Site Loader

Генераторы на логических элементах | Основы электроакустики

Электрические процессы, в мультивибраторах на транзисторах, операционных усилителях, логических элементах, аналогичны. Структурно они также строятся по схемам: 2 транзистора по схеме ОЭ или 2ЛЭ с отрицанием типов И-НЕ, ИЛИ-НЕ, включенных последовательно. Мультивибратор имеет два временно устойчивых состояния: один ЛЭ (микросхема) закрыт, другой – открыт и наоборот. Параметры времязадающих RC-цепей определяют частоту мультивибратора.

Для построения мультивибраторов на потенциальных логических элементах (ПЛЭ) могут использоваться элементы ИЛИ-НЕ, И-НЕ. Для многовходовых элементов неиспользуемые входы объединяют, однако при этом возрастает входная емкость и уменьшается входное сопротивление, либо подключают их для элемента И-НЕ на +ЕПИТ, для элемента ИЛИ-НЕ на общую шину.

Принципиальная схема мультивибратора на элементах И-НЕ приведена на рис. 16.19. Время формирования импульса и паузы определяется постоянными времени заряда конденсаторов

R1C1 и R2C2, разряд происходит через ускоряющие диоды VD1 и VD2

 

Рис. 16.19. Принципиальная схема мультивибратора на ПЛЭ «И-НЕ»

 

С1 заряжается, когда элемент DD2 находится в состоянии логической «1», при этом элемент DD1 – в состоянии логического «0». В момент переключения элемента DD2 в состояние «1», его выходное напряжение UВЫХDD2=3,5В (для серии К155) будет приложено ко входу DD1, т.к. в момент коммутации UC1- = 0, при этом выходное напряжение элемента
DD2
UВЫХDD1 падает до 0 В. В мультивибраторе имеет место 1-ое временно устойчивое состояние (DD2в состоянии логической «1», DD1 – в «0»). По мере заряда конденсатора С1 напряжение на входе DD1 уменьшается и в определенный момент времени достигает порогового уровня UПОР (UПОР»1,5В для серии К155), при котором DD1переключается в состояние логической «1», что соответственно переводит элемент DD2 в состояние логического «0». При этом происходит переход схемы во 2-ое временно устойчивое состояние. В этом состоянии конденсатор
С1
разряжается, а конденсатор С2 заряжается.

 

 

 

Рис. 16.20. Осциллограммы работы мультивибратора на ПЛЭ

 

 

Разряд конденсатора С1 через открытый диод VD1происходит быстро, поэтому момент следующего переключения определяется достижением UВХDD2=UПОР. Схема вновь переходит в 1-ое временно устойчивое состояние.

Существует насколько разновидностей генераторов на логических схемах. На рис.16.21 приведены схемы генераторов прямоугольных импульсов с времязадающей RC-цепью (а) и с времязадающим конденсатором (б).

 

Рис.16.21. Генераторы прямоугольных импульсов на логических элементах

 

Одновибратор на логических элементах И-НЕ (см. рис. 16.22) можно получить из схемы автоколебательного мультивибратора на тех же элементах (см. рис. 16.19), исключив из последней одну времязадающую цепочку. Процессы генерирования импульсов в одновибраторе аналогичны процессам в автоколебательном мультивибраторе.

Осциллограммы работы одновибратора приведены на рис. 16.23.

 

Рис. 16.22. Принципиальная схема одновибратора на ПЛЭ «И-НЕ»

 

Одновибратор имеет одно устойчивое и одно временно устойчивое состояние. В исходном состоянии устойчивого равновесия (до поступления запускающего импульса) логический элемент

DD1 закрыт и UВЫХ1 равно уровню логической «1». Такое состояние элемента DD1 обеспечивается подключением к его входу резистора R1 небольшого сопротивления. Логический элемент DD2 открыт высоким уровнем входного напряжения, поступающего на один из его входов. При этом конденсатор С1 разряжен.

При подаче на вход схемы в момент времени t1 отрицательного импульса запуска элемент DD2 переходит в закрытое состояние и напряжение на его выходе достигает уровня логической «1». Этот положительный скачок напряжения

UВЫХ2передается через конденсатор С1 на вход элемента DD1, закрывая его. Напряжение UВЫХ1 снижается до уровня логического «0». Конденсатор С1 при этом заряжается, напряжение на его обкладках увеличивается, а UВЫХ1 на резисторе R1 уменьшается. При UВЫХ1=UПОР (при t=t2) происходит опрокидывание одновибратора, как и в автоколебательном мультивибраторе. На этом заканчивается формирование импульса и одновибратор переходит в исходное устойчивое состояние равновесия.

Длительность выходного импульса и время нахождения схемы во временно устойчивом состоянии определяется постоянной времени заряда конденсатора

RC.

 

 

 

Рис. 16.23. Осциллограммы работы одновибратора на ПЛЭ

 

Генератор импульсов

Назначение этих устройств понятно из названия. С их помощью создают импульсы, которые обладают определёнными параметрами. При необходимости можно приобрести аппарат, изготовленный с применением фабричных технологий. Но в данной статье будут рассмотрены принципиальные схемы и технологии сборки своими руками. Эти знания пригодятся для решения разных практических задач.

Генератор

Как выглядит генератор импульсов Г5-54

Необходимость

При нажатии клавиши электромузыкального инструмента, электромагнитные колебания усиливаются и поступают на громкоговоритель. Слышен звук определённого тона. В этом случае используется генератор синусоидального сигнала.

Для слаженной работы памяти, процессоров, других составных частей компьютера необходима точная синхронизация. Образцовый сигнал с неизменной частотой создаётся тактовым генератором.

Чтобы проверить работу счётчиков, других электронных устройств, выявить неисправности, применяют единичные импульсы с необходимыми параметрами. Такие задачи решают с помощью специальных генераторов. Обычный ручной переключатель не подойдёт, так как с его содействием не получится обеспечить определённую форму сигнала.

Параметры выходных сигналов

Перед выбором той или иной схемы, необходимо точно сформулировать цель проекта. На следующем рисунке приведён в увеличенном виде типичный прямоугольный сигнал.

Схема

Схема прямоугольного импульса

Его форма не является идеальной:

  • Напряжение возрастает постепенно. Учитывают длительность фронта. Этот параметр определяется временем, за которое импульс вырастает от 10 до 90% амплитудной величины.
  • После максимального выброса и возврата к исходному значению возникают колебания.
  • Вершина – неплоская. Поэтому длительность импульсного сигнала замеряется на условной линии, которая проведена на 10% ниже максимального значения.

Также для определения параметров будущей схемы используют понятие скважности. Этот параметр вычисляется по следующей формуле:

S=T/t, где:

  • S – это скважность;
  • T – период повторения импульса;
  • t – длительность импульса.

При невысокой скважности кратковременный сигнал сложно фиксировать. Это провоцирует сбои в системах передачи информации. Если временное распределение максимумов и минимумов одинаковое, параметр будет равен двум. Такой сигнал называют меандром.

Меандр

Меандр и основные параметры импульса

Для упрощения в дальнейшем будут рассмотрены только генераторы прямоугольных импульсов.

Принципиальные схемы

На следующих примерах можно понять принципы работы самых несложных устройств этого класса.

Схемы

Схемы генераторов прямоугольных импульсов

Первая схема предназначена для формирования единичных прямоугольных импульсов. Она создана на двух логических элементах, которые соединены для выполнения функций триггера типа RS. Если кнопка находится в указанном положении, на третьей ножке микросхемы будет высокое напряжения, а на шестой – низкое. При нажатии уровни поменяются, но не возникнет дребезг контактов и соответствующие искажения выходного сигнала. Так как для работы требуется внешнее воздействие (в этом случае – ручное управление), это устройство не относится к группе автогенераторов.

Простой генератор, но выполняющий свои функции самостоятельно, изображён на второй половине рисунка. При подаче питания через резистор заряжается конденсатор. Реле срабатывает не сразу, так как после разрыва контакта, некоторое время течение тока через обмотку, обеспечивается зарядом конденсатора. После замыкания цепи этот процесс повторяется неоднократно, пока не будет отключено питание.

Изменяя номиналы сопротивления и конденсатора, можно наблюдать на осциллографе за соответствующими трансформациями частоты и других параметров сигнала. Такой генератор прямоугольных сигналов создать будет нетрудно своими руками.

Для того чтобы расширить диапазон частоты, пригодится следующая схема:

Генератор

Генератор с изменяемыми параметрами импульсов

Чтобы реализовать план, двух логических элементов недостаточно. Но подобрать одну подходящую микросхему нетрудно (например, в серии К564).

Параметры сигнала, которые можно изменить регулировкой своими руками, другие важные параметры

Элемент принципиальной схемыПредназначение и особенности
VT1Этот полевой транзистор использован для того, чтобы в цепи обратной связи можно было применить резисторы с высоким сопротивлением.
C1Допустимая ёмкость конденсатора – от 1 до 2 мкФ.
R2Величина сопротивления определяет длительность верхних частей импульсов.
R3Этот резистор – устанавливает длительность нижних частей.

Чтобы обеспечить стабильность частоты прямоугольных сигналов, используют схемы на кварцевых элементах:

Схема

Схема на кварцевом элементе со стабилизацией частоты

Для подключения больших нагрузок мощности, автогенераторов на логических элементах недостаточно. Пригодятся выходные узлы на транзисторах.

Генератор

Генератор с транзистором для подключения динамика, или другой нагрузки

В этой схеме вместо двух, использован один переменный резистор для регулировки скважности.

Видео. Высоковольтный генератор импульсов своими руками

https://www.youtube.com/watch?v=CIFFV7m0qiQ

Чтобы своими руками было проще собрать генератор импульсов определённой частоты, лучше использовать универсальную монтажную плату. Она пригодится для экспериментов с разными принципиальными электрическими схемами. После приобретения навыков и соответствующих знаний, будет нетрудно создать идеальное устройство для успешного решения конкретной задачи.

Оцените статью:

Генераторы импульсов на элементах ТТЛ, КМОП и ЭСЛ

В принципе, электрических колебаний представляет собой один или несколько усилительных каскадов, охваченных обратной связью с частотно-зависимыми сопротивлениями, которые и обеспечивают генерацию на требуемой частоте. В качестве частотіно-задающих элементов генераторов используют RC, LC, RLC-цепи, а также пьезокерамические и кварцевые резонаторы.

Схема генератора с RC частотно-задающей цепью и временные диаграммы, поясняющие его работу, приведены на рис. 24. Принцип его работы основан на процессе зарядки-разрядки конденсатора С через резистор R. Через этот резистор осуществляется ООС по постоянному току, а через конденсатор—ПОС по переменному. Предположим, что в начальный момент конденсатор разряжен, на выходе элемента DD1.2 действует напряжение низкого уровня — начнется заряд конденсатора (рис. 24, участок а). По мере его зарядки напряжение на нем увеличивается, а на выходе элемента DDL1—уменьшается (рис. 24, участок б). Когда напряжение на выходе элемента DD1.1 станет соответствовать низкому уровіню, выходное напряжение элемента DD1.2 начнет увеличиваться. Этот прирост напряжения через конденсатор поступает на вход элемента DD1.1, что приводит к резкому уменьшению его выходного напряжения, значит, к резкому увеличению выходного напряжения элемента DD1.2, что, в свою очередь, приводит к резкому уменьшению напряжения на выходе элемента DD1.1 и т. д. Таким образом, устройство скачком переключается в другое состояние — с напряжением высокого уровня на выходе элемента DD1.2 (рис. 24, участок в),

С этого момента начнется перезаряд конденсатора, в результате «его напряжение на входе элемента DDil.l уменьшается; а на его выходе — увеличивается (рис. 24, участок г). Когда напряжение на выходе элемента DD1.1 достигает напряжения высокого уровня, устройство скачком переключается в исходное состояние и процесс повторяется.

В таком генераторе можно использовать элементы ТТЛ, КМОП и ЭСЛ, но, в зависимости от конкретных элементов, на нее накладываются определенные ограничения. Для элементов КМОП сопротивление резистора может быть от единиц килоом до десятков мегаом, а емкость конденсатора — от десятков пикофарад до сотен микрофарад, а вот для элементов ТТЛ сопротивление резистора ограничено более узкими рамками, о чем уже говорилось ранее.

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Рис. 24. Генератор с RC частотно-задающей цепью (а) и графики (б), поясняющие его работу

Частоту , генерации можно определить по приближенной формуле

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Учитывая, что элементы КМОП имеют ограничения по частотному диапазону, рекомендовать их можно для генераторов на частоты до 2…4 МГц. Для более высокочастотных генераторов следует применять элементы ТТЛ или ЭСЛ. Перестройку частоты генераторов можно осуществлять с помощью переменных резистора или конденсатора. Температурная стабильность таких генераторов невысока и для ее повышения используют конденсаторы с определенным ТКЕ.

Устройство, собранное по схеме рис. 24, генерирует прямоугольные импульсы со скважностью примерно равной 2 (скважность — отношение периода следования импульсов к их длительности). Если же скважность импульсов необходимо изменять, сохраняя при этом частоту их следования, надо синхронно изменять цепи зарядки и разрядки конденсатора. Как это реализовать, показано на рис. 26. Здесь для регулировки скважности импульсов используют потенциометр R1. В среднем положении его движка, когда время зарядки и разрядки конденсатора СІ примерно одинаково, скважность близка к 2. При перемещении движка в ту или иную сторону время зарядки будет, например, уменьшаться, а разрядки — увеличиваться, это приведет к изменению скважности, при этом частота следования будет изменяться незначительно. В таком генераторе можно регулировать скважность примерно от 1,01 до 100.

Если необходимо получить сигнал синусоидальной формы или повысить стабильность частоты, то в часготно-задающей цепи надо использовать LC-контур, который будет выполнять еще и фильтрующую функцию, подавляя гармонические составляющие высших порядков. Схема такого варианта генератора [8] приведена на рис. 26,а, его удобно использовать для частот более 3 … 5 МГц. Сигнал снимают с катушки L2, он имеет синусоидальную форму. Катушка U1 имеет отвод от середины, а соотношение витков этих катушек должно быть как 1 :7. Схема генератора на элементе ТТЛ с частогно-задающей цепью на последовательном LC-контуре приведена на рис. 26,б [43].

Простой генератор на элементах КМОП и LC-контуре можно собрать по схеме рис. 27. В нем через резистор R1 и катушку индуктивности L1 осуществляется ООС ло постоянному току, благодаря чему при изменении питающего напряжения обеспечивается устойчивая работа генератора в широких пределах. Так как входное сопротивление элемента составляет сотни килоом — единицы мегаом, он слабо шунтирует контур C1L1C2, поэтому добротность контура будет достаточно большой, что обеспечивает хорошую форму сигнала. Чтобы нагрузка не оказывала существенного влияния на частоту генератора, связь с ней осуществляется через конденсатор СЗ небольшой емкости.

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Рис. 25. Принципиальная схема генератора с регулируемой скважностью импульсов

Общий недостаток описанных выше генераторов—сравнительно невысокая стабильность генерируемой частоты (10-3… 10-4 1/град). Для повышения стабильности применяют пьезокерамические и кварцевые резонаторы, включая их, например, вместо конденсатора в цепи ПОС (см. рис. 24), чем обеспечивают мягкий режим самовозбуждения. Однако при таком способе включения резонаторов возможно возникновение генерации на частотах, отличных от собственной частоты резонатора. Чтобы этого не произошло, используют различные способы фазовой или амплитудной селекции нужной частоты.

На рис. 28 приведена схема генератора с кварцевой стабилизацией частоты в диапазоне 2 … 10 МГц [9, 10]. Здесь конденсаторы С1 и G2 служат для подавления возможной паразитной генерации на частотах, отличных от частоты кварцевого резонатора BQ1. Для устранения влияния нагрузки на частоту генератора применен буферный элемент DD1.3. Настройка заключается в установке генерируемой частоты с помощью подбора емкости конденсатора СЗ. В табл. 2 приведены данные элементов для разных диапазонов частот. 

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Рис. 26. Принципиальные схемы LC-генераторов на элементах ТТЛ

Для повышения добротности контура емкость конденсатора С2 следует выбирать в 2—4 раза больше емкости конденсатора С1. Частоту генерации можно определить по формуле:

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

 

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Рис. 27. Принципиальная схема генератора на LC-контуре и элементе КМОП

 

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Рис. 28. Генератор на элементах ТТЛ с кварцевой стабилизацией частоты

 

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Генератор с кварцевой стабилизацией частоты можно собрать всего на одном элементе КМОП (рис. 29). В нем резистор R1 выводит элемент DD1.1 на линейный участок передаточной характеристики. Резистор R2 выполняет одновременно несколько функций: обеспечивает дополнительный сдвиг фаз в цепи ООС по переменному току, предотвращает возможность паразитного самовозбуждения, снижает мощность, рассеиваемую на кварцевом резонаторе, что благотворно сказывается на стабильности частоты, а также ослабляет шунтирующее действие элемента на кварцевый резонатор, что также повышает стабильность частоты. Благодаря этому генератор на частоту 500 кГц, собранный на элементе микросхемы К176ЛА7, имеет нестабильность частоты не более ±0,1 … 0,5-10_6 при изменении напряжения источника питания в пределах ±10 %.

Сопротивление резистора R1 может быть 0,1 … 20 МОм, причем при большем его сопротивлении увеличивается влияние паразитных наводок, а при меньшем — ухудшается стабильность частоты. Сопротивление резистора R2 может быть от единиц до десятков килоом. Конденсаторы С1 и С2 емкостью от нескольких пикофарад до долей микрофарады должны быть с минимально возможным ТКЕ. Для повышения стабильности іна выходе генератора полезно установить буферный каскад на элементе DD1.2.

Генераторы на элементах ТТЛ, КМОП и ЭСЛ

Рис. 29. Генератор на элементах КМОП с кварцевой стабилизацией частоты

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Генератор импульсов на логических элементах

Опубликовал admin | Дата 4 июня, 2012

В цифровых системах широкое применение имеют импульсные генераторы. Схема простого генератора на элементах 2и-не приведена на рис. 1.

      Нумерация выводов логических элементов соответствует микросхеме К176ЛА7, К176ЛЕ5. При условии, что в генераторе будут использованы микросхемы 176 и 561 серии, у которых два входных ограничительных диода, длительность импульсов и пауз будет равна: tи = tп = 0,7∙R2∙C1, Полный период — 1,4∙R2∙C1, а частота следования импульсов – f = 0,7/R2∙C1. Резистор R1 нужен для ограничения тока через входные диоды, но можно обойтись и без него. На рисунке 2 показана схема генератора на двух элементах, но частота такого генератора менее стабильна. Рис.3 – генератор возможностью отключения. На рис.4 приведена схема с возможностью регулировки скважности импульсов в широких пределах. Схема генератора пачек импульсов показана на рис.5.

     Стробируемый генератор, схема которого показана на рис.6, запускается передним фронтом управляющего импульса и формирует целое число периодов, последний период всегда завершается полностью. Для устранения неполного формирования последнего периода выходной сигнал подается на вход элемента DD1.1, если управляющий импульс заканчивается при напряжении низкого уровня на выходе элемента DD1.4, то выходное напряжение элемента DD1.1 сохраняется неизменным и генератор продолжает работать до окончания периода. Когда в конце периода выходное напряжение элемента DD1.4 становится высоким, элемент DD1.1 выключается и генерация прекращается. Генератор собран на микросхеме К155ЛА3. Иногда возникает необходимость в генераторе, который формирует определенное число импульсов. Схема такого генератора представлена на рис.7. В нем используются микросхемы 176 серии. Устройство состоит из ждущего мультивибратора DD1.1 DD1.2, необходимого для подавления дребезга контактов, генератора импульсов DD1.3, DD1.4 и десятичного счетчика с дешифратором – К176ИЕ8. Число генерируемых импульсов соответствует номеру нажатой кнопки.

Еще одну схему генератора можно посмотреть здесь.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:46 044


5.6 Генераторы импульсов. | Техническая библиотека lib.qrz.ru

5.6 Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц.

На рис. 116 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки SB1. На логических элементахDD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки SB1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 — напряжение низкого уровня; при нажатой кнопке — наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 117 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор — цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду.

Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых

5-61.jpg

эффектов. Его недостаток — необходимость использования конденсатора значительной емкости.

На рис. 118 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада.

Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15…17 В и токе 20…50 мА.

В генераторе импульсов, схема которого приведена на рис. 119, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 — длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1…2 мкФ. Сопротивления резисторов R2, R3 — 10…15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303

5-62.jpg

5-63.jpg

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора.

Схема приведена на рис. 120. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют галетным переключателем SA1. Диапазон частот, формируемых генератором, составляет 1…10 000 Гц.

На рис. 121 представлена схема генератора импульсов с регулируемой скважностью. Скважность, т. е. отношение периода следования импульсов к длительности напряжения высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рис. 122, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 форми-

5-64.jpg

руются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение.

Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов.

Иногда возникает необходимость в построении генератора, который формирует число импульсов, соответствующее номеру нажатой кнопки.

Принципиальная схема устройства (первый вариант), реализующего такую возможность, приведена на рис. 123. Функционально оно включает генератор импульсов, счетчик и дешифратор. Генератор прямоугольных импульсов собран на логических элементах DD1.3 и DD1.4. Частота следования импульсов около 10 Гц. С выхода генератора импульсы поступают на вход двоично-десятичного счетчика, выполненного на микросхеме DD2. Четыре выхода счетчика соединены со входами микросхемы DD3, представляющей собой дешифратор на 4 входа и 16 выходов.

При подаче питающего напряжения на правых (по схеме) контактах всех пятнадцати кнопок SB I-SB 15 будет напряжение низкого уровня, обеспечиваемое наличием низкоомного резистора R5. Это напряжение подается на вход ждущего мультивибратора, выполненного на элементах DD1.1, DD1.2 и конденсаторе С1, и

5-65.jpg

гасящего импульсы дребезга контактов кнопок. На выходе ждущего мультивибратора — напряжение низкого уровня, поэтому генератор импульсов не работает. При нажатии одной из кнопок конденсатор С3 мгновенно заряжается через диод VD1 до напряжения высокого уровня, в результате чего на выводах 2 и 3 счетчика DD2 появляется напряжение низкого уровня, устанавливающее его в рабочее состояние. Одновременно через замкнутый контакт нажатой кнопки напряжение высокого уровня подается на вход ждущего мультивибратора, и импульсы генератора поступают на вход счетчика. При этом на выходах дешифратора последовательно появляется напряжение низкого уровня. Как только оно появится на выходе, с которым соединен контакт нажатой кнопки, подача импульсов на вход счетчика прекратится. С вывода 11 элемента DD1.4 будет снято число импульсов, соответствующее номеру нажатой кнопки. Если продолжать удерживать кнопку нажатой, то через некоторое время конденсатор СЗ разрядится через резистор R2, счетчик DD2 установится в нулевое состояние и генератор выдаст новую серию импульсов. До окончания серии импульсов кнопку отпускать нельзя.

В устройстве использованы резисторы МЛТ-0,25; оксидные конденсаторы — К50-6. Транзисторы VT1, VT2 могут быть серий КТ312, КТ315, КТ503, КТ201, диод VD1 — серий Д7, Д9, Д311. Кнопки SB 1 -SB 15 — типов П2К, KM 1-1 и др.

Настройка числоимпульсного генератора заключается в установке подбором резистора R1 и конденсатора С2 требуемой частоты следования импульсов генератора, которая может быть в пределах от единиц герц до десятков килогерц. При частоте выше 100 Гц для выдачи полной серии импульсов требуется время не более 0,15 с, поэтому кнопку можно не удерживать пальцем — короткого нажатия ее вполне достаточно для формирования пачки импульсов.

На рис. 124 представлена схема еще одного числоимпульсного генератора (второй вариант), по принципу работы аналогичного описанному выше. Благодаря применению микросхем серии К176 схема генератора упростилась. Генератор формирует от 1 до 9 импульсов.

В двух описанных выше вариантах числоимпульсных генераторов необходимо удерживать кнопку нажатой до окончания серии импульсов, в противном случае на выход поступит неполная пачка импульсов. Это является недостатком. На рис. 125 приведена схема третьего варианта числоимпульсного генератора, в котором импульсы начинают вырабатываться после отпускания кнопки.

На микросхемах DD1, DD2 и диодах VD1-VD3 собран шифратор, преобразующий десятичное число в двоичный код. Сигналы с выходов шифратора подаются на входы D1, D2, D4, D8 микросхемы

5-66.jpg

DD4 (реверсивный счетчик) и на входы логического элемента 4ИЛИ-HE(DD3.1).

Рассмотрим работу генератора при нажатии кнопки SB3. Когда кнопка нажата, на выходах логических элементов DD1.1 и DD1.2 установится напряжение высокого уровня, а на выходах DD2.1, DD2.2 сохранится напряжение низкого уровня. На выходе логического элемента DD3.1 появится напряжение низкого уровня, которое через дифференцирующую цепь C1R11 поступит на вход С реверсивного счетчика DD4 и установит его в состояние 1100. При этом на выходе логического элемента DD3.2 установится напряжение низкого уровня, которое инвертируется логическим элементом DD5.1 и подготавливает к работе генератор на логических элементах DD5.2-DD5.4. После отпускания кнопки SB3 на выходе элемента DD3.1 появится напряжение высокого уровня, которое будет подано на выход 12 микросхемы DD5; начнет работать генератор. Импульсы с его выхода (вывод 11 микросхемы DD5) поступают на вход -1 реверсивного счетчика. При этом происходит уменьшение числа, записанного в счетчике, и на выходах 1, 2, 4, 8 счетчика последовательно появляются комбинации логических уровней 0100, 1000, 0000. При установке счетчика в состояние 0000 на выходе логического элемента DD3.2 установится напряжение высокого уровня, и генератор остановится. На выход поступит три импульса.

Частота импульсов генератора определяется элементами С2 и R 12 и может изменяться в широких пределах (от единиц герц до сотен килогерц).

5-67.jpg

В описанных здесь генераторах импульсов можно использовать резисторы МЛТ-0,25, конденсаторы К50-6, КМ-6. Транзисторы КТ315Б можно заменить транзисторами из серий КТ312, КТ315, КТ316, КТ503. Диоды — любые из серий Д7, Д9, Д311. Кнопки — типов П2К, КМ1 и др. Микросхемы могут быть серий К 133, К 134, К 136, К158, КР531, К555 для первого и третьего вариантов; К561 — для второго варианта.

 

⚡️Генератор логических импульсов 1Гц-10кГц | radiochipi.ru

При ремонте и налаживании схем на цифровых микросхемах может быть очень полезен генератор логических импульсов. В общем, это генератор прямоугольных импульсов, частоту которых можно регулировать в широких пределах.

Но нужно чтобы размах этих импульсов на выходе генератора соответствовал логическим уровням в той схеме, на которую их нужно подавать.

Если с ТТЛ все ясно, то величина напряжения логической единицы для МОП и КМОП логики может быть практически любой во всем допустимом напряжении питания микросхемы, определяясь величиной напряжения питания.

Ведь, практически, логическая единица у КМОП-микросхемы, это немного меньше напряжения питания. А напряжение питания у многих КМОП микросхем может быть от 3 до 18V, соответственно и напряжение логической единицы будет в широких пределах для схем с разным напряжением питания.

Поэтому, лабораторный генератор прямоугольных логических импульсов должен позволять регулировать не только их частоту, но и амплитуду согласно конкретному напряжению питания, которое присутствует в ремонтируемой или налаживаемой схеме. Если с частотой все относительно понятно, то с амплитудой возникают некоторые вопросы, в частности с тем, что для «чистоты эксперимента» нужно регулировать не столько амплитуду, сколько уровни нуля и единицы.

Проще всего это решить, если генератор прямоугольных импульсов сделать по схеме
мультивибратора на КМОП-микро- схеме, например, К561ЛЕ5, а амплитуду регулировать не при помощи какого-то регулятора выходного напряжения этого мультивибратора, а путем изменения
напряжения питания самой микросхемы, на которой сделан этот мультивибратор. То есть, например, в схеме, на которую мы собирается подавать импульсы с этого генератора, напряжение питания 6V, то мы прост выставляем напряжение питания микросхемы генератора точно таким же 6V, и на выходе получаем совершенно «правильные» логические импульсы, именно такие, как они должны быть при 6-вольтом питании.

Схема показана на рисунке. На элементах D1.1 и D1.2 микросхемы D1 собран мультивибратор. Он генерирует импульсы частотой от 1 Hz до 10 kHz в четырех диапазонах, 1-10Hz, 10-100Hz, 100-1000Hz и 1-10kHz. Диапазоны переключаются переключателем S1, который переключает конденсаторы С1-С4, емкостной составляющей частотозадающей цепи. А плавно частота внутри каждого диапазона регулируется переменным резистором R2. Ведь частота импульсов, генерируемых мультивибратором, построенным по такой схеме зависит от сопротивления между входом и выходом элемента D1.1 и емкости между входом D1.1 и выходом D1.2.

Емкость меняется ступенчато при помощи переключателя S1, а сопротивление регулируется плавно при помощи переменного резистора R2. Два других элемента микросхемы D1.3 и D1.4 служат только для исключения влияния выходных цепей на работу мультивибратора (ну, нужно же было нейти им применение). Амплитуда импульсов, а вернее, логический уровень, регулируется при помощи регулируемого стабилизатора напряжения питания на микросхеме А1.

При помощи этого стабилизатора напряжение питания микросхемы D1 регулируется в пределах от 3 до 16 V. Соответственно, и параметры выходного импульсного сигнала будут соответствовать логическим уровням при данном напряжении питания. Налаживание заключается в градуировке шкал сделанных вокруг переменных резисторов R2 и R4. Желательно чтобы эти резисторы были с линейным законом регулировки сопротивления.

При работе с прибором следует учесть, что с изменением логического уровня (напряжения питания микросхемы) несколько меняется и частота выходных импульсов.Монтаж выполнен на печатной плате, схема которой показана на рисунке выше. На рисунке печатных проводников дорожки показаны схематически, реально они шире. Сначала несмываемым маркером рисуют точки пайки, а потом их соединяют между собой линиями.

Как точки пайки, так и линии могут быть на много шире, чем на этом рисунке, важно только, чтобы они не сливались между собой. После, плату травят в растворе хлорного железа.Промывают бензином или спиртом чтобы смыть краску несмываемого маркера. После высыхания сверлят отверстия и переходят в монтажу.

Генераторы импульсов на цифровых КМОП микросхемах

Так, товарищи! Заканчиваем банкет, убираем рыбные закуски.
Не забываем, что на сегодняшнем мероприятии, посвящённом Дню пивовара России, мы обсуждаем наболевшее: «Исследование разнообразных схемотехнических построений и характеристик генераторов на ИМС структуры КМОП».

Развиваем сюжетную линию, плавно переходим к генераторам прямоугольных импульсов с несимметричной формой сигнала, а также генераторам с изменяемой скважностью выходных импульсов.

Для начала определимся — для чего, собственно, когда и с чем потреблять само понятие «скважность импульсного сигнала»?

Скважность импульса Тут как нельзя всё просто:   Скважность = Т/tи, где
Т-полный период колебаний,
tи — длительность импульса,
tп — длительность паузы.

При величине скважности, равной 2, импульсный сигнал имеет симметричную форму (меандр), во всех остальных случаях — несимметричную (не меандр).
Рис.1

Теперь также плавно, без рывков и резких падений, переходим с схемотехническим изыскам.

Отличие несимметричных генераторов от устройств, описанных на предыдущей странице, как правило, сводится к утяжелению схемы дополнительным резистором и парой диодов для разделения цепей заряда конденсатора разнополярными токами.

Скважность импульса
Рис.2


На Рис.2 приведена схема генератора импульсов с раздельной установкой длительности импульса и паузы между ними.
Параметры выходных импульсов генератора описываются следующими приблизительными формулами:

F = 0,77/((R1+R2)×C1))
Скважность импульсов = (R1+R2)/R1

Схема обладает весомым параметром потребления тока.
Значения этого параметра находятся в диапазоне от единиц до десятков мА, в зависимости от величин напряжения питания и частоты генерации.

Генератор на КМОП
Рис.3


Именно из-за этих соображений, рекомендуется собирать подобные схемы генераторов на цифровых микросхемах, представляющих собой триггер Шмитта (Рис.3).
Мало того, что они просты в реализации, так ещё и исключительно экономичны — при напряжении питания менее 6 В ток потребления составляет всего несколько десятков микроампер.
Частота генерации и скважность для приведённой схемы:

F = 0,86/((R1+R2)×C1))
Скважность импульсов = (R1+R2)/R1

Генератор на КМОП
Рис.4

В случае необходимости получить плавную регулировку скважности при неизменной частоте имеет смысл обратить внимание на схему, приведённую на Рис.4.
F = 0,77/((2*R1+R2)×C1))
Макс. скважность импульсов = R2/R1+2
Мин. скважность импульсов = 1+R1/(R1+R2)

Генератор на КМОП
Рис.5


Точно таким же образом реализуется плавная регулировка скважности для схем, построенных на триггере Шмитта (Рис.5).

F = 0,86/((2*R1+R2)×C1))
Макс. скважность импульсов = R2/R1+2
Мин. скважность импульсов = 1+R1/(R1+R2)


Формулы для расчёта частоты рассматриваемых генераторов соответствуют напряжению питания 5В и температуре окружающей среды 25°С.

Все представленные схемы могут быть реализованы на элементах И—НЕ, ИЛИ—НЕ, триггерах Шмитта, или инверторах.

Идём дальше к таблице для расчёта номиналов элементов генераторов, исходя из заданной частоты генерации и скважности выходных импульсов.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ БЕЗ ПЛАВНОЙ РЕГУЛИРОВКИ СКВАЖНОСТИ.

Бросив беглый взгляд на Рис.1, легко заметить, что значение скважности импульсов должно быть больше 1.
Теоретически величины сопротивлений резисторов R1 и R2 должны быть не менее 1кОм, однако на практике, для минимизации влияния выходного сопротивления микросхемы на частоту сигнала, рекомендуется выбирать значения сопротивления этих резисторов — не менее 10кОм. Поэтому послеживайте за рассчитанным значением R2, если оно не вписывается в нужный диапазон — повышайте номинал R1.

И под занавес —

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ C ПЛАВНОЙ РЕГУЛИРОВКОЙ СКВАЖНОСТИ.

R1 — не менее 1кОм, желательно — не менее 10кОм.
Пределы изменения длительности импульса — больше 1.

Генератор на КМОП

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *