Site Loader

Генератор электрических импульсов на таймере 555

Электрический импульс — это кратковременный всплеск напряжения или силы тока. То есть это такое событие в цепи, при котором напряжение резко повышается в несколько раз, а затем так же резко падает к исходной величине. Самый понятный пример — электрический импульс, заставляющий наше сердце биться. Самое же большое количество импульсов возникает у нас в нервных клетках головного и спинного мозга. Мы мыслим и решаем уроки благодаря электрическим импульсам! А что в электронике? В электронике импульсы применяются повсеместно. Например, в микроконтроллерах или даже в полноценных процессорах домашнего компьютера электрические импульсы задают ритм его работы. Они еще называются тактовыми, или синхро-импульсами. Порой быстродействие вычислительных машин сравнивают именно при помощи значений тактовой частоты. Все данные внутри электронных устройств тоже передаются при помощи импульсов. Наш интернет, проводной и беспроводной, сотовая связь и даже пульт от телевизора — все используют импульсный сигнал. Попробуем выполнить несколько заданий и на собственном опыте понять особенности генерации электрических импульсов. А начнем мы со знакомства с их важными характеристиками.

1. Период и скважность импульсного сигнала

Представим себе, что мы готовимся к встрече Нового Года и нам просто необходимо сделать мигающую гирлянду. Поскольку мы не знаем, как заставить её мигать самостоятельно, сделаем гирлянду с кнопкой. Будем сами нажимать на кнопку, соединяя тем самым цепь гирлянды с источником питания и заставляя лампочки зажигаться. Принципиальная схема гирлянды с ручным управлением будет выглядеть так:

Внешний вид макет

Собираем схему и проводим небольшой тест. Попробуем управлять гирляндой согласно нехитрому алгоритму:
  1. нажимаем на кнопку;
  2. ждем 1 секунду;
  3. отпускаем кнопку;
  4. ждем 2 секунды;
  5. переходим к пункту 1.
Это алгоритм периодического процесса. Нажимая на кнопку по алгоритму мы тем самым генерируем настоящий импульсный сигнал! Изобразим на графике его временную диаграмму. У данного сигнала мы можем определить период повторения и частоту. Период повторения (T) — это отрезок времени, за который гирлянда возвращается в исходное состояние. На рисунке хорошо виден этот отрезок, он равен трем секундам. Величина обратная периоду повторения называется частотой периодического сигнала (F). Частота сигнала измеряется в Герцах. В нашем случае: F = 1/T = 1/3 = 0.33 Гц Период повторения можно разбить на две части: когда гирлянда горит и когда она не горит. Отрезок времени, в течение которого гирлянда горит называется
длительностью импульса (t)
. А теперь самое интересное! Отношение периода повторения (T) к длительности импульса (t) называется скважностью. S = T / t Скважность нашего сигнала равна S = 3/1 = 3. Скважность величина безразмерная. В англоязычной литературе принят другой термин — коэффициент заполнения (Duty cycle). Это величина, обратная скважности. D = 1 / S = t / T В случае нашей гирлянды коэффициент заполнения равен: D = 1 / 3 = 0.33(3) ≈
33%
Этот параметр более нагляден. D = 33% означает, что треть периода занята импульсом. А, например, при D = 50% длительность высокого уровня сигнала на выходе таймера будет равна длительности низкого уровня.

2. Генерация импульсного сигнала при помощи микросхемы 555

Теперь попробуем заменить человека и кнопку, ведь мы не хотим весь праздник включать и выключать гирлянду каждые 3 секунды. В качестве автоматического генератора импульсов используем очень известную микросхему семейства 555. Микросхема 555 — это генератор одиночных или периодических импульсов с заданными характеристиками. По-другому данный класс микросхем называют таймерами. Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов. Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим, именно в нем таймер будет непрерывно генерировать импульсы с заданными параметрами. Для примера, подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так.

Принципиальная схема

Внешний вид макета

Примечание.
Конденсатор C2 в схеме можно не использовать. В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала. Делается это с помощью несложных формул, взятых из технической документации к микросхеме. T = 1/F = 0.693*(Ra + 2*Rb)*C;          (1) t = 0.693*(Ra + Rb)*C;          (2) Ra = T*1.44*(2*D-1)/C;          (3) Rb = T*1.44*(1-D)/C.          (4) Здесь F — частота сигнала; T — период импульса; t — его длительность; Ra и Rb — искомые сопротивления. Исходя из этих формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления). Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%. Чтобы обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые позволяют варьировать параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера! Собственно, в предложенной выше схеме мы это уже и сделали. Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень. Раз так, то нам нужно настроить сопротивления Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0.66, получаем: Ra = 3*1.44*(2*0.66 — 1)/0.0001 = 13824 Ом Rb = 3*1.44*(1-D)/0.0001 = 14688 Ом На самом деле, если мы будет использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется поставить последовательно несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности можем добавить еще два резистора по 200 Ом. В результате должно получиться что-то подобное: В этой схеме используются резисторы на 15 КОм.

3. Подключение группы светодиодов к таймеру 555

Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду. В новой схеме пять светодиодов будут включаться на 0.5 сек каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку. Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, используем биполярный транзистор, работающий с режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000. Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельно соединенных светодиодов должен быть равен I = 20 мА*5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид: 100 мА = (9В-2В)/R; отсюда R2 = 7В/0.1А = 70 Ом. Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом. А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее.

Принципиальная схема

Внешний вид макета

(adsbygoogle = window.adsbygoogle || []).push({});
Примечание. Конденсатор C2 в схеме можно не использовать. Собираем схему, подключаем батарейку и наблюдаем за результатом. Если все работает как надо, закрепим полученные знания, сделав несколько забавных устройств.

Задания

  1. Генератор звука. В схеме гирлянды заменить группу светодиодов на пьезодинамик. Увеличить частоту звука, например, до 100 Гц. Если поднять частоту до 15 кГц, то можно будет отпугивать комаров!
  2. Железнодорожный светофор. Подключить к таймеру два светодиода таким образом, чтобы один соединялся с таймером катодом, а второй анодом. Установить частоту импульсов — 1 Гц.

Заключение

Как уже говорилось, таймер 555 — очень популярная микросхема. Это объясняется тем, что большинству электронных устройств свойственны периодические процессы. Любой звук — это периодический процесс. ШИМ сигнал, управляющий скоростью двигателя — тоже периодический, причем с изменяющимся коэффициентом заполнения. И как уже говорилось, работа любого микроконтроллера и процессора основана на тактовом сигнале, имеющем очень точную частоту. На следующем уроке мы сделаем бинарные часы с помощью таймера и двоичного счетчика. Будет немного сложнее, но интереснее!

Полезные ссылки

Сборник проектов на таймере 555

Вконтакте

Facebook

Twitter

ТЕСЛА ГЕНЕРАТОР

   Давно хотел собрать достойную катушку Теслы и вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

   Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator – дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым — закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

   GDT лучше всего мотать на импортном кольце — Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Драйвер меняет направление тока в GDT

   Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

   Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая — нужно просто перевернуть ТТ.

   Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных… Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого – на TL494. Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Генератор прямоугольных импульсов — схема

Генератор прямоугольных импульсов - схема

   Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате…

Схема прерывателя на UC3843

Схема прерывателя на UC3843

   Надумал вернуться к дубовым и надежным, но малофункциональным 555. Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

   Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

   Плюсы: независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

   Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

   На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.

Перейдем от теории к практике

ТЕСЛА ГЕНЕРАТОР в корпусе БП

   Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор

   Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Диодные мосты прикрутил на радиатор для отвода тепла

Диодные мосты теслы

   Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Прерыватель Теслы собрал навесом

Прерыватель генератор

   Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

ТЕСЛА ГЕНЕРАТОР самодельный SSTC

   Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало… В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

готовая конструкция Тесла генератора

   Ну и несколько фоток с разрядом

Высоковольтный генератор Тесла на основе микросхемы и силовых транзисторов

   Теперь вроде бы все.

Высоковольтный генератор Тесла - молния

    Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

   P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта тут. Удачи, с вами был [)еНиС!

   Форум по SSTC

   Обсудить статью ТЕСЛА ГЕНЕРАТОР


Мультивибраторы на на таймере КР1006ВИ1(NE555)

радиоликбез

В современной аппаратуре широко применяют генераторы прямоугольных импульсов, выполненные на таймерах. При простоте схемы они обладают весьма высокими эксплуатационными характеристиками. Стабильность частоты генерации обеспечена принципом действия микросхемы.

Так как образцовое напряжение на оба компаратора DA1 и DA2 (рис. 2.36) задают внутренние делители напряжения R1—R3, пороги срабатывания компараторов сдвигаются пропорционально изменению питающего напряжения, и напряжение, заряжающее конденсатор С1, меняется в той же пропорции, компенсируя погрешность. Уход частоты генератора при изменении напряжения питания на 1 В не превышает 0,1%.

 

В литературе описано много генераторов на таймерах. Схема простейшего из них изображена на рис. 5.39, а. За счет объединения обоих управляющих входов — выводы 2 и 6 — микросхема работает как триггер Шмитта. Времязадающая RC-цепь состоит из одного резистора (R1) и одного конденсатора (С1) и может быть легко приспособлена для перекрытия диапазона частот.

В момент подачи напряжения питания на входе таймера будет напряжение низкого уровня, на выходе — высокого. Конденсатор С1 начинает заряжаться. Как только напряжение на конденсаторе достигнет значения 2/3 Uп сработает компаратор DA1. Он переключит внутренний триггер, и уровень выходного напряжения сменится на низкий. Конденсатор С1 начнет разряжаться. Когда напряжение на входе микросхемы снизится до 1/3 Uп, компаратор DA2 вызовет обратное переключение триггера и начнется новый цикл работы. В установившемся режиме генерации напряжение на конденсаторе колеблется в пределах от 1/3 Uп до 2/3 Uп (рис. 5.39,б),

Таймер КР1006ВИ1 устойчиво генерирует вплоть до частоты 1 МГц. Выходное напряжение, заряжающее конденсатор С1, немного меньше напряжения питания: U1вых=Uп—Uкэ, где Uкэ — падение напряжения на выходном биполярном транзисторе таймера. Это — недостаток рассмотренного варианта генератора. Вычитаемое напряжение Uкэ = 0,6…0,9 В служит причиной неравенства длительности стадий зарядки и разрядки, а также нестабильности частоты.

Включением дополнительного резистора R2 сопротивлением 1…2 кОм разность Uп—U1вых можно уменьшить, улучшив тем самым параметры генератора. Скважность становится практически равной 2, а уход частоты при изменении питания от 5 до 12 В (без нагрузки) менее 0,1%. Однако резистор R2 дополнительно нагружает источник питания при U0вых.

Период колебаний можно определить, приняв U1вых ≈Uп; U0вых ≈0В,

tз ≈ 0,7R1C1,              (5.16)

tp ≈ 0,7R1C1,             (5.17)

следовательно, период колебаний

T=tз+tp=1,4R1C1.      (5.18)

Вариант генератора на рис. 5.39, в работает подобно рассмотренному с тем лишь отличием, что зарядка конденсатора происходит, когда выходное напряжение имеет низкий уровень, и разрядка — высокий.

На частоту этих генераторов влияет сопротивление нагрузки, что является существенным их недостатком. Так, при напряжении питания Uп= 12 В (R2=1 кОм, см. рис. 5.39, а) изменение нагрузки в пределах от 10 до 1 кОм вызывает уход частоты на 2,5%.

На практике чаще употребляют генератор по схеме рис. 5.40, а свободный от этого недостатка. Здесь резистор R3 и выключатель SA1 служат для прерывания колебаний. При замкнутых контактах генерация прекращается. Если прерывания не требуется, эту цепь исключают, а вывод 4 таймера соединяют с плюсовым проводом питания, как обычно.

Зарядный ток конденсатора С1 протекает через резисторы R1 и R2. У транзистора VT1 таймера (см. рис. 2.36) коллектор соединен с выводом 7, поэтому транзистор в это время закрыт. Выходное напряжение имеет

Рис. 5.40. Мультивибратор на таймере КР1006ВИ1 с улучшенными параметрами:а — принципиальная схема; б — схема мультивибратора, позволяющая изменять скважность выходных сигналов

высокий уровень. После достижения на конденсаторе С1 напряжения 2/3 Un произойдет переключение внутреннего триггера, одновременно с переключением выходных транзисторов таймера откроется и транзистор VT1 и начнется разрядка конденсатора.

Разрядный ток течет через резистор R2 и выходной транзистор VT1. Так как на выводе 7 таймера напряжение практически равно нулю, подзарядки конденсатора не происходит. Когда напряжение на конденсаторе С1 уменьшится до 1/3 Un, произойдет очередное переключение, транзистор VT1 закроется и начнется новый цикл работы. В этом генераторе хронирующая цепь и выход таймера не связаны между собой. Для возникновения самовозбуждения следует обеспечить сопротивление R2≥3 кОм.

Временные диаграммы работы генератора такие же, как и у предыдущего.

Время зарядки конденсатора С1

(5.19)

а время разрядки

tp = 0,693R2C1 ≈ 0,7R2C1.    (5.20)

Период колебаний, таким образом,

T=tз+tр = 0,7(R1+ 2R2) С1,                                             (5.21)

а частота колебаний

f = 1/T= 1,44/ [ (R1 + 2R2) С1 ].    (5.22)

Важно отметить, что напряжение питания не входит в эти формулы, т. е. не влияет на частоту генерирования.

Так как R1 + R2>R2, длительность зарядки t1 (в течение которой Uвых имеет высокий уровень) всегда превышает длительность t2. Скважность выходного напряжения

Q= (t1+t2) /t1 = T/t1= (R1+R2)/R1.    (5.23)

Если желательно иметь симметричный выходной сигнал, следует параллельно резистору R включить диод VD1, выведя тем самым резистор R2 из цепи зарядки конденсатора. Еще один диод — VD2, включенный последовательно с резистором R2 (рис. 5.40,б), создает равные условия для разрядки, в результате чего отношение t1/t2 становится эквивалентным отношению R1/R2. Хронирующая цепь с диодами позволяет регулировать скважность в широких пределах.

Когда требования к симметрии выходных сигналов не очень высоки, можно ограничиться только одним диодом VD1.

Рис. 5.41. Схема мультивибраторов на таймере КР1006ВИ1, обеспечивающая выходные импульсы со скважностью Q = 2

 

Выходное напряжение строго симметричной формы со скважностью 2 можно получить, добавив последовательно с резистором RC-цепи полевой транзистор VT1 (рис. 5.41). Сопротивление этого транзистора в открытом состоянии должно быть, по меньшей мере, в сто раз меньше сопротивления зарядного резистора R1, если необходимо обеспечить ошибку в симметрии менее 1 %.

Когда выходное напряжение имеет высокий уровень, транзистор VT1 открыт и конденсатор С1 заряжается. Когда напряжение на конденсаторе достигнет 2/3 Un, сработает компаратор DA1 и напряжение на выходе упадет до низкого уровня. В этот момент полевой транзистор VT1 закроется, отключая RC-цепь от источника питания, а внутренний транзистор VT1 таймера (рис. 2.36) откроется, разряжая конденсатор. Когда напряжение на входах компараторов снизится до 1/3 Un, произойдет новое переключение и описанный процесс будет повторяться. Поскольку при разрядке конденсатора RC-цепь отключена от источника питания, продолжительность циклов зарядки и разрядки одинакова. Строгая симметричность выходных импульсов такого генератора зависит от точности, с которой подобраны сопротивления резисторов внутреннего делителя, создающего образцовые напряжения для компараторов. Оптимальное напряжение питания для генератора по схеме на рис. 5.41—от 12 до 15 В. При меньшем напряжении параметры транзистора VT1 сильнее сказываются на качестве работы. Частота генерации fген = 0,72/ (R1С1).

После включения питания, когда напряжение на конденсаторе С1 равно нулю, первый интервял выходного напряжения длится дольше, чем последующие в установившемся режиме. Продолжительность его равна t0= 1,1 (R1 + R2)C1.

Частотную модуляцию колебаний можно реализовать, подавая модулирующее напряжение на вывод 5 таймера, на котором действует образцовое напряжение компаратора DAI, Uобр = 2/3Un (рис. 5.42). При изменении образцового напряжения для обеспечения срабатывания компаратора напряжение на другом его входе — выводе 6 — должно измениться таким же образом. Поскольку напряжение на выводе 6 определяется временем зарядки и разрядки конденсатора С1, длительность интервалов tI и t2 будет

 

Рис. 5.42. Способ частотной модуляции колебаний мультивибратора на таймере КР1006ВИ1 (а) и его временные диаграммы (б)

меняться пропорционально модулирующему напряжению (рис. 5.42,б). Для успешной работы необходимо соблюдать условие fген >> fмод

 

Cмотрите также: Одновибратор на таймере КР1006ВИ1 (NE 555)


555-й таймер. Часть 2. Генератор прямоугольных импульсов с регулируемой скважностью на таймере NE555

Итак, в первой статье о 555-м таймере мы разобрались как этот таймер работает и как сделать на нём генератор прямоугольных импульсов. Однако у рассмотренного в той статье генератора есть один минус — у него нельзя менять частоту и скважность импульсов. В сегодняшней статье мы разберёмся как эту проблему можно решить.

Изменим нашу схему так, как на рисунке 1. Сделаем резистор R2 переменным, сопротивление его нижней части обозначим через X (тогда сопротивление верхней части будет R2-X). Кроме того с помощью диодов разделим цепи заряда и разряда.

Теперь наш конденсатор заряжается по цепи R1→(R2-X)→D2, а разряжается по цепи D1→X.

Соответственно, длительность импульса (которая у нас определяется временем зарядки конденсатора) будет определяться формулой:

tи = -ln(1/2)*(R1+R2-Х)*C ≈ 0,693*(R1+R2-X)C

А длительность паузы (которая определяется временем разрядки конденсатора) будет определяться формулой:

tп = -ln(1/2)*X*C ≈ 0,693*X*C

Формула, определяющая период импульсов примет вид:

T = tи + tп = -ln(1/2)*(R1+R2)*C ≈ 0,693*(R1+R2)*C

Как видно из последней формулы, — период импульсов не зависит от положения ползунка переменного резистора R2, но, в тоже время, изменяя положение этого ползунка, мы можем изменять скважность.

Есть у этой схемы один недостаток. Мы не сможем увеличивать скважность до бесконечности, поскольку не сможем сделать минимальную длительность импульса равной нулю. Даже если выкрутить ползунок резистора R2 до упора вверх, то в цепи заряда останется ещё резистор R1, который мы никак не можем убрать или сделать очень маленьким, поскольку при разряде (когда транзистор на 7-й ноге микросхемы открыт на землю) резистор R1 оказывается включен между землёй и питанием.

Однако, увеличить скважность можно не только уменьшая резистор R1, но и увеличивая резистор R2. Тут ограничением является то, что при этом уменьшаются токи через резисторы, которые для нормальной работы схемы должны быть на пару порядков выше входных токов таймера (для клонов на биполярниках входные токи измеряются единицами микроампер) и, кроме того, увеличение резистора R2 ведёт к увеличению общего периода импульсов.

РЕГУЛИРУЕМЫЙ ГЕНЕРАТОР ИМПУЛЬСОВ НА NE555

Устройство предназначено для генерации прямоугольных импульсов с регулируемой частотой и скважностью в диапазоне от 1 Гц до 200 кГц. Данный генератор приобретен на aliexpress.com всего за 0,6 доллара.

Модуль поставляется в антистатическом пакете.

Размер модуля 31 х 23 х 15 мм, масса 6,3 г. На плате имеется пара крепежных отверстий диаметром 3 мм с расстоянием между центрами отверстий 17 мм.

Все радиоэлементы располагаются с одной стороны платы.

Для подключения источника питания и внешних устройств служит трех контактный штырьковый разъем. Весь диапазон генерируемых частот разбит на четыре поддиапазона 1-50 Гц, 50 Гц – 1000 Гц, 1 — 10 кГц и 10 – 200 кГц. Переключение диапазонов осуществляется перемычкой. Точная настройка частоты генерации осуществляется подстроечным резистором. На фото ниже это нижний резистор (возле которого имеется надпись MH). Второй подстроечный резистор регулирует скважность импульсов. Продавец предписывает изменять частоту генерации только при отключенном питании.

Схема подключения генератора

Похожую принципиальную схему можно посмотреть в другой статье. На плате имеется светодиод, который мигает с частотой равной частоте генерации, в принципе с его помощью на нижнем поддиапазоне можно ориентировочно судить о частоте генерации, на остальных диапазонах, разумеется, это просто индикатор питания.

Напряжение питания по заявлениям продавца 5-12 В. В принципе модуль работоспособен и при напряжении 3-4 В. Ток потребления составляет 200-350 мА, возможно в связи с весьма малым сопротивлением нагрузки. При работе наблюдается заметный нагрев микросхемы. Автор обзора испытывал модуль при напряжении питания 3-7 В, видя быстрый рост тока потребления и нагрев микросхемы дальше увеличивать напряжение не решился. Без нагрузки ток, потребляемый устройством, составляет около 10 мА и большей частью определяется током свечения светодиода.

В целом свои функции устройство выполняет, однако длительная работа данного модуля не проверялась, особенно с нагрузкой типа динамика сопротивлением 8 Ом. Автор обзора: Denev

   Схемы для начинающих

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *