

  • Логический элемент —         простейшее устройство ЭВМ, выполняющее одну определённую логическую операцию (См. Логическая операция) над входными сигналами согласно правилам алгебры логики. Для Л. э. независимо от их физической реализации приняты дискретные значения… …   Большая советская энциклопедия

  • монтажный логический элемент ИЛИ — laidinis loginis ARBA elementas statusas T sritis radioelektronika atitikmenys: angl. dot OR gate; wired OR element vok. verdrahtetes ODER Gatter, n; Wired ODER, n rus. монтажный логический элемент ИЛИ, m pranc. OU câblé, m …   Radioelektronikos terminų žodynas

  • Инвертор (логический элемент) — Битовые операции, иногда также булевы или логические операции[1] операции над битами, применяемые в программировании и цифровой технике, изучаемые в дискретной математике и математической логике. Содержание 1 Введение 1.1 …   Википедия

  • элемент ИЛИ — [Интент] (логический) элемент ИЛИ (логическая) схема ИЛИ схема логического сложения — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Параллельные тексты EN RU OR element …   Справочник технического переводчика

  • элемент или — Логический элемент, реализующий логическое сложение (дизъюнкцию) …   Политехнический терминологический толковый словарь

  • ЛОГИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ — метод воспроизведения в мышлении сложного развивающегося (развивавшегося в прошлом) объекта (органического целого, системы) в форме историч. теории. Наряду с историч. методом, воспроизводящим тот же объект в виде истории системы, Л. м. и.… …   Философская энциклопедия

  • Логический вентиль — Пример работы схемы RS триггера, построенного на базе восьми 2И НЕ логических вентилей. Логический вентиль базовый элемент цифровой схемы, выполняющий элементарную логическую операцию[1] …   Википедия

  • Логические элементы — Википедия

    Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательностями «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

    С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

    Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).

    Всего возможно  x(xn)∗m{\displaystyle \ x^{(x^{n})*m}} логических функций и соответствующих им логических элементов, где  x{\displaystyle \ x} — основание системы счисления,  n{\displaystyle \ n} — число входов (аргументов),  m{\displaystyle \ m} — число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.

    Всего возможны 2(22)∗1=24=16{\displaystyle 2^{(2^{2})*1}=2^{4}=16} двоичных двухвходовых логических элементов и 2(23)∗1=28=256{\displaystyle 2^{(2^{3})*1}=2^{8}=256} двоичных трёхвходовых логических элементов (Булева функция).

    Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элементов и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).

    Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.

    Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.

    Из 2(21)=22=4{\displaystyle 2^{(2^{1})}=2^{2}=4} возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания и повторения, причём, операция отрицания имеет большую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.

    Отрицание, НЕ

    2^{(2^{1})}=2^{2}=4 Инвертор, НЕ (IEC) 2^{(2^{1})}=2^{2}=4 Инвертор, НЕ (ANSI)
    A{\displaystyle A}¬A{\displaystyle A}
    01
    10

    Мнемоническое правило для отрицания звучит так: На выходе будет:

    Повторение

    A
    A{\displaystyle A}A{\displaystyle A}
    00
    11

    Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками.

    Из 2(22)=24=16{\displaystyle 2^{(2^{2})}=2^{4}=16} возможных бинарных логических операций с двумя знаками c унарным выходом интерес для реализации представляют 10 операций, приведённых ниже.

    Конъюнкция (логическое умножение). Операция И

    2^{(2^{2})}=2^{4}=16 2^{(2^{2})}=2^{4}=16
    A{\displaystyle A}B{\displaystyle B}A∧B{\displaystyle A\land B}
    000
    010
    100
    111

    Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. Мнемоническое правило для конъюнкции с любым количеством входов звучит так: На выходе будет:

    • «1» тогда и только тогда, когда на всех входах действуют «1»,
    • «0» тогда и только тогда, когда хотя бы на одном входе действует «0»

    Словесно эту операцию можно выразить следующим выражением: «Истина на выходе может быть при истине на входе 1 И истине на входе 2».

    Дизъюнкция (логическое сложение). Операция ИЛИ

    A\land B A\land B
    A{\displaystyle A}B{\displaystyle B}A∨B{\displaystyle A\lor B}
    000
    011
    101
    111

    Мнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:

    • «1» тогда и только тогда, когда хотя бы на одном входе действует «1»,
    • «0» тогда и только тогда, когда на всех входах действуют «0»

    Инверсия функции конъюнкции. Операция И-НЕ (штрих Шеффера)

    {\displaystyle A\lor B} {\displaystyle A\lor B}
    A{\displaystyle A}B{\displaystyle B}A|B{\displaystyle A|B}
    001
    011
    101
    110

    Мнемоническое правило для И-НЕ с любым количеством входов звучит так: На выходе будет:

    • «1» тогда и только тогда, когда хотя бы на одном входе действует «0»,
    • «0» тогда и только тогда, когда на всех входах действуют «1»

    Инверсия функции дизъюнкции. Операция ИЛИ-НЕ (стрелка Пирса)

    В англоязычной литературе NOR.

    A A
    A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}↓B{\displaystyle B}
    001
    010
    100
    110

    Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так: На выходе будет:

    • «1» тогда и только тогда, когда на всех входах действуют «0»,
    • «0» тогда и только тогда, когда хотя бы на одном входе действует «1»

    Эквивалентность (равнозначность), ИСКЛЮЧАЮЩЕЕ_ИЛИ-НЕ

    B ИСКЛ-ИЛИ-НЕ (IEC) B ИСКЛ-ИЛИ-НЕ (ANSI)
    A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}↔B{\displaystyle B}
    001
    010
    100
    111

    Мнемоническое правило эквивалентности с любым количеством входов звучит так: На выходе будет:

    • «1» тогда и только тогда, когда на входе действует чётное количество,
    • «0» тогда и только тогда, когда на входе действует нечётное количество

    Словесная запись: «истина на выходе при истине на входе 1 и входе 2 или при лжи на входе 1 и входе 2».

    Сложение (сумма) по модулю 2 (Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

    B B

    В англоязычной литературе XOR.

    A{\displaystyle A}B{\displaystyle B}A⊕B{\displaystyle A\oplus B}
    000
    011
    101
    110

    Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так: На выходе будет:

    • «1» тогда и только тогда, когда на входе действует нечётное количество ,
    • «0» тогда и только тогда, когда на входе действует чётное количество

    Словесное описание: «истина на выходе — только при истине на входе 1, либо только при истине на входе 2».

    Импликация от A к B (прямая импликация, инверсия декремента, A<=B)

    A{\displaystyle A}B{\displaystyle B}A{\displaystyle A}→B{\displaystyle B}
    001
    011
    100
    111

    Мнемоническое правило для инверсии декремента звучит так: На выходе будет:

    • «0» тогда и только тогда, когда на «B» меньше «А»,
    • «1» тогда и только тогда, когда на «B» больше либо равно «А»

    Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)

    A{\displaystyle A}B{\displaystyle B}B{\displaystyle B}→A{\displaystyle A}
    001
    010
    101
    111

    Мнемоническое правило для инверсии инкремента звучит так: На выходе будет:

    • «0» тогда и только тогда, когда на «B» больше «А»,
    • «1» тогда и только тогда, когда на «B» меньше либо равно «А»

    Декремент. Запрет импликации по B. Инверсия импликации от A к B

    A{\displaystyle A}B{\displaystyle B}f(A,B){\displaystyle f(A,B)}
    000
    010
    101
    110

    Мнемоническое правило для инверсии импликации от A к B звучит так: На выходе будет:

    • «1» тогда и только тогда, когда на «A» больше «B»,
    • «0» тогда и только тогда, когда на «A» меньше либо равно «B»

    Инкремент. Запрет импликации по A. Инверсия импликации от B к A

    A{\displaystyle A}B{\displaystyle B}f(A,B){\displaystyle f(A,B)}
    000
    011
    100
    110

    Мнемоническое правило для инверсии импликации от B к A звучит так: На выходе будет:

    • «1» тогда и только тогда, когда на «B» больше «A»,
    • «0» тогда и только тогда, когда на «B» меньше либо равно «A»

    Примечание 1. Элементы импликаций не имеют промышленных аналогов для функций с количеством входов, не равным 2.
    Примечание 2. Элементы импликаций не имеют промышленных аналогов.

    Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется функционально полным логическим базисом. Таких базисов 4:

    • И, НЕ (2 элемента)
    • ИЛИ, НЕ (2 элемента)
    • И-НЕ (1 элемент)
    • ИЛИ-НЕ (1 элемент).

    Для преобразования логических функций в один из названых базисов необходимо применять Закон (правило) де-Моргана.

    Физические реализации

    Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:

    • механические,
    • гидравлические,
    • пневматические,
    • электромагнитные,
    • электромеханические,
    • электронные,
    • оптические.

    Физические реализации одной и той же логической функции, а также обозначения для истины и лжи, в разных системах электронных и неэлектронных элементов отличаются друг от друга.

    Классификация электронных транзисторных физических реализаций логических элементов

    Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

    • РТЛ (резисторно-транзисторная логика)
    • ДТЛ (диодно-транзисторная логика)
    • ТТЛ (транзисторно-транзисторная логика)
    f(A,B) Упрощённая схема двухвходового элемента И-НЕ ТТЛ .

    Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.

    В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.

    Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используется в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включённым в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включённым по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.

    Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).

    Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160—200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.

    Инвертор

    Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).

    Применение логических элементов

    Логические элементы входят в состав микросхем, например ТТЛ элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.

    Комбинационные логические устройства

    Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:

    Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.

    Последовательностные цифровые устройства

    Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.

    См. также

    Примечания

    Литература

    Ссылки

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *