Site Loader

Содержание

Идеальный амперметр что это

Сила тока измеряется специальным прибором – амперметром, принцип действия которого основан на магнитном взаимодействии. Он включается последовательно с проводником, силу тока в котором нужно измерить.

Ясно, что при таком включении токи через проводник и амперметр будут равными. Однако, легко сообразить, что амперметр внесет искажение в процесс измерения. Напряжение на измеряемом проводнике будет меньше начального, поскольку часть напряжения будет падать на амперметре. Поэтому сила тока в нем также уменьшится. Для уменьшения этой ошибки сопротивление амперметра должно быть во много раз меньше сопротивления нагрузки. Тогда падение напряжения на амперметре будет во много раз меньше падения напряжения на нагрузке Поскольку напряжение на нагрузке не сильно изменилось от подключения амперметра, то и ток через нее почти не изменился.

Прибор, измеряющий напряжение, называется вольтметром. Он подключается параллельно к нагрузке, поскольку напряжение на нагрузке U

AB будет в точности равно напряжению на вольтметре. Однако вольтметр тоже вносит искажение в измеряемое напряжение. Ведь часть тока начинает протекать по нему, поэтому ток i в нагрузке падает, должно уменьшиться и напряжение . Чтобы сделать эту ошибку малой, необходимо уменьшить ток iv, который ответвляется в вольтметр. Для этого его сопротивление должно быть во много раз больше сопротивления нагрузки.

Идеальным амперметром называется амперметр с нулевым собственным сопротивлением. Для него UA=0. Идеальным вольтметром называется вольтметр с бесконечным собственным сопротивлением. Для него i

v=0. Ясно, что реальные приборы удовлетворяют этим условиям лишь приближенно.

ДОБАВИТЬ ШУНТ И ДОБАВОЧНОЕ СОПРОТИВЛЕНИЕ, А ТАКЖЕ РЕШЕНИЕ ЗАДАЧИ ОБ ИЗМЕРЕНИИ СОПРОТИВЛЕНИЯ И ТОЧНОСТИ ДВУХ СХЕМ

ДОБАВИТЬ РЕОСТАТ И ИСПОЛЬЗОВАНИЕ ПОТЕНЦИОМЕТРА

Распред токов в парал, напряжений в посл (тетрадь 4 стр 2)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9165 — | 7338 — или читать все.

Амперметр — для измерения силы тока.

  • Амперметры для постоянного тока
    | система магнитно-электрическая
  • Амперметры для переменного тока | система электро-магнитная.

Часто включают последовательно; ( если подключить параллельно — напряжение

  • Идеальный амперметрсопротивление амперметра = 0
  • Реальный амперметр — сопротивление амперметра стремится к нулю.

Вольтметр — для измерения напряжения.

  • Вольтметры для постоянного тока | система магнитно-электрическая.
  • Вольтметры для переменного тока | система электро-магнитная.

Часто включают параллельно; ( если подключить последовательно — сила тока)

  • Идеальный вольтметрсопротивление амперметра = бесконечность.
  • Реальный вольтметр — сопротивление амперметра стремится к бесконечности ( очень большое).

Чтобы измерить силу тока в некоторой электрической цепи, существуют приборы, называемые амперметры. Они включаются в цепь по последовательной схеме. Внутреннее сопротивление амперметров очень мало, поэтому такое измерительное устройство не влияет на параметры электрического тока измеряемой цепи. Единицей измерения силы тока является ампер.

Шкалы приборов могут градуироваться в различных долях ампера: микроамперах, миллиамперах и т.д. Соответственно такие приборы называют микроамперметрами, миллиамперметрами и т.д. Чтобы расширить пределы измерений, амперметры включают в цепь с применением

трансформатора, либо в параллели с шунтом. В этом случае только небольшая часть тока будет протекать через амперметр, а основная часть тока пойдет через шунт.

Для крепления шунта к амперметру применяются специальные гайки. Запрещается подключать шунт к амперметру при включенном питании электрической сети. Полярность прибора при подключении также имеет большое значение. Если перепутать полярность, то стрелка прибора будет уходить в другую сторону, а цифровой амперметр, покажет отрицательную величину.

Виды амперметров

Точность показаний прибора зависит от принципа действия и вида устройства.

Существует два основных вида амперметров:

  1. Аналоговые.
  2. Цифровые.

Первый вид в свою очередь делится на следующие устройства:

  • Магнитоэлектрические.
  • Электромагнитные.
  • Электродинамические.
  • Ферродинамические.

По виду измеряемого тока амперметры делятся:

  • Для переменного тока.
  • Для постоянного тока.

Существуют и другие специализированные приборы для измерения тока, которые применяются в узконаправленных областях, и не распространены так широко, как перечисленные выше.

Конструктивные особенности и работа
Магнитоэлектрические амперметры

Принцип действия такого вида прибора основывается на взаимодействии магнитного поля магнита и подвижной катушки, находящейся в корпусе прибора.

Достоинствами такого амперметра является низкое потребление электроэнергии при функционировании, высокая чувствительность и точность измерений. Все магнитоэлектрические амперметры оснащены равномерной градуировкой шкалы измерений. Это позволяет произвести измерения с высокой точностью.

К недостаткам магнитоэлектрического амперметра относится его сложность внутренней конструкции, наличие движущейся катушки. Такой прибор не является универсальным, так как он действует только для постоянного тока.

Несмотря на недостатки, магнитоэлектрический вид прибора широко применяется в различных областях промышленности, в лабораторных условиях.

Электромагнитные

Амперметры с электромагнитным принципом работы не имеют в своем устройстве движущейся катушки, в отличие от магнитоэлектрических моделей. Устройство их значительно проще. В корпусе находится специальное устройство и один или несколько сердечников, которые установлены на оси.

Электромагнитный амперметр имеет меньшую чувствительность, по сравнению с магнитоэлектрическим прибором. А значит, точность его измерений будет ниже. Преимуществами таких приборов является универсальность работы. Это означает, что они могут измерять силу тока как в цепи постоянного, так и переменного тока. Это значительно расширяет его сферу применения.

Электродинамические

Метод работы таких приборов заключается во взаимодействии электрических полей токов, которые проходят по электромагнитным катушкам. Конструкция прибора состоит из подвижной и неподвижной катушки. Универсальная работа на любом виде тока является основным достоинством электродинамических амперметров.

Из недостатков стоит выделить большую чувствительность, так как они реагируют даже на незначительные магнитные поля, расположенные в непосредственной близости к ним. Подобные поля способны создавать для электродинамических приборов большие помехи, поэтому такие амперметры применяют только в защищенном экраном месте.

Ферродинамические

Такие приборы, обладают наибольшей эффективностью и точностью измерений. Магнитные поля, расположенные рядом с прибором, не оказывают на него заметного влияния, поэтому нет необходимости в установке дополнительных защитных экранов.

Конструкция такого амперметра включает в себя замкнутый ферримагнитный провод, а также сердечник и неподвижную катушку. Такое устройство позволяет повысить надежность работы прибора. Поэтому ферродинамические виды амперметров чаще всего используются в военной промышленности и оборонных учреждениях. К его преимуществам также можно отнести удобство и простоту пользования, точность всех измерений, по сравнению с ранее рассмотренными видами приборов.

Цифровые

Кроме рассмотренных приборов, существует цифровой вид амперметров. В настоящее время они все шире используются в различных сферах производства, а также в бытовых условиях. Такая популярность цифровых приборов связана с удобством пользования, небольшими размерами и точными измерениями. Вес прибора также очень незначительный.

Цифровые модификации используют в различных условиях, он невосприимчив к вибрациям, в отличие от механических аналоговых приборов.

Цифровые приборы, не боятся незначительных механических ударов, которые возможны от работающего рядом оборудования. Расположение в вертикальной или горизонтальной плоскости прибора не имеет влияния на его работоспособность, так же как изменение температуры и давления. Поэтому такой прибор применяют в условиях внешней среды.

Измерение переменного и постоянного тока

Все рассмотренные приборы способны измерять постоянный ток. Однако иногда требуется измерить силу переменного тока. Если у вас для этого нет отдельного амперметра, то можно собрать элементарную схему.

Существуют и специальные приборы, измеряющие переменный ток. Оптимальным выбором прибора будет мультиметр, в котором имеется возможность измерения переменного тока.

Чтобы выполнить правильное измерение, необходимо определить вид тока, то есть, переменный ток в сети, или постоянный. В противном случае измерение будет ошибочным.

Общий принцип действия амперметра

Если рассматривать классический принцип работы амперметра, то его действие заключается в следующем.

На оси кронштейна вместе с постоянным магнитом расположен стальной якорь с закрепленной на нем стрелкой. Воздействуя на якорь, постоянный магнит передает ему магнитные свойства. В этом случае позиция якоря находится вдоль силовых линий, проходящих вдоль магнита.

Такая позиция якоря определяет нулевое расположение стрелки по градуированной шкале. При протекании тока от генератора или другого источника по шине, возле нее возникает магнитный поток. Силовые линии этого потока в точке расположения якоря направлены под прямым углом к силовым линиям магнита.

Магнитный поток, образованный электрическим током, действует на якорь, который стремится повернуться на 90 градусов. В этом ему мешает магнитный поток, образованный в постоянном магните. Сила взаимодействия двух потоков зависит от направления и величины электрического тока, протекающего по шине. На эту величину и происходит отклонение стрелки прибора от нуля.

Советы по выбору

Для более точных измерений следует выбирать прибор сопротивлением до 0,5 Ом. Лучше, если зажимы контактов будут покрыты специальным антикоррозийным слоем.

Корпус должен быть качественного изготовления, без повреждений, желательно герметичного исполнения, для предотвращения проникновения влаги. Это продлит его срок службы и повысит точность показаний.

Наиболее удобный вид амперметра – это цифровой. Хотя в настоящее время более популярными являются мультиметры, в состав которых также входит функция измерения тока.

Запрещается подключение амперметра в сеть напрямую без нагрузки, во избежание выхода его из строя. При измерениях нельзя прикасаться к неизолированным токоведущим элементам прибора, так как возможен удар электрическим током. При работе с амперметром следует соблюдать осторожность и внимательность.

Сфера применения

Цифровые и аналоговые амперметры, используются в различных отраслях промышленности и народного хозяйства. Особенно широко они применяются в энергетической отрасли промышленности, радиоэлектронике, электротехнике. Также их могут использовать в строительстве, в автомобильном и другом транспорте, в научных целях.

В бытовых условиях прибор также часто используется обычными людьми. Амперметр полезно иметь с собой в автомобиле, на случай выявления неисправностей электрооборудования в пути.

Аналоговые приборы до сих пор также применяются в различных областях жизни. Их преимуществом является то, что для работы не требуется подключение питания, так как они пользуются электричеством от измеряемой цепи. Также их удобство состоит в отображении данных. Многим людям привычнее смотреть за стрелкой. Некоторые устройства оснащены регулировочным винтом, который позволяет точно настроить стрелку на нулевое значение. Инертность работы прибора отрицательно влияет на его применяемость, так как для стрелки необходимо время для нахождения устойчивой позиции.

Идеальный амперметр в цепи. Сопротивление вольтметра

Идеальный вольтметр, включенный в электрическую цепь, показывает напряжение, равное разности потенциалов между точками подключения прибора.  

Идеальный вольтметр, не оказывающий возмущающего вотдейгтгшя на измеряемую цепь, должен обладать бесконечно большим сопротивлением или, скажем иначе, собственное потребление мощности (от измеряемого объекта) вольтметром должно быть нулевым.  

Можете ли вы сказать, почему идеальный вольтметр должен иметь бесконечное сопротивление, а идеальный амперметр нулевое сопротивление.  

Ламповый вольтметр удовлетворяет всем требованиям, предъявляемым к идеальному вольтметру. Он измеряет напряжения, совершенно не потребляя тока. При этом становятся ненужными: декадные реостаты, измерительные мостики, нормальные элементы, капиллярный электрометр. Наряду с этим измерение, происходящее при действительном отсутствии тока (в противоположность всем другим методам, при которых потребляется некоторое количество тока до окончательной компенсации), дает широкие возможности для усовершенствования электродов. Например, можно спокойно поворачивать краны электродов, если они не смазаны жиром, не вредя измерению. При помощи лампового вольтметра можно безупречно измерить даже рн воды для определения электропроводности — В случаях, когда можно опасаться отравления платинового электрода, ламповый вольтметр часто дает хорошие результаты, благодаря быстроте работы (секунды), в то время как при старых методах никакие измерения здесь не были возможны.  

Требуется определить, как изменятся (увеличатся или уменьшатся) показания всех идеальных вольтметров в цепи, показанной на рис. 77, если, например, уменьшить сопротивление R2 переменного резистора.  

Теперь начнем регулировать величины источников тока до тех: пор, пока напряжения, отмечаемые идеальными вольтметрами, не станут равными нулю. Легко заметить, что это должны быть токи, возникающие на соответствующих зажимах при одновременном коротком замыкании последних. Токи источников, подключен-ных к зажимам, должны скомпенсировать влияние источников, находящихся внутри ящика, в части их влияния на условия на зажимах.  

Поэтому вольтметр должен иметь большое сопротивление по сравнению с сопротивлением участка цепи, к которому он подключается. Идеальным вольтметром является такой, у которого сопротивление стремится к бесконечности.  

Составление неопределенной матрицы полезно, потому что упрощает получение уравнения полного передающего сопротивления от любой пары узлов цепи к любой другой паре узлов этой же цепи. Предположим, что источник тока присоединен между двумя узлами т и k, так что ток I, входит в г-й узел и выходит из fe-ro узла. Предположим также, что идеальный вольтметр (имеющий бесконечно большое входное сопротивление) присоединен между узлами j и m и таким образом измеряет разность потенциалов между этими узлами.  

Страницы:      1

Первый учёный, который сконструировал и создал достаточно мощную электрическую батарею постоянного тока, был известный итальянский физик Александро Вольта. Эта батарея получила название «вольтов столб» и состояла из нескольких тысяч кружочков из цинка и меди, которые разделялись пропитанными в соляной кислоте матерчатыми прокладками. Он использовал батареи с большим или меньшим количеством элементов. Маленькие батареи давали слабую искру, большие батареи сильную и яркую.

Для измерения напряжения или разности потенциалов используется прибор, который называется вольтметр. На снимке изображён щитовой стрелочный вольтметр , который может монтироваться на щите управления, какого либо устройства. Он используется только для измерения конкретной величины напряжения на одном из узлов данного устройства. Тот вольтметр, что изображён на фото, применяется для измерения постоянного напряжения до 15 вольт. Взгляните на его шкалу. Она ограничена 15 вольтами.

На принципиальных схемах условное изображение вольтметра может выглядеть вот так.


Из рисунка видно, что условное изображение вольтметра на схеме может быть разным. Если в кружке обозначена буква «V », то это означает, что данный вольтметр рассчитан на измерения величин напряжения, составляющих единицы – сотни вольт. Изображения с обозначением «mV » и «μV » указываются в тех случаях, если вольтметр рассчитан на измерение долей вольта — милливольт (1mV = 0,001V) и микровольт (1μV = 0,000001 V). Иногда рядом с изображением вольтметра также указывается максимальная величина напряжения, которую способен измерить вольтметр. Например, вот так – 100 mV. Обычно эта величина указывается для встраиваемых стрелочных вольтметров. Превышать это напряжение не стоит, так как можно испортить прибор.

Кроме этого, рядом с выводами вольтметра могут быть проставлены знаки полярности подключения его в схему «+ » и «». Это касается тех вольтметров, которые применяются для измерения постоянного напряжения.

Следует отметить, что щитовые вольтметры это частный случай использования этих приборов. В лабораториях, на радиозаводах, в конструкторских бюро и радиолюбительской практике, вольтметры используются чаще всего в составе мультиметров , которые раньше назывались авометры, то есть ампер-вольт-омметр .

В настоящее время с развитием цифровой электроники стрелочные приборы отходят в прошлое и им на смену приходят цифровые мультиметры с удобной цифровой шкалой, автоматическим переключением предела измерения, малой погрешностью и высоким классом точности.

В радиолюбительской практике на смену «цешкам» и «авошкам» пришли компактные и удобные цифровые приборы. Работать с ними не сложно, но определённые меры безопасности применять необходимо.

Как измерить напряжение мультиметром?

Следует твёрдо помнить, что вольтметр, в отличие от амперметра подключается параллельно нагрузке.

Например, вам надо замерить напряжение на резисторе, который является частью электронной схемы. В таком случае переключаем мультиметр в режим измерения напряжения (постоянного или переменного – смотря какой ток течёт в цепи), устанавливаем наивысший предел измерения. По мере накопления опыта предел измерения вы научитесь выставлять более осознанно, порой пренебрегая данным правилом. Далее подключаем щупы мультиметра параллельно резистору. Вот как это можно изобразить в виде схемы.

Вот так плавно мы переходим к определению так называемого шунта. Как видим из схемы, вольтметр, который измеряет напряжение на резисторе R1, создаёт параллельный путь току, который протекает по электрической цепи. При этом часть тока (Iшунт) ответвляется и течёт через измерительный прибор – вольтметр PV1. Далее опять возвращается в цепь.

В данном случае вольтметр PV1 шунтирует резистор R1 – создаёт обходной путь для тока. Для электрической цепи вольтметр – это шунт – обходной путь для тока. По закону ома, напряжение на участке цепи зависит от протекающего по этой цепи тока. Но мы ведь ответвили часть тока в цепи и провели эту часть через вольтметр. Поскольку сопротивление резистора неизменно, а ток через резистор уменьшился (I R1), то и напряжение на нём изменилось. Получается, что вольтметром мы измеряем напряжение на резисторе, которое образовалось после того, как мы подключили к схеме измерительный прибор. Из-за этого образуется погрешность измерения .

Как же уменьшить воздействие измерительного прибора на электрическую цепь при проведении измерений? Необходимо увеличить, так называемое «входное сопротивление » измерительного прибора – вольтметра. Чем оно выше, тем меньшая часть тока шунтируется измерительным прибором и более точные данные мы получаем при измерениях.

Современные цифровые мультиметры обладают достаточно большим входным сопротивлением и практически не влияют на работу схемы при проведении измерений. При этом точность измерений, естественно, достаточно высока.

Поэтому в лабораторных условиях использовались специальные ламповые вольтметры, которые обладали большим входным сопротивлением и некоторые из них имели класс точности в доли процента.

Перейдём к практике…

Прежде всего, не забывайте, что есть переменное (англ. сокращение — VAC ) и постоянное напряжение (VDC ). Профессиональные приборы сами определяют, с каким напряжением вы работаете, и сами переключаются в нужный режим и на требуемый поддиапазон измерений. При работе с малогабаритными приборами все переключения нужно делать вручную.

На снимке показана часть панели управления популярного и недорогого тестера DT-830B.

Хорошо видно, что пределы измерения переменного напряжения ограничены величинами: 750 вольт (750 V~ ) и 200 вольт (200 V~ ). Понятно, что к силовым промышленным сетям с этим прибором не стоит и близко подходить. Шкала постоянного и

5. Воздействие амперметра на измеряемую цепь | 7. Измерительные приборы | Часть1

5. Воздействие амперметра на измеряемую цепь

Воздействие амперметра на измеряемую цепь

Амперметр, как впрочем и вольтметр, оказывает определенное влияние на тестируемую цепь, к которой он подключается в процессе измерения. Когда мы с вами рассматривали воздействие вольтметра на измеряемую цепь , то пришли к выводу, что никакого влияния на тестируемую цепь не оказывает только идеальный вольтметр. Это утверждение справедливо и для идеального амперметра. Отличие идеального амперметра от идеального вольтметра состоит в том, что первый имеет нулевое внутреннее сопротивление, которое не позволяет ему «забирать» напряжение у тестируемой схемы, а второй, наоборот, имеет бесконечное сопротивление, которое не позволяет ему «забирать» ток у схемы при проведении измерения.

Ниже представлен яркий пример влияния амперметра (не идеального, которого в принципе не существует) на тестируемую цепь:

 

 

Пока амперметр не подключен к схеме, ток через резистор величиной 3 Ома составляет 666,7 миллиампер, а ток через резистор величиной 1,5 Ом составляет 1,333 ампер. Если к одной из ветвей  данной схемы подключить амперметр с внутренним сопротивлением 0,5 Ом, то он серьезно повлияет на измеряемый ток соответствующей ветви:

 

 

При подключении амперметра к левой ветви схемы, ее эквивалентное последовательное сопротивление будет равно 3,5 Ома (R1+Rвнутр), а это значит, что прибор вам покажет 571,43 мА вместо 666,7 мА. Подключение амперметра к правой ветви схемы еще больше повлияет на измеряемый ток:

 

 

Теперь, из-за увеличения эквивалентного сопротивления правой ветви схемы, вызванного подключением амперметра, ток в ней составит 1 А вместо 1,333 А.

Использование стандартного амперметра, который подключается последовательно измеряемой цепи, не всегда практично, так как его входное сопротивление невозможно изменить. Более практичным для измерения силы тока будет использование шунтирующего резистора и вольтметра, потому что в этом случае мы можем варьировать сопротивлением шунта, и выбирать его настолько низким, насколько это необходимо. Если сопротивление шунта будет больше чем нужно, то оно может отрицательно воздействовать на измеряемую цепь, добавляя чрезмерное сопротивление потоку электронов.

Одним из способов уменьшения влияния амперметра на тестируемую цепь состоит в том, чтобы сделать провод этой цепи частью измерительного прибора. Любой находящийся под напряжением провод производит магнитное поле, напряженность которого находится в прямой зависимости от силы тока. На базе инструмента, измеряющего напряженность магнитного поля, можно сделать «бесконтактный» амперметр. Такой прибор позволяет измерять силу проходящего через проводник тока, не вступая в физический контакт с тестируемой цепью.

Амперметры такой конструкции называются «токовые клещи«, поскольку у них есть специальные зажимы, при помощи которых можно зафиксировать прибор на проводе схемы. Токовые клещи позволяют быстро и безопасно произвести замер силы тока, особенно на мощных промышленных сетях энергоснабжения. Такие приборы исключают ошибку при измерении, поскольку не создают доплнительного сопротивления в тестируемой цепи.

Таким образом, механизмы зажимов токовых клещей подобны механизмам электромагнитных индикаторов, с той лишь разницей, что у них нет внутренней катушки для создания магнитного поля. Более современные конструкции токовых клещей снабжаются датчиками Холла, которые позволяют точно определить напряженность магнитного поля. Некоторые приборы в своей конструкции содержат схему усилителя, которая создает небольшое напряжение, пропорциональное току в проводе между зажимами. Это напряжение подается на вольтметр, что облегчает считывание значений пользователем. Таким образом, токовые клещи могут быть аксессуаром к вольтметру, позволяющим измерять силу тока в цепи.

На фотографии ниже показан менее точный тип амперметра чем токовые клещи — электромагнитный, стрелочный индикатор:

Принцип действия этого амперметра совпадает с принципом действия токовых клещей: магнитное поле, окружающее проводник с током, отклоняет стрелку индикатора, которая показывет текущее значение тока на шкале. Обратите внимание, что на данном индикаторе есть два масштаба измерений: +/- 75 ампер и +/- 400 ампер.

 

Идеальный вольтметр — Большая Энциклопедия Нефти и Газа, статья, страница 1

Идеальный вольтметр

Cтраница 1


Идеальный вольтметр, включенный в электрическую цепь, показывает напряжение, равное разности потенциалов между точками подключения прибора.  [2]

Идеальный вольтметр, не оказывающий возмущающего вотдейгтгшя на измеряемую цепь, должен обладать бесконечно большим сопротивлением или, скажем иначе, собственное потребление мощности ( от измеряемого объекта) вольтметром должно быть нулевым.  [4]

Можете ли вы сказать, почему идеальный вольтметр должен иметь бесконечное сопротивление, а идеальный амперметр нулевое сопротивление.  [5]

Ламповый вольтметр удовлетворяет всем требованиям, предъявляемым к идеальному вольтметру. Он измеряет напряжения, совершенно не потребляя тока. При этом становятся ненужными: декадные реостаты, измерительные мостики, нормальные элементы, капиллярный электрометр. Наряду с этим измерение, происходящее при действительном отсутствии тока ( в противоположность всем другим методам, при которых потребляется некоторое количество тока до окончательной компенсации), дает широкие возможности для усовершенствования электродов. Например, можно спокойно поворачивать краны электродов, если они не смазаны жиром, не вредя измерению. При помощи лампового вольтметра можно безупречно измерить даже рн воды для определения электропроводности — В случаях, когда можно опасаться отравления платинового электрода, ламповый вольтметр часто дает хорошие результаты, благодаря быстроте работы ( секунды), в то время как при старых методах никакие измерения здесь не были возможны.  [6]

Требуется определить, как изменятся ( увеличатся или уменьшатся) показания всех идеальных вольтметров в цепи, показанной на рис. 77, если, например, уменьшить сопротивление R2 переменного резистора.  [8]

Теперь начнем регулировать величины источников тока до тех: пор, пока напряжения, отмечаемые идеальными вольтметрами, не станут равными нулю. Легко заметить, что это должны быть токи, возникающие на соответствующих зажимах при одновременном коротком замыкании последних. Токи источников, подключен-ных к зажимам, должны скомпенсировать влияние источников, находящихся внутри ящика, в части их влияния на условия на зажимах.  [9]

Поэтому вольтметр должен иметь большое сопротивление по сравнению с сопротивлением участка цепи, к которому он подключается. Идеальным вольтметром является такой, у которого сопротивление стремится к бесконечности.  [10]

Составление неопределенной матрицы полезно, потому что упрощает получение уравнения полного передающего сопротивления от любой пары узлов цепи к любой другой паре узлов этой же цепи. Предположим, что источник тока присоединен между двумя узлами т и k, так что ток I, входит в г-й узел и выходит из fe-ro узла. Предположим также, что идеальный вольтметр ( имеющий бесконечно большое входное сопротивление) присоединен между узлами j и m и таким образом измеряет разность потенциалов между этими узлами.  [11]

Страницы:      1

можно ли из идеального Амперметра сделать идеальный вольтметр

Конечно можно — шунт в амперметре убрать. По сути все вольтметры- это амперметры — все равно ток меряют. Т. е. конструкции амперметра и вольтметра аналогичны. Основное отличие амперметра от вольтметра состоит в том, что измерительная катушка амперметра подключена к шунту, установленному в приборе или вне его, по которому протекает измеряемый ток. Измерительная цепь вольтметра включается непосредственно в место измерения напряжения.

нет, только плохой вольтметр (резистор поставить последовательно с амперметром)

Любой прибор и есть вольтметр!

У нас в России — можно. Помню, мой батя из курвиметра соорудил разрезательный ножик для домашних пирогов.

амперметр без шунта тод же вольтметр без делителя напряжения

Идеальный амперметр имеет сопротивление =0, а идеальный вольтметр наоборот, имеет бесконечно большое сопротивление. Так что не выйдет, а просто вольтметр можно.

можно конечно. если руки не из жопы….

покажи мне идеальный Амперметр — и я скажу что ты пиздабол. их не бывает

Не слушайте глупости. Разумеется нет, нельзя. У идеального амперметра сопротивление нулевое.

Полагаю что Да. У амперметра (идеального) сопротивление рамки равно нулю. Следовательно если включить с ним последовательно добавочное сопротивление (сделать вольтметр) то потерь на измерительном механизме не будет (амперметр был идеальным), следовательно вольтметр будет показывать абсолютно точно т. е. тоже будет идеальным.

3. Воздействие вольтметра на измеряемую цепь | 7. Измерительные приборы | Часть1

3. Воздействие вольтметра на измеряемую цепь

Воздействие вольтметра на измеряемую цепь

Любой измерительный прибор в некоторой степени влияет на измеряемую цепь. Это влияние аналогично воздействию манометра на давление в шинах, при измерении  которого незначительная часть воздуха высвобождается. Несмотря на то, что такое влияние неизбежно, оно может быть минимизировано грамотной конструкцией измерительного прибора.

Так как вольтметр всегда подсоединяется параллельно компоненту или группе компонентов измеряемой схемы, любой проходящий через него ток будет оказывать влияние на общий ток этой схемы, а значит и на измеряемое напряжение. Не «забирает» ток от тестируемой цепи только идеальный вольтметр, потому что он имеет бесконечное сопротивление. Однако, идеальные вольтметры существуют только на страницах учебников, в реальной жизни их нет. Давайте возьмем следующую схему делителя напряжения, и на ее примере рассмотрим влияние вольтметра на измеряемую цепь:

 

 

Пока вольтметр не подключен к данной цепи, напряжение на каждом из резисторов составляет 12 вольт (два резистора одинаковой величины делят исходное напряжение ровно пополам). Ели мы подключим вольтметр с внутренним сопротивлением 10 МОм (стандартная величина современных цифровых вольтметров) к нижнему резистору схемы, то создадим своего рода параллельное соединение двух сопротивлений:

 

 

Это действие понизит сопротивление нижнего эквивалентного резистора (параллельно соединенные сопротивления 250 и 10 МОм) до 9,615 МОм, что кардинальным образом изменит распределение напряжений в схеме. На нижнем резисторе напряжение теперь будет гораздо меньше чем прежде, а на верхнем — гораздо больше:

 

 

Делитель напряжения с сопротивлениями резисторов 250 и 9,615 МОм разделит напряжение источника питания 24В на две части — 23,1111 и 0,8889 вольт соответственно. Так как вольтметр является частью сопротивления 9,615 МОм, его индикатор покажет напряжение 0,8889 вольт.

Вольтметр не может «знать», что до его подключения к цепи напряжение на нижнем резисторе (сопротивлением 250 МОм) имело величину 12 вольт. Сам факт подключения вольтметра к схеме делает его частью этой схемы, а значит собственное сопротивление вольтметра изменяет соотношение сопротивлений делителя, влияя тем самым на измеряемое напряжение.

Если провести аналогию последнего примера с измерением давления в шинах, то то манометру для работы потребуется такое количество воздуха, что в процессе измерения он практически весь выйдет наружу. Количество воздуха, потребляемого манометром при измерении давления в шинах аналогично количеству тока, потребляемого вольтметром при измерении напряжения. Чем меньше воздуха требует манометр для своей работы, тем меньше он будет сдувать шины в процессе измерения. Чем меньше тока для свое работы требует вольтметр, тем меньшую нагрузку он оказывает на тестируемую цепь.

Такой эффект называется нагрузочным, и он в определенной степени присутствует в каждом случае использования вольтметра, заставляя его отображать напряжение меньше истинного. Выше нами был рассмотрен наихудший сценарий, в котором сопротивление вольтметра значительно ниже сопротивлений резисторов делителя. Очевидно, чем больше сопротивление вольтметра, тем меньше нагрузка на тестируемую цепь. Именно поэтому идеальный вольтметр имеет бесконечное внутреннее сопротивление.

Для вольтметров с электромеханическими индикаторами количественное влияние нагрузочного эффекта на измеряемую цепь выражается через их чувствительность, которая оценивается в «омах на вольт» (Ом/В). Это делается потому, что такие вольтметры для разных диапазонов измерения используют разные резисторы, благодаря чему их внутренне сопротивление будет изменяться в зависимости от диапазона. Цифровые вольтметры, в отличие от электромеханических, вне зависимости от диапазона измерения имеют постоянное сопротивление (но не всегда), поэтому влияние нагрузочного эффекта на измеряемую цепь для них выражается через внутреннее сопротивление, которое оценивается в Омах.

Чувствительность вольтметра  ( Ом / В) показывает величину множителя, на который нужно умножить сопротивление резистора, чтобы увеличить шкалу измерителя на 1 В. В качестве примера давайте возьмем схему вольтметра из предыдущей статьи:

 

 

Для диапазона измерения 1000 В, общее внутреннее сопротивление этого вольтметра будет равно 1 МОм (999,5 кОм + 500 Ом), что даст нам чувствительность 1000000 Ом на 1000 вольт или 1000 Ом на вольт (1кОм/В). Эта чувствительность будет постоянной для любого диапазона данного прибора:

 

 

Проницательный наблюдатель заметит, что чувствительность (Ом/В) любого индикатора определяется единственным фактором — его номинальным (предельным) током, который в нашем случае составляет 1 мА. К такому выводу можно прийти, если учесть следующее: величина «Ом/В» математически обратна величине «В/Ом», которая по закону Ома представляет собой силу тока (I = U/R). Отсюда следует, что номинальный ток индикатора, определяющий его чувствительность, не зависит диапазонов измерений, которыми оснащен вольтметр посредством добавочных резисторов. В нашем случае номинальный ток индикатора величиной 1 мА дает вольтметру чувствительность 1000 Ом/В в независимости от выбранного диапазона измерений.

Чтобы свести к минимуму нагрузку вольтметра на любую тестируемую схему, нужно минимизировать номинальный ток индикатора. Для достижения этой цели можно заменить индикатор на более чувствительный (которому требуется меньше тока для полного отклонения стрелки), но такой компромисс повлечет за собой потерю прочности, так как более чувствительный индикатор будет более хрупким.

Другой подход к решению данной проблемы заключается в использовании специальной схемы, которая увеличит подаваемый на индикатор ток, снизив при этом ток, потребляемый прибором от схемы в процессе измерения. Такая схема называется усилителем постоянного тока:

 

 

Конструкция усилителя достаточно сложна для рассмотрения на данном этапе, поэтому достаточно будет сказать, что его схема позволяет измеряемому напряжению контролировать количество тока,  поставляемого на индикатор от внутреннего источника питания (например батареи). Таким образом, потребность индикатора в токе удовлетворяется за чет внутренней батареи вольтметра,  а не за счет тестируемой цепи. Вольтметр, использующий усилитель постоянного тока, по прежнему будет нагружать схему в процессе измерения, но эта нагрузка будет в сотни или тысячи раз меньше, чем у вольтметра без усилителя. 

До появления полупроводниковых приборов, известных как полевые транзисторы, в качестве усилительных устройств этих приборов использовались электронные лампы. Такие ламповые вольтметры когда то были очень популярными инструментами для проведения измерений и тестирования схем.

 

 

В настоящее время задачу усиления тока в цифровых измерительных приборах выполняют схемы на полупроводниковых транзисторах. Несмотря на то, что такая конструкция (использование усилителя для повышения измеряемого тока) очень хорошо работает, она значительно усложняет прибор и делает непонятной его работу для начинающих радиолюбителей.

Простым и гениальным решением проблемы нагрузочного эффекта, создаваемого вольтметром, является использование потенциометрического инструмента или инструмента нулевого баланса. Этот метод не требует продвинутых электронных схем и чувствительных устройств, таких как транзисторы или электронные лампы, но он предполагает активное участие и мастерство пользователя. Принцип работы потенциометрического инструмента состоит в следующем. Берется отдельный источник питания с регулируемым напряжением и через детектор «нуля» подключается к тем точкам цепи, где нужно измерить напряжение. После этого напряжение регулируемого источника настраивается на измеряемое напряжение, равенство которых покажет детектор «нуля». В некоторых схемах, для регулировки напряжения используется прецизионный потенциометр, поэтому их и назвали потенциометрическими инструментами. Если эти два напряжения будут равны, то вольтметр в процессе измерения будет потреблять нулевой ток от тестируемой цепи, не оказывая на нее никакого влияния. Давайте рассмотрим как все это работает на примере вышеупомянутой схемы делителя напряжения:

 

 

Детектор «нуля» представляет собой чувствительное устройство, способное регистрировать наличие очень малых напряжений. Если в качестве такого детектора используется электромеханический индикатор, то он должен быть чувствительным к полярности (его стрелка должна находиться в центре шкалы, и в зависимости от полярности напряжения отклоняться в ту или иную сторону). Поскольку целью детектора является указание на состояние нулевого напряжения, разметка шкалы его индикатора не имеет особого значения. 

Самый простой детектор «нуля» можно построить на базе обычных наушников, динамики которых будут выступать в роли своеобразного индикатора. В момент подачи на наушники напряжения, поток электронов переместит диффузоры динамиков и вы услышите в них щелчок. Еще один щелчок вы услышите при отключении источника напряжения. Таким образом, детектор «нуля» можно сделать из наушников и кнопочного переключателя:

 

 

Если для этой цели использовать наушники сопротивлением 8 Ом, то их чувствительность может быть увеличена при помощи трансформатора. В основе работы трансформатора лежит принцип электромагнетизма, который преобразует уровни пульсирующих напряжений и токов. В нашем случае можно применить понижающий трансформатор, который преобразует импульсы небольшого тока (созданные путем нажатия и отжатия кнопочного переключателя) в более высокие, что обеспечит более эффективное управление диффузорами наушников. Трансформатор с соотношением сопротивлений 1000 : 8 идеально подойдет для этой цели. Помимо прочего, трансформатор накапливает энергию слаботочного сигнала в своем  магнитном поле, чтобы потом, при нажатии кнопки, выбросить ее в динамики наушников, повышая тем самым чувствительность детектора. Таким образом, использование трансформатора делает щечки громче, что позволяет обнаружить слабые сигналы:

 

 

Ниже приведена схема, в которой в качестве детектора «нуля» выступают наушники, трансформатор и кнопочный переключатель:

 

 

Детектор «нуля» работает подобно лабораторным весам, он показывает только равенство двух напряжений (его отсутствие между точками 1 и 2), и ничего больше. Лабораторные весы показывают равенство между неизвестной массой и кучей стандартных (калиброванных) масс:

 

 

Детектор покажет равенство напряжений между точками 1 и 2 в том случае, если напряжение регулируемого источника питания будет равно напряжению на резисторе R2 (смотри второй закон Кирхгофа ). 

Для работы с потенциометрическим инструментом необходимо таким образом настроить регулируемый источник питания, чтобы индикатор детектора «нуля» показал нулевое значение (при использовании наушников нужно добиться прекращения щелчков путем многократных нажатий на кнопочный переключатель). Только после этого можно зафиксировать значение измеренного вольтметром напряжения:

 

 

При использовании потенциометрического инструмента вольтметру не нужен высокочувствительный индикатор, потому что он измеряет напряжение не в схеме, а на регулируемом источнике питания, напряжение которого приравнивается к измеряемому с помощью детектора «нуля». Весь необходимый для работы вольтметра ток поставляется все тем же регулируемым источником питания. Так как напряжение на детекторе «нуля» в этом случае будет нулевое, то и ток между точками 1 и 2 будет равен нулю, а это значит, что нагрузки на схему в процессе измерения практически не будет. 

Еще раз повторимся, что этот метод, выполненный надлежащим образом, создаст почти нулевую нагрузку на измеряемую цепь. В идеале он вообще не должен нагружать схему, но для достижения такого результата на детекторе «нуля» должно быть абсолютно нулевое напряжение, которое потребует бесконечно чувствительного индикатора и идеального баланса напряжений. Несмотря на практическую невозможность достижения абсолютно нулевой нагрузки на тестируемую схему, потенциометрические инструменты являются отличным решением для измерения напряжений в высокоомных цепях. В отличие от электронных усилителей тока, которые решают эту проблему с помощью передовых технологий, потенциометрический метод достигает гипотетически идеального результата базируясь только на втором законе Кирхгофа .  

Какое сопротивление вольтметра по сравнению с сопротивлением амперметра? Почему они так сильно различаются?

Идеальный вольтметр имеет бесконечно большое сопротивление, чтоб через него протекал бесконечно малый ток, чтоб весь ток от источика шел на нагрузку. И чтоб на нем не терялась мощность. Р=U*I. U у нас известно, так как вольтметр включается в цепь параллельно и равно напряжению на нагрузке (сопротивлении) . То есть, чтоб потребляемая мощность была равна нулю — нужно умеьшать ток до нуля или, что тоже самое, увеличивать сопротивление до бесконечности. С амперметром наоборот. Он включается последовательно с нагрузкой (сопротивлением) , то есть, сила тока конечна (равна току на нагрузке) и, чтоб снизить мощность, потребляемую до нуля, нужно уменьшать напряжение, а следовательно, при известом токе, уменьшать сопротивление до нуля. А в практике, сопротивление вольтметра должно быть, просто, много больше сопротивления остальной цепи, а сопротивление амперметра много меньше сопротивления остальой цепи для того, чтоб они не оказывали икакого влияния на параметры этой цепи. Будут вопросы, пиши в личку.. . А то, я чувствую, совсем запутал тебя…

вольтметр включается параллельно участку цепи и не должен вносить искажений в распрделении токов на участке, поэтому о сопротивление должно быть высоким. А амперметр включается последовательно в цепь, поэтому его сопротивление должно быть малым.

Электрическое сопротивление вольтметра во много раз больше сопротивления амперметра, так как амперметр это такой же по конструкции вольтметр, только включенный параллельно встроенному в него шунту с очень малым сопротивлением. Амперметр измеряет падение напряжения на своем шунте по шкале, градуированной в амперах

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *