Site Loader

Содержание

A, B, C и D

Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Заключение

В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.

Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях

← Новые распределительные щиты New VEGA HAGER — ваш хаб инноваций   ||   Видеообзор шкафы Hager Volta →

Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях

Для тех, кто не хочет вникать в технические тонкости, какую характеристику автоматического выключателя или дифавтомата (поскольку автоматический выключатель в нем, как часть) применить в защите вашей электросети, предлагаем вниманию рекомендации немецкого производителя HAGER – прочесть и принять:

  1. Характеристика срабатывания В (3-5 In):

    Применяется преимущественно для защиты кабелей и цепей в жилых домах (цепи освещения, розетки)

  2. Характеристика срабатывания С (5-10 In):

    Применяется для защиты кабелей и цепей преимущественно в приборах с повышенным пусковым током (группы ламп, электродвигатели, и т.д.)

  3. Характеристика срабатывания D (10-20 In):

    Применяется для защиты кабелей и цепей, особенно в приборах с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Т.е. компания HAGER для жилых помещений рекомендует устанавливать характеристику «В». И ей следуют немецкие электрики. В принципе, подобной рекомендации придерживаются другие европейские производители. Почему же в нашей стране электромонтажники характеристику «В» в жилом фонде не принимают за стандарт, а часто применяют «С» характеристику?

Попробуем разобраться.

Рассмотрим таблицу отключения автоматического выключателя в зависимости от характеристики отключения:

Рис.1 Характеристика «В»

Выпуск автоматических выключателей с разными характеристиками отключения и отсутствие универсальной характеристики обусловлены различными требованиями к защите электрической линии от перегрузок, пусковых токов, короткого замыкания. Из таблицы мы видим, что самый быстрый и чувствительный автомат с «В» характеристикой, самый медленный и не чувствительный к пиковым нагрузкам – автомат с характеристикой «D».

Рис.2 характеристика «C»

Характеристика «С» кажется оптимальной, поскольку находится посередине графика (см. выше). Так ли это? Тот факт, что автоматы типа C сейчас активно применяются, не означает, что тип C «лучше» или «более продвинутый». Это просто два разных типа для разных условий, но технологический уровень их исполнения одинаков. И цена, практически, тоже одинакова.

Рис.3 характеристика «D»

Следует отметить, что в современной высококачественной бытовой технике, благодаря применению специальных технологий, пусковые токи значительно меньше, чем были раньше, даже если используется импульсный блок питания. Поэтому, если вы оснастили квартиру или коттедж современной техникой, можно сделать выбор в пользу защитных автоматов типа «B». При этом можно повысить надежность энергоснабжения, реализовав принцип селективного отключения. Он заключается в том, что из-за задержки по времени в срабатывании вышестоящего защитного автомата относительно нижестоящего предотвращается отключение питания по всему коттеджу или по всей квартире. Самый экономичный способ реализации селективной защиты — поставить вводной автомат типа С, а в качестве нижестоящих использовать автоматы типа B.

Еще одно хорошее преимущество характеристики «В» в квартире. Автоматы с такой характеристикой лучше щадят вашу сеть при коротком замыкании, т.к. раньше отключаются и не настолько требовательны к сечению проводников, как характеристика «С».

Выбор характеристики автоматических выключателей остается за вами. Можно полностью установить с характеристикой «С».

Характеристики срабатывания автоматов. Принцип выбора

Автоматические выключатели: характеристики срабатывания и ситуации применения

Автоматический выключатель (автомат)  — коммутационное устройство, проводящее ток в нормальном режиме и блокирующее подачу электроэнергии в случаи аварии: перегрузки или короткого замыкания. 

Для размыкания электрической цепи автоматические выключатели оборудованы специальными устройствами – расцепителями. 

В современных модульных автоматах используется два типа расцепителей: 

1) Тепловой – служит для защиты от перегрузки

Биметаллическая пластина, которая изгибается при нагреве, проходящим через нее током, тем самым размыкая контакт. Чем больше перегрузка, тем быстрее нагревается биметаллическая пластинка и быстрее срабатывает расцепитель.

Нормируемые параметры – следующие:

  • 1,13 (In) –  тепловой расцепитель не срабатывает в течение 1 ч.
  • 1,45 (In) – расцепитель срабатывает в течение < 1 ч.
2) Электромагнитный (отсечка) – предназначен для защиты от короткого замыкания

Соленоид с подвижным сердечником, который втягивается при превышении заданного порога тока, мгновенно размыкая электрическую цепь. Отсечка срабатывает при существенном превышении номинального тока (2÷10 In) в зависимости от характеристики срабатывания. Рассмотрим наиболее распространенные автоматы с характеристиками: (B, C, D, K, Z).

1) Характеристика В (3-5 In)

Электромагнитный расцепитель срабатывает при токе, превышающем номинальный в 5 раз. Время отключения <1с. При токе, превышающим номинальный в 3 раза, в течение 4-5 с. сработает тепловой расцепитель. (Обращаем ваше внимание, что для постоянного тока (DC) граница срабатывания будет немного сдвинута (х1,5). 

Автоматические выключатели «В» применяются в осветительных сетях с небольшими пусковыми токами (или полным их отсутствием). 

2) Характеристика С (5-10 In)

Наиболее распространённые автоматические выключатели. Минимальный ток срабатывания составляет 5 In. При этом значении через 1,5 с сработает тепловой расцепитель, а при 10 кратном превышении номинала, электромагнитный разомкнет цепь меньше, чем за 0,1 с.

Автоматические выключатели «С» подходят для сетей со смешанной нагрузкой (освещение, бытовые электроприборы)

3) Характеристика D (10-20 In)

Характеризуются большой устойчивостью к перегрузке. Тепловой расцепитель разомкнет цепь за 0,4 при превышении порога в 10 In. Срабатывание соленоида произойдет при двадцатикратном превышении номинального тока.

Автоматические выключатели «D» используются для подключения электродвигателей с кратковременными большими токами (пусковые токи)

4) Характеристика K (8-15 In)

Для автоматов этой категории характерна большая разница в показателях для постоянного и переменного токов. Например, электромагнитный расцепитель гарантировано разомкнет цепь за 0,02 с. при достижении значения в 12 In в цепи переменного тока, а для постоянного это значения увеличивается до 18 In. При превышении номинального тока в 1,5 раза в течение 2 мин. сработает тепловой расцепитель.

Автоматы с характеристикой «K» применяются для подключения преимущественно индуктивной нагрузки.

5) Характеристика Z (2-3 In)

Автоматы этой категории также имеют различия в параметрах срабатывания для переменного и постоянного токов.

Электромагнитный расцепитель разомкнет цепь при трёхкратном превышении номинальных параметров в цепи переменного тока и 4,5 In в цепях постоянного тока. Тепловой расцепитель сработает при токе в 1,2 от номинального в течение часа.

Вследствие небольших значений по превышению номинальных параметров, Автоматы «Z» применяются только для защиты высокочувствительной электронной аппаратуры.

Подытоживая вышесказанное отметим, что для бытового использования подходят автоматы с характеристиками: «В» и «С», при возможном подключении электродвигателей с высокими пусковыми токами имеет смысл использовать автоматы категории «Е» (во избежание ложного срабатывания). Категория «К» подходит при работе с индуктивными нагрузками, а «Z» для электронного оборудования, чувствительного к небольшим перегрузкам. 

И последнее: если вы сомневаетесь в правильности выбора — обратитесь к профессиональному электрику, не гадайте!

В нашем магазине представлены автоматы всех перечисленных серий, при отсутствии того или иного оборудования его можно легко заказать.

Чтобы узнать подробности и заказать электротехническую продукцию звоните по телефону 
(495) 777-05-30 
Или оставьте сообщение через форму обратной связи в разделе «Контакты». 

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

  • — B — от 3 до 5 ×In;
  • — C — от 5 до 10 ×In;
  • — D — от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3…5)=48…80А. Для С16 диапазон токов мгновенного срабатывания 16*(5…10)=80…160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.

Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.

Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.

Что показано на графике время токовой характеристики

На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.

На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.

Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).

Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.

На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.

При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).

Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.

К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.

Автоматы с какими характеристиками предпочтительнее использовать дома

В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.

Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.

Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.

Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.

В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Автоматические выключатели и их характеристики B, C, D

Основными характеристиками автоматических выключателей являются

Номинальный ток (In):

ток, который может протекать через автомат, без его срабатывания. 

Номинальное рабочее напряжение (Ue)

номинальное, на которое рассчитана изоляция автомата 

Номинальное напряжение изоляции (Ui)

Это величина напряжения, относительно которого выбирается напряжение при испытании электрической прочности изоляции, которое обычно превышает 2 Ui, и определяется длина пути тока утечки через изолятор.

Номинальное выдерживаемое импульсное напряжение (Uimp)

Параметр представляет собой величину импульса напряжения (определенной формы и полярности) в кВ, который рассматриваемое оборудование может выдержать в условиях испытаний без повреждения.

Обычно для промышленных автоматических выключателей Uimp = 8 кВ, для бытовых автоматических выключателей Uimp = 6 кВ.

Отключающая способность:

ток (в кА), срабатывания автомата при коротком замыкании, после которого он еще будет работоспособен. 

Характеристика автоматов В, С, D:

зависимость времени отключения от тока. 

Буквы B, C и D обозначают характеристику автоматов, которая называется «тип мгновенного расцепления» и установлена в ГОСТ Р 50345-99] (МЭК 60898-95) «Аппаратура малогабаритная электрическая. автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения».

Конкретный тип мгновенного расцепления устанавливает диапазон токов мгновенного расцепления, протекание которых в главной цепи выключателя может вызвать его расцепление без выдержки времени.

В ГОСТ Р 50345 для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов:

тип В: 3In — 5In;

тип С: 5 In -10 In

тип D:10 In — 20 In

Стандартная времятоковая зона предписывает следующее поведение автоматического выключателя:

В случае если в главной цепи выключателя протекает электрический ток, величина которого соответствует нижней границе диапазона токов мгновенного расцепления 3In, 5In и 10 In, то он должен расцепиться за промежуток времени:

тип мгновенного расцепления B — более 0,1 с, но менее 45 или 90 с,

тип C — 15 или 30с

тип D — 4 или 8с.

При протекании в главной цепи электрического тока, равного верхней границе диапазона токов мгновенного расцепления (5In, 10In и 50In), автоматический выключатель должен расцепиться за промежуток времени менее 0,1 с.

В том случае, если значение электрического тока, протекающего в главной цепи, находится между нижней и верхней границами диапазона токов мгновенного расцепления, автоматический выключатель может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с).

Фактическое время срабатывания автомата определяется его индивидуальной времятоковой характеристикой. 

Исходя из вышенаписанного автоматы предназначены:

типа В — для защиты потребителей с преимущественно активной нагрузкой (печь, обогреватель, ЛН),

типа С — двигателей,

типа D — двигателей в повторно-кратковременном (частые пуски) режиме работы. 

Выбор автоматического выключателя по характеристикам.

Автоматический выключатель – низковольтный коммутационный аппарат, обеспечивающий защиту электрической цепи от токовых перегрузок, связанных с подключением большого количества приборов (суммарная мощность которых превышает допустимую), неисправностью приборов или тока короткого замыкания (КЗ). Если выключатель не сработает вовремя и не обесточит линию, большая сила тока может вывести из строя бытовые приборы, а также привести к высокому нагреву кабеля с последующим возгоранием изоляции. Поэтому основная задача автоматического выключателя – определить появление чрезмерного тока и отключить сеть раньше, не допуская пожароопасной ситуации или повреждений приборов. В соответствии с требованиями Правил устройств электроустановок (ПУЭ), эксплуатация сети без автоматов защиты – запрещена. Для того, чтобы правильно подобрать необходимые автоматы защиты, нужно знать основные характеристики автоматических выключателей: это номинальный ток и время-токовая характеристика.

Номинальный ток – максимальный ток, который может протекать через автоматический выключатель бесконечно долго, не отключая защищаемую электрическую сеть.
Время-токовая характеристика — это зависимость времени срабатывания от силы тока, протекающего через автоматический выключатель.

Принцип работы автоматического выключателя

Основные органы срабатывания автоматического выключателя – Тепловой расцепитель (биметаллическая пластина) и электромагнитный расцепитель (соленоидом с сердечником). При нормальной работе электрической сети и подключенных в сеть приборов, через автоматический выключатель протекает электрический ток. Биметаллическая пластина от воздействия повышенного тока нагревается и изгибается приводя в действие механизм расцепления. В зависимости от категории автоматического выключателя, время срабатывания будет происходить быстрее или медленнее.

Категории (типы) автоматических выключателей

Автоматические выключатели делятся на типы в зависимости от чувствительности мгновенного расцепителя. Обозначаются класс латинскими буквами A, B, C и D.

Автоматические выключатели типа А (2 – 3 значения номинального тока) срабатывают без выдержки времени (неселективные). Применяются в основном для защиты цепей с большой протяженностью и для защиты микропроцессорных устройств.
Автоматические выключатели типа B (от 3 до 5 значений номинального тока). То есть выключатель с маркировкой В16 сработает при силе тока от 48А до 80А. Данные выключатели широко используются в быту, в основном в домах со старой проводкой, на дачах или в сельской местности.
Автоматические выключатели типа C (от 5 до 10 значений номинального тока). Выключатель с маркировкой С16 сработает при силе тока от 80А до 160А. Используются выключатели типа С в основном в новых многоквартирных домах, где в сеть может быть подключено много бытовой техники (стиральная машина, утюг, холодильник, кондиционер, посудомоечная машина, электрический чайник, микроволновая печь, пылесос и пр.).
Автоматические выключатели типа D (от 10 до 20 номинальных токов) используются для защиты цепей, питающих электрические установки с высокими пусковыми токами (компрессоры, электромоторы, станки, насосы и подъемные механизмы) и применяются в основном в производственных помещениях. Также устройства с характеристикой D используют в общих сетях зданий, где они выполняют подстраховочную роль, если в отдельных помещениях по каким-то причинам не произошло своевременного отключения электроэнергии.
Зависимость времени отключения от силы тока нагляднее всего можно изобразить в виде графика.

Автоматические выключатели типа  K приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Автоматические выключатели типа  Z приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.


Количество полюсов автоматических выключателей

Однополюсные автоматические выключатели используются для защиты цепей с приборами освещения и розетками, куда подключаются обычные однофазные бытовые приборы.
Для защиты однофазной проводки, куда подключаются отопительные приборы, водонагреватели, электрические плиты, стиральные машины в качестве защиты между щитом и помещением устанавливаются двухполюсные автоматические выключатели.

Двухполюсные АВ при отключении обеспечивает разрыв не только «фазы», но и «нуля».
Нельзя устанавливать два однополюсных выключателя для защиты фазного и нулевого провода! Для этих целей применяют двухполюсные автоматы, которые отключают «ноль» и «фазу» одновременно.

В трехфазной сети, в основном в промышленности, применяются 3-х полюсные автоматические выключатели.

4-х полюсные выключатели являются вводными автоматами и обеспечивают защиту 3-х фазной электросети: 3 фазы + нейтраль.

Вводной автоматический выключатель обязательно должен отключать все фазы и рабочий «ноль», так как имеется вероятность поражения электрическим током при проведении обслуживания или работ с проводкой.

Характеристики автоматических выключателей | RuAut

Всем известно, что автоматические выключатели — есть ни что иное, как механический коммутационный аппарат, предназначенный для:

  • включения, проведения и отключения токов в условиях нормального состояния цепи,
  • а так же для включения, проведения в течение определенного промежутка времени и автоматического отключения токов в условиях аномального состояния цепи – так называемых токов короткого замыкания и больших токов, вызванных перегрузкой в сети.

Токи короткого замыкания автоматические выключатели отрабатывают на ура, поскольку современным расцепителям удаётся абсолютно безошибочно определять короткое замыкание и отключать нагрузку в течение долей секунд, не допуская даже намеков на повреждение аппаратуры и проводников.

Но вот с токами перегрузки дело обстоит сложнее. Такие токи ненамного отличаются от номинальных, и даже в течение определенного промежутка времени они могут протекать по электрической цепи абсолютно без последствий. Именно поэтому отсутствует необходимость мгновенного отключения такого тока, ведь ток перегрузки может оказаться краткосрочным. Основная проблема состоит в том, что у каждой сети есть свое предельное значение перегрузки и даже не одно.

Для некоторых видов токов возможно выделить максимальное значение времени до момента отключения цепи. Оно может составлять от нескольких секунд до нескольких десятков минут, но при этом следует исключить возможность ложного срабатывания. Если ток не представляет для сети никакой опасности, то отключения не должно произойти ни через секунду, ни через сутки.

Современные автоматические выключатели обладают тремя видами расцепителей:

  • Механический – ручное включение и выключение,
  • Электромагнитный – отключение при коротком замыкании,
  • Тепловой – защита от перегрузок.

Именно параметрами электромагнитного и теплового расцепителей определяется характеристика автоматического выключателя. Её обозначают буквой латинского алфавита на корпусе перед токовым номиналом аппарата.

Данная характеристика означает:

  • Диапазон, при котором срабатывает защита от перегрузок. Он обуславливается параметрами биметаллической пластины, встроенной в аппарат, такая пластина способна изгибаться и разрывать цепь во время протекания через неё большого электрического тока. Для точной настройки, достаточно регулировочным винтом, поджать эту самую пластину.
  • Диапазон, при котором срабатывает максимально-токовая защита, обусловленная параметрами встроенного в выключатель соленоида.

Характеристики автоматических выключателей:

Характеристика МА: отсутствие теплового расцепителя, поскольку не всегда требуется его наличие. К примеру, защита электродвигателей часто осуществляется с помощью максимально-токовых реле. В данном случае автомат необходим лишь как средство защиты от короткого замыкания.

Характеристика А: тепловой расцепитель срабатывает при токах, превышающих номинальное значение на 30%. На отключение понадобится порядка часа времени. Если ток превысит номинальное значение в два раза, то в дело вступит электромагнитный расцепитель, время срабатывания которого составляет 0,05 секунды. Если при двойном превышении номинального значения тока соленоид по каким-то причинам не сработает, то тепловому расцепителю потребуется порядка 20 – 30 секунд на отключение нагрузки. Когда номинальное значение превышено в три раза электромагнитный расцепитель сработает без каких-либо промедлений, и за сотые доли секунды отключит нагрузку. Подобные выключатели используются в цепях, где не предусмотрено возникновение кратковременных перегрузок во время нормального рабочего режима. Пример – цепь, в которую подключены устройства, содержащие полупроводниковые элементы, выходящие из строя даже при незначительном превышении тока.

Характеристика В: ее отличительная особенность в том, что электромагнитный расцепитель срабатывает при токе, значение которого превышает номинальное в три и более раз. Время, необходимое соленоиду для срабатывания – 0,015 секунды. Тепловому расцепителю при тех же условиях понадобится порядка 4 – 5 секунд для срабатывания. Срабатывание автомата гарантировано при нагрузке, превышающей номинал в 5 раз (переменный ток) и в 7,5 раз (постоянный ток). Выключатели с характеристикой В используются в сетях освещения, и прочих сетях, где повышение тока во время пуска отсутствует, либо невелико.

Характеристика С: наиболее популярная характеристика. Автоматические выключатели с этой характеристикой могут выдержать еще большие перегрузки в сравнении с автоматами характеристик А и В. Минимальное значение тока, при котором срабатывает автомат превышает номинальное значение в 5 раз. При равных условиях тепловому расцепителю понадобится на срабатывание 1,5 секунды. Срабатывание автомата гарантировано при перегрузке, превышающей номинал в 10 раз (переменный ток), а для цепи постоянного тока это значение составит – 15 раз. Выключатели с характеристикой С устанавливаются в сетях, предусматривающих наличие смешанной нагрузки и умеренное повышение тока во время пуска. В бытовых электрощитах устанавливаются автоматы именно этого типа.

Характеристика D: отличительная особенность – очень большая перегрузочная способность. Минимальное значение тока для срабатывания – десятикратное превышение номинала, тепловой расцепитель сработает за 0,4 секунды. Срабатывание гарантировано при нагрузке в 20 номиналов. Назначение автоматических выключателей с характеристикой D – подключение электродвигателей с большими пусковыми токами.

Характеристика К: отличительная особенность – большой разброс между максимальными значениями токов срабатывания автомата для цепей постоянного и переменного тока. Минимальное значение тока, необходимого для срабатывания электромагнитного расцепителя – восьмикратное превышение номинального значения. Срабатывание гарантировано при значениях для цепей постоянного и переменного тока – 18-ти и 12-ти кратное превышение номинала соответственно. Время срабатывания автомата – 0,2 секунды. Тепловому расцепителю для срабатывания достаточно превышения номинала в 1,05 раза. Применение – подключение исключительно индуктивной нагрузки.

Характеристика Z: отличается довольно не высоким уровнем тока, необходимого для гарантированного срабатывания. Минимальное значение для срабатывания автомата – два номинала, гарантированное срабатывание при трех номиналах для переменного тока, и 4,5 номинала для постоянного. Тепловому расцепителю с характеристикой Z, как и для характеристики К, для срабатывания достаточно превышение номинала в 1,05 раза. Применение автоматов с характеристикой Z – подключение электронных устройств.

Основные характеристики выключателя

Основными характеристиками выключателя являются:

  • Его номинальное напряжение Ue
  • Его номинальный ток In
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения установленных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu — это номинальный непрерывный ток.

Типоразмер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оборудован 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми, реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) — это ток, при превышении которого автоматический выключатель сработает. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. h37)

Выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока срабатывания:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 — Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения автоматического выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и Рис. h40).

Рис. H38 — Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкая настройка
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная настройка
тип C
7 In ≤ фиксированный ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Автоматические выключатели промышленные [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Низкое значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 — Кривая отключения термомагнитного выключателя

Ir : Уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой)
Im : Уставка тока срабатывания реле короткого замыкания (магнитная или короткая задержка)
Ii : Мгновенное срабатывание реле короткого замыкания- текущая настройка.
Icu : Отключающая способность

Рис. H40 — Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель пригоден для разъединения цепи, если он удовлетворяет всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом.

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя — это наивысшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока короткого замыкания, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА (действующее значение).

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в МЭК 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Рабочие последовательности, состоящие из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Сдвиг фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности включения — выдержки времени — замыкания / размыкания для проверки емкости Icu выключателя проводятся дальнейшие испытания, чтобы убедиться, что:
    • Устойчивость к диэлектрику
    • Отключение (изоляция) исполнения и
    • Проверка не нарушила правильную работу защиты от перегрузки.

Рис. H41 — Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Установочные значения уровня тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания.

Автоматический выключатель | Типы | Операция | Характеристики

Основной функцией автоматического выключателя является защита, хотя он также обеспечивает возможность переключения. Он широко используется для обеспечения защиты сам по себе, но может использоваться вместе с предохранителями , в зависимости от требуемых служебных обязанностей.

Типы автоматических выключателей

Наиболее часто используемым автоматическим выключателем для номинальных токов до 125 А является миниатюрный автоматический выключатель (MCB), соответствующий требованиям AS / NZS3111 и требованиям к испытаниям — Миниатюрные автоматические выключатели максимального тока и AS / NZS 60898 Электрические аксессуары. Автоматические выключатели для защиты от перегрузки по току для бытовых и аналогичных установок. Автоматические выключатели для работы на переменном токе.

Эти стандарты определяют средние токи отключения и допуски для классификации этих автоматических выключателей по «типу», как показано в таблице 1 на обратной стороне.

Таблица 1 Типы и применения автоматических выключателей

Миниатюрные автоматические выключатели (MCB) Миниатюрные автоматические выключатели чаще всего используются для защиты от перегрузки и короткого замыкания подсетей и оконечных устройств. подсхемы в бытовых и легких коммерческих установках.
Автоматический выключатель в литом корпусе (MCCB) Автоматические выключатели в литом корпусе чаще всего используются для защиты подсетей, высоконагруженных цепей и конечных подсхем в коммерческих и промышленных установках.Они доступны со встроенными реле защиты, обеспечивающими возможность выбора уставок перегрузки по току.
Воздушный автоматический выключатель (ACB) Воздушный автоматический выключатель используются в распределительных сетях и крупных установках в качестве главных выключателей для фидеров / подсети. Обычно они имеют встроенные защитные реле, обеспечивающие ряд выбираемых функций защиты и контроля.

Автоматические выключатели в литом корпусе (MCCB) используются для цепей защиты в коммерческих и промышленных установках, где существуют более высокие условия и требования к неисправностям.

Воздушные автоматические выключатели (ACB) большего размера используются в аналогичных типах установок для ограничения высокого тока короткого замыкания входящего источника питания, больших фидеров (сеть и вспомогательная сеть) и переключения нагрузки.

Основные характеристики автоматических выключателей показаны на Рисунках 1a, 1b и 1c на обороте.

Рисунок 1a Основные характеристики автоматических выключателей

Рисунок 1b Основные характеристики автоматических выключателей

Рисунок 1c Основные характеристики автоматических выключателей

Защита цепи с помощью автоматического выключателя

выключатель достигается за счет автоматического размыкания цепи (обычно называемого «отключением») в ответ на перегрузку по току из-за перегрузки или короткого замыкания.Современные автоматические выключатели представляют собой «термомагнитные» устройства, относящиеся к двум используемым отключающим элементам.

Термический элемент вызывает отключение автоматического выключателя с задержкой по времени при обнаружении тока перегрузки, в то время как магнитный элемент вызывает почти мгновенное отключение автоматического выключателя при обнаружении высокого пускового тока, как в случае короткого замыкания. Концепция этой компоновки показана на рисунках с 1d по 1f .

Рисунок 1d Как работают элементы максимального тока в термомагнитных выключателях

Рисунок 1e Типовой механизм автоматического выключателя

Рисунок 1f Как работают деионно-дуговые камеры

Снижение номинальных характеристик

Если автоматический выключатель установлен в тех же условиях окружающей среды, что и защищаемая цепь, время срабатывания сократится, поскольку температура окружающей среды защищенных кабелей также повысится.

Задержка теплового отключения гарантирует, что кратковременные перегрузки не вызовут отключения; но если это продолжится, кумулятивный эффект нагрева со временем приведет к срабатыванию выключателя, чтобы избежать превышения пределов превышения температуры кабеля.

Знаете ли вы?

Что такое независимый расцепитель?

Независимый расцепитель — это дополнительный соленоид отключения, установленный на автоматический выключатель, который позволяет «отключать» выключатель с помощью внешнего переключателя, кнопки или устройства управления.Электромагнит независимого расцепителя активирует механический расцепитель так же, как внутренние тепловые и / или магнитные блоки защиты выключателя вызывают его отключение. Независимые расцепители обычно доступны как принадлежность (дополнительная опция) к автоматическим выключателям в литом корпусе и являются стандартной функцией воздушных автоматических выключателей.

Автоматические выключатели

спроектированы и откалиброваны так, чтобы выдерживать свой номинальный ток и работать в пределах обозначенной термической зоны времени / тока при 30 ° C в условиях открытого воздуха. Если автоматический выключатель должен работать при температуре окружающей среды выше 30 ° C, он будет требовать все меньше тока для срабатывания в пределах обозначенной временной / токовой зоны.

На практике, если при температуре окружающей среды выше номинальной — или даже в кожухе или сгруппированном с другим оборудованием, где температура будет превышать номинальную температуру «наружного воздуха» — MBC необходимо снизить.

Один производитель предоставляет таблицы температурной коррекции и коэффициенты 0,9, 0,85 и 0,8, применяемые соответственно для групп от 2 до 4, от 4 до 6 и выше. Например, автоматический выключатель на 63 А в корпусе, сгруппированный с более чем шестью другими автоматическими выключателями, будет иметь номинальный ток снижен до 50.4 A. Дальнейшее снижение номинала будет применяться, если температура окружающей среды будет выше 30 ° C.

Характеристики автоматического выключателя

Две основные функции защиты автоматического выключателя предназначены для защиты проводки от перегрузки по току, будь то перегрузка или короткое замыкание, каждая из которых требует разного времени отклика.

При возникновении короткого замыкания защитное устройство должно отключать питание в течение 0,4 с для конечных подсхем, питающих розетки номиналом до 63 А, переносного оборудования класса I и переносного оборудования, предназначенного для ручного перемещения во время использования.

Максимальное время отключения 5,0 с указано для таких цепей, как подсети, конечные подсхемы и те, которые питают стационарное или стационарное оборудование.

Функции защиты автоматических выключателей от короткого замыкания и перегрузки представлены в виде графиков, показывающих их время-токовые характеристики. Автоматические выключатели с фиксированной уставкой (обычно автоматические выключатели) предназначены для защиты электропроводки как от перегрузок, так и от коротких замыканий в бытовой или коммерческой электропроводке, где работа (включение, выключение или сброс) возможна неопытным человеком.

Они обозначаются их мгновенными кривыми время-ток, которые делят эти автоматические выключатели на три типа, как показано на Рис. 1g . Стоит отметить, что функция короткого замыкания современного автоматического выключателя является токоограничивающей характеристикой, аналогичной характеристике закрытой плавкой вставки (, рисунок 1h, ).

Рисунок 1g Типичные время-токовые характеристики автоматических выключателей с фиксированной уставкой

Рисунок 1h Токоограничивающие характеристики автоматического выключателя

Кривые отключения MCB — B, C, D, K и Z кривые отключения

MCB (Миниатюрный автоматический выключатель) — это перенастраиваемое устройство, предназначенное для защиты цепи от коротких замыканий и сверхтоков.Кривая срабатывания автоматического выключателя (кривые B, C, D, K и Z ) говорят нам о номинальном токе срабатывания автоматических выключателей. Номинальный ток срабатывания — это минимальный ток, при котором автоматический выключатель срабатывает мгновенно. Требуется, чтобы ток отключения сохранялся в течение 0,1 с.

Определение

Кривые отключения MCB, также известные как характеристика отключения I-t, состоят из двух секций, а именно секции перегрузки и секции короткого замыкания. Раздел перегрузки описывает время отключения, необходимое для различных уровней токов перегрузки, а раздел короткого замыкания описывает мгновенный уровень тока отключения MCB.

Подробнее: Миниатюрный автоматический выключатель (MCB) — Принцип работы

Кривая отключения класса B

Автоматический выключатель с характеристиками срабатывания , класс B, срабатывает мгновенно, когда ток, протекающий через него, достигает от 3 до 5 номинальных значений тока. Эти автоматические выключатели подходят для защиты кабеля.

Кривая отключения класса C

MCB с характеристиками срабатывания класса C срабатывает мгновенно, когда ток, протекающий через него, превышает номинальный ток в 5–10 раз.Подходит для бытовых и жилых помещений и для электромагнитных пусковых нагрузок со средними пусковыми токами.

Кривая отключения класса D

Автоматический выключатель с характеристиками отключения , класс D срабатывает мгновенно, когда ток, протекающий через него, превышает номинальный ток в 10-20 раз (исключая 10). Подходит для индуктивных и моторных нагрузок с высокими пусковыми токами.

Кривая отключения класса K

MCB

с характеристиками срабатывания , класс K срабатывает мгновенно, когда ток, протекающий через него, превышает номинальный ток в 8–12 раз.Подходит для индуктивных и моторных нагрузок с высокими пусковыми токами.

Кривая отключения класса Z

MCB с характеристиками отключения класса Z мгновенно срабатывает, когда ток, протекающий через него, в 2–3 раза превышает номинальный ток. Этот тип MCB очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

Кривая отключения класса A

MCB с характеристиками отключения класса A срабатывает мгновенно, когда ток, протекающий через него, в 2–3 раза превышает номинальный ток.Как и автоматические выключатели класса Z, они также очень чувствительны к короткому замыканию и используются для защиты полупроводниковых устройств.

Чаще всего используются автоматические выключатели

с классом кривой срабатывания B и классом кривой срабатывания C. Автоматические выключатели с кривыми срабатывания класса C можно найти в распределительных щитах освещения в жилых и коммерческих зданиях. Он срабатывает, как только ток возрастает в 5-10 раз от номинального. Автоматические выключатели класса B используются для защиты электронных устройств, таких как ПЛК, источники питания постоянного тока и т. Д.в панелях управления. Он срабатывает, как только ток возрастает в 3-5 раз от номинального.

Смотреть: кривые отключения MCB лучше.

В некоторых приложениях частые пики тока происходят в течение очень короткого периода (от 100 мс до 2 с). Для таких приложений должны использоваться автоматические выключатели класса Z. Автоматические выключатели типа Z используются в схемах с полупроводниковыми приборами.

Важность типов кривых отключения MCB

Важно выбрать соответствующий номинал MCB и кривую срабатывания, чтобы защитить цепь от повреждений во время сбоев.Следовательно, необходимо рассчитать ток короткого замыкания и пусковой ток перед выбором подходящего номинала MCB. Если выбранный номинал MCB намного выше, чем требуется, он может не сработать в случае неисправности. Точно так же, если MCB недооценен, это может вызвать ложные срабатывания, например, даже пусковые токи или пусковые токи могут отключать MCB.

Кривые срабатывания других автоматических выключателей

Все автоматические выключатели, такие как MCCB, ACB, VCB и т. Д., Имеют свои собственные характеристики отключения.Единственное, что может не соответствовать категоризации MCB. Кроме того, типы кривых выключателя не одинаковы для всех типов автоматических выключателей. Он варьируется от одного типа автоматического выключателя к другому и зависит от многих конструктивных факторов.

Узнать подробнее о MCB:

Статьи по теме:
1. Разница между MCB и MCCB
2. Разница между контакторами и реле
3. Разница между устройствами плавного пуска и VFD
4.Разница между MCCB и RCCB
5. Разница между MCB и RCBO
6. Разница между RCCB и RCBO
7. Разница между MPCB и MCCB

Основные параметры и характеристики автоматических выключателей

К характеристикам автоматических выключателей в основном относятся: номинальное напряжение Ue; номинальный ток In; диапазон уставок тока отключения защиты от перегрузки (Ir или Irth) и защиты от короткого замыкания (Im); номинальный ток отключения при коротком замыкании (промышленный выключатель Icu; бытовой выключатель Icn)) Подождите.

Номинальное рабочее напряжение (Ue): это напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

Номинальный ток (In): это максимальное значение тока, которое автоматический выключатель, оборудованный специальным реле максимального тока, может выдерживать неопределенно долго при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, указанный токоведущим компонентом.

Значение уставки тока срабатывания реле короткого замыкания (Im): реле срабатывания короткого замыкания (мгновенное или с короткой задержкой) используется для быстрого отключения автоматического выключателя при возникновении высокого значения тока короткого замыкания и его предела срабатывания Im.

Номинальная отключающая способность при коротком замыкании (Icu или Icn): Номинальный ток отключения при коротком замыкании автоматического выключателя — это максимальное (ожидаемое) значение тока, которое автоматический выключатель может отключить без повреждения. Текущее значение, указанное в стандарте, представляет собой среднеквадратическое значение переменной составляющей тока повреждения. При вычислении стандартного значения переходная составляющая постоянного тока (всегда возникающая при наихудшем случае короткого замыкания) принимается равной нулю. Номинальные характеристики промышленных автоматических выключателей (Icu) и бытовых выключателей (Icn) обычно выражаются в кА (действующее значение).

Отключающая способность при коротком замыкании (Ics): Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании. В национальном стандарте «Низковольтные распределительные устройства и оборудование управления низковольтными автоматическими выключателями» (GB14048.2–94) приведены следующие пояснения номинальной предельной отключающей способности при коротком замыкании и номинальной рабочей отключающей способности при коротком замыкании автоматических выключателей:

Номинальная предельная отключающая способность автоматического выключателя при коротком замыкании: В соответствии с условиями, указанными в предписанных экспериментальных процедурах, за исключением отключающей способности автоматического выключателя, чтобы продолжать выдерживать свою номинальную токовую нагрузку;

Номинальная рабочая отключающая способность автоматического выключателя при коротком замыкании: В соответствии с условиями, указанными в предписанных экспериментальных процедурах, включая отключающую способность автоматического выключателя, чтобы продолжать выдерживать свою номинальную нагрузочную способность;

Процедура испытания номинальной предельной отключающей способности при коротком замыкании — O-t-CO.

Конкретный тест: отрегулируйте ток линии до ожидаемого значения тока короткого замыкания (например, 380 В, 50 кА), но тестовая кнопка не замкнута, тестируемый автоматический выключатель находится в замкнутом положении, нажмите тестовую кнопку , автоматический выключатель пропускает ток короткого замыкания 50 кА, автоматический выключатель отключается немедленно (размыкание обозначается буквой O), автоматический выключатель должен быть исправен и может быть снова включен. t — время перерыва, обычно 3 мин. В это время линия все еще находится в состоянии горячего резервирования, и автоматический выключатель снова включается (замыкается, обозначается как C), а затем размыкается (O).(Тестирование заключается в том, чтобы проверить, что автоматический выключатель находится на пике электрической и термической устойчивости по току). Эта процедура называется СО. Если автоматический выключатель может быть полностью отключен, его предельная отключающая способность при коротком замыкании определяется.

Процедура проверки номинальной рабочей отключающей способности при коротком замыкании (Icn) автоматического выключателя: O — t — CO — t — CO. У него на один СО больше, чем при испытании Icn. После испытания автоматический выключатель может полностью выключить и погасить дугу, и считается, что его номинальная отключающая способность при коротком замыкании соответствует требованиям.

Следовательно, можно видеть, что номинальная предельная отключающая способность при коротком замыкании Icn означает, что низковольтный автоматический выключатель может нормально работать после отключения максимального трехфазного тока короткого замыкания на выходе автоматического выключателя и его отключения. ток короткого замыкания снова. Что касается того, может ли это быть нормальным в будущем Включение и выключение, автоматический выключатель не гарантируется; а номинальная рабочая отключающая способность при коротком замыкании Ics означает, что автоматический выключатель может нормально отключаться много раз, когда максимальный трехфазный ток короткого замыкания возникает на его выходе.

Стандарт IEC947-2 «Низковольтные распределительные устройства и управляющее оборудование, низковольтные автоматические выключатели» предусматривает: Автоматический выключатель типа A (относится только к выключателю с длительной задержкой при перегрузке, переходным автоматическим выключателем при коротком замыкании) Ics может составлять 25%, 50%, 75%. и 100%. Ics автоматических выключателей класса B (выключатели с трехступенчатой ​​защитой от перегрузки с длительной задержкой, коротким замыканием с задержкой и переходным процессом короткого замыкания) могут составлять 50%, 75% и 100% от Ics. Следовательно, можно видеть, что номинальная рабочая отключающая способность при коротком замыкании — это значение тока отключения, меньшее, чем номинальный предельный ток отключения при коротком замыкании.

Независимо от типа автоматического выключателя, он имеет два важных технических индикатора: Icu и Ics. Однако, как автоматический выключатель, используемый в ответвлениях, он может соответствовать только номинальной предельной отключающей способности при коротком замыкании. Более распространенное предубеждение состоит в том, что лучше брать большую, а не принимать правильную, думая, что большая страховка. Однако, если он слишком большой, это приведет к ненужным отходам (автоматический выключатель того же типа, типа H с высоким выключателем, в 1,3–1,8 раза дороже, чем выключатель обычного типа S).Следовательно, автоматическому выключателю в ответвлении не нужно вслепую следить за своим индексом отключающей способности при коротком замыкании. Автоматический выключатель, используемый в основной линии, должен не только соответствовать требованиям номинальной предельной отключающей способности при коротком замыкании, но также должен соответствовать требованиям номинальной рабочей отключающей способности при коротком замыкании. Если для измерения отключающей способности используется только номинальная предельная отключающая способность при коротком замыкании Icu, вне зависимости от того, квалифицирована она или нет, это принесет небезопасные скрытые опасности для пользователей.

Свободное отключение автоматического выключателя: в любой момент во время процесса включения автоматического выключателя, если действие защиты включает цепь отключения, автоматический выключатель может быть надежно полностью отключен, что называется свободным отключением. Автоматический выключатель со свободным срабатыванием обеспечивает быстрое отключение автоматического выключателя при включении и коротком замыкании автоматического выключателя, что позволяет избежать расширения масштабов аварии.

Характеристики кривых отключения и координации автоматического выключателя

Рисунок 1: Упрощенная временная кривая тока.Фото: TestGuy

Время-токовые кривые используются для отображения времени, необходимого для отключения автоматического выключателя при заданном уровне перегрузки по току.

Время-текущие кривые обычно отображаются в виде графика журнала. Цифры по горизонтальной оси кривой представляют номинальный длительный ток (In) для автоматического выключателя, цифры по вертикальной оси представляют время в секундах.

Чтобы определить, сколько времени потребуется выключателю для отключения: найдите текущее значение, кратное (In), внизу графика.Затем нарисуйте вертикальную линию до точки, где она пересекает кривую, а затем проведите горизонтальную линию с левой стороны графика, чтобы найти время поездки.

Общее время отключения автоматического выключателя — это сумма времени срабатывания выключателя, времени отключения, времени механического срабатывания и времени возникновения дуги.

Кривые

разработаны с использованием заранее определенных характеристик, таких как работа при температуре окружающей среды 40 ° C, поэтому имейте в виду, что фактические условия эксплуатации автоматического выключателя могут вызвать отклонения в его характеристиках.

Большинство кривых имеют информационное окно, в котором будет указано, к какому выключателю применяется кривая. Это информационное окно может также содержать важные примечания от производителя, такие как допустимое отклонение от времени поездки.

Пример кривой тока времени автоматического выключателя в реальном мире с основными моментами. Фото: TestGuy


Защита от перегрузки

Верхняя часть кривой время-ток показывает тепловую реакцию выключателя, изогнутая линия указывает номинальную производительность выключателя.

В термомагнитных выключателях тепловая перегрузка возникает, когда биметаллический проводник внутри автоматического выключателя отклоняется после нагрева током нагрузки, освобождая рабочий механизм и размыкая контакты.

Чем больше перегрузка, тем быстрее биметаллическая полоса нагревается и отклоняется для устранения перегрузки. Это то, что известно как обратная временная кривая.

Долговременная функция

В электронных автоматических выключателях функция длительного действия (L) имитирует эффект термического биметаллического элемента.Номинальная точка срабатывания, в которой электронный расцепитель определяет перегрузку, составляет примерно 10% от выбранного номинального тока. После срабатывания автоматический выключатель сработает по истечении времени, заданного настройкой длительной задержки.


Защита от короткого замыкания

Нижняя часть кривой время-ток отображает реакцию автоматического выключателя на короткое замыкание. В термомагнитных выключателях место срабатывания при значительных сверхтоков приводит в действие магнитный якорь внутри автоматического выключателя, который отключает механизм.

Функция мгновенного действия

В электронных автоматических выключателях функция мгновенного действия (I) имитирует магнитную характеристику термомагнитного выключателя. Это достигается с помощью микропроцессора, который много раз в секунду берет выборки из формы волны переменного тока для вычисления истинного среднеквадратичного значения тока нагрузки. Мгновенное отключение происходит без преднамеренной задержки по времени.

Рисунок 3: Комбинированная кривая LSIG. Фото: TestGuy.

Кратковременная функция

Некоторые электронные автоматические выключатели могут быть оснащены функцией короткого замыкания (S), которая дает автоматическому выключателю задержку перед срабатыванием при значительной перегрузке по току.Это обеспечивает выборочную координацию между защитными устройствами, чтобы гарантировать, что только устройство, ближайшее к месту повреждения, отключается, не затрагивая другие цепи (см. Координацию автоматического выключателя ниже) .

Характеристика I 2 t кратковременной функции определяет тип задержки. I 2 t IN приведет к обратнозависимой задержке, которая напоминает временные / токовые характеристики предохранителей. Это похоже на функцию длительного времени, за исключением более быстрой задержки.I 2 t OUT обеспечивает постоянную задержку, обычно 0,5 секунды или меньше, как указано на кривой время-ток.

Функция блокировки зоны

Автоматические выключатели, оборудованные блокировкой зон по короткой задержке без сигнала ограничения от нижестоящего устройства, будут иметь минимальную временную полосу, применяемую независимо от настройки, это иногда называется максимальной неограниченной задержкой.

Когда мгновенная функция отключена, используется коррекция кратковременной задержки для мгновенного отключения автоматических выключателей в случае значительного короткого замыкания.Это называется кратковременной стойкостью и отображается на кривой срабатывания как абсолютное значение в амперах.

Связано: Основные принципы селективной блокировки зон (ZSI)


Защита от замыканий на землю

Как и функция защиты от замыканий на землю, элемент защиты от замыкания на землю (G) состоит из установки срабатывания и задержки. Когда происходит замыкание фазы на землю, сумма фазных токов перестает быть равной, потому что ток замыкания на землю возвращается через шину заземления.В 4-проводной системе четвертый трансформатор тока устанавливается на нейтральную шину для обнаружения этого дисбаланса.

Когда происходит дисбаланс тока, автоматический выключатель срабатывает, если величина превышает уставку срабатывания замыкания на землю. Если выключатель остается включенным в течение времени, заданного задержкой замыкания на землю, автоматический выключатель сработает. Защита от замыкания на землю иногда поставляется с функцией I 2 t, которая работает по тому же принципу, что и кратковременная задержка.

Пример 4-проводной системы защиты от замыканий на землю.Фото: TestGuy.

Защита от замыкания на землю требует наименьшего количества энергии для отключения автоматического выключателя, часто со значениями отключения, установленными значительно ниже уставки срабатывания длительного срабатывания. При проверке функции перегрузки или короткого замыкания автоматического выключателя защиту от замыкания на землю необходимо отключить или «убрать с дороги» для срабатывания других функций.

Использование испытательного комплекта изготовителя или изменение проводки входа трансформатора тока нейтрали является предпочтительным методом испытания первичной инжекции на выключателе низкого напряжения с защитой от замыкания на землю, в противном случае два полюса могут быть соединены последовательно для обеспечения сбалансированных вторичных токов на расцепитель. .

Связано: Системы защиты от замыканий на землю: основы тестирования производительности


Координация автоматического выключателя

Время-токовые кривые необходимы для правильного согласования автоматических выключателей. В случае неисправности должен срабатывать только ближайший к неисправности автоматический выключатель, не затрагивая другие цепи.

В приведенном ниже примере три автоматических выключателя скоординированы таким образом, чтобы время отключения каждого выключателя было больше времени отключения выключателя (ей), расположенного ниже по цепи, независимо от величины повреждения.

Упрощенный пример координации отключения выключателя. Фото: TestGuy.

Автоматический выключатель CB-3 настроен на отключение, если перегрузка 2000A или выше происходит в течение 0,080 секунды . Автоматический выключатель CB-2 сработает, если перегрузка сохраняется в течение 0,200 секунд, и автоматический выключатель CB-1 , если неисправность сохраняется в течение 20 секунд .

Если неисправность происходит после выключателя CB-3 , он срабатывает первым и сбрасывает неисправность.Автоматические выключатели CB-2 и CB-1 будут продолжать обеспечивать питание цепи.

Каждая функция расцепителя должна быть скоординирована для предотвращения ложных срабатываний. Если автоматический выключатель питает часть оборудования с большими пусковыми токами, например, значение мгновенного срабатывания должно быть установлено выше, чем значение кратковременного срабатывания, чтобы предотвратить отключение, когда оборудование находится под напряжением.

Связано: Разъяснение исследований по координации электроэнергетической системы


Артикул:

Комментарии

Войдите или зарегистрируйтесь, чтобы оставить комментарий.

Функции и номинальные характеристики автоматического выключателя — все, что нужно знать об автоматическом выключателе.

Автоматический выключатель — это устройство, обеспечивающее контроль и защиту в сети. Он способен создавать, выдерживать и отключать рабочие токи, а также токи короткого замыкания.


Автоматический выключатель должен выдерживать и выдерживать следующие токи: нормальный ток, ток перегрузки или тепловой ток и ток короткого замыкания.

Таким образом, автоматический выключатель должен пропускать ток в нормальном состоянии и должен быть способен отключать ток, включать ток как в нормальном, так и в аварийном состоянии. Кроме того, он должен выдерживать ток короткого замыкания не менее 1–3 секунд. Ток короткого замыкания может варьироваться от 1 кА (1000 ампер) до более высокого значения в соответствии с конструкцией.

Обязательные номинальные характеристики автоматического выключателя

  1. Номинальное напряжение
  2. Номинальный уровень изоляции.
  3. Номинальный нормальный ток.
  4. Номинальный кратковременный выдерживаемый ток.
  5. Номинальный выдерживаемый пиковый ток.
  6. Номинальная продолжительность короткого замыкания.
  7. Номинальное напряжение питания для размыкающих и замыкающих устройств и вспомогательных цепей
  8. Номинальная частота
  9. Номинальный ток отключения при коротком замыкании
  10. Номинальное переходное восстанавливающееся напряжение
  11. Номинальный ток включения при коротком замыкании
  12. Номинальная рабочая последовательность
  13. Номинальные временные величины.
Стандартный воздушный выключатель (ACB)

Особые номинальные характеристики автоматического выключателя

Эти характеристики не являются обязательными, но могут быть запрошены для конкретных приложений:

  1. номинальный ток отключения вне фазы
  2. номинальный ток отключения заряда кабеля
  3. номинальный ток отключения заряда линии,
  4. номинальный ток отключения конденсаторной батареи,
  5. номинальный ток отключения встречно-задней батареи,
  6. номинальный пусковой ток включения конденсаторной батареи,
  7. номинальный малый индуктивный ток отключения.

Определение — общая характеристика выключателя

Номинальное напряжение выключателя:
Номинальное напряжение — это максимальное действующее значение. значение напряжения, которое оборудование может выдерживать при нормальной работе. Оно всегда больше рабочего напряжения.

Номинальный уровень изоляции:
Уровень изоляции характеризуется двумя значениями — выдерживаемая импульсная волна (1,2 / 50 мкс) , выдерживаемое напряжение промышленной частоты в течение 1 минуты .
Номинальный нормальный ток:
При всегда замкнутом автоматическом выключателе ток нагрузки должен проходить через него в соответствии с максимальным значением температуры в зависимости от материалов и типа соединений. IEC устанавливает максимально допустимое превышение температуры различных материалов, используемых при температуре окружающего воздуха не выше 40 ° C

Номинальный кратковременный выдерживаемый ток Isc

Это стандартное действующее значение максимально допустимого тока короткого замыкания в сети в течение 1 или 3 секунд.

Ssc: мощность короткого замыкания (в МВА)
U: рабочее напряжение (в кВ)
Isc: ток короткого замыкания (в кА)

Номинальный выдерживаемый пиковый ток и рабочий ток

Ток включения — это максимальное значение, которое автоматический выключатель способен включить и поддерживать в установке, находящейся в состоянии короткого замыкания. Он должен быть больше или равен номинальному кратковременному выдерживаемому пиковому току. Isc — максимальное значение номинального тока короткого замыкания для номинального напряжения автоматических выключателей.Пиковое значение кратковременного выдерживаемого тока равно:
2,5 • Isc для 50 Гц
2,6 • Isc для 60 Гц
2,7 • Isc для специальных приложений.

Номинальный ток отключения при коротком замыкании автоматического выключателя:

Номинальный ток отключения при коротком замыкании — это наибольшее значение тока, которое автоматический выключатель должен быть способен отключать при его номинальном напряжении.
Характеризуется двумя значениями:
1. Среднеквадратичное значение.значение номинального тока отключения при коротком замыкании; 2. процент апериодической составляющей, соответствующей продолжительности отключения выключателя, к которой мы добавляем полупериод номинальной частоты.
Полупериод соответствует минимальному времени срабатывания устройства защиты от перегрузки по току, которое составляет 10 мс при 50 Гц.

Номинальное переходное восстанавливающееся напряжение (TRV) автоматического выключателя

Это напряжение, которое появляется на выводах полюса выключателя после отключения тока.Форма волны восстанавливающегося напряжения зависит от реальной конфигурации схемы. Автоматический выключатель должен быть способен отключать заданный ток для всех восстановительных напряжений, значение которых остается ниже номинального TRV.

Расчетный межфазный ток отключения автоматического выключателя

Когда автоматический выключатель разомкнут и проводники не синхронизированы, напряжение на клеммах может увеличиваться в сумме напряжений в проводниках (противостояние фаз). На практике стандарты требуют, чтобы автоматический выключатель прерывал ток, равный 25% тока короткого замыкания на клеммах, при напряжении, в два раза превышающем напряжение относительно земли.

Дополнительная литература

MCB (Миниатюрные автоматические выключатели) — Типы, рабочие характеристики и кривые отключения

Короче говоря, MCB — это устройство для защиты от перегрузки и короткого замыкания. Они используются в жилых и коммерческих помещениях. Точно так же, как мы тратим время на тщательную проверку перед покупкой бытовой техники, такой как стиральные машины или холодильники, мы также должны исследовать миниатюрные автоматические выключатели.

MCB — лучшая альтернатива предохранителю , поскольку он не требует замены при обнаружении перегрузки.В отличие от предохранителя, MCB легко эксплуатируется и, таким образом, обеспечивает повышенную безопасность и удобство эксплуатации без больших эксплуатационных расходов. Они используются для защиты цепей с более низким током и имеют следующие характеристики:

  • Номинальный ток — Амперы
  • Номинальный ток короткого замыкания — Килоампер (кА)
  • Рабочие характеристики — Кривые B, C, D, Z или K

Дон Не путайте миниатюрный автоматический выключатель с MCCB (автоматический выключатель в литом корпусе) или GFCI (автоматический выключатель замыкания на землю).

Миниатюрный автоматический выключатель — это распределительное устройство, которое обычно доступно в диапазоне от 0,5 А до 100 А . Его рейтинг короткого замыкания указан в килоамперах (кА), и это указывает на уровень его работоспособности.

Например, бытовой MCB обычно имеет уровень отказа 6 кА, тогда как тот, который используется в промышленном приложении, может нуждаться в блоке с возможностью отказа 10 кА.

Принцип работы миниатюрного автоматического выключателя (MCB)

Автоматические выключатели — это защитные устройства, которые предназначены для размыкания цепи в случае перегрузки или короткого замыкания.

Срабатывание автоматического выключателя в случае перегрузки и короткого замыкания:

  • Для защиты от перегрузки у них есть биметаллическая полоса , которая вызывает размыкание цепи.
  • Для защиты от короткого замыкания он имеет электромагнитный тип .
Внутри миниатюрного автоматического выключателя

Существует два режима работы миниатюрного автоматического выключателя : .

  1. Из-за теплового воздействия сверхтока
  2. Из-за электромагнитного эффекта сверхтока.

Температурный режим автоматического выключателя достигается с помощью биметаллической ленты. Всякий раз, когда через MCB протекает непрерывный электрический ток, биметаллическая полоса нагревается и отклоняется из-за изгиба.

Это отклонение биметаллической ленты освобождает механическую защелку. Поскольку эта механическая защелка прикреплена к рабочему механизму, она вызывает размыкание контактов миниатюрного автоматического выключателя .

Но во время короткого замыкания внезапное повышение электрического тока вызывает электромеханическое смещение плунжера, связанного с катушкой отключения или соленоидом MCB .

Плунжер ударяет по рычагу отключения, вызывая немедленное освобождение фиксирующего механизма, в результате чего размыкаются контакты выключателя. Это было простое объяснение принципа работы миниатюрного автоматического выключателя .

Механизм отключения в миниатюрном автоматическом выключателе

Как объяснялось в предыдущем разделе, автоматический выключатель имеет два типа механизма отключения.

  1. Тепловое срабатывание
  2. Магнитное срабатывание

Они объяснены в следующем разделе.

1. Тепловой расцепитель

Тепловой расцепитель защищает от токов перегрузки.

Тепловой блок основан на биметаллическом элементе, расположенном за перемычкой выключателя и является частью токоведущей цепи выключателя.

При перегрузке повышенный ток нагревает биметалл, вызывая его изгиб. Когда биметалл изгибается, он тянет за расцепитель, размыкающий контакты выключателя.

Время, необходимое для изгиба биметалла и срабатывания выключателя, обратно пропорционально току.

Магнитный и тепловой расцепитель MCB

2. Магнитный расцепитель

Магнитный расцепитель защищает от короткого замыкания. Магнитный расцепитель состоит из электромагнита и якоря.

При коротком замыкании через катушки проходит ток большой величины, создавая магнитное поле, которое притягивает подвижный якорь к неподвижному якорю.

Молоток прижимается к подвижному контакту, и контакты размыкаются.

Магнитный расцепитель

Типы автоматических выключателей на основе характеристик отключения

Автоматические выключатели подразделяются на различные типы в зависимости от отключения в диапазоне тока короткого замыкания.Важными типами автоматических выключателей являются следующие:

  1. MCB типа B
  2. MCB типа C
  3. MCB типа D
  4. MCB типа K
  5. MCB типа Z

Ток отключения и время срабатывания каждого из вышеперечисленных типов MCB приведены в таблице ниже.

Тип Ток отключения Время работы
Тип B От 3 до 5 раз больше тока полной нагрузки 0.04–13 с
Тип C От 5 до 10 раз больше тока полной нагрузки 0,04–5 с
Тип D От 10 до 20 раз больше тока полной нагрузки от 0,04 до 3 с <0.1 сек.
Инфографика о различных типах миниатюрных автоматических выключателей

1. MCB типа B

Этот тип MCB отключает ток полной нагрузки от 3 до 5 раз.

Устройства типа B в основном используются в жилых помещениях или в легких коммерческих приложениях, где подключенные нагрузки — это в основном осветительные приборы, бытовые приборы с в основном резистивными элементами.

MCB типа B

Также используется для компьютеров и электронного оборудования с очень низкими пусковыми нагрузками (проводка ПЛК).Уровни импульсного тока в таких случаях относительно низкие.

Функции MCB типа B — защита и управление цепями от перегрузок и коротких замыканий; защита людей и кабелей большой длины в системах TN и IT.

Области применения : жилое, коммерческое и промышленное.

Подробнее о MCB типа B

2. MCB типа C

Этот тип MCB отключает ток полной нагрузки от в 5 до 10 раз.

Используется в коммерческих или промышленных приложениях, где возможны более высокие значения токов короткого замыкания в цепи.

MCB типа C

Подключаемые нагрузки в основном индуктивные по своей природе (например, асинхронные двигатели) или люминесцентное освещение. Приложения включают небольшие трансформаторы, освещение, пилотные устройства, схемы управления и катушки.

Функции MCB типа C: защита и управление цепями от перегрузок и коротких замыканий; защита резистивных и индуктивных нагрузок с низким пусковым током.

Области применения : жилое, коммерческое и промышленное.

3. MCB типа D:

Этот тип MCB отключается между 10 и 20 -кратным током полной нагрузки.

Эти автоматические выключатели используются в специальных промышленных / коммерческих целях, где броски тока могут быть очень высокими. Примеры включают трансформаторы или рентгеновские аппараты, двигатели с большой обмоткой и т. Д.

Тип D MCB

Устройства с кривой D подходят для приложений, где ожидаются высокие уровни пускового тока.Высокая магнитная точка срабатывания предотвращает ложное срабатывание в высокоиндуктивных приложениях, таких как двигатели, трансформаторы и источники питания.

F Функции типа D MCB предназначены для защиты и управления цепями от перегрузок и коротких замыканий; защита цепей, питающих нагрузки с высоким пусковым током при замыкании цепи (трансформаторы, лампы пробоя).

Области применения : жилое, коммерческое и промышленное.

4. MCB типа K

Этот тип MCB отключает от 8 до 12 раз тока полной нагрузки. Они подходят для индуктивных нагрузок и нагрузок двигателя с высокими пусковыми токами.

MCB типа K

Прерыватели кривых K и D предназначены для двигателей, в которых допустимая токовая нагрузка увеличивается быстро и мгновенно во время «запуска».

Функциями MCB типа K являются защита и управление цепями, такими как двигатели, трансформатор и вспомогательные цепи, от перегрузок и коротких замыканий.

Преимущества MCB типа K:

Отсутствие ложных срабатываний в случае функциональных пиковых токов до 8xIn, в зависимости от серии; благодаря высокочувствительному термостатическому биметаллическому расцепителю характеристика K-типа обеспечивает защиту повреждаемых элементов в диапазоне сверхтоков; он также обеспечивает лучшую защиту 2 кабелей и линий.

Приложения : Торговля и промышленность.

5. MCB типа Z:

Этот тип MCB отключается от в 2–3 раз при токе полной нагрузки.

Этот тип MCB очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

MCB типа Z

Функции MCB типа Z — это защита и управление электронными цепями от слабых и длительных перегрузок и коротких замыканий.

Области применения : Коммерческое и промышленное использование.

Все вышеперечисленные типы автоматических выключателей обеспечивают защиту от отключения в течение одной десятой секунды.

Это визуальная сводка кривых отключения (по стандарту
) и их типичных типов нагрузки.

Типы автоматических выключателей по количеству полюсов

Другой практический способ различения автоматических выключателей — это количество полюсов, поддерживаемых автоматическим выключателем. Исходя из этого, существуют следующие типы:

1. Однополюсный (SP) MCB
Однополюсный MCB

Однополюсный MCB обеспечивает переключение и защиту только для одной единственной фазы цепи.

2. Двухполюсный MCB
Двухполюсный MCB

Двухполюсный MCB обеспечивает переключение и защиту как фазы, так и нейтрали.

3. Трехполюсный (TP) MCB
Трехполюсный MCB

Трехфазный миниатюрный автоматический выключатель обеспечивает переключение и защиту только трех фаз цепи, а не нейтрали.

4. Трехполюсный с нейтралью [TPN (3P + N) MCB]

MCB TPN имеет переключение и защиту для всех трех фаз цепи, а также нейтраль также является частью MCB в качестве отдельного полюса.

Трехполюсный + нейтраль — кривая C MCB

Однако нейтральный полюс не имеет какой-либо защиты и может только переключаться.

5. Четырехполюсный (4-полюсный) MCB

4-полюсный MCB аналогичен TPN, но, кроме того, он также имеет защитную разблокировку для нейтрального полюса.

4-полюсный MCB

Этот MCB следует использовать в случаях, когда существует вероятность протекания большого тока нейтрали через цепь, например, в случае несимметричной цепи.

Характеристики / кривые отключения MCB (Тип B, C и D)

В этом разделе вы узнаете характеристики или кривые отключения различных типов MCB. Понимание кривых срабатывания очень важно, чтобы помочь вам при выборе MCB.

Что такое кривые срабатывания?

Характеристическая кривая / кривая отключения — это графическое представление ожидаемого поведения устройства защиты цепи.

Устройства защиты цепей бывают разных видов, включая предохранители, автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели для защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.

Кривая отключения обычно строится между током расцепителя и временем отключения (Время — Кривая тока).Они предоставляются производителями устройств защиты цепей, чтобы помочь пользователям выбрать устройства, которые обеспечивают надлежащую защиту и производительность оборудования, избегая при этом ложных срабатываний.

Типичная характеристическая кривая MCB

Кривые срабатывания автоматического выключателя состоят из двух частей:

  1. Срабатывание защиты от перегрузки (устройство теплового отключения) : Чем выше ток, тем короче время срабатывания
  2. Срабатывание защиты от короткого замыкания защита цепи (магнитное расцепляющее устройство) : Если ток превышает пороговое значение этого защитного устройства, время отключения составляет менее 10 миллисекунд.

Первый наклонный участок кривой представляет собой графическое представление характеристик отключения теплового расцепителя. Эта часть кривой имеет наклон из-за характера теплового расцепителя.

Зоны отключения на кривой MCB

Вторая область — это время отклика магнитного отключения, которое различает каждую характеристику и для которой назначена идентификационная буква (Тип B, C, D, K, Z).

Классификация типа B, C или D основана на номинальном токе короткого замыкания, при котором происходит магнитное срабатывание для обеспечения кратковременной защиты (обычно менее 100 мс) от коротких замыканий.

Наиболее важными характеристиками MCB являются

  • Тип B.
  • Характеристики типа C.
  • Характеристики типа D.
1. Кривая типа B 2. Кривая типа C 3. Кривая типа D

Существуют некоторые специализированные кривые отключения, такие как

  • Кривая типа S
  • Кривая типа Z
  • Кривая типа K

Зачем нужны разные Кривые поездки?

Здесь возникает один вопрос: «Зачем нужны разные типы кривых срабатывания» или «Зачем нам нужны разные кривые срабатывания».

Назначение автоматического выключателя — достаточно быстрое срабатывание, чтобы избежать отказа оборудования или проводки, но не так быстро, чтобы давать ложные или ложные срабатывания.

Важно, чтобы оборудование с высокими пусковыми токами не приводило к срабатыванию автоматического выключателя без необходимости, и все же устройство должно срабатывать в случае тока короткого замыкания, который может повредить кабели цепи.

Нам нужны разные кривые отключения, чтобы сбалансировать правильную величину максимальной токовой защиты и оптимальную работу машины.Выбор автоматического выключателя с кривой срабатывания, которая срабатывает слишком рано, может привести к ложному срабатыванию. Выбор автоматического выключателя, который срабатывает слишком поздно, может привести к катастрофическому повреждению машины и кабелей.

Теперь мы рассмотрим каждую из трех важных кривых отключения, упомянутых выше.

1. Кривая типа B

Устройства типа B обычно подходят для бытового применения . Они также могут использоваться в легких коммерческих приложениях, где коммутационные перенапряжения незначительны или отсутствуют.

Тип B MCB Curve

Они предназначены для отключения при токах короткого замыкания, в 3-5 раз превышающих номинальный ток. Например, устройство на 10 А сработает при 30-50 А.

2. Тип C Curve

Устройства типа C являются нормальным выбором для коммерческих и промышленных приложений , где используется люминесцентное освещение, двигатели и т. Д.

Эти устройства предназначены для срабатывания при токе, превышающем номинальный в 5-10 раз (50-100 А для устройства на 10 А).

3. Кривая типа D

Устройства типа D имеют более ограниченное применение, обычно промышленное использование, где можно ожидать высоких пусковых токов .

Тип D MCB Curve

Примеры включают большие системы зарядки аккумуляторов, обмоточные двигатели, трансформаторы, рентгеновские аппараты и некоторые типы разрядного освещения. Устройства типа D рассчитаны на 10-20 срабатываний (100-200 А для устройства 10 А).

Нормальные характеристики кабеля относятся к непрерывной работе при определенных условиях установки. Кабели, конечно, будут пропускать более высокие токи в течение короткого времени без необратимых повреждений.


Автоматические выключатели типа B и C , как правило, можно выбрать для достижения времени отключения, которое защитит проводники цепи от нормальных импульсных токов в соответствии с BS 7671.Этого труднее достичь с устройствами типа D, которым может потребоваться более низкое полное сопротивление контура заземления (Zs) для достижения времени работы ячейки, требуемого Регламентом 413-02-08.

Различные типы кривых отключения в MCB

Источники импульсных токов

Импульсные токи в бытовых установках, как правило, низкие, поэтому устройства типа B подходят.

Импульсный ток или бросок тока в MCB

Например, пусковые токи, связанные с одной или двумя люминесцентными лампами или двигателем компрессора в холодильнике / морозильной камере, вряд ли вызовут нежелательное отключение.Люминесцентные и другие газоразрядные лампы создают импульсные токи, и хотя одна или две люминесцентные лампы вряд ли вызовут проблему, переключение ряда люминесцентных ламп блокируется.

В магазине, офисе или на заводе могут возникать значительные пусковые токи. По этой причине для этих приложений рекомендуются устройства типа C.

Величина импульсного тока будет зависеть от номинала лампы, системы запуска и типа ПРА, используемого в светильниках.

Авторитетный миниатюрный автоматический выключатель Производители составляют таблицы, в которых перечислено количество фитингов определенной марки и типа, которые могут использоваться с их устройствами.

Преодоление нежелательного отключения MCB

Иногда отказ вольфрамовых ламп накаливания может привести к срабатыванию миниатюрных автоматических выключателей типа B в бытовых и торговых помещениях.

Это вызвано высокими токами дуги, возникающими во время отказа, и обычно связано с лампами низкого качества.По возможности следует поощрять пользователя использовать лампы более высокого качества. Если проблема не устраняется, следует рассмотреть одно из перечисленных ниже измерений.

Устройство типа C может быть заменено устройством типа B, где сохраняется нежелательное срабатывание, особенно в коммерческих приложениях.

В качестве альтернативы можно использовать более высокий номинал типа B MCB , скажем, 10A, а не 6A.

Какое бы решение ни было принято, установка должна соответствовать BS 7671.

Переход с устройств типа C на тип D должен производиться только после тщательного рассмотрения условий установки, в частности, времени работы, требуемого нормативными требованиями.

Прочие соображения

Невозможно переоценить важность выбора автоматических выключателей от известных производителей. Некоторые импортные продукты, заявившие, что они обладают способностью к короткому замыканию 6 кА, во время испытаний потерпели неудачу.

В отличие от этого, процедуры испытаний, применяемые в лабораториях британской ASCTA (Ассоциация органов по тестированию короткого замыкания), являются одними из самых подходящих в мире.

Устройства типа B следует использовать только в домашних условиях, где высокие пусковые токи маловероятны, а устройства типа C следует использовать во всех других ситуациях.

Выбор подходящего MCB

Решение об использовании миниатюрных автоматических выключателей типа B, C или D для окончательной защиты цепей в жилых, коммерческих, промышленных или общественных зданиях может быть основано на нескольких простых правилах.

Однако понимание различий между этими типами устройств может помочь установщику преодолеть проблемы нежелательного отключения или сделать подходящий выбор там, где разграничительные линии менее четко определены.

Следует подчеркнуть, что основное назначение устройств защиты цепей, таких как миниатюрные автоматические выключатели и плавкие предохранители, заключается в защите кабеля после устройства.

Существенное различие между устройствами типа B, C или D основано на их способности выдерживать импульсные токи без отключения. Обычно это пусковые токи, связанные с люминесцентными и другими видами разрядного освещения, асинхронными двигателями, оборудованием для зарядки аккумуляторов и т. Д.

  • Типы B, C и D используются для максимальной токовой защиты кабелей в соответствии с IEC / EN 60898-1
  • Тип K для защиты двигателей и трансформаторов и одновременной максимальной токовой защиты кабелей с отключением от перегрузки на основе IEC / EN 60947-2
  • Тип Z для цепей управления с высоким импедансом, цепей преобразователя напряжения, и полузащита кабеля и одновременная защита кабелей от перегрузки по току с отключением от перегрузки в соответствии с IEC / EN 60947-2.

Как выбрать номинал MCB в конкретной цепи

Если правильный рейтинг не выбран для конкретной цепи, то при перегрузке не будет правильных функций MCB. Поэтому очень важно выбрать правильный рейтинг MCB, который можно легко рассчитать, как показано ниже.

Пример

Давайте представим, что у вас 4 вентилятора, один телевизор, 4 трубки, один V.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *