Site Loader

Содержание

Группы соединений обмоток трансформатора — Мегаобучалка

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток.Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

Рис.2

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).

Рис.3

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.



 

Рис. 4

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y — б.

Рис. 5

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки (а→b , b→c, с→a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

Рис. 6

 

Рис. 7

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме Y/Δ номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: Y/Y — 0 и Y/Δ-11. Они, как правило, и применяются на практике

9. Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т. е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и. напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электрических установок от аварийных режимов.

Измерительные трансформаторы подразделяют на два типа — трансформаторы напряжения и трансформаторы тока. Первые служат для включения вольтметров, а также других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов. Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сотен вольтампер; они рассчитаны для совместной работы со стандартными приборами (амперметрами на 1; 2; 2,5 и 5 А, вольтметрами на 100 и 100 √3 В).

10. Принцип работы сварочного трансформатора Большинство сварочных работ выполняется с применением понижающих сварочных трансформаторов. Это устройство, прежде всего, насыщает дугу необходимым количеством переменного тока. Поэтому, принцип работы сварочного трансформатора тесно связан с условиями, при которых осуществляется качественная сварка деталей. Для того, чтобы в полном объеме выполнять сварочные функции, кроме трансформатора, в конструкцию аппаратуры входит ряд дополнительных приборов. Именно они обеспечивают стабильность и качество электрической дуги между деталями и электродом.

Устройство сварочного трансформатора Конструкция сварочного трансформатора состоит из силового трансформатора и устройства для регулировки сварочного тока. Для того, чтобы повысить основные параметры дуги, могут использоваться различные дополнительные устройства. Сюда же входят переключатели, клеммы, провода. Комфорт и удобство обеспечиваются внешними рукоятками, позволяющими легко перемещать аппарат.
Чтобы сварочный процесс протекал нормально, фазы тока и напряжения должны иметь большой сдвиг. Тем самым, обеспечивается устойчивое зажигание электрической дуги переменного тока. При нагрузках в рабочем режиме, потребляемая мощность сварочного трансформатора значительно возрастает. Уменьшить потери магнитного поля можно путем различных регулировок, управляющих его рассеиванием. Принцип действия сварочного трансформатора В основе работы сварочной аппаратуры данного типа лежит максимальная отдача мощности. Вся конструкция рассчитана на высокое значение напряжения при бытовой или промышленной сварке. Тем не менее, все трансформаторы отличаются между собой, как по внешним параметрам, так и по способу регулировки сварочных режимов. При этом, должно обеспечиваться стабильное сварочное напряжение с необходимым значением. Ровное и постоянное горение дуги обеспечивается путем изменения напряжения. Одним из принципов работы аппаратуры является уменьшение стандартного напряжения электрической сети до режима холостого хода, при котором трансформатор поддерживает рабочее напряжение дуги. Как правило, это значение составляет от 60 до 80 вольт. Именно дуга позволяет уменьшить напряжение до определенного значения, позволяющего выполнять сварочные работы. Постоянство напряжения напрямую влияет на качество дуги. Если на входе в трансформатор образуются скачки напряжения, сварочная дуга может прерваться. Для сглаживания таких скачков используются специальные регуляторы или конденсаторы с большой емкостью, играющие роль фильтров.

11. Автотрансформатор — это трансформатор, у которого первичная и вторичная обмотки являются частью друг друга. Если автотрансформатор понижающий
, то вторичная обмотка является частью первичной. А если повышающий трансформатор, то первичная обмотка является частью вторичной.

Купить автотрансформатор можно в специализированных магазинах по продаже электротоваров.

Назначение автотрансформатора

Автотрансформаторы обычно используются для преобразования напряжения местной сети в какое-либо напряжение, необходимое для конкретного устройства. Например, преобразование из 220 вольт в 127, или наоборот. Также, их выгодно использовать тогда, когда вторичное напряжение не сильно отличается от первичного.

 

Проверка группы соединений и полярности выводов / Справка / Energoboard

Проверка группы соединений трехфазных трансформаторов и полярности выводов однофазных трансформаторов.

Группа соединения обмоток трансформатора характеризует угловое смещение векторов линейных напряжений обмотки НН относительно векторов линейных напряжений обмотки ВН. Проверка производится при монтаже, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Группа соединений должна соответствовать паспортным данным и обозначениям на щитке.

Проверить группу соединений обмоток трансформатора можно одним из следующих методов: двух вольтметров, фазометра (прямой метод), постоянного тока. Наибольшее распространение получил метод постоянного тока.

Метод постоянного тока. В соответствии с данным методом проверка группы соединения трехфазных трансформаторов производится следующим образом.

К одной паре зажимов обмотки ВН, например к зажимам «А-С», подключают кратковременно источник постоянного тока (аккумулятор) напряжением 2-12 В, а к зажимам обмотки НН «а-в», «в-с», «а-с» поочередно подключают магнитоэлектрический вольтметр (гальванометр) и определяют полярность выводов.

Для определения полярности необходимо произвести девять измерений для трех случаев питания обмотки ВН: «А-В», «В-С», «С-А». При этом надо определить отклонение стрелки прибора, подключенного поочередно к выводам НН: «а-в», «в-с», «с-а» (первая буква указывает, что к ней должен быть присоединен «плюс» батареи или прибора). Отклонение стрелки гальванометра вправо обозначается знаком плюс, влево — минус. Полученные результаты сравнивают с данными, приведенными в табл. 2.9.

При сборке схемы следует строго следить за тем, чтобы подключение батареи и гальванометра к зажимам трансформатора было выполнено по признакам полярности (см. рис. 2.5).

Аналогичный метод используется для однофазных трансформаторов, а также для трехфазных — при выведенной нулевой точке обмоток и при соединении обмоток Δ/Δ, когда соединение в треугольник выполняется вне бака трансформатора. Группу соединений определяют по схеме рис. 2.б путем поочередной проверки полярности зажимов «А-Х» и «а-х» магнитоэлектрическим вольтметром (нулевым гальванометром) при подведении к зажимам «А-Х» напряжения постоянного тока 2 — 12 В. Полярность зажимов «А-Х» устанавливают при включении тока. После проверки полярности зажимов «А-Х» вольтметр отсоединяют, не отсоединяя питающего провода, и присоединяют его к зажимам «а-х». Полярность зажимов «а-х» определяют в момент включения и отключения тока. Если полярность зажимов «а-х» при включении тока совпадает с полярностью зажимов «А-Х», а при отключении — противоположна, то трансформатор имеет группу соединения 0, в противном случае — группу соединения б.

Желательно, чтобы гальванометр имел нуль посередине шкалы. Можно пользоваться прибором, имеющим нуль с краю шкалы, но при этом необходимо стрелку сдвинуть с нуля поворотом корректора.

 

 

 

При возникновении сомнения в правильности обозначения зажимов гальванометра, их полярность можно установить, подключив к гальванометру через большое сопротивление элемент батареи. Плюсовым зажимом гальванометра будет тот, при подключении к которому плюса элемента стрелка гальванометра отклонится вправо. При отсутствии на месте измерения сопротивления достаточной величины, гальванометр можно загрубить путем его шунтирования медным проводом диаметром 0.1 — 0.5 мм. Следует иметь в виду, что отсчет отклонения стрелки прибора на выводах НН необходимо производить в момент замыкания выводов обмотки ВН на батарею. В противном случае это приведет к ошибочным данным (в момент размыкания цепи батареи показания прибора на стороне НН будут обратными).

Результаты опыта сводятся в таблицу, в которой отклонение стрелки вправо отмечается знаком плюс (+), влево — знаком минус (-), а отсутствие отклонения — нулем (0). Табл. 2.9 составлена при условии, что плюсовой вывод источника тока и плюсовой зажим гальванометра подключаются к зажиму, обозначенному в таблице первым. Так, например, при определении отклонения стрелки гальванометра, подключенного к зажимам «с-а», при подаче питания на зажим «А-В» «плюс» гальванометра должен быть подключен к зажиму «с» трансформатора, а «Плюс» источника питания к зажиму «А» трансформатора.

Таблица 2.9. Показания гальванометра при определении группы соединения обмоток трехфазных трансформаторов

Питание
подведено
к зажимам
Отклонение стрелки гальванометра, присоединенного к зажимам
аb са аb bc са аb са
  для группы 0 для группы 4 для группы 8
АВ + + +
ВС + + +
СА + + +
  для группы 6 для группы 10 для группы 2
АВ + + + + + +
ВС + + + + + +
СА + + + + + +
  для группы 11 для группы 3 для группы 7
АВ + 0 0 + + 0
ВС   + 0 + 0 0 +
СА 0 + + 0 + 0
  для группы 1 для группы 5 для группы 9
АВ + 0 0 + 0 +
ВС 0 + + 0 0 +
СА 0 + 0 + + 0

Прямой метод (фазометром). Последовательную обмотку однофазного фазометра через реостат подключают к зажимам одной из обмоток, а параллельную обмотку — к одноименным зажимам другой обмотки испытываемого трансформатора К одной из обмоток трансформатора подводят напряжение, достаточное для нормальной работы фазометра. По измеренному углу определяют группу соединений обмоток. При определении группы соединений трехфазных трансформаторов проводят не менее двух измерений (для двух пар соответствующих линейных зажимов трансформатора). Схема проверки представлена на рис. 2.7.
Метод двух вольтметров. При проверке группы соединения этим методом соединяют зажимы «А» и «а» испытываемого трансформатора подводят к одной из обмоток напряжение и измеряют последовательно напряжения между зажимами «Х-х» при испытании однофазных трансформаторов и между зажимами «в-В», «в-с» и «с-В» при испытании трехфазных трансформаторов. Измеренные напряжения (см. рис. 2.8) сравнивают с вычисленными по формулам табл. 2.10.

 

Определение группы соединения обмоток трансформаторов — Студопедия

Группой соединения обмоток трансформатора называется угол сдвига между векторами одноименных линейных ЭДС первичной (ВН) и вторичной (НН) обмоток трансформатора.

1. Для характеристики относительного сдвига фаз линейных ЭДС обмоток ВН и НН вводится понятие группы соединения обмоток трансформатора.

2. Фазовый сдвиг между одноименными линейными ЭДС обмоток ВН и НН зависит от обозначения их выводов (концов), от направления намотки и от схемы соединения. Этот угол, как будет показано далее, кратен 30°.

Группа соединения обозначается целым положительным числом, получающимся от деления на 30° угла сдвига между линейными ЭДС одноименных обмоток ВН и НН трансформатора. Отсчет угла производят от вектора ЭДС ВН по направлению вращения часовой стрелки.

Трансформаторы, имеющие одинаковый сдвиг фаз между линейными ЭДС обмоток ВН и НН, относятся к одной и той же группе соединения.

В трехфазных трансформаторах схемы соединения Y, D, Z («звезда», «треугольник», «зигзаг») могут образовывать 12 различных групп со сдвигом фаз линейных ЭДС через 30°. В связи с этим на практике принято определять группу соединения с помощью стрелок на часовом циферблате (угол между любыми двумя цифрами кратен 30°). Это так называемый «часовой метод» определения группы соединения трансформатора.

Для определения группы соединения трансформатора по «часовому методу» необходимо совместить минутную стрелку вектором линейной ЭДС обмотки ВН, а часовую – с вектором линейной ЭДС обмотки НН. Далее обе стрелки поворачиваются так, чтобы минутная стрелка показывала на цифру 12, тогда часовая стрелка укажет час, соответствующий группе соединения трансформатора.


Рассмотрим определение группы соединения при помощи топографической векторной диаграммы на примере соединения обмоток трансформатора по схеме Y/ Y – 0.

Задавшись произвольной маркировкой выводов обмоток ВН и НН, и соединив электрически два одноименных зажима (например, A и a, рис.7), измеряют ЭДС .

Выбрав масштаб, строят векторную диаграмму линейных ЭДС первичной обмотки (ВН). Так как выводы A и а совпадают, то на диаграмме эти точки должны быть совмещены. Точка b строится следующим образом. Строится окружность радиусом, равным с центром в точке B. Далее строится еще одна окружность радиусом, равным с центром в точке С. Точкой пересечения этих окружностей и является точка b, которая находится на расстоянии от точки a. Аналогичным образом строится точка c, которая находиться на расстоянии от точки а. По углу сдвига между одноименными линейными ЭДС определяется группа соединения (в рассматриваемом случае Y/ Y – 0).


Схемы соединения обмоток трехфазных трансформаторов могут образовывать группы:

· Y/Y, D/D, D/Z образуют четные группы: 0, 2, 4, 6, 8, 10;

· Y/D, D/Y, Y/Z образуют нечетные группы: 1, 3, 5, 7, 9, 11.

При построении векторных диаграмм необходимо руководствоваться следующими правилами. Направление намотки всех обмоток считается одинаковым; векторы ЭДС обмоток ВН и НН, расположенные на одном стержне, совпадают по фазе, если в рассматриваемый момент времени ЭДС этих обмоток направлены к одноименным выводам, а если наоборот, то сдвинуты на 180°.

Трехфазные трансформаторы с соединением обмоток Y/Y, D/D, D/Z образуют группы 0 и 6, с соединением обмоток Y/D, D/Y, Y/Z – группы 11 и 5, если на каждом стержне магнитопровода размещены одноименные фазы.

Если у одной из стороны, например НН, сделать перемаркировку (не изменяя самих соединений) обозначений выводов (без изменения самих соединений): вместо a – b – c сделать с – a – b и затем b– c – a, то можно получить из группы 0 соответственно группы 4 и 8, из группы 6 – группы 10 и 2; из группы 11 – группы 3 и 7, из группы 5 – группы 9 и 1.

В России стандартизованы трехфазные трансформаторы Y/Yн – 0, Yн/D — 11 и Y/Zн – 11; однофазные 1/1 – 0.

Убедившись, что оба трансформатора принадлежат к одной группе, делается заключение о возможности включения их на параллельную работу.

Предположим, что два трансформатора, одинаковые по своим параметрам, но имеющие разные группы соединения обмоток включены на параллельную работу. Пусть первый трансформатор имеет группу соединения Y/Y – 0, а второй Y/D — 11. Тогда векторы линейных ЭДС вторичных обмоток будут сдвинуты на угол 30°, геометрическая сумма линейных ЭДС вторичных обмоток , уравнительный ток будет очень большим:

,

трансформаторы могут выйти из строя.

Параллельная работа трансформаторов

Собирается схема по рис.8. Следует опытным путем проверить соответствие маркировки. Для этого необходимо измерить напряжение между одноименными зажимами вторичных обмоток трансформаторов: . Одну пару одноименных выводов, например a – a1 соединить перемычкой. Если маркировка определена правильно, то напряжение между одноименными зажимами будет равно нулю, а между разноименными, например между a и b1 .После этого рубильник «П» можно замкнуть.

При снятии внешней характеристики следует изменять величину сопротивления нагрузки во вторичной цепи трансформаторов. Измерения производят в 5 – 6 точках, начиная от х.х. до .

Суммарный ток нагрузки

Показания приборов заносятся в табл.8. По полученным данным строится зависимость при .

Таблица 8

, В , А , А
       

Группы соединений обмоток трансформатора — Студопедия

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток.Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

Рис.2

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).

Рис.3

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.


Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.

Рис. 4

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y — б.


Рис. 5

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки (а→b , b→c, с→a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

Рис. 6

Рис. 7

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме Y/Δ номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: Y/Y — 0 и Y/Δ-11. Они, как правило, и применяются на практике.

При параллельной работе трансформаторов первичные их обмотки присоединяют к общей питающей сети, а вторичные к общей сети, предназначенной для электроснабжения приемников электрической энергии.

Вопрос 22. Понятие группы соединения обмоток трехфазного трансформатора

Группа соединения обмоток трансформатора определяется углом сдвига между векторами одноименных линейных ЭДС (например,EABиEabилиEBAиEba) обмоток высшего и низшего напряжений.

В трехфазном трансформаторе обмотка ВН обозначается прописными латинскими буквами: А, В, С – начала, X, Y, Z – концы. Обмотка НН строчными латинскими буквами: a, b, c – начала, x, y, z – концы. Чередование фаз А, В, С принято считать слева направо, если смотреть на трансформатор со стороны отводов обмотки ВН.

В большинстве случаев обмотки трехфазных трансформаторов соединяются либо в “звезду” (Y), либо в “треугольник” ( ) и реже в “зигзаг” (Z). Первые две схемы соединения трехфазных обмоток обозначаются прописными русскими буквами: соответственно У, Д.

Выбор схемы соединений зависит от условий работы трансформатора. Например, в сетях с напряжением 35 кВ и более выгодно соединять обмотки в звезду и заземлять нулевую точку, так как при этом напряжение проводов линии передачи будет в √3 раз меньше линейного, что приводит к снижению стоимости изоляции.

Рис.1

Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение. В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток.


Для обозначения группы (и соответственно угла сдвига) векторы линейных ЭДС уподобляют стрелкам часового циферблата. Вектор линейной ЭДС обмотки BН совмещают с минутной стрелкой часов и устанавливают неподвижно против цифры 12 (0). Вектор линейной ЭДС обмотки НН, совмещают с часовой стрелкой, и устанавливают против той цифры часового циферблата, которая определяет номер группы соединения, причем угол между стрелками равен углу сдвига между векторами одноименных линейных ЭДС. Возможно получение следующих групп соединения обмоток трехфазных трансформаторов: 0-я, 1-я, 2-я, … и 11-я группы. Этим группам соответствуют углы сдвига между векторами одноименных линейных ЭДС обмоток ВН и НН: 0°, 30°, 60°, и 330°.


Классификация магнитных систем и способов соединения обмоток трёхфазных трансформаторов. Группы соединения обмоток. Параллельная работа трансформаторов

Особенности конструкции.Трехфазные трансформа­торы — это, как правило, силовые трансформаторы мощностью от единиц до сотен тысяч кВА, используемые в электрических сетях и системах. Исключение составляют измерительные трансформаторы, имеющие небольшие мощности и предназ­наченные для подключения измерительных приборов и аппа­ратов релейной защиты и автоматики.

 

С точки зрения происходящих в трехфазных трансформа­торах физических процессов они ничем не отличаются от рас­смотренных выше однофазных: трехфазный трансформатор легко представить в виде совокупности трех однофазных трансформаторов. Более того, при мощностях более 10 МВА в фазе наряду с трехфазными трансформаторами применяют три высоковольтных однофазных трансформатора, имеющие некоторое преимущество при транспортировке и монтаже.

 

Трехфазное напряжение обычно преобразуют с помощью трехстержневых трехфазных трансформаторов, в которых первичная и вторичная обмотки каждой фазы расположены на общем стержне (рис. 2.21).

 

 

Рис. 2.21. Эскиз трехфазного трехстержневого трансформатора

 

Трехфазный трехстержневой трансформатор можно пред­ставить в виде трех одно­фазных трансформаторов, имеющих четвертый общий стержень, через который бу­дет проходить сумма пото­ков, создаваемых каждой об­моткой. Однако если на пер­вичные обмотки этих транс­форматоров подать систему симметричных трехфазных напряжений, то сумма пото­ков ФАB и ФC в любой мо­мент времени будет равна

нулю. Следовательно, трехфазный трансформатор можно вы­полнить без общего стержня для замыкания потоков отдель­ных фаз.

Такая конструкция обеспечивает в сравнении с тремя од­нофазными трансформаторами существенную экономию маг­нитных материалов, более компактна, обладает меньшей мас­сой. Расположение обмоток на общем стержне улучшает их магнитную связь и уменьшает потоки рассеяния. Таким обра­зом, при симметричном питающем напряжении и равно­мерной нагрузке (являющейся наиболее распространенной) все фазы трехфазного трансформатора находятся прак­тически в одинаковых условиях. Поэтому выведенные ранее формулы и схемы замещения для однофазного трансформа­тора справедливы и для трехфазного трансформатора. Име­ются, однако, особенности в режиме холостого хода, на кото­рый большое влияние оказывает схема соединения обмоток.



 

Способы соединения обмоток. Первичная и вторичная обмотки трехфазных трансформаторов могут быть соединены следующими способами: в «звезду с изолированной нейтралью» (обозначают значком Y), в «звезду с нулевым проводом» Y0 или Y, в «треугольник» (значок ∆), в «зигзаг с выведенным нулевым проводом». Наиболее широко используемые схемы соединения обмоток силовых трансформаторов, векторные диаграммы ЭДС на сторонах ВН и НН и условные обозначе­ния схем соединения приведены в табл. 2.1.

 

Таблица 2.1

 

Схема соединения 1 в табл. 2.1 называется звезда — звезда с нулевым проводом; 2 — звезда-треугольник; 3 — звезда с нулевым проводом — треугольник; 4 — звезда-зигзаг с нулевым проводом; 5 — треугольник-звезда с нуле­вым проводом.

Обычно обмотку высшего напряжения соединяют по схе­ме Y, что позволяет при заданном линейном напряжении иметь меньшее число витков в фазе. При соединении в «звезду» различают линейное и фазное напряжения. В симметричной системе линейное напряжение больше фазного в раз. При соединении в «треугольник» фазное напряжение равно ли­нейному. Поэтому трехфазные трансформаторы характеризу­ются двумя коэффициентами трансформации: фазным — рав­ным отношению числа витков фазы обмотки ВН к числу вит­ков фазы обмотки НН или же отношению фазных напряжений этих обмоток в режиме холостого хода, и линейным, равным отношению линейного напряжения обмотки ВН к линейному напряжению обмотки НН. Для схем соединения Y/Y и ∆/∆ линейный и фазный коэффициенты равны, для схемы Y0/∆ линейный коэффициент в больше фазного, для схемы ∆/Y фазный в больше линейного.

При соединении вторичной обмотки в зигзаг часть обмот­ки располагается на том же стержне, что и обмотка ВН, а другая — на соседнем стержне. Таким образом, фазное на­пряжение есть геометрическая сумма напряжений полуобмо­ток, составляющих катушку фазы. Соединение в зигзаг приме­няется в трансформаторах для вентильных преобразователей.

Из-за насыщения магнитной цепи ток холостого хода при синусоидальном магнитном потоке оказывается несинусоидаль­ным. Наряду с основной грамоникой фазные токи содержат и высшие, из которых важное значение имеет третья гармони­ка, причем токи третьей гармоники во всех трех фазах совпа­дают во времени:

i03A = i03B = i03C = I03m sin3ωt.

Наличие третьей гармоники для некоторых схем соедине­ния обмоток оказывает влияние на форму кривой потока и, соответственно, ЭДС.

От схемы соединения обмоток трехфазного трансформа­тора зависит наличие или отсутствие в них токов высших гармоник. Рассмотрим это явление для некоторых схем со­единения обмоток.

Если используется схема Y0/Y, то третья гармоника за­мыкается по нулевому проводу, ток холостого хода каждой фазы содержит третью гармонику и поток оказывается сину­соидальным.

При соединении Y/Y пути для замыкания токов третьей гармоники нет, поэтому он синусоидален, тогда как поток, со­держащий третью гармонику, искажается, что приводит к не­синусоидальности ЭДС, индуктированных в фазах. Однако третьи гармоники потоков фаз совпадают по времени, поэтому не могут замыкаться по магнитопроводу, а замыкаются через воздух и конструктивные элементы (бак, стяжные болты и т. д.) и вызывают небольшие дополнительные магнитные потери (5… 10% от основного потока). Эти потери следует учитывать для трансформаторов, мощность которых превосходит 1000 кВА. В силу небольшой амплитуды потоков третьей гармоники по­токи трансформатора близки по форме к синусоидальной.

 

Если используется схема Y/∆ или ∆/Y, то в обмотке, cоединенной в треугольник третьи гармоники ЭДС вызывают токи третьей гармоники, циркулирующей по обмоткам. Результирующий магнитный поток третьей гармоники незначите­лен, что приводит практически к избавлению от третьих гармо­ник в кривых потока и ЭДС, которые можно считать синусои­дальными. По этой причине обмотки трехстержневых транс­форматоров лучше всего соединять по схемам Y/∆ или Y0/∆. Силовые трансформаторы средней мощности при НН до 400 В можно без ощутимых потерь соединять по схеме Y/Y.

Группы соединения обмоток. Группа соединения обмо­ток определяется сдвигом по фазе между векторами линей­ных напряжений, измеренных на одноименных зажимах. Груп­пы соединений обозначают целыми числами от 0 до 11. Номер группы определяется величиной угла, на который отстает век­тор НН от вектора ВН, деленной на 30°. Например, углу между ЭДС первичной и вторичной обмоток, равному 180° соответ­ствует группа соединения — 6; углу 330° — группа соедине­ния 11 и т. д.

 

Проиллюстрируем это на примере соединения обмоток трехфазных трансформаторов по схеме Y/∆ (рис. 2.22).

 

 

Рис. 2.22. Схема соединения обмоток и векторная диаграмма ЭДС при соединении обмоток Y/∆-11

 

Построим векторную диаграмму ЭДС обмоток высшего ĒAB, ĒBC, ĒAC и низшего ĒаЬ, Ēbс, Ēас напряжений, совместив начала векторов ĒAВ и ĒаЬ (рис. 2.22,6). Группа соединения определяется путем сравнения фаз одноименных векторов ли­нейных ЭДС обмоток высшего и низшего напряжений и со­вмещения их положения с положением соответственно часо­вой и минутной стрелок, при этом часовая стрелка всегда ориентирована на 12 часов. Действительно, в нашем примере вектор ĒАВ, совпадающий с часовой стрелкой «показывает» 12, а вектор ĒаЬ, сдвинутый по отношению к вектору ĒАВ на 330° или —30°, указывает на 11 часов. Таким образом, схема транс­форматора, приведенная на рис. 2.22,a, соответствует одиннад­цатой группе соединения. Если векторы ЭДС совпадают, то говорят о нулевой группе соединения, если они противопо­ложны по направлению, то о шестой группе.

ГОСТ регламентирует основную группу соединения обмо­ток Y/Yo-0(с нулевым проводом у обмотки НН) для транс­форматоров всех мощностей и другие возможные группы соеди­нений Y/∆-11, У0/∆-11(с нулевым проводом у обмотки ВН). Отметим еще раз, что первый значок в обозначении группы указывает схему соединения обмоток высшего напряжения, второй — обмоток низшего напряжения, цифра — номер группы.

Для всех трансформаторов мощностью 25…630 кВА стан­дартом предусмотрена также группа соединения ∆/Y0-11с нулевым проводом обмотки НН.

Отметим особо, что на параллельную работу можно вклю­чать трансформаторы только с одинаковыми группами соеди­нения о чем подробнее изложено в следующем разделе.

 

Как определить начало и конец обмотки трансформатора: советы

Иногда случается, что есть трансформатор с большим количеством выводов без маркировки. Как его подключить, неизвестно. Если перепутать намотки или провода, оборудование может просто сгореть. Как определить начало и конец обмотки трансформатора, знают опытные электрики. Для того, чтобы установить характеристики, им достаточно мультиметра, плоской батарейки и лампы на 220 В.

Понятие начала и конца обмотки, обозначения по ГОСТ 11677-85

По сфере применения преобразователи напряжения делятся на промежуточные, измерительные, защитные, лабораторные. Электрический ток создает магнитное поле, направление которого зависит от направления тока. Необходимость определять начало и конец обмотки трансформатора возникает, если требуется проверить достоверность маркировки или определить характеристики при ее отсутствии.

Сначала немного теории. Обмотка может быть правая (с витками, расположенными по часовой стрелке) или левая (с витками, расположенными против часовой стрелки). Хотя понятия «начало» и «конец» условные, в процессе эксплуатации и при необходимости в ремонте они имеют значение, так как определяют полярность. Проверки проводятся, если нет данных производителя и паспорта.

Обмотка трансформатора

Порядок маркировки силового трансформаторного оборудования установлен ГОСТ 1167- 85. В однофазном трансформаторе начало обозначается буквой A (для высокого напряжения), a (для низкого напряжения), конец – буквой X, x. При наличии третьей катушки ее начало Am, конец Xm.

В трехфазных трансформаторах:

  • высокое напряжение – А, В, С; X, Y, Z;
  • среднее напряжение – Аm, Вm, Сm; Хm, Ym, Zm;
  • низкое напряжение – а, b, с; х, у, z.
  • При отводе нейтрали она обозначается как О, Оm и о.

Схема «в звезду» указывается как Y, в треугольник – Δ. При отводе нейтрали соединение определяется знаком Yн. Если обвивка высокого напряжения соединяются «в звезду», низкого – в треугольник, сочетание помечается как Y/Δ.

Обмотка трансформатора

Определение обмоток визуальным осмотром

Процесс определения начала и конца обмоток трансформатора следует начать с осмотра изоляции. Случается, что на ней есть схема, позволяющая определить полярность. На старых моделях указаны цифровые коды, значение которых можно узнать из справочников.

Если маркировки нет, определить полярность позволяет диаметр отрезков проводов, которые выпускаются для крепления. У провода первичной обвивки сечение меньше, если это понижающий преобразователь. У повышающего трансформатора все наоборот, но такое оборудование встречается редко.

В процессе производства преобразователей первая катушка, как правило, мотается первой, поэтому отводы располагаются ближе к стержню. Если трансформатор сетевой и небольшой, катушки располагаются на пластиковом каркасе, разделенном на 2 секции.

Отводы вторичной обвивки не обрабатываются, к отводам первой припаивается монтажный провод.

Обмотка трансформатора

Определение обмоток и отводов по сопротивлению

Визуальный осмотр дает первичную информацию, которую обязательно нужно проверять. Если отводов много, в первую очередь необходимо определять катушки. Для этого мультиметром в режиме омметра попарно прозваниваются все отводы. Если прибор показывает какое-то значение, их можно отнести к одной катушке.

Следующий шаг – определение первичной и вторичной обмотки. Если их две, мультиметр переводится в режим «прозвон», измеряется сопротивление в каждой катушке. У первичной сопротивление выше. Это явление определено особенностями конструкции. Первичная намотка создается из большого количества витков тонкого провода, вторичная – из небольшого количества витков толстого провода.

Если намоток много, их определение занимает некоторое время. Кроме мультиметра требуется бумага и ручка (для записи или зарисовки результатов измерений). Один щуп мультиметра располагается на любой вывод, вторым нужно коснуться любого другого. Если сопротивление есть, вывод из той же катушки.

Обмотка трансформатора

Если трансформатор предназначен для работы с несколькими напряжениями (110В, 127В, 220В), у первичной обмотки несколько отводов. При выдаче нескольких напряжений на второй катушке тоже несколько отводов.

После того, как определены все отводы для одной катушки, начинается поиск следующей. Один щуп мультиметра прикладывается к другому выводу, вторым проверяется сопротивление в оставшихся. Процесс продолжается, пока выводы сгруппируются по катушкам. Все значения необходимо записать. Исходя из результатов, рисуется схема преобразователя.

После разделения выводов по намоткам необходимо установить, где у каждой из них начало, где конец. Берутся 2 вывода одной намотки, помечаются (условно) как начало и конец. Измерительный прибор регулируется на предел единицы миллиампер и подключается к любой паре из другой намотки. Минус плоской батарейки 4,5 В присоединяется к отводу первой намотки, помеченному как конец. Далее нужно несколько раз плюсом батарейки коснуться условного начала и следить за тестером.

Обмотка трансформатора

При замыкании цепи между намоткой и батарейкой прибор должен реагировать. Если стрелка отклоняется к минусу, необходимо поменять полярность подключения ко второй намотке и еще раз замкнуть цепь. Теоретически стрелка должна отклониться на плюс. Если это так, то началом намотки является вывод, который соединен с плюсом прибора.

Этот способ можно применить в любой ситуации, когда возникает вопрос, как определить начало или конец обмотки трансформатора.

Дополнительное тестирование

Если имеются сомнения по поводу определения первичной и вторичной обмотки, нужно подключить к ней лампу на 220 В с любым напряжением. На первичной обмотке лампа не загорается или еле тлеет.
Другой признак правильного подключения – бесшумная работа трансформатора. Если при работе оборудование сильно вибрирует и шумит, оно подключено неверно.

Дополнительный признак – перегрев обмотки. Шум при работе не является стопроцентно верным показателем, если намотки неплотно прилегают к стержню.

Чтобы удостовериться в правильности выводов, необходимо зафиксировать катушку при помощи кусочка древесины или пластика.

Вибрацию и шум создают так же части сердечника, если они неплотно прилегают друг к другу. Их нужно стянуть скобой или болтом.

Обмотка трансформатора

Реализация трехфазный двухобмоточный трансформатор с настраиваемым подключением обмоток и геометрия сердечника

Тип матрицы индуктивности трехфазного трансформатора (две обмотки) является трехфазным трансформатор с трехполюсным сердечником и двумя обмотками на фазу. В отличие от блока Three-Phase Transformer (Two Windings), который моделируется тремя отдельными однофазные трансформаторы, этот блок учитывает муфты между обмотками разные фазы. Сердечник и обмотки трансформатора показаны на следующем рисунке.

Эта геометрия сердечника подразумевает, что фазная обмотка 1 соединена со всеми другими фазными обмотками (2 до 6), тогда как в блоке трехфазного трансформатора (две обмотки) (трехфазный трансформатор, использующий три независимых сердечника) обмотка 1 соединена только с обмоткой 4.

Модель трансформатора

Блок трехфазного трансформатора индуктивности типа (две обмотки) реализует следующие матричные отношения:

R 1 до R 6 представляют собой сопротивления обмоток.В члены самоиндукции L ii и взаимная индуктивность члены L ij вычисляются из соотношений напряжений, индуктивная составляющая токов возбуждения без нагрузки и реактивных сопротивлений короткого замыкания при номинальная частота. Два набора значений в прямой и нулевой последовательности позволяют расчет 6 диагональных членов и 15 недиагональных членов симметричной индуктивности матрица.

Когда параметр Тип сердечника установлен на Три однофазные жилы , в модели используются две независимые цепи с (3×3) R и L матрицы.В этом состоянии параметры прямой и нулевой последовательности идентичны. и вы указываете только значения прямой последовательности.

Собственные и взаимные члены матрицы (6×6) L получены из токов возбуждения (один трехфазная обмотка возбуждается, а другая трехфазная обмотка остается разомкнутой) и от реактивные сопротивления короткого замыкания прямой и нулевой последовательности X1 12 и X0 12 измерено с трехфазным обмотка 1 возбуждена, а трехфазная обмотка 2 замкнута накоротко.

При следующих параметрах прямой последовательности:

Q1 1 = Трехфазная реактивная мощность, потребляемая обмотка 1 без нагрузки, когда обмотка 1 возбуждается напряжением прямой последовательности Vном 1 с разомкнутой обмоткой 2

Q1 2 = Трехфазная реактивная мощность, потребляемая обмотка 2 без нагрузки, когда обмотка 2 возбуждается напряжением прямой последовательности Vном 2 с разомкнутой обмоткой 1

X1 12 = Прямая последовательность реактивное сопротивление короткого замыкания со стороны обмотки 1
, когда обмотка 2 короткозамкнутый

Вном 1 , Vном 2 = Номинальные линейные напряжения обмоток 1 и 2

Собственные и взаимные реактивные сопротивления прямой последовательности определяются как:

Самореактивные сопротивления нулевой последовательности X 0 (1,1), X 0 (2,2), и взаимное реактивное сопротивление X 0 (1,2) = X 0 (2,1) также вычисляются с использованием аналогичных уравнений.

Расширение следующих двух (2×2) матриц реактивного сопротивления в прямой последовательности и в нулевой последовательности

в матрицу (6×6), выполняется заменой каждого из четырех [ X 1 X 0 ] пар с помощью подматрицы (3×3) вида:

, где собственные и взаимные члены задаются следующим образом:

X s = ( Х 0 + 2 X 1 ) / 3
X м = ( X 0 X 1 ) / 3

Для моделирования потерь в сердечнике (активная мощность P1 и P0 в положительных и нулевой последовательности), дополнительные шунтирующие сопротивления также подключаются к клеммам одного из трехфазные обмотки.Если выбрана обмотка 1, сопротивления вычисляются как:

Блок учитывает выбранный вами тип подключения, и значок блока выглядит следующим образом: автоматически обновляется. Входной порт с пометкой N добавляется к блоку, если вы выберите соединение Y с доступной нейтралью для обмотки 1. Если вы просите доступную нейтраль на обмотке 2, создается дополнительный выходной порт с маркировкой n2 .

Ток возбуждения в нулевой последовательности

Часто ток возбуждения нулевой последовательности трансформатора с сердечником из трех ветвей предоставлено производителем.В таком случае разумную стоимость можно угадать, как объяснено. ниже.

На следующем рисунке показан трехфазный сердечник с одной трехфазной обмоткой. Только фаза B возбуждается, и напряжение измеряется на фазе A и фазе C. Поток Φ, создаваемый фаза B делится поровну между фазой A и фазой C, так что Φ / 2 течет в конечности A и в конечность C. Следовательно, в данном конкретном случае, если индуктивность рассеяния обмотки B будет равна нулю, напряжение, индуцированное на фазах A и C, будет -к.V B = -V B /2 . Фактически, из-за индуктивности рассеяния трех обмоток среднее значение индуцированной отношение напряжений k при последовательном возбуждении обмоток A, B и C должно быть немного ниже 0,5.

Предположим:

Z s = среднее значение трех собственные сопротивления
Z м = среднее значение взаимного сопротивления между фазами
Z 1 = прямая последовательность импеданс трехфазной обмотки
Z 0 = полное сопротивление нулевой последовательности трехфазная обмотка
I 1 = ток возбуждения прямой последовательности
I 0 = возбуждение нулевой последовательности ток

, где к = коэффициент индуцированного напряжения (при к чуть ниже 0.5)

Следовательно, I 0 / I 1 соотношение можно вывести из k :

Очевидно, что k не может быть точно 0,5, потому что это привело бы к бесконечный ток нулевой последовательности. Также, когда три обмотки возбуждаются нулевой последовательностью напряжения, путь потока должен вернуться через воздух и резервуар, окружающий железный сердечник. В высокое сопротивление пути потока нулевой последовательности приводит к высокому току нулевой последовательности.

Допустим, I 1 = 0,5%. Разумная стоимость для I 0 может быть 100%. Следовательно I 0 / I 1 = 200. Согласно уравнению для I 0 / I 1 Из приведенных выше данных можно вывести значение k . k = (200-1) / (2 * 200 + 1) = 199/401 = 0,496 .

Потери нулевой последовательности также должны быть выше потерь прямой последовательности из-за дополнительные потери на вихревые токи в резервуаре.

Наконец, значение тока возбуждения нулевой последовательности и значение потери нулевой последовательности не критичны, если трансформатор имеет обмотку, соединенную треугольником. потому что эта обмотка действует как короткое замыкание для нулевой последовательности.

Соединения обмоток

Трехфазные обмотки трансформатора могут быть соединены следующим образом способ:

  • Y

  • Y с доступной нейтралью

  • Заземленный Y

  • Дельта (D1), запаздывание по Y на 30 градусов

  • Дельта (D11) на 30, опережение по оси Y градусы

Примечание

Обозначения D1 и D11 относятся к следующему условию часов.Предполагается, что У опорного напряжения Фазор в полдень (12) на дисплее часов. D1 и D11 относятся соответственно до 1 PM (дельта-напряжение, отставание от напряжения Y на 30 градусов) и 11 AM (дельта-напряжение, опережающее Y напряжения на 30 градусов).

.

Что такое Transformer Vector Group? Определение и объяснение

Определение: Группа векторов трансформатора показывает разность фаз между первичной и вторичной сторонами трансформатора. Он также определяет расположение обмоток высокого и низкого напряжения трехфазных трансформаторов. Трехфазный трансформатор подключается различными способами. На основании подключения определяется векторная группа трансформатора.

Трехфазный трансформатор делится на четыре основные группы в соответствии с разностью фаз между соответствующим линейным напряжением на стороне высокого и низкого напряжения. Разность фаз — это угол, на который линия низкого напряжения отстает от напряжения высокой линии, и измеряется в единицах 30 ° по часовой стрелке. Этих групп

  • Группа №1 — без сдвига фаз
  • Группа № 2 — сдвиг фаз на 180 °.
  • Группа № 3 — (-30 °) сдвиг фаз.
  • Группа №4 — (+ 30 °) сдвиг фаз.

Соединение Y d 11 дает следующую информацию — Y указывает, что высокое напряжение соединено звездой, а d указывает, что низкое напряжение соединено треугольником. Цифра 11 указывает на то, что отставание низкого напряжения в линии, высокое напряжение в линии на 11 Χ 30 ° = 330 ° , измеренное от вектора высокого напряжения по часовой стрелке.

Разность векторов также можно измерить с помощью методов синхронизации.Считайте, что минутная стрелка часов показывает высокое напряжение, а обмотка низкого напряжения представлена ​​часовой стрелкой. Угол 30 ° — это угол между двумя соседними цифрами на циферблате часов, который принимается за единицу смещения циферблата.

phase-shift-of-transformer Когда часовая стрелка на часах на 12, то сдвиг фазы равен нулю. Когда часовая стрелка находится в положении 1, сдвиг фаз составляет -30 °. На 6 фазовый сдвиг 6 Χ 30º = 180º. Точно так же, когда часовая стрелка находится в положении 11, сдвиг фаз составляет 11 Χ 30º = 330º.

Цифры 0, 6, 1 и 11 в контрольном номере группы указывают сдвиг фазы от первичной к вторичной относительно часов на часах. Соединение, обозначенное цифрой D y 11 , представляет собой трансформатор «треугольник-звезда», в котором вектор линии низкого напряжения находится на уровне 11 и сдвинут по фазе на + 30 ° по отношению к соответствующему линейному напряжению на стороне высокого напряжения.

Примечание: Единственный трансформатор в той же группе может быть подключен параллельно. Например, трехфазные трансформаторы звезда-звезда могут быть подключены параллельно с другим трехфазным трансформатором, обмотки которого соединены по схеме Y-Y или ∆-∆.Трансформатор ∆-∆ не может быть параллелен трансформатору Y-∆.

.Подключение трехфазного трансформатора

— Circuit Globe

Трехфазный трансформатор состоит из трех трансформаторов, отдельных или объединенных одним сердечником. Первичная и вторичная обмотки трансформатора могут быть независимо соединены звездой или треугольником. Существует четыре возможных варианта подключения 3-фазной трансформаторной батареи.

  1. Подключение Δ — Δ (треугольник — треугольник)
  2. Υ — Υ (звезда — звезда) Подключение
  3. Δ — Υ (треугольник — звезда) соединение
  4. Υ — Δ (звезда — треугольник) соединение

Выбор подключения трехфазного трансформатора зависит от различных факторов, таких как наличие нейтрали для защиты заземления или подключения нагрузки, изоляция от земли и напряжения, наличие пути для прохождения третьей гармоники и т. Д.Ниже подробно описаны различные типы подключений.

1. Соединение треугольник-треугольник (Δ-Δ)

Соединение треугольником трех одинаковых однофазных трансформаторов показано на рисунке ниже. Вторичная обмотка a 1 a 2 соответствует первичной обмотке A 1 A 2 , и они имеют одинаковую полярность. Полярность клеммы a , соединяющей a 1 и c 2 , такая же, как и при соединении A 1 и C 2 .На рисунке ниже показана векторная диаграмма для отстающего коэффициента мощности cosφ .

delta-delta-connection-equation-1

phasor-diagram-of-delta-delta-connection-1

Ток намагничивания и падение напряжения на импедансах не учитывались. В сбалансированном состоянии линейный ток в √3 раз больше тока фазной обмотки. В этой конфигурации соответствующие линейное и фазное напряжение идентичны по величине как на первичной, так и на вторичной стороне.

Линейное напряжение вторичной обмотки находится в фазе с межфазным напряжением первичной обмотки с отношением напряжений, равным отношению витков.

Если соединение фазных обмоток поменять местами с обеих сторон, между первичной и вторичной системами получается разность фаз 180 °. Такое соединение известно как соединение 180º.

Соединение треугольником с фазовым сдвигом 180 ° показано на рисунке ниже. На векторной диаграмме трехфазного трансформатора показано, что вторичное напряжение противофазно первичному.

phase-shift-of-delta-delta-transformer

phase-shift-of-delta-delta-connection-of-transformer

Трансформатор треугольник-треугольник не имеет связанного с ним сдвига фазы и проблем с несимметричными нагрузками или гармониками.

Преимущества подключения трансформатора треугольник-треугольник

Ниже приведены преимущества конфигурации трансформаторов по схеме треугольник-треугольник.

  1. Трансформатор треугольник-треугольник подходит для сбалансированной и несимметричной нагрузки.
  2. При выходе из строя одного трансформатора оставшиеся два трансформатора продолжат подавать трехфазное питание. Это называется открытым дельта-соединением.
  3. Если присутствует третья гармоника, то она циркулирует по замкнутому пути и, следовательно, не появляется в волне выходного напряжения.

Единственным недостатком соединения треугольник-треугольник является отсутствие нейтрали. Это соединение полезно, когда ни первичная, ни вторичная обмотка не требуют нейтрали, а напряжение низкое или умеренное.

2. Звезда-звезда (Υ-Υ) Подключение трансформатора

Соединение звездой-звездой трех идентичных однофазных трансформаторов на каждой из первичной и вторичной обмоток трансформатора показано на рисунке ниже. Векторная диаграмма аналогична схеме соединения треугольник-треугольник.

star-star-conection-of-transformer

Фазный ток равен линейному току, и они синфазны. Напряжение сети в три раза превышает фазное напряжение. Между линейным и фазным напряжением существует разделение фаз на 30º. Сдвиг фаз на 180º между первичной и вторичной обмотками трансформатора показан на рисунке выше.

Проблемы, связанные с соединением звезда-звезда

Соединение звезда-звезда имеет две очень серьезные проблемы. Их

  1. Соединение Y-Y не подходит для несимметричной нагрузки при отсутствии соединения с нейтралью.Если нейтраль не предусмотрена, то при несимметричной нагрузке фазные напряжения будут сильно разбалансированы.
  2. Соединение Y-Y содержит третью гармонику, и в сбалансированных условиях эти гармоники равны по величине и фазе с током намагничивания. Их сумма в нейтрали звездного соединения не равна нулю, и, следовательно, это будет искажать магнитную волну, которая будет создавать напряжение с гармониками в каждом из трансформаторов
  3. .

Проблемы несимметрии и третьей гармоники соединения Y-Y могут быть решены за счет использования сплошного заземления нейтрали и использования третичных обмоток.

3. Соединение треугольником (Δ-Υ)

Соединение ∆-Y трехобмоточного трансформатора показано на рисунке ниже. Напряжение первичной линии равно напряжению вторичной фазы. Соотношение между вторичными напряжениями V LS = √3 V PS .

delta-star-connection-of-transformer

Векторная диаграмма соединения ∆-Y трехфазного трансформатора показана на рисунке ниже. Из векторной диаграммы видно, что напряжение вторичной фазы V и опережает напряжение первичной фазы V AN на 30 °.Аналогично, V bn ведет к V BN на 30º, а V cn ведет к V CN на 30º. Это соединение также называется соединением + 30º.

delta-star-coonnection-transformer

Путем изменения направления подключения с любой стороны можно сделать так, чтобы напряжение вторичной системы отставало от первичной системы на 30 °. Таким образом, соединение называется соединением -30 °.

4. Соединение звезда-треугольник (Υ-Δ)

Схема подключения трехфазного трансформатора звезда-треугольник показана на рисунке выше.Напряжение первичной линии в √3 раз больше напряжения первичной фазы. Напряжение вторичной линии равно напряжению вторичной фазы. Соотношение напряжений каждой фазы составляет star-delta-connection-equation-1

star-delta-connection-of-transformer-phase-shift

Следовательно, линейное напряжение соединения Y-∆ равно

star-delta-connection-equation-2

Векторная диаграмма конфигурации показана на рисунке выше. Между соответствующими фазными напряжениями существует фазовый сдвиг на 30 выводов. Точно так же между соответствующими фазными напряжениями существуют выводы 30 °.Таким образом, соединение называется соединением + 30º.

Фаза показывает соединение трансформатора звезда-треугольник для сдвига фазы 30 °. Это соединение называется — соединение 30 °. Это соединение не имеет проблем с несимметричной нагрузкой и гармониками третьего порядка. Соединение треугольником обеспечивает сбалансированную фазу на стороне Y и обеспечивает сбалансированный путь для циркуляции третьих гармоник без использования нейтрального провода.

ar-delta-connection-of-a-transformer

Открытое соединение треугольником или V-V

Если один трансформатор соединения треугольник поврежден или случайно разомкнут, то неисправный трансформатор удаляется, а оставшийся трансформатор продолжает работать как трехфазный блок.Рейтинг трансформаторного банка снижен до 58% от рейтинга реального банка. Это известно как открытая дельта или дельта V-V. Таким образом, в трансформаторе с открытой обмоткой используются два трансформатора вместо трех для трехфазной работы.

Пусть V ab , V bc и V ca будет напряжением, приложенным к первичной обмотке трансформатора. Напряжение, индуцированное во вторичной обмотке трансформатора или на его обмотке, составляет В или В. Напряжение, индуцированное на второй обмотке низкого напряжения, составляет В до В.Между точками а и с нет обмотки. Напряжение можно найти, применив KVL вокруг замкнутого пути, состоящего из точек a, b и c. Таким образом,

open-delta-connection

Лет, open-delta-transformer

Где V p — величина линии на первичной стороне.

open-delta-connection-equation

.

Реализуйте трехфазный трехобмоточный трансформатор с настраиваемым подключением обмоток и геометрия сердечника

Тип матрицы индуктивности трехфазного трансформатора (три обмотки) является трехфазным трансформатор с трехжильным сердечником и тремя обмотками на фазу. В отличие от блока Three-Phase Transformer (Three Windings), который моделируется тремя отдельными однофазные трансформаторы, этот блок учитывает муфты между обмотками разные фазы. Сердечник и обмотки трансформатора показаны на следующем рисунке.

Эта геометрия сердечника подразумевает, что фазная обмотка 1 соединена со всеми другими фазными обмотками (2 по 9), тогда как в блоке трехфазного трансформатора (три обмотки) (трехфазный трансформатор с использованием трех независимых сердечников) обмотка 1 соединяется только с обмотками 4 и 7.

Модель трансформатора

Блок трехфазного трансформатора с матрицей индуктивности (трехобмоточный) реализует следующие матричные отношения:

R 1 к R 9 представляют собой сопротивления обмоток.В члены самоиндукции L ii и взаимная индуктивность члены L ij вычисляются из соотношений напряжений, индуктивная составляющая токов возбуждения без нагрузки и реактивных сопротивлений короткого замыкания при номинальная частота. Два набора значений в прямой и нулевой последовательности позволяют расчет 9 диагональных членов и 36 недиагональных членов симметричной индуктивности матрица.

Когда параметр Тип сердечника установлен на Три однофазные жилы , в модели используются три независимые цепи с (3×3) R и L матрицы.В этом состоянии параметры прямой и нулевой последовательности идентичны. и вам нужно только указать значения прямой последовательности.

Собственные и взаимные члены матрицы (9×9) L получены из токов возбуждения (один трехфазная обмотка возбуждается, а две другие трехфазные обмотки остаются открытыми) и от реактивные сопротивления короткого замыкания.

В параметрах маски указываются следующие реактивные сопротивления короткого замыкания:

X 1 12 , X 0 12 — положительный и Реактивные сопротивления нулевой последовательности, измеренные при возбуждении трехфазной обмотки 1 и трехфазной обмотки 2 короткозамкнутый

X 1 13 , X 0 13 — положительный и Реактивные сопротивления нулевой последовательности, измеренные при возбуждении трехфазной обмотки 1 и трехфазной обмотки 3 короткозамкнутый

X 1 23 , X 0 23 — положительный и Реактивные сопротивления нулевой последовательности, измеренные при возбуждении трехфазной обмотки 2 и трехфазной обмотки 3 короткое замыкание

Предполагая следующие параметры прямой последовательности для трехфазных обмоток i и j (где i = 1, 2 или 3 и j = 1, 2 или 3):

Q 1i = Трехфазная реактивная мощность, потребляемая обмотка i без нагрузки, когда обмотка i возбуждается напряжением прямой последовательности Vnom i с разомкнутой обмоткой j

Q 1j = Трехфазная реактивная мощность, потребляемая обмотка j без нагрузки, когда обмотка j возбуждается напряжением прямой последовательности Vном j с разомкнутой обмоткой i

X 1ij = короткое замыкание прямой последовательности реактивное сопротивление со стороны обмотки i
при коротком замыкании обмотки j

Vном i , Vном j = номинальное линейное напряжение обмоток i и j .

Собственные и взаимные реактивные сопротивления прямой последовательности определяются по формуле:

Самореактивные сопротивления нулевой последовательности X 0 (я, я), X 0 (j, j), и взаимное реактивное сопротивление X 0 (i, j) = X 0 (j, i) также вычисляются используя аналогичные уравнения.

Расширение следующих двух матриц реактивного сопротивления (3×3) в прямой последовательности и в нулевой последовательности

в матрицу (9×9), выполняется заменой каждого из девяти [X 1 X 0 ] парами подматрицей (3×3) вида:

, где собственные и взаимные члены определяются как:

X s = ( Х 0 + 2 X 1 ) / 3
X м = ( X 0 X 1 ) / 3

Для моделирования потерь в сердечнике (активная мощность P1 и P0 в положительных и нулевой последовательности), дополнительные шунтирующие сопротивления также подключаются к клеммам одного из трехфазные обмотки.Если выбрана обмотка i, сопротивления вычисляются как:

Блок учитывает выбранный вами тип подключения, а значок блока — автоматически обновляется. Входной порт с пометкой N добавляется к блоку, если вы выберите соединение Y с доступной нейтралью для обмотки 1. Если вы просите доступную нейтраль на трехфазной обмотке 2 или 3, дополнительный выходной порт с маркировкой n2 или n3 генерируется.

Ток возбуждения в нулевой последовательности

Часто ток возбуждения нулевой последовательности трансформатора с трехполюсным сердечником не соответствует предоставлено производителем.В таком случае разумную стоимость можно угадать, как объяснено. ниже.

На следующем рисунке показан трехфазный сердечник с одной трехфазной обмоткой. Только фаза B возбуждается, и напряжение измеряется на фазе A и фазе C. Поток Φ, создаваемый фаза B делится поровну между фазой A и фазой C, так что Φ / 2 течет в конечности A и в конечность C. Следовательно, в данном конкретном случае, если индуктивность рассеяния обмотки B будет равна нулю, напряжение, индуцированное на фазах A и C, будет -к.V B = -V B /2 . Фактически, из-за индуктивности рассеяния трех обмоток среднее значение индуцированной отношение напряжений k при последовательном возбуждении обмоток A, B и C должно быть немного ниже 0,5

Предположим:

Z s = среднее значение трех собственное сопротивление
Z м = среднее значение взаимного сопротивления между фазами
Z 1 = прямая последовательность импеданс трехфазной обмотки
Z 0 = полное сопротивление нулевой последовательности трехфазная обмотка
I 1 = ток возбуждения прямой последовательности
I 0 = возбуждение нулевой последовательности ток

, где к = коэффициент индуцированного напряжения (при к чуть ниже 0.5)

Следовательно, I 0 / I 1 Соотношение можно вывести из k :

Очевидно, что k не может быть точно 0,5, потому что это приведет к бесконечный ток нулевой последовательности. Также, когда три обмотки возбуждаются нулевой последовательностью Напряжение, проистекающее из потока, возвращается через воздух и резервуар, окружающий железный сердечник. Высота реактивность пути потока нулевой последовательности приводит к высокому току нулевой последовательности.

Допустим, I 1 = 0,5%. Разумная стоимость для I 0 может быть 100%. Следовательно I 0 / I 1 = 200. Согласно уравнению для I 0 / I 1 Из приведенных выше данных можно вывести значение k . k = (200−1) / (2 * 200 + 1) = 199/401 = 0,496 .

Потери нулевой последовательности также выше, чем потери прямой последовательности из-за дополнительные вихревые потери в резервуаре.

Наконец, значение тока возбуждения нулевой последовательности и значение потери нулевой последовательности не критичны, если трансформатор имеет обмотку, соединенную треугольником. потому что эта обмотка действует как короткое замыкание для нулевой последовательности.

Соединения обмоток

Трехфазные обмотки могут быть сконфигурированы следующим образом:

  • Y

  • Y с доступной нейтралью

  • Заземленный Y

  • Дельта (D1), треугольник, запаздывание на 30 градусов

  • Дельта (D11), разность опережения Y на 30 градусов

Примечание

Обозначения D1 и D11 относятся к следующему условному обозначению часов.Предполагается, что У опорного напряжения Фазор в полдень (12) на дисплее часов. D1 и D11 относятся соответственно до 1 PM (дельта-напряжение, отставание от напряжения Y на 30 градусов) и 11 AM (дельта-напряжение, опережающее Y напряжения на 30 градусов).

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *