Site Loader

Содержание

Резисторы 10 Ом по 10 Вт и еще одна идея для применения

У каждого радиоэлектронщика рано или поздно наступает момент осознания, что без электронной нагрузки никуда.

Пришла посылка за 17 дней до глубинки в России. Все было запаковано в бумажный пакет с обклеенной пупыркой изнутри. Тут ломаться нечему, но почта России может сломать несломаемое.
Когда покупал, ошибся с номиналом. Изначально планировалось 20 двадцатиоммных резисторов в параллель, но и так сойдет. Можно было уменьшить количество резисторов и тогда пришлось бы серьезно думать об охлаждении. Я же надеялся упростить эту задачу до минимума, либо вообще обойтись только пассивным охлаждением.
Во внешнем виде ничего интересного, обычные параллелепипеды с размерами 47*9*9мм с «усами», размеры колеблятся ±1мм.

Строим небольшой кубик с помощью паяльника и припоя. Сначала две половинки по 10 резисторов параллельно и две половинки последовательно. Сорри за непотребный вид, все делалось чисто ради тестов.

В теории должно быть около 2 Ом. Но на практике получается 2,5Ом, значит в среднем, один резистор «сопротивляется на » 12,5Ом

Начнем тестирование.
Имитируем тест телефонного зарядного, подав 5,15В и ток 2,36А через лабораторный блок питания. Через 30 минут температура устаканивается в районе 67 градусов, что является приемлемой для меня.
Увеличиваем напряжение таким образом, чтобы выходная мощность примерно равнялась 30Вт. Цифра взята из потолка, именно такую мощность я хочу заявить для моей электронной нагрузки для длительной работы. Еще через 40 минут температура достигла 106 грудусов и я тест остановил. Очень много получилось, все таки придется добавить вентилятор.

Предоставляю небольшой таймлапс. Из-за автоотключения мультиметра, видео вышло некачественным, но что поделать


Подводя итоги по резисторам, можно отметить, что они достаточно точны для меня. Для тестирования блоков питания вполне подойдут. Если добавить преобразователь с функцией контроля тока и амперметр, то появляется неплохое устройство с плавной регулировкой нагрузки

Резистор С2-34-0,062 10 Ом-10 кОм 0,5-1%

Справочник содержания драгоценных металлов в радиодеталях, создан на основе справочных данных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах, этикетках и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.

Содержание драгоценных металлов в резисторе: С2-34-0,062 10 Ом-10 кОм 0,5-1%

Золото: 0
Серебро: 0.00248
Платина: 0
МПГ: 0
По данным: из переченя Роскосмоса

Какие драгоценные металлы содержатся в резисторах

В постоянных резисторах содержится только серебро, которое нанесено на выводы. С переменными резисторами все лучше, в них может содержатся золото, серебро, платина и сплавы палладия. Особо богаты на драгметаллы претензионные переменные резисторы.

Сопротивление резистора – его основная характеристика. Основной единицей электрического сопротивления является ом (Ом). На практике используются также производные единицы – килоом (кОм), мегаом (МОм), гигаом (ГОм). Драгоценные металлы в основном содержатся в переменных и построечных резисторах, в них часто используется палладий в виде бегунков или проволоки реохорды.

Типы резисторов

Существует три основных типа резисторов:
Переменный резистор – это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.
Постоянные резисторы, сопротивление у данного резистора не изменить. Как правило имеют только два вывода. В данных резисторах может содержаться только серебро, в виде посеребренных выводов.
Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.

Основные характеристики резисторов

Номинальное сопротивление (Ом, кОм, мОм).
Максимальная рассеиваемая мощность (0,25 Вт, 0,5 Вт, 1 Вт, и т.д.)
Допуск или класс точности (от этого значения зависит допустимый разброс параметров резистора).

Примеры буквенно-цифрового обозначения резистора

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:
47 Ом – 47 R;
47 кОм – 47 K;
47 МОм – 47 M.
Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:
0,47 Ом – R 47;
0,47 кОм – K 47;
0,47 МОм – M 47.
Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:
4,7 Ом – 4R7;
4,7 кОм – 4K7;
4,7 МОм – 4M7.
Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±7%, ±10%, ±40%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка…

Похожее

Резистор 1Вт 10 Ом 1% (10шт)

Описание товара Резистор 1Вт 10 Ом 1% (10шт) Особенности резистора 1Вт 10 Ом 5%

Резистор имеет мощность 1Вт и сопротивление 10 Ом при отклонении 5% и может применяться в цепях переменного, постоянного и импульсного тока. Активное сопротивление этого резистора не меняется в зависимости от частоты в отличие от конденсаторов и катушек индуктивности. Чтобы резистор успешно проработал весь срок службы, необходимо предварительно рассчитать максимальный ток, проходящий через резистор следующим образом. I2=P/R, где P-мощность резистора в Ваттах, R-сопротивление в Омах. Извлекая квадратный корень из результатов деления, получаем максимальное значение тока, при котором резистор может работать без разрушения. При превышении этого значения резистор перегреется и может безвозвратно выйти из строя.

Замена резистора. Заменить резистор 1Вт 10 Ом 5% придется в случае выхода из строя по причине превышения допустимой мощности или подаваемого напряжения. При замене резистора необходимо исходить из следующих ограничений. Если монтаж электронных компонентов на печатной плате очень плотный, то не стоит заменять резистор с таким же сопротивлением, но на большую мощность – он может просто не поместиться. Если же места достаточно, можно резистор заменить на другой с таким же сопротивлением, но более высокой мощности. Точность заменяющего резистора должна быть не меньше, чем у заменяемого. Если есть резисторы другого номинала, то можно резистор заменить путем соединения двух или более резисторов. При последовательном соединении нескольких резисторов, суммарное сопротивление вычисляется по формуле: R= R1+ R2+ R3…. Если вы заменяете резистор путем параллельного соединения других резисторов, то формула для расчета следующая: 1/R=1/R1+1/R2+1/R3+…

Монтаж резистора. Монтаж выводного резистора на печатную плату производится в предварительные подготовленные (просверленные) отверстия при помощи дрели. Печатные дорожки предварительно готовятся при использовании специальных химических средств для изготовления (травления) дорожек на печатной плате, например хлорного железа или персульфата натрия. Предварительно нужно укоротить кусачками выводы резистора. При пайке необходимо использовать припой и флюс.

Проверка резистора. Прежде чем измерить сопротивление резистора измерительным прибором, необходимо провести внешний осмотр. Если при эксплуатации выводного резистора была превышена рассеиваемая мощность, резистор может выйти из строя (сгореть). Такой резистор может иметь следы почернения, обугливания, и его необходимо заменить. Достоверный ответ об исправности резистора может дать только измерительный прибор.

Технические характеристики
  • Максимальная рассеиваемая мощность: 1 Вт;
  • Сопротивление: 10 Ом;
  • Отклонение сопротивления: 5%;

Резисторы 10 Ом по 10 Вт и еще одна идея для применения

В каждый радиоэлектронщик рано или поздно наступает момент осознания, что без электронной нагрузки никуда.

Пришла посылка за 17 дней до глубинки в России. Все было запаковано в бумажный пакет с обклеенной пупыркой изнутри. Тут ломаться нечему, но почта России может сломать несломаемое.
Когда покупал, ошибся с номиналом. Изначально планировалось 20 двадцатиоммных резисторов в параллель, но и так сойдет. Можно было уменьшить количество резисторов и тогда пришлось бы серьезно думать об охлаждении. Я же надеялся упростить эту задачу до минимума, либо вообще обойтись только пассивным охлаждением.
Во внешнем виде ничего интересного, обычные параллелепипеды с размерами 47*9*9мм с «усами», размеры колеблятся ±1мм.

Строим небольшой кубик с помощью паяльника и припоя. Сначала две половинки по 10 резисторов параллельно и две половинки последовательно. Сорри за непотребный вид, все делалось чисто ради тестов.

В теории должно быть около 2 Ом. Но на практике получается 2,5Ом, значит в среднем, один резистор «сопротивляется на » 12,5Ом

Начнем тестирование.
Имитируем тест телефонного зарядного, подав 5,15В и ток 2,36А через лабораторный блок питания. Через 30 минут температура устаканивается в районе 67 градусов, что является приемлемой для меня.
Увеличиваем напряжение таким образом, чтобы выходная мощность примерно равнялась 30Вт. Цифра взята из потолка, именно такую мощность я хочу заявить для моей электронной нагрузки для длительной работы. Еще через 40 минут температура достигла 106 грудусов и я тест остановил. Очень много получилось, все таки придется добавить вентилятор.

Предоставляю небольшой таймлапс. Из-за автоотключения мультиметра, видео вышло некачественным, но что поделать


Подводя итоги по резисторам, можно отметить, что они достаточно точны для меня. Для тестирования блоков питания вполне подойдут. Если добавить преобразователь с функцией контроля тока и амперметр, то появляется неплохое устройство с плавной регулировкой нагрузки

Резистор | Все своими руками

Здравствуйте уважаемый читатель блога Моя лаборатория радиолюбителя.

В сегодняшнем материале хотелось бы освятить довольно таки нужную тему о резисторах, в особенности вопрос о том, что такое резистор, возникает у новичков радиолюбителей. В этой обширной статейке я довольно таки подробно постараюсь объяснить, что такое резистор, как он выглядит и где применяется.

И так начнем повествование о резисторах, поэтому усаживаемся поудобнее за нашими мониторами, желательно сделать себе кофе и погрузиться в мир радиоэлектроники 🙂

Для более таки удобной навигации, вот менюшка разделов статьи
— Что такое резистор?
— Маркировка резисторов

— Мощность резисторов и рассеиваемая мощность
— Последовательное и параллельное соединение резисторов
— Делитель напряжения на резисторе
— Делитель тока на резисторе

Что такое резистор? Резистор – это пассивный элемент электрической схемы, создающий сопротивление электрическому току.
Где применяются резисторы? Применяются резисторы во всех схемах, и чаще, в количественном отношении, чем другие элементы схемы. С помощью резисторов регулируют значения тока и напряжения.
Единица измерения сопротивления – Ом. Измерения записываются в сторону увеличения: Ом, кОм(1000Ом)-килоом, мОм(1.000.000Ом)-мегаом и Гом(1.000.000.000Ом)-гигаом.

Типы резисторов:

Постоянные резисторы – это резисторы имеющие постоянное, неизменное, сопротивление независимое от воздействия окружающих воздействий, таких как свет, температура.
— так обозначаются на схемах постоянные резисторы и подписываются буквой R

Так и не только так выглядят резисторы в жизни

Переменные резисторы — это резисторы меняющее свое сопротивление в зависимости от положения движка переменного резистора.

— так обозначаются переменные резисторы в схемах

Переменный резистор
Ползунковый переменный резистор

Такие переменные резисторы используются в многой бытовой технике вокруг нас, старые телевизоры, где звук регулировали крутя ручку звука и подобные

Подстроечные резисторы — это те же самые переменные резисторы, но используемые для точных настроек токов и напряжений схем. Устанавливаются преимущественно на самих печатных платах.
— обозначение подстроечных резисторов на схемах

Подстроечные резисторы в жизни

Фоторезисторы – это резисторы меняющие свое сопротивление под действием света.
— обозначение фоторезистора на схеме

Фоторезисторы

Терморезисторы – резисторы меняющие свое сопротивление в зависимости от температуры, приложенной к нему
— схематическое обозначение терморезистор

Пример терморезисторов

Маркировка резисторов:

Маркировка по ГОСТу номинальный ряд
Все резисторы, выпускаемые нашей промышленностью, имеют свою особую сокращенную маркировку, дабы было удобно читать номинал на маленьких резисторах. Для сокращения используют буквы указывающие единицу измерения
E и R – единица Ома
К – единица кОм
M- мОм
А вот сотни единиц, обозначаются буквами, стоящими перед цифрами.
Например: 0,33Ом -E33, 33Ом-33E, 33кОм-33K, 330кОм-M33, 33мОм-33M.

Заграничный ГОСТ
Тут немного проще. По американским стандартам маркируются резисторы 3 буквами, две первые указывающие номинал, а третья — количество нулей добавляемых к номиналу
Например: 0,33Ом –R33, 33Ом-330, 33кОм-333, 330кОм-334, 33мОм-336.

Цветовая маркировка резисторов
На мой взгляд самая удобная и простая в использовании. Обозначается она разноцветными полосками на резисторе. Полосок бывает 4 и 5. Научится читать резисторы цветной маркировки очень просто:

-Первые две полосы указывают номинал резистора.

-Третья полоска, у резисторов с 4 полосами, указывает множитель, а у резисторов с 5 полосами, указывает третью цифру номинала.

-Четвертая полоса в 4 полосной маркировке говорит о точности номинала, а в 5 полосной указывает на множитель номинала.

-Пятая полоса указывает на точность

Что бы удобно было ориентироваться, вот табличка с цветовой кодировкой резисторов

ЦветЧислоМножительТочность
Черный01
Коричневый1101 %
Красный21002 %
Оранжевый31 000
Желтый410 000
Зеленый5100 0000,5 %
Синий61 000 0000,25 %
Фиолетовый710 000 0000,1 %
Серый8100 000 000
Белый91 000 000 000
Серебристый0,0110 %
Золотой0,15 %

К примеру, резистор номиналом 1 кОм с погрешностью 1% будет иметь код — коричневый черный красный коричневый

Мощность резисторов и рассеиваемая мощность

Каждый резистор, пропуская через себя напряжение, создает определенное падение напряжение, что обусловлено законом Ома (R=U\I).2/R

Для примера нам нужно рассчитать балластный резистор для блока питания 5В с током нагрузки 0,1А. Сначала по закону Ома рассчитаем, какое сопротивление резистора нам нужно R=5/0.1=50(Ом). Имея сопротивления резистора, рассчитываем мощность резистора P=5*0.1=0.5Вт.

То есть наш балластный резистор должен быть сопротивлением 50Ом и рассеиваемой мощностью 1ВТ, а 1 Вт — потому что всегда нужно брать резисторы с запасом в 1.5-2 раза, что бы небыло ситуаций как на этой очень удачно подобранной картинке 🙂

Сгоревший резистор

Поэтому запоминаем, что необходимо брать мощность резистора в 2 раза большей от расчетной!

Мощность резисторов на схемах указываются так:
— мощностью рассеивания 0,125 Вт
— мощностью рассеивания 0,25 Вт
— мощностью рассеивания 0,5 Вт
— мощностью рассеивания 1 Вт
— мощностью рассеивания 2 Вт
— мощностью рассеивания 5 Вт

Есть и далее продолжение маркировки, но это уже не обязательно, потому что это саамы ходовые мощности и больше редко используются в схемах

Последовательное и параллельное соединение резисторов
Так же для достижения нужного нам сопротивления мы можем подключать последовательно резисторы

, где общее сопротивление будет равно сумме всех сопротивлений и считается по формуле R=R1+R2+R3
И подключать резисторы параллельно

, где общее сопротивление будет равно сумме величин, обратно пропорциональных сопротивлению 1/R=1/R1+1/R2+1/R3. А при параллельном соединении 2-х резисторов удобно пользоваться этой формулой R=R1*R2/(R1+R2)

Делитель напряжения на резисторе

Делитель напряжения на резисторах часто используется в схемах для получения нужного напряжениях в отдельных цепях схемы.
Делитель напряжение, это два последовательно подключенные резистора. В нем выходное напряжение напрямую зависит от номиналов сопротивлений и питающего напряжения. Переменные резисторы так же являются делителями напряжения.

И прежде чем мы начнем рассматривать формулы, давайте выясним один очень важный момент.
Что бы четко рассчитывать нужное нам напряжение на выходе, используйте R2 сопротивлением в 100 раз меньше сопротивления нагрузки подключенной к выходу делителя

Рассмотрим самые нужные формулы для расчета делителя:

1. Нам известно входящее напряжение Uвх и сопротивление R1 и R2.
Uвых=Uвх*R2/(R1+R2)
Например, входящее напряжение 12В, резисторы R1=2.2к и R2=1к. Uвых=12В*1000Ом/3200Ом=3.75В

2. Известно нужное Uвых и сопротивление R1 и R2.
Uвх=Uвых*(R1+R2)/R2
Например, нам нужно получить 5 вольт для питания, резисторы R1=2.2к и R2=1к. Uвх=5В*3200Ом/1000Ом=16В

3. Определим значение R1 при известном Uвх, Uвых
R1=Uвх*R2/Uвых-R2
Например, входящее напряжение 12 вольт, выходящее напряжение 5В, значение R2=1к
R1= 12В*1000Ом/5В – 1000Ом=1400Ом

4. Определим значения R1 и R2, зная их суммарное сопротивление Rобщ и Uвх и Uвых
R2=Uвых*Rобщ/Uвх, R1= Rобщ-R2
Например R2=5В*3200Ом/12В=1333Ом, R1= 3200-1333=1867(Ом)

Это самые ходовый формулы, которые я использую уже около года, с тех пор, как только узнал о них

Делитель тока на резисторе

Делитель тока на резисторах необходим для того, что бы определенную нужную часть тока перевести в другое плече делителя и после вернуть его обратно.

Делитель тока это параллельно соединенные резисторы, делящие между собой протекаемый ток.2*R. P1=3.33*3.33*0.1=1.1(Вт), P2=1.66*1.66*0.2=0.55Вт

И на этой ноте можно заканчивать материал. Изучайте, понимайте, задавайте вопросы.
С ув. Admin-чек

Похожие материалы: Загрузка…

Как выбрать резистор

Продолжая тему грамотного выбора пассивных компонентов, рассмотрим различные типы резисторов, их достоинства и недостатки, особенности применения, а также наиболее популярные для них приложения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий резисторов, которые присутствуют в каталоге компании Терраэлектроника.

Рис. 1. Резисторы

Резисторы (Рис.1) представляют собой двухвыводные компоненты, применяемые для ограничения тока, деления напряжения и формирования временных характеристик цепей. Они используются совместно с такими активными компонентами, как операционные усилители, микроконтроллеры или интегральные схемы, и выполняют различные функции, например, смещение, фильтрацию и подтяжку линий ввода-вывода. Переменные резисторы могут применяться для изменения параметров схемы. Токочувствительные резисторы используются для измерений токов в электрических цепях.

Типы резисторов

Существует несколько различных типов резисторов, отличающихся по номинальной мощности, размерам, эксплуатационным качествам и стоимости. Наиболее распространенные типы — чип-резисторы (SMD-резисторы), выводные резисторы для монтажа в отверстия, проволочные резисторы, шунты (токочувствительные  резисторы) для измерения тока, термисторы и потенциометры. Ниже, для каждого типа резисторов представлены основные характеристики, наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 2. Чип-резисторы

Чип-резисторы (Рис. 2) предназначены для поверхностного монтажа. Они отличаются от выводных резисторов меньшими размерами, что делает их оптимальными для применения на печатных платах. Наиболее распространенными задачами smd-резисторов являются подтяжка портов ввода-вывода,  деление напряжения, ограничение тока. Резисторы также применяются в составе высокочастотных/ низкочастотных/ полосовых фильтров. Резисторы с нулевым сопротивлением  могут быть использованы в качестве джамперов для коммутации различных цепей.

Существует два типа SMD-резисторов:

  1. Тонкопленочные резисторы обычно используются в различных прецизионных приложениях: в аудиотехнике, медицинском или тестовом оборудовании. Они отличаются минимальным разбросом номиналов (0,1… 2%), низким температурным коэффициентом (5 ppm/C) и меньшим уровнем шума по сравнению с толстопленочными резисторами. Однако стоимость их выше.
  1. Толстопленочные резисторы являются наиболее распространенным типом резисторов и используются для широкого круга приложений. Они характеризуются большей погрешностью сопротивления (обычно 1 … 5%), повышенным температурным коэффициентом (50 ppm/C) и более высоким уровнем шума по сравнению с тонкопленочными резисторами. Если к резистору не предъявляется каких-либо особых требований, то обычно предпочтительным выбором становится именно толстопленочный резистор.

Корпусные исполнения: наиболее распространенными типоразмерами smd-резисторов являются 0201, 0402, 0603, 0805 и 1206. Цифры обозначают габаритные размеры в дюймовой системе, например, корпус 0402 имеет габариты 0,04х0,02″, размеры корпуса 0603 составляют 0,06х0,03″ и так далее.

Примеры:

  • 0402 — серия RC0402FR производства компании Yageo с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
  • 0603 — серия RC0603FR от Yageo с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
  • 0805 — серия RC0805FR от Yageo с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 Мом;
  • 1206 — серия RC1206FR от Yageo с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм.

Или

  • 0402 — серия CR0402 производства компании Bourns с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • 0603 — серия CR0603 от Bourns с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • 0805 — серия CR0805 от Bourns с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • 1206 — серия CR1206 от Bourns с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 0,82 Ом…10 МОм.

Или

  • 0402 — серия CRCW0402 производства Vishay с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом …10 МОм;
  • 0603 — серия CRCW0603 от Vishay с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1… 15 МОм;
  • 0805 — серия CRCW0805 от Vishay с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 50 МОм;
  • 1206 — серия CRCW1206 от Vishay с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений от 1 Ом…100 МОм.

Рис. 3. Выводные резисторы для монтажа в отверстия

Резисторы с аксиальными выводами для монтажа в отверстия (Рис. 3) весьма популярны и широко используются, особенно — при создании прототипов, поскольку их легко заменять при работе с макетными платами. Как и чип-резисторы, выводные резисторы применяются для подтяжки, деления напряжения, ограничения тока и фильтрации. Существуют различные типы выводных резисторов. Наиболее популярны углеродистые пленочные и металлопленочные резисторы.

  1. Углеродистые пленочные резисторы имеют значительный разброс сопротивлений (2…10%). Наиболее распространенными рядами сопротивлений для них являются E12 (± 10%), E24 (± 5%) и E48 (± 2%). В большинстве приложений углеродистые пленочные резисторы были вытеснены металлопленочными. Температурный коэффициент сопротивления углеродистых пленочных резисторов (TКC) обычно имеет отрицательную величину — около -500 ppm/C, однако конкретное значение зависит от сопротивления и размера.
  2. Металлопленочные резисторы  имеют меньший разброс сопротивлений (0,1…2%) и более высокую стабильность. Наиболее распространенными рядами сопротивлений для них являются E48 (± 2%), E96 (± 1%) и E192 (± 0,5%, ± 0,25% и ± 0,1%). Поскольку характеристики металлопленочных резисторов лучше, чем у углеродистых, то именно они используются в большинстве приложений. Температурный коэффициент металлопленочных резисторов (TC) составляет около ± 100 ppm/C, однако некоторые модели характеризуются только положительным или только отрицательным TC.
  3. Углеродные композитные резисторы широко использовались в электронных устройствах пятьдесят лет назад, но из-за большого разброса номиналов и невысокой стабильности они были заменены углеродистыми пленочными и металлопленочными резисторами. Тем не менее, композитные резисторы обладают хорошими высокочастотными характеристиками и способны выдерживать воздействие мощных импульсов, поэтому их до сих пор применяют в сварочном оборудовании и высоковольтных источниках питания.
  4. Металл-оксидные резисторы стали первой альтернативой углеродным композитным резисторам, но в дальнейшем в большинстве приложений они были вытеснены металлопленочными. Тем не менее, поскольку металл-оксидные резисторы отличаются повышенной рабочей температурой и более высокой номинальной мощностью (> 1 Вт), их по-прежнему используют в ответственных устройствах, эксплуатирующихся в жестких условиях.

Ряды сопротивлений EIA (EIA Decade Resistor Values) определяют не только номиналы резисторов, но и допустимую погрешность.9

Золотой

x0,1

±5%

Серебряный

x0,01

±10%

Пусто

±20%

* Только для резисторов с 5-позиционной маркировкой

 

 

 

 

Примеры:

  • углеродистые пленочные резисторы серии CFR-25JB производства Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • металлопленочные резисторы серии MFR-25FBF от Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 10 Ом…1 МОм;
  • металлопленочные резисторы серии PR02 от VISHAY с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,33 Ом…1 МОм.

Рис. 4. Проволочный резистор

Проволочные резисторы (Рис. 4) конструктивно представляют собой высокоомный провод, намотанный на изолирующий сердечник. Они отличаются очень высокой номинальной мощностью (до 1000 Вт) и способны работать при очень высоких температурах (до 300°C). Проволочные резисторы характеризуются отличной долговременной стабильностью – около 15…50 ppm/год, в то время как, например, у металлопленочных резисторов этот показатель составляет 200…600 ppm/год. Данный тип резисторов обладает самым малым уровнем шума.

Недостатки: диапазон доступных сопротивлений для проволочных резисторов оказывается достаточно узким (0,0001…100 кОм). Поскольку резистор выполнен в виде проволоки, намотанной на основание, то такая конструкция характеризуется высокой паразитной индуктивностью. По этой причине в высокочастотном диапазоне проволочные резисторы демонстрируют наихудшие показатели среди всех типов резисторов. Они также оказываются более дорогими по сравнению с другими популярными типами резисторов.

Приложения: обычно используются в автоматических выключателях и в качестве предохранителей благодаря высокой мощности.

Примеры

  • серия KNP500 производства компании Yageo с номинальной мощностью 5 Вт и диапазоном доступных сопротивлений 0,1 Ом …2,2 кОм;
  • серия HS-25 производства Ohmite с номинальной мощностью 25 Вт и диапазоном доступных сопротивлений 0,01 Ом … 5,6 кОм;
  • серия HSC100 от TE с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,1 Ом … 50 кОм.

Рис. 5. Шунты

Токоизмерительные резисторы, также называемые шунтами (Рис. 5), используются для прямого преобразования тока в напряжение с целью дальнейшего измерения. Они представляют собой резисторы с малым сопротивлением и высокой номинальной мощностью, что позволяет им работать с большими токами.

Одним из приложений для токоизмерительных резисторов является ограничение тока с целью защиты микросхем драйверов шаговых двигателей.

Большинство современных шунтов имеет либо два, либо четыре вывода. В четырехвыводной версии, которая также называется схемой Кельвина, ток проходит через две клеммы, а напряжение измеряется на двух оставшихся выводах. Такая схема уменьшает влияние температурной погрешности и значительно повышает стабильность схемы измерения. Четырехвыводные резисторы используются для приложений, требующих высокой точности и температурной стабильности.

Примеры

Двухвыводные исполнения

  • SMD:
    • серия MCS1632 производства Ohmite с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом;
    • серия WSLP1206 от Vishay с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом;
    • серия CRA2512 от Bourns с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,001…0,1 Ом.

 

  • Для монтажа в отверстия:
    • серия 12F от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,25 Ом;
    • серия LVR03R от Vishay с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,01…0,2 Ом;
    • серия PWR247T-100 от Bourns с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,05…100 Ом.

Четырехвыводные исполнения (схема Кельвина)

  • SMD:
    • серия FC4L  в корпусе 2512 от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,05 Ом;
    • серия WSL3637  в корпусе 3637 от Vishay с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,001…0,01 Ом.

Рис. 6. Термистор

Термисторы – это резисторы, сопротивление которых значительно изменяется при изменении температуры (Рис. 6).

Сопротивление NTC-термисторов плавно уменьшается при увеличении температуры. NTC являются готовыми датчиками температуры с диапазоном измерений -55… +200°C.

PTC-термисторы характеризуются скачкообразным изменением сопротивления при определенной температуре. Они применяются в качестве элементов защиты от перегрузки по току.

Ток удержания PTC (hold current) – это ток, при котором термистор гарантированно находится в проводящем состоянии.

Ток срабатывания PTC (trip current) – это ток, при котором термистор гарантированно переходит в непроводящее состояние.

Примеры

  • PTC-термисторы:
    • 1812 — серия MF-MSMF производства компании Bourns для рабочих токов от 0,3…5,2 А;
    • 1812 — серия 1812L от Littelfuse для рабочих токов 0,1…3,5 А.
  • NTC-термисторы:
    • серия B57236 от EPCOS с диапазоном сопротивлений 2,5…120 Ом;
    • 0603 — серия ERT-J1 от Panasonic с диапазоном сопротивлений 0,022…150 кОм.

Рис. 7. Подстроечные резисторы

Потенциометры – это резисторы с изменяемым сопротивлением. Они используются в различных приложениях, например, для управления коэффициентом усиления в усилителе, для настройки параметров схемы и так далее.

Подстроечные резисторы (Рис. 7) представляют собой небольшие потенциометры, которые могут быть установлены на печатной плате и отрегулированы с помощью отвертки. Они выпускаются как для поверхностного монтажа SMD, так и для монтажа в отверстия, с верхним или боковым расположением регулировочного винта.

Потенциометры бывают однооборотными и многооборотными. Однооборотные потенциометры часто используются в усилителях. Многооборотные потенциометры могут иметь до 25 оборотов и применяются для более точного управления.

Примеры

  • Однооборотные потенциометры:
    • SMD серия TC33X-2 производства Bourns с диапазоном сопротивлений 100 Ом…1 МОм ;
    • серия 3362P от Bourns с диапазоном сопротивлений 10 Ом…5 МОм ;
  • Многооборотные потенциометры:
    • серия 3296W от Bourns с диапазоном сопротивлений 10 Ом…5 МОм ;
    • серия T93YA от Vishay с диапазоном сопротивлений 10 Ом…1 МОм.

Рис. 8. Резисторная сборка 4609X-101-222LF

Резисторная сборка (resistors network, resistors array) представляет собой комбинацию из нескольких резисторов, размещенных в одном корпусе. Существует большое количество разных типов этих изделий, но, к сожалению, четкая система их классификации,  как в литературе, так и у производителей отсутствует.

Резисторы внутри корпуса сборки могут быть не соединены  между собой (Isolated) т. е. каждый резистор имеет два вывода на корпусе сборки, или сконфигурированы в определенную схему (Bussed). Часто встречаются изделия, у которых соединены между собой  вывод 1 каждого резистора с подключением к одному общему пину сборки, а каждый второй вывод резисторов  имеет свой собственный вывод на корпусе изделия.  Кроме того, можно встретить сборки с последовательным, последовательно- параллельным  и другими видами соединений резисторов внутри корпуса. Сборки можно классифицировать по количеству входящих  в них резисторов, по величине допуска, максимальному рабочему напряжению, мощности рассеивания, типоразмеру, по типу монтажа (SMD и выводной)  и т.д. Эти компоненты очень удобно использовать в схемах АЦП и ЦАП, применять качестве делителей напряжения, использовать в компьютерной технике, потребительской электронике  и т.д.

Примеры

  • серия 4600X от Bourns с рабочим напряжением до 100В

Рис. 9. Конфигурация резисторных сборок серии 4600X от Bourns

  • серия CAY16 от Bourns в SMD корпусе типоразмера 1206 с изолированными резисторами
  • серия 4114R-2 от Bourns — 14 выводных резисторов с одним общим выводом

Работа с Каталогом компании Терраэлектроника по поиску резисторов

Подобрать необходимый резистор в каталоге Терраэлектроники можно двумя способами:

  1. С использованием параметрического поиска.  Для этого необходимо зайти в раздел резисторов каталога, выбрать соответствующий задаче тип резистора, а далее указать параметры в ряде фильтров поисковой системы. Фрагмент скриншота поиска прецизионного SMD резистора от Yageo с параметрами: типоразмер 0805, номинал 10 кОм, точность 0.1 %,  мощность  0.125 мВт представлен на Рис. 10. 



    Рис. 10. Скриншот сервиса поиска резисторов

  2. Воспользоваться интеллектуальным поиском резисторов по параметрам. Для этого достаточно скопировать строку из спецификации “Резистор постоянный 10 кОм, 0.1%, 0.125 Вт, 0805″ или ввести «10kohm 0.1%  0.125W  0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы резисторов. В дополнение к ним существует ряд других типов резисторов, среди которых MELF, металлофольговые резисторы, керамические резисторы, варисторы, фоторезисторы и др., которые имеют свои уникальные преимущества по уровню точности, эксплуатационным характеристикам или габаритным размерам. Однако, в большинстве электронных схем вы чаще всего увидите один из типов, рассмотренных выше.

Как выбрать конденсатор

Журнал: https://octopart.com/blog/archives/2016/04/how-to-select-a-resistor

Что будет если поставить резистор большего сопротивления

Резистор — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:

Для обозначения напряжения наряду с символом U используется V.

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.

Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

При сборке любого устройства, даже самого простейшего, у радиолюбителей часто возникают проблемы с радиодеталями, бывает что не удается достать какой то резистор определенного номинала, конденсатор или транзистор… в данной статье я хочу рассказать про замену радиодеталей в схемах, какие радиоэлементы на что можно заменять и какие нельзя, чем они различаются, какие типы элементов в каких узлах применяют и многое другое. Большинство радиодеталей могут быть заменены на аналогичные, близкие по параметрам.

Резисторы

Начнем пожалуй с резисторов.

Итак, вам наверное уже известно, что резисторы являются самыми основными элементами любой схемы. Без них не может быть построена ни одна схема, но что же делать, если у вас не оказалось нужных сопротивлений для вашей схемы? Рассмотрим конкретный пример, возьмем к примеру схему светодиодной мигалки, вот она перед вами:

Для того чтобы понять, какие резисторы здесь в каких пределах можно менять, нам нужно понять, на что вообще они влияют. Начнем с резисторов R2 и R3 – они влияют (совместно с конденсаторами) на частоту мигания светодиодов, т.е. можно догадаться, что меняя сопротивления в большую или меньшую сторону, мы будем менять частоту мигания светодиодов. Следовательно, данные резисторы в этой схеме можно заменить на близкие по номиналу, если у вас не окажется указанных на схеме. Если быть точнее, то в данной схеме можно применить резисторы ну скажем от 10кОм до 50кОм. Что касается резисторов R1 и R4, в некоторой степени и от них тоже зависит частота работы генератора, в данной схеме их можно поставить от 250 до 470Ом. Тут есть еще один момент, светодиоды ведь бывают на разное напряжение, если в данной схеме применяются светодиоды на напряжение 1,5вольт, а мы поставим туда светодиод на большее напряжение – они у нас будут гореть очень тускло, следовательно, резисторы R1 и R4 нам нужно будет поставить на меньшее сопротивление. Как видите, резисторы в данной схеме можно заменить на другие, близкие номиналы. Вообще говоря, это касается не только данной схемы, но и многих других, если у вас при сборке схемы скажем не оказалось резистора на 100кОм, вы можете заменить его на 90 или 110кОм, чем меньше будет разница – тем лучше ставить вместо 100кОм 10кОм не стоит, иначе схема будет работать некорректно или вовсе, какой либо элемент может выйти из строя. Кстати, не стоит забывать что у резисторов допустимо отклонение номинала. Прежде чем резистор менять на другой, прочитайте внимательно описание и принцип работы схемы. В точных измерительных приборах не стоит отклоняться от заданных в схеме номиналов.

Теперь что касается мощностей, чем мощнее резистор тем он толще, ставить вместо мощного 5 ваттного резистора 0,125 ватт никак нельзя, в лучшем случае он будет очень сильно греться, в худшем — просто сгорит.

А заменить маломощный резистор более мощным – всегда пожалуйста, от этого ничего не будет, только мощные резисторы они более крупные, понадобится больше места на плате, или придется его поставить вертикально.

Не забывайте про параллельное и последовательное соединение резисторов, если вам нужен резистор на 30кОм, вы можете его сделать из двух резисторов по 15кОм, соединив последовательно.

В схеме что я дал выше, присутствует подстроечный резистор. Его конечно же можно заменить переменным, разницы никакой нет, единственное, подстроечный придется крутить отверткой. Можно ли подстроечные и переменные резисторы в схемах менять на близкие по номиналу? В общем то да, в нашей схеме его можно поставить почти любого номинала, хоть 10кОм, хоть 100кОм – просто изменятся пределы регулирования, если поставим 10кОм, вращая его мы быстрее будем менять частоту мигания светодиодов, а если поставим 100кОм., регулировка частоты мигания будет производиться плавнее и «длиннее» нежели с 10к. Иначе говоря, при 100кОм диапазон регулировки будет шире, чем при 10кОм.

А вот заменять переменные резисторы более дешевыми подстроечными не стоит. У них движок грубее и при частом использовании сильно царапается токопроводящий слой, после чего при вращении движка сопротивление резистора может меняться скачкообразно. Пример тому хрип в динамиках при изменении громкости.

Подробнее про виды и типы резисторов можно почитать здесь.

Конденсаторы

Теперь поговорим про конденсаторы, они бывают разных видов, типов и конечно же емкостей. Все конденсаторы различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск. В радиоэлектронике применяют два типа конденсаторов, это полярные, и неполярные. Отличие полярных конденсаторов от неполярных заключается в том, что полярные конденсаторы нужно включать в схему строго соблюдая полярность. Конденсаторы по форме бывают радиальные, аксиальные (выводы у таких конденсаторов находятся сбоку), с резьбовыми выводами (обычно это конденсаторы большой емкости или высоковольтные), плоские и так далее. Различают импульсные, помехоподавляющие, силовые, аудио конденсаторы, общего назначения и др.

Где какие конденсаторы применяют?

В фильтрах блоков питания применяют обычные электролитические, иногда еще ставят керамику (служат для фильтрации и сглаживания выпрямленного напряжения), в фильтрах импульсных блоков питания применяют высокочастотные электролиты, в цепях питания — керамику, в некритичных цепях тоже керамику.

На заметку!

У электролитических конденсаторов обычно большой ток утечки, а погрешность емкости может составлять 30-40%, т.е. емкость указанная на банке, в реальности может сильно отличаться. Номинальная ёмкость таких конденсаторов уменьшается по мере их срока эксплуатации. Самый распространённый дефект старых электролитических конденсаторов – это потеря ёмкости и повышенная утечка, такие конденсаторы не стоит эксплуатировать дальше.

Вернемся мы к нашей схеме мультивибратора (мигалки), как видите там присутствуют два электролитических полярных конденсатора, они так же влияют на частоту мигания светодиодов, чем больше емкость, тем медленнее они будут мигать, чем меньше емкость, тем быстрее будут мигать.

Во многих устройствах и приборах нельзя так «играть» емкостями конденсаторов, к примеру если в схеме стоит 470 мкФ – то надо стараться поставить 470 мкФ, или же параллельно 2 конденсатора 220 мкФ. Но опять же, смотря в каком узле стоит конденсатор и какую роль он выполняет.

Рассмотрим пример на усилителе низкой частоты:

Как видите, в схеме присутствует три конденсатора, два из которых не полярные. Начнем с конденсаторов С1 и С2, они стоят на входе усилителя, через эти конденсаторы проходит/подается источник звука. Что будет если вместо 0.22 мкФ мы поставим 0.01 мкФ? Во первых немного ухудшится качество звучания, во вторых звук в динамиках станет заметно тише. А если мы вместо 0.22 мкФ поставим 1 мкФ – то на больших громкостях у нас появятся хрипы в динамиках, усилитель будет перегружаться, будет сильнее нагреваться, да и качество звука снова может ухудшиться. Если вы глянете на схему какого нибудь другого усилителя, можете заметить, что конденсатор на входе может стоять и 1 мкФ, и даже 10 мкФ. Все зависит от каждого конкретного случая. Но в нашем случае конденсаторы 0.22 мкФ можно заменять на близкие по значению, например 0.15 мкФ или лучше 0.33 мкФ.

Итак, дошли мы до третьего конденсатора, он у нас полярный, имеет плюс и минус, путать полярность при подключении таких конденсаторов нельзя, иначе они нагреются, что еще хуже, взорвутся. А бабахают они очень и очень сильно, может уши заложить. Конденсатор С3 емкостью 470 мкФ у нас стоит по цепи питания, если вы еще не в курсе, то скажу, что в таких цепях, и например в блоках питания чем больше емкость, тем лучше.

Сейчас у каждого дома имеются компьютерные колонки, может быть вы замечали, что если громко слушать музыку, колонки хрипят, а еще мигает светодиод в колонке. Это обычно говорит как раз о том, что емкость конденсатора в цепи фильтра блока питания маленькая (+ трансформаторы слабенькие, но об этом я не буду). Теперь вернемся к нашему усилителю, если мы вместо 470 мкФ поставим 10 мкФ – это почти то же самое что конденсатор не поставить вообще. Как я уже говорил, в таких цепях чем больше емкость, тем лучше, честно говоря в данной схеме 470 мкФ это очень мало, можно все 2000 мкФ поставить.

Ставить конденсатор на меньшее напряжение чем стоит в схеме нельзя, от этого он нагреется и взорвется, если схема работает от 12 вольт, то нужно ставить конденсатор на 16 вольт, если схема работает от 15-16 вольт, то конденсатор лучше поставить на 25 вольт.

Что делать, если в собираемой вами схеме стоит неполярный конденсатор? Неполярный конденсатор можно заменить двумя полярными, включив их последовательно в схему, плюсы соединяются вместе, при этом емкость конденсаторов должна быть в два раза больше чем указано на схеме.

Никогда не разряжайте конденсаторы замыкая их вывода! Всегда нужно разряжать через высокоомный резистор, при этом не касайтесь выводов конденсатора, особенно если он высоковольтный.

Практически на всех полярных электролитических конденсаторах на верхней части вдавлен крест, это своеобразная защитная насечка (часто называют клапаном). Если на такой конденсатор подать переменное напряжение или превысить допустимое напряжение, то конденсатор начнет сильно греться, а жидкий электролит внутри него начнет расширяться, после чего конденсатор лопается. Таким образом часто предотвращается взрыв конденсатора, при этом электролит вытекает наружу.

В связи с этим хочу дать небольшой совет, если после ремонта какой либо техники, после замены конденсаторов вы впервые включаете его в сеть (например в старых усилителях меняются все подряд электролитические конденсаторы), закрывайте крышку и держитесь на расстоянии, не дай бог что бабахнет.

Теперь вопрос на засыпку: можно ли включать в сеть 220вольт неполярный конденсатор на 230 вольт? А на 240? Только пожалуйста, сходу не хватайте такой конденсатор и не втыкайте его в розетку!

Вот тут можете еще почитать про конденсаторы

Диоды

У диодов основными параметрами являются допустимый прямой ток, обратное напряжение и прямое падение напряжения, иногда еще нужно обратить внимание на обратный ток. Такие параметры заменяющих диодов должны быть не меньше, чем у заменяемых.

У маломощных германиевых диодов обратный ток значительно больше, чем у кремниевых. Прямое падение напряжения у большинства германиевых диодов примерно в два раза меньше чем у похожих кремниевых. Поэтому в цепях, где используется это напряжение для стабилизации режима работы схемы, например в некоторых оконечных усилителях звука, замена диодов на другой тип проводимости не допустима.

Для выпрямителей в блоках питания главными параметрами являются обратное напряжение и предельно допустимый ток. Например, при токах 10А можно применять диоды Д242…Д247 и похожие, для тока 1 ампер можно КД202, КД213, из импортных это диоды серии 1N4xxx. Ставить вместо 5 амперного диода 1 амперный конечно же нельзя, наоборот можно.

В некоторых схемах, например в импульсных блоках питания нередко применяют диоды Шоттки, они работают на более высоких частотах чем обычные диоды, обычными диодами такие заменять не стоит, они быстро выйдут из строя.

Во многих простеньких схемах в качестве замены можно поставить любой другой диод, единственное, не спутайте вывода , с осторожностью стоит к этому относиться, т.к. диоды так же могут лопнуть или задымиться (в тех же блоках питания) если спутать анод с катодом.

Можно ли диоды (в т.ч. диоды Шоттки) включать параллельно? Да можно, если два диода включить параллельно, протекающий через них ток может быть увеличен, сопротивление, падение напряжения на открытом диоде и рассеиваемая мощность уменьшаются, следовательно – диоды меньше будут греться. Параллелить диоды можно только с одинаковыми параметрами, с одной коробки или партии. Для маломощных диодов рекомендую ставить так называемый «токоуравнивающий» резистор.

Транзисторы

Транзисторы делятся на маломощные, средней мощности, мощные, низкочастотные, высокочастотные и т.д. При замене нужно учитывать максимально допустимое напряжение эмиттер-коллектор, ток коллектора, рассеиваемая мощность, ну и коэффициент усиления.

Заменяющий транзистор, во первых, должен относиться к той же группе, что и заменяемый. Например, малой мощности низкой частоты или большой мощности средней частоты. Затем подбирают транзистор той же структуры: р-п-р или п-р-п, полевой транзистор с р-каналом или n-каналом. Далее проверяют значения предельных параметров, у заменяющего транзистора они должны быть не меньше, чем у заменяемого.
Кремниевые транзисторы рекомендуется заменять только кремниевыми, германиевые — германиевыми, биполярные – биполярными и т.д.

Давайте вернемся к схеме нашей мигалки, там применены два транзистора структуры n-p-n, а именно КТ315, данные транзисторы спокойно можно заменить на КТ3102, или даже на старенький МП37, вдруг завалялся у кого Транзисторов, способных работать в данной схеме очень и очень много.

Как вы думаете, будут ли работать в этой схеме транзисторы КТ361? Конечно же нет, транзисторы КТ361 другой структуры, p-n-p. Кстати, аналогом транзистора КТ361 является КТ3107.

В устройствах, где транзисторы используются в ключевых режимах, например в каскадах управления реле, светодиодов, в логических схемах и пр… выбор транзистора не имеет большого значения, выбирайте аналогичной мощности, и близкий по параметрам.

В некоторых схемах между собой можно заменять например КТ814, КТ816, КТ818 или КТ837. Возьмем для примера транзисторный усилитель, схема его ниже.

Выходной каскад построен на транзисторах КТ837, их можно заменить на КТ818, а вот на КТ816 уже не стоит менять, он будет очень сильно нагреваться, и быстро выйдет из строя. Кроме того, уменьшится выходная мощность усилителя. Транзистор КТ315 как вы уже наверное догадались меняется на КТ3102, а КТ361 на КТ3107.

Мощный транзистор можно заменить двумя маломощными того же типа, их соединяют параллельно. При параллельном соединении, транзисторы должны применяться с близкими значениями коэффициента усиления, рекомендуется ставить выравнивающие резисторы в эмиттерной цепи каждого, в зависимости от тока: от десятых долей ома при больших токах, до единиц ом при малых токах и мощностях. В полевых транзисторах такие резисторы обычно не ставятся, т.к. у них положительный ТКС канала.

Думаю, на этом закончим, в заключении хочу сказать, что вы всегда сможете попросить помощи у Google, он вам всегда подскажет, даст таблицы по замене радиодеталей на аналоги. Удачи!

Его параметры и обозначение на схеме

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов.

Номинальное сопротивление.

Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.

Рассеиваемая мощность.

Более подробно о мощности резистора я уже писал здесь.

При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.

На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.

Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.

Допуск.

При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.

Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.

Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.

Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.

Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.

Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25. 0,05%.

Температурный коэффициент сопротивления (ТКС).

Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.

В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм. )

Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт. )

Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2. 3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования.

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Резистор 10 Ом 5% 1/4 Вт (25 шт. В упаковке)

Описание

Это резисторы со сквозным отверстием 10 Ом 1 / 4Вт 5% с сильными выводами, которые поставляются в упаковке по 25 штук.

В ПАКЕТ:

  • Кол-во 25-10 Ом 1 / 4Вт 5% резистор

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕЗИСТОРОВ 10 ОМ 1/4 Вт 5% :

Это углеродная пленка с осевыми выводами со сквозными отверстиями и может выдерживать до 1/4 Вт мощности при напряжении до 350 В. Резисторы 1/4 Вт являются наиболее часто используемыми для макетирования.

Мы предлагаем эту конкретную линейку резисторов специально для макетов, потому что они имеют легко читаемую цветовую кодировку на коричневом (5%) фоне, поэтому вам не нужно постоянно тянуть мультиметр, чтобы вычислить значения.

Кроме того, выводы очень прочные, их диаметр составляет 0,55 мм, они сделаны из олова и меди, покрытых стальной проволокой, поэтому они хорошо выдерживают многократные вставки в беспаечные макеты. Больше не нужно пытаться использовать плоскогубцы, чтобы вставить выводы резистора в макетную плату.Более крупные провода также лучше захватывают контакты.

Поскольку выводы прочные, эти резисторы также могут быть полезны при монтаже проекта по небу.

Примечания:

  1. Нет

Технические характеристики

Сопротивление 10 Ом
Допуск 5%
Цветовой код Коричневый / Черный / Черный / Золотой
Тип Углеродная пленка
Напряжение Максимальная рабочая 350 В
Поляризация Нет
Рабочая температура -55C — + 155C
Пакет Конформное покрытие, осевое
Размеры Диаметр корпуса 2.3 мм
Длина корпуса 6 мм
Длина вывода 28 мм
Диаметр свинца 0,55 мм
Производитель Стеклянная электроника
Лист данных CF14JT10R0

В цепи резистор 10 Ом подключен последовательно к параллельной группе, содержащей 60

  1. Вопросы

В цепи резистор 10 Ом подключен последовательно к параллельной группе, содержащей резистор 60 Ом и резистор 5 Ом.Какое полное сопротивление в этой цепи?

Формула и объяснение были бы замечательными!

  • Параллельная группа имеет эквивалентное сопротивление
    1 / R = 1 / R1 + 1 / R2
    1 / R = 1/60 + 1/5
    R =? который я назову Rp

    Тогда сумма для схемы будет Rtotal = 10 + Rp =?

  • Другой метод
    R1 = 10 Ом
    R2 = 60 Ом
    R3 = 5 Ом

    Rt = R1 + (R2 * R3) / (R2 + R3)

  • Думаю, я просто.Лол, я придумал 204.7, что слишком велико и не вариант. Что я делаю не так. Я знаю, что делаю что-то не так … 🙁

  • Ничего страшного! Ответ 830Ω

    Спасибо!

  • Rt = 10 * (60 * 5) / (60 + 5) = 10 + 4,62 = 14,62 Ом = полное сопротивление.

    Примечание: исходя из приведенных значений общее сопротивление будет меньше 15
    Ом.

  • Поправка:
    Rt = 10 + (60 * 5) / (60 + 5) = 10 + 4,62 =
    14,62 Ом.

  • Ответ был 14,615 Ом lol, 830 был для другой проблемы, с которой у меня возникли трудности! Я понял и то, и другое, так что спасибо! Я только что здесь запутался.

  • Советы по тестированию резисторов | Sciencing

    Ток течет по цепям при приложении к ним напряжения. Один из способов ограничить этот поток — с помощью резистора. Насколько хорошо резисторы противодействуют току, зависит от их сопротивления. Обычные резисторы подчиняются закону Ома, где напряжение V равно току I, умноженному на сопротивление R.

    Резисторы можно проверять как в цепи, так и вне ее, измеряя их сопротивление.Их можно испытать в цепи путем измерения их напряжения или тока. Для проведения этих измерений можно использовать цифровой мультиметр.

    Сопротивление

    Приобретите резистор с известным номиналом. Резисторы обычно имеют от трех до четырех полос. Цвет первых двух полосок указывает на первые две цифры, а третья полоса указывает, сколько нулей следует за ними. Их значения показаны на цветных диаграммах резисторов. Например, оранжево-оранжево-коричневый цвета представляют резистор на 330 Ом. Цифровой мультиметр можно использовать в качестве омметра для измерения сопротивления.Для проверки сопротивления в цепи ток должен быть отключен.

    Включите цифровой мультиметр и найдите значение сопротивления. В этом параметре может быть буква R или греческая буква омега. Омега используется для обозначения Ом, единицы сопротивления.

    Установите значение сопротивления, превышающее значение измеряемого резистора. Например, резистор на 10 Ом должен быть измерен с настройкой не менее 10 Ом.

    Считайте и запишите значение на дисплее.В зависимости от качества резистора он может быть отключен на 20 процентов от теоретического значения. Следовательно, резистор на 10 Ом может иметь сопротивление от 8 до 12 Ом.

    Напряжение

    Резисторы добавляются последовательно, когда они подключаются рядом друг с другом в одной цепи, так что они имеют одинаковый ток, но имеют разные напряжения. Цифровой мультиметр можно использовать как вольтметр для измерения напряжения резистора.

    Постройте последовательную цепь с двумя резисторами и батареей низкого напряжения.Например, используйте резистор на 10 Ом, соединенный последовательно с резистором на 100 Ом. Присоедините их к двум батарейкам АА, что составляет около трех вольт.

    Подключите мультиметр к источнику постоянного напряжения. Установите ручку селектора на значение не менее трех вольт. Поместите щупы по обе стороны от первого резистора. Например, поместите красный щуп с одной стороны резистора 10 Ом, черный щуп с другой стороны и запишите напряжение. Проделайте то же самое со вторым резистором. Показания напряжения для схемы образца равны 0.255 В и 2,54 В соответственно.

    Ток

    Цифровой мультиметр можно использовать в качестве амперметра для измерения тока резистора. Необходимо соблюдать осторожность, чтобы правильно установить его и убедиться, что он вставлен в цепь в правильном направлении, в противном случае мультиметр может перегореть предохранитель.

    Установите цифровой мультиметр на амперметр. Для этого отсоедините красный щуп от отверстия для измерения напряжения / омметра на его корпусе и присоедините его к щупу для амперметра.Обычно обозначается буквой «мА» или «А».

    Убедитесь, что мультиметр выключен, и добавьте его последовательно со вторым резистором в предыдущей схеме. Например, отсоедините резистор 100 Ом от отрицательной стороны аккумулятора. Присоедините красный щуп мультиметра к концу резистора. Присоедините черный щуп к отрицательной стороне питания. Возможно, вам придется использовать зажимы из крокодиловой кожи. Включите мультиметр и измерьте ток. Для приведенной выше последовательной схемы это будет примерно 0.0254 ампер или 25 мА.

    Сопротивление резистора 10 кОм больше 10 Ом …

    Извините, этот вопрос всегда сбивал меня с толку и мне нужно раз и навсегда услышать правильный ответ. Означает ли большее значение резистора, что резистор сопротивляется больше , или что сопротивляется меньше , так что ток может оставаться таким высоким, как указано. Другими словами, электричество — проще говоря — более слабое, исходящее от резистора с большим или малым числом.Спасибо…

    Наблюдатели: 0 Составные члены: 0

    8 ответов

    Более высокие значения означают большее сопротивление.

    Воздух имеет огромное сопротивление и представляет собой изолятор с большим сопротивлением, поэтому вы почти никогда не увидите, чтобы через него протекало электричество.(Кроме молнии)

    Представьте себе электрическую цепь, состоящую из батареи и резистора. Один конец резистора подключается к положительной клемме батареи. Другой конец подключается к минусовой клемме аккумулятора.

    I = электрический ток
    E = напряжение
    R = сопротивление

    I = E / R. Чем больше R, тем меньше I. Итак, если вы используете батарею на 6 В и резистор на 10 Ом, у вас будет 6/10 ампер тока, протекающего в цепи.Если бы у вас был резистор 10 кОм, в цепи протекал бы ток 6/10 000 ампер.

    Это закон Ома. Это первое, чему вас учат в электронике.

    Да, большее значение означает, что он сопротивляется большему, поэтому электричество слабее.

    Ток ниже. «Электричество слабее» на самом деле мало что значит.

    Поздний ответ, но ответ Мэрайи — это то, что я искал, даже если он не является электронно правильным, однако спасибо.

    один — десять Ом, а другой — десять тысяч Ом, он будет выдерживать больший ток

    Ответьте на этот вопрос

    Этот вопрос находится в Общем разделе.Ответы должны быть полезными и соответствовать теме.

    Ой. У нас возникли проблемы с разговором с сервером. Пожалуйста, попробуйте еще раз.

    Ваш ответ будет сохранен при входе в систему или присоединении.

    Предварительный просмотр

    Какой ток через резистор 10 Ом на рисунке (рисунок 1)? Выразите свой …

    Концепции и причина

    Концепции, используемые для решения вопроса, — это принципиальная схема и закон Кирхгофа.

    Сначала нарисуйте принципиальную схему, а затем покажите направление тока в каждой петле. Затем определите ток через каждую петлю, используя закон петли Кирхгофа.

    Основы

    Закон Кирхгофа о напряжении

    Этот закон гласит, что сумма разностей потенциалов в любой замкнутой цепи равна нулю.

    Следовательно,

    ∑V = 0 \ sum {V = 0} ∑V = 0

    Рассмотрим схему ниже

    Схема имеет два резистора R1 и R2 {R_1} {\ rm {и}} { R_2} R1 и R2

    Примените закон напряжения Кирхгофа к указанной выше схеме.

    ε − IR1 − IR2 = 0ε = I (R1 + R2) \ begin {array} {c} \\\ varepsilon — I {R_1} — I {R_2} = 0 \\\\\ varepsilon = I \ left ({{R_1} + {R_2}} \ right) \\\ end {array} ε − IR1 −IR2 = 0ε = I (R1 + R2)

    (A)

    Принципиальная схема изображена ниже —

    Пусть ток в двух контурах в цепи равен I1 {I_1} I1 и I2 {I_2} I2.

    Примените закон Кирхгофа к вышеуказанной цепи.

    Для цикла 1.

    12 + 5I1 + 3 + 10I1−10I2 = 015 + 15I1−10I2 = 015I1 = 10I2−15 \ begin {array} {c} \\ 12 + 5 {I_1} + 3 + 10 {I_1} — 10 {I_2} = 0 \\\\ 15 + 15 {I_1} — 10 {I_2} = 0 \\\\ 15 {I_1} = 10 {I_2} — 15 \\\ end {array} 12 + 5I1 + 3 + 10I1 −10I2 = 015 + 15I1 −10I2 = 015I1 = 10I2 −15

    I1 = 10I2−1515 {I_1} = \ frac {{10 {I_2} — 15} } {{15}} I1 = 1510I2 −15 …… (1)

    Для контура 2.

    9 + 5I2 + 10I2−10I1−3 = 09 + 5 {I_2} + 10 {I_2} — 10 {I_1} — 3 = 09 + 5I2 + 10I2 −10I1 −3 = 0

    6 + 15I2 −10I1 = 06 + 15 {I_2} — 10 {I_1} = 06 + 15I2 −10I1 = 0 …… (2)

    Подставляем уравнение (1) в (2)

    6 + 15I2−10 ( 10I2−1515) = 06 + 15I2−6.66I2 + 10 = 08.334I2 = −16I2 = −1.92A \ begin {array} {c} \\ 6 + 15 {I_2} — 10 \ left ({\ frac {{10 {I_2} — 15}} {{15}}} \ right) = 0 \\\\ 6 + 15 {I_2} — 6.66 {I_2} + 10 = 0 \\\\ 8.334 {I_2} = — 16 \\ \\ {I_2} = — 1,92 {\ rm {A}} \\\ end {array} 6 + 15I2 −10 (1510I2 −15) = 06 + 15I2 −6.66I2 + 10 = 08,334I2 = −16I2 = −1,92A

    Заменить, −1,92A — 1,92 {\ rm {A}} — 1,92A для I2 {I_2} I2 в уравнении (1).

    I1 = 10I2−1515 = 10 (−1,92) −1515 = −2,28A \ begin {array} {c} \\ {I_1} = \ frac {{10 {I_2} — 15}} {{15}} \\\\ = \ frac {{10 \ left ({- 1.92} \ right) — 15}} {{15}} \\\\ = — 2.28 {\ rm {A}} \\\ end {array} I1 = 1510I2 −15 = 1510 (−1,92) −15 = −2,28A

    Ток через резистор 10Ω10 {\ rm {}} \ Omega 10Ω равен,

    I10 = I1 − I2 = — 2.28A — (- 1.92A) = — 0.36A \ begin {array} {c} \\ {I_ {10}} = {I_1} — {I_2} \\\\ = — 2.28 {\ rm {A}} — \ left ({- 1,92 {\ rm {A}}} \ right) \\\\ = — 0,36 {\ rm {A}} \\\ end {array} I10 = I1 −I2 = −2,28 A — (- 1,92 A) = — 0,36 A

    Направление тока, которое мы выбрали от положительной клеммы к отрицательной, было неправильным.

    Следовательно, ток через 10Ω10 {\ rm {}} \ Omega 10Ω составляет 0,36A0,36 {\ rm {A}} 0,36A.

    (B)

    Направление цепи, которое мы выбрали, — от положительной клеммы к отрицательной. Отрицательный знак в расчетном токе в резисторе 10Ω10 {\ rm {}} \ Omega 10Ω показывает, что наше предположение относительно направления тока неверно.

    Следовательно, направление тока в 10Ω10 {\ rm {}} \ Omega 10Ω — от отрицательной клеммы к положительной клемме слева направо.

    Ответ: Часть A

    Ток через резистор 10Ω10 {\ rm {}} \ Omega 10Ω составляет 0,36A0,36 {\ rm {A}} 0,36A

    Part B

    Направление тока через 10Ω10 {\ rm {} } \ Резистор Омега 10 Ом расположен слева направо.

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *