Site Loader

Содержание

Что такое полярность конденсатора и как ее определить?


Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!



Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙПУСКОВОЙ
Где применяетсяВ цепи рабочих обмоток асинхронного двигателяВ пусковой цепи
Выполняемые функцииСоздание вращающегося электромагнитного поля для работы электромотораСдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работыОт включения до окончания работыВо время запуска до выхода на нужный режим.
Тип конденсатораМБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающегоМБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Полярные и неполярные конденсаторы – в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными. В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности?

Будет интересно➡ Чем отличаются параллельное и последовательное соединение конденсаторов

В этом и попробуем сейчас разобраться. Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Интересный материал для ознакомления: что такое вариасторы.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой. Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора. Отрицательная обкладка (катод) – просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.


Полярные и неполярные конденсаторы.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов. Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.


Полярность конденсатора.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

Будет интересно➡ Формула расчёта сопротивления конденсатора

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.


Полярный и неполярный конденсатор

Что такое полярность в химии

Полярность

– свойство, показывающее изменение распределения электронной плотности около ядер, если сравнивать с изначальным ее распределением в образующих данную связь нейтральных частицах.

Поляризуемость

— способность поляризоваться под воздействием электрического поля.

Мерой полярности

называется электрический момент диполя. В нейтральных соединениях он равен нулю. Его значение зависит от разности электроотрицательностей элементов.

Длина диполя

— расстояние между его полюсами. Данная характеристика также влияет на степень полярности.

Любое соединение состоит из ядра (положительные частицы) и электронов (отрицательные частицы). И положительные, и отрицательные частицы имеют свой электрический центр тяжести.

Если центры тяжести частиц совпадают, то соединение считается неполярным. Если же полюса не накладываются друг на друга, то в этом случае речь идет о дипольной связи.

Для чего используют конденсатор?

Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:

  • автомобилестроении;
  • радиотехнике;
  • электронике;
  • электробытовой технике;
  • приборостроении.

Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.

Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.

В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.

Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.

Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Виды

Классификация конденсаторов может происходить по различным критериям.

По постоянству ёмкости:

  • Постоянные.
  • Переменные. Их ёмкость может изменяться либо вручную оператором (пользователем) устройства, либо под воздействием напряжения (как в варикапах и варикондах).

Советуем изучить Как устроить освещение участка

По полярности прикладываемого напряжения:

  • Неполярные – могут работать в цепях переменного тока.
  • Полярные – при подключении напряжения неправильной полярности выходят из строя.

В зависимости от того, где используются эти компоненты, различают разные варианты по материалу:

  • Бумажные и металлобумажные – это привычные многим, распространённые в советское время конденсаторы в виде прямоугольных кирпичиков с маркировкой наподобие «МБГЧ». Внешний вид этого вида конденсаторов вы видите ниже. Они неполярные.
  • Керамические – ими часто фильтруют высокочастотные помехи, а относительная диэлектрическая проницаемость позволяет делать многослойные компоненты с ёмкостью сопоставимой электролитам (дорого), не чувствительны к полярности.
  • Плёночные – распространены в виде коричневых подушечек, недорогие, используются повсеместно. Характерны малым током утечки, небольшой ёмкостью, высоким рабочим напряжением и нечувствительностью к полярности приложенного напряжения.
  • С воздушным диэлектриком. Лучший пример такого элемента – подстроечный конденсатор резонансного контура из радиоприёмника, ёмкость таких элементов невелика, но удобно реализовать её изменение.
  • Электролитические – это элементы в виде бочонков, их устанавливают чаще всего в качестве фильтра сетевых пульсаций в БП. Конструкция и принцип действия позволяют получить большую ёмкость при небольших размерах, но со временем могут высыхать, терять ёмкость или вздуваться. Как выглядят в исправном состоянии эти изделия вы видите ниже. В качестве диэлектрика используют тонкий слой оксида металла. Если в БП используют конденсаторы с диэлектриком из AL2O3 – т.н. «алюминиевые электролиты», то для работы в высокочастотных цепях – используют танталовые (Ta25 — они также относятся к электролитам) конденсаторы, потому что у них меньший ток утечки, большая устойчивость к внешним воздействиям в отличие от предыдущих, алюминиевых.
  • Полимерные – способны выдерживать большие импульсные токи, работать при низких температурах

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т. п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Техническое исполнение конденсаторов

Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.

Бумажные конденсаторы

В качестве диэлектрика используется бумага, очень часто — промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.

При отсутствии промасливания имеют существенный недостаток — реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.

Диэлектрик в виде органических пленок

Пленки могут быть выполнены из органических полимеров, таких как:

  • полиэтилентерифталат;
  • полиамид;
  • поликарбонат;
  • полисульфон;
  • полипропилен;
  • полистирол;
  • фторопласт (политетрафторэтилен).

По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.

Советуем изучить Элегазовые выключатели

Твердый неорганический диэлектрик

Это может быть слюда, стекло и керамика.

Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых — даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.

Оксидный диэлектрик

С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.

Вакуум

Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.

Двойной электрический слой

Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип — не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств — ионисторы — содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.

Неполярные электролитические конденсаторы

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов температурные характеристики, тип корпуса и так далее , которые делают тот или иной тип конденсаторов электролитический, керамический и пр. В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника. Конденсаторы Рис.

Регистрация Вход.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

С помощью чего измеряют полярность у конденсатора

Как узнать где на конденсаторе плюс, если стерта маркировка? К сожалению, в подавляющем большинстве случаев, при удаленной маркировке определить правильную полярность не представляется возможным. Для некоторых типов радиодеталей, при наличии соответствующего опыта, можно определять полярность при помощи тестера. Порядок действий следующий:

  • Переключатель прибора ставят в положение измерения сопротивления.
  • Прикасаются щупами к выводам элемента. В этот момент стрелка делает бросок, показывая низкое сопротивление (это происходит из-за процесса зарядки). Затем показания прибора изменяются в сторону увеличения сопротивления.
  • Меняют полярность щупов. Стрелка совершает еще больший скачок и снова возвращается в положение высокого сопротивления. Происходит разряд и последующий заряд с противоположной полярностью.
  • Засекают значения максимального сопротивления при различной полярности подключения щупов прибора. Меньшее значение говорит о наличии токов утечки, а значит полярность подключения щупов не соответствует назначению выводов. То есть, если обнаружено некоторое сопротивление, то положительный щуп устройства подключен к отрицательному выводу конденсатора. При правильной полярности у исправного элемента токи утечки ничтожны, и сопротивление приближается к бесконечности.

Вам это будет интересно Особенности полупроводников

Все вышесказанное справедливо только для некоторых типов электролитических конденсаторов, обладающими сравнительно большой ёмкостью. В остальных случаях достоверно определить назначение выводов достаточно проблематично.

Соблюдение полярности при подключении конденсаторов к цепям схемы важно не только для правильного функционирования устройства. Не менее важна безопасность, так как несоблюдение требований может привести к разрушению корпуса и повреждению других элементов конструкции.

Что будет если перепутать полярность

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя! Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток. Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус. Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе. Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

Будет интересно➡ Чем отличается пусковой конденсатор от рабочего?

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу. Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме. Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Работа электродвигателя без конденсатора

Термоваккумная обработка увеличивает срок службы конденсатора, исключая возможность внутренней коррозии элементов. Чистая комната, с контролем влажности и температуры воздуха, высокопроизводительное швейцарское оборудование. Мы готовы к выпуску до 20 шт. Там, где на других завода работают люди, у нас автоматизированные станки. Быстрее, качественнее, надежней. Наличие собственных тестовых лабораторий на все типы выпускаемой продукции позволяют дать дополнительную гарантию клиентам в качестве продукции.

Наиболее распространённые в России модели

Чаще всего можно встретить в продаже следующие марки:

  • Конденсаторы марки СВВ-60 с исполнением в металлизированном полипропиленовом варианте. Они отличаются сравнительно высокой ценой.
  • Плёночные марки HTC обладают достаточно высоким уровнем качества, но стоят немного меньше, чем СВВ-60.
  • Э92 представляют собой бюджетный вариант пусковых конденсаторов. Они имеют относительно невысокую цену, но в качестве и надёжности уступают предыдущим двум вариантам.

Существует также ряд других моделей, но они распространены в меньшей степени.

Процедура подключения конденсаторов Источник uk-parkovaya.ru

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В — 5000 часов
  • 500 В — 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ12+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Конденсатор К52-11, К52-11А | АО «Новосибирский завод радиодеталей «Оксид»

Объемно-пористые танталовые герметизированные полярные конденсаторы постоянной ёмкости.

Изготавливаются с категориями качества «ВП» (ОЖ0.464.234ТУ), в соответствии с требованиями ОСТ В 11 0026-84, и «ОТК» (РАЮС.673543.005ТУ), согласно требованиям ГОСТ Р 55756.

Предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры в цепях постоянного и пульсирующего токов и в импульсном режиме.

Изготавливаются в климатическом исполнении В («ВП») по ГОСТ В 20.39.404-81 и исполнении В по ГОСТ 15150 («ОТК»).

Изготавливаются двух типов: К52-11 и К52-11А.

Номинальное напряжение, В

Номинальная емкость

К52-11, мкФ

Номинальная емкость

К52-11А, мкФ

Размеры в мм
Масса, г, не более
DHh*h1maxd
6,31504704,8183,56,50,63,5
3306,0204,35,06,5
6807,5220,810,0
103304,8183,56,50,63,5
6806,0204,35,06,5
1 5007,5220,810,0
161002204,8183,56,50,63,5
2204706,0204,35,06,5
4701 0007,5220,810,0
25681504,8183,56,50,63,5
1503306,0204,35,06,5
3306807,5220,810,0
32471004,8183,56,50,63,5
1002206,0204,35,06,5
2204707,5220,810,0
5033684,8183,56,50,63,5
681506,0204,35,06,5
1503307,5220,810,0
6322474,8183,56,50,63,5
471006,0204,35,06,5
1002207,5220,810,0
100154,8183,56,50,63,5
336,0204,35,06,5
687,5220,810,0

Допускаемое отклонение ёмкости: ± 10%; ± 20%; ± 30%.

Время сохранения паяемости выводов: 12 месяцев.

Верхняя частота диапазона, в котором должны отсутствовать резонансные частоты, составляет 3 000 Гц.

Ток утечки не более значений:

Iут. = 0,002 Сном.∙Uном.+ I (для конденсаторов К52-11)

Iут. = 0,003 Сном.∙Uном.+ 1 (для конденсаторов К52-11А)

Тангенс угла потерь, %: 8…45;

Полное сопротивление, Ом: 1…10.

Стойкость к внешним воздействующим факторам

Воздействующий фактор и его характеристикиЗначение характеристики
Синусоидальная вибрация:
диапазон частот, Гц1 – 3 000
амплитуда ускорения, м∙с-2 (g) 200 (20)
Механический удар:
одиночного действия:
пиковое ударное ускорение, м∙с-2 (g)15 000 (1 500)
длительность действия, мс0,1-2
многократного действия:
ударное ускорение, м∙с-2 (g)1 500 (150)
длительность действия, мс1-5
Линейное ускорение, м∙с-2 (g)2 000 (200)

Минимальный срок сохраняемости в отапливаемом помещении или в хранилище с регулируемыми влажностью и температурой, или во всех местах хранения конденсаторов, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, составляет 15 лет.

 

Условное обозначение при заказе:

Конденсатор К52-11А-50 В-150 мкФ ± 20 %-В ОЖ0.464.234ТУ («ВП»)

Конденсатор К52-11А-50 В-150 мкФ ± 20 %  РАЮС.673543.005ТУ («ОТК»)

Стойкость к воздействию климатических и биологических факторов

Воздействующий фактор и его характеристикиЗначение характеристики
Атмосферное пониженное давление:
рабочее, Па (мм рт. ст.)133∙10-6 (10
-6
)
предельное, Па (мм рт. ст.)12 000 (90)
Повышенное давление воздуха, кПа (кгс/см2)294  (3)
Повышенная температура среды:
рабочая, °Сплюс 85
предельная, °Сплюс 70
Пониженная температура среды:
рабочая, °Сминус 60
предельная, °Сминус 60
Смена температур:
От рабочей повышенной температуры среды до предельной пониженной температуры среды, °Сплюс 85 минус 60
Атмосферные конденсированные осадки (иней и роса)требования предъявляются
Соляной (морской) тумантребования предъявляются
Плесневые грибытребования предъявляются

Минимальная наработка:

5 000 ч при температуре от минус 60 °С до 85 °С;

10 000 ч при температуре от минус 60 °С до 70 °С;

Минимальная наработка в облегченных режимах:

20 000 ч при температуре от минус 60 °С до 70 °С и напряжении 0,6Uном;

40 000 ч при температуре от минус 60 °С до 60 °С и напряжении (0,2-0,6)Uном для конденсаторов Uном > 50В;

60 000 ч при температуре от минус 60 °С до 85 °С и напряжении (0,2-0,6)Uном для конденсаторов Uном ≤ 50В;

70 000 ч при температуре от минус 60 °С до 55 °С и напряжении (0,2-0,5)Uном.

Конденсаторы допускают эксплуатацию при температуре 125 °С и напряжении, равном 0,7Uном, в течение 1 000 ч.

Сделать заявку на продукцию

Имя

Email

Телефон

СообщениеИнтересует: Конденсатор К52-11, К52-11А

Возможно вас ещё заинтересуют

Резисторы Р1-12 ОН

Резисторы постоянные непроволочные толстопленочные безвыводные общего применения. Предназначены для работы в электрических цепях постоянного, переменного тока и в импульсном режиме для монтажа на поверхность плат и в гибридные интегральные микросхемы.

Открыть карточку продукта »

Чип-конденсатор K53-81

Конденсаторы танталовые оксидно-полупроводниковые защищенные полярные постоянной емкости. Изготавливаются с категорией качества «ОТК». Предназначены для работы в качестве встроенных элементов внутри комплектных изделий.

Открыть карточку продукта »

Конденсатор К52-2

Конденсаторы танталовые объемно-пористые полярные уплотненные постоянной емкости. Изготавливаются с категориями качества «ВП», «ОС» и «ОТК». Изготавливаются в климатических исполнениях В («ВП») и УХЛ («ВП», «ОС») и исполнении В.

Открыть карточку продукта »

Для чего и зачем нужны электролитические конденсаторы (электролиты) и как их менять

Рубрика: Статьи обо всем, Статьи про радиодетали

Опубликовано 13.04.2020   ·   Комментарии: 0   ·   На чтение: 5 мин   ·   Просмотры:

Post Views: 1 273

Электролитические конденсаторы обладают большой емкостью. Они используются в основном в цепях питания, где требуется фильтрация напряжения от помех.

Содержание

Их чего состоят

Больших емкостей можно добиться только с помощью химических источников.

Электролитические конденсаторы очень близки к химическим источникам тока. У них, как и у аккумуляторов, есть катод, анод и электролит. А также те же самые недостатки, что и у аккумуляторов.

Поэтому, такие конденсаторы и называются электролитическими. Среди радиолюбителей и электронщиков они сокращенно называются электролитами.

По составу электролита они бывают: жидкого и сухого типа. Еще есть оксидно-полупроводниковые, а также оксидно-металлические.

Обозначаются на принципиальных схемах также, как и обычный, но только с указанием полярности в виде знака +.

Характеристики электролитического конденсатора

К характеристикам можно отнести емкость и рабочее напряжение. Они указаны на корпусе.

Маркировки у электролитов по сути нет, основана информация указывается на корпусе. Микрофарады обозначаются µF, а рабочее напряжение в V.

А вообще, есть еще понятие ESR.

Рабочее напряжение ни в коем случае нельзя превышать.

Преимущества и недостатки

Преимущества электролитических конденсаторов:

  • Большая емкость;
  • Компактность.

Недостатки:

  • Со временем электролит высыхает, теряется емкость;
  • Работает только на низких частотах;
  • Ограничения по эксплуатационным условиям и риск вздутия/взрыва.

Разберём подробнее преимущества и недостатки электролитов.

Большая емкость

Электролитические конденсаторы обладают большой емкостью, и это их отличительная и самая главная особенность среди остальных конденсаторов.

Емкость обозначается в микрофарадах (мкФ), поскольку электролиты с меньшими значениями не выпускают.

Они обычно выпускаются от нескольких мкФ, до нескольких Ф (1 000 000 мкФ).

Компактность

Благодаря использованию химии, конденсаторы большой емкости намного компактнее, чем если бы их делали керамическими или пленочными.

Емкость конденсатора можно увеличить только за счет его обкладок, диэлектрика и геометрии. Поэтому электролиты лидируют по соотношению емкость/габариты.

Ионисторы

Разновидность электролитических конденсаторов — это ионисторы. Они обладают большей емкостью (например, 3000 Ф), и работают в основном как резервный или автономный низковольтный источник питания схемы. А также поддерживает схему в спящем режиме без другого источника. Их кстати в большей степени можно отнести к аккумуляторам.

Высыхание электролита

Основная проблема таких конденсаторов – это высыхание электролита. Обычно такая проблема проявляется из-за того, что техникой долго не пользуются или нарушаются условия эксплуатации (перегрев корпуса). Из-за этого электролит начинает высыхать, поэтому происходит потеря емкости.

Можно восстановить емкость конденсатора путем разбавления засохшего электролита дистиллированной водой (как аккумулятор), но это не выгодно. Лучше и надежнее всего заменить старый на новый, аналогичный по параметрам.

Работа на низких частотах

Это скорее особенность, чем недостаток. Большие емкости — это высокое реактивное сопротивление для высоких частот.

Поэтому, такие конденсаторы используются в низкочастотных цепях. Например, в блоках питания в качестве фильтров и сглаживания пульсаций.

Когда конденсатор вздувается и взрывается

Всегда еобходимо соблюдать полярность подключения.

Конденсаторы, как и аккумуляторы, могут вздуваться и взрываться. Иногда это происходит из-за неправильного включения или перегрева.

Если вы подключите минус источника к плюсу конденсатора и плюс источника к минусу конденсатора, то сразу же начнется вскипание электролита. Такой эффект возникает из-за обратной химической реакции. Конденсатор может взорваться.

В старых конденсаторах типа К-50 корпус монолитный, и он взрывался громко и достаточно разрушительно.

В современных электролитах на корпусе есть небольшой надрез, который в случае вскипания электролита позволяет горячему пару выйти наружу.

Иногда они просто вдуваются без нарушения герметизации, а бывают и такие случаи, когда конденсатор полностью теряет герметичность.

Тем не менее, надрез на корпусе значительно уменьшил взрывы, поэтому конденсаторы теперь чаще вздуваются, а не взрываются.

На корпусах современных конденсаторов вертикальной чертой указывается минусовой контакт.

Внимательно устанавливайте и записывайте прежнее положение, ибо многие производители ставят свои обозначения.

Например, среди радиолюбителей обычно минусовые контакты рисуют в виде квадрата.

А производители печатных плат наоборот, рисуют квадратные контактные площадки под плюс конденсатора. И то, так делают не все.

Так как есть такая путаница среди и радиолюбителей и производителей, всегда обращайте на то. где указан плюсовой контакт. И записывайте прежнее положение детали, иначе это чревато взрывом.

Характерные признаки неисправности электролитов

К таким признакам можно отнести:

  • Устройство не включается. Блок питания уходит в защиту или не запускается;
  • Устройство включается, но сразу же выключается. Емкость конденсаторов высохла или потеряла свое прежнее значение, поэтому блок питания уходит в защиту;
  • Перед неисправностью был писк в блоке питания. Обычно это означает, что конденсатор потерял герметичность и электролит начинает вытекать;
  • Нет регулировки яркости в мониторе. Отсутствие нужной емкости приводит к нарушению работы всего устройства. Емкость в данном случае делает функцию настройки;
  • Перед неисправностью был взрыв и неприятный запах. Неприятный запах – это электролит;
  • Устройство включается через раз. Это значит, что есть большая вероятность протечки фильтра питания.

Внешние признаки неисправности электролитических конденсаторов:

  • Вздутие корпуса;
  • Повреждение корпуса:
  • Наличие электролита под корпусом;
  • Вздутие со стороны контактов (внизу корпуса, обычно еле заметно).

Также высокочастотные пульсации вредят электролитам. Поэтому чаще всего они выходят из строя в блоках питания, поскольку именно там много пульсаций.

Правила работы с электролитами

Внимание! Перед тем, как прикоснуться к плате неисправного источника, убедитесь, что емкости разряжены. Даже если неисправен преобразователь, а не электролит, то конденсаторы могут быть заряжены. Им попросту некуда девать свой заряд. Поэтому первым делом аккуратно и не касаясь щупом мультиметра, измерьте емкости с высоким напряжением. Если они заряжены, разрядите их с помощью лампочки.

Как менять старый на новый

Среди электронщиков есть два мнения. Первое это то, что менять нужно неисправный старый конденсатор менять на такой же старый. Это объясняется тем, что вся работы схемы «привыкла» к старому конденсатору.

Но технически правильно и обоснованное мнение – это то, что нужно ставить только новый и только подходящий по параметрам конденсатор. Нет никакого привыкания схемы. Да, многие компоненты устарели и не могут работать как прежде, но у конденсатора по сути нет ничего того, что кардинально влияло бы на ухудшение работоспособности всех схемы. Устройство наоборот, будет работать лучше.

Меняйте старые конденсаторы на новые, максимально близкие по параметрам. Например, емкость можно взять чуть больше, если речь идет о блоке питания. А если это цепь настройки, то увеличив или уменьшив емкость, так можно повлиять на весь режим работы схемы. Нужно действовать по ситуации.

Ставить конденсатор с меньшими рабочим напряжением, чем в схеме, категорически нельзя. Он начнет нагреваться и взорвется. Да, многие разработчики считают с запасом, но лучше не рисковать.

Также не стоит забывать о таком параметре, как ESR (эквивалентное последовательное сопротивление).

Post Views: 1 273

 

Подбор и взаимозаменяемость конденсаторы. Как заменить конденсатор в электронной аппаратуре Можно ли менять конденсатор на большую емкость

Самая распространённая поломка современной электроники — это неисправность электролитических конденсаторов. Если вы после разбора корпуса электронного устройства замечали, что на печатной плате имеются конденсаторы с деформированным, вздутым корпусом, из которого сочится ядовитый электролит, то самое время разобраться, как распознать поломку или дефект в конденсаторе и подобрать адекватную замену. Располагая профессиональным флюсом для пайки, припоем, паяльной станцией, набором новых конденсаторов, вы без особого труда «оживите» любой электронный прибор своими руками.

По сути, конденсатор — радиоэлектронный компонент, основная цель которого — это накопление и отдача электроэнергии с целью фильтрации, сглаживания и генерации переменных электрических колебаний. Любой конденсатор имеет два важнейших электрических параметра: ёмкость и максимальное постоянное напряжение, которое может быть приложено к конденсатору без его пробоя или разрушения. Ёмкость, как правило, определяет, какое количество электрической энергии может вобрать в себя конденсатор, если приложить к его обкладкам постоянное напряжение, не превышающее заданного лимита. Ёмкость измеряется в Фарадах. Наибольшее распространение получили конденсаторы, ёмкость которых исчисляется в микрофарадах (мкФ), пикофарадах (пкФ) и нанофарадах (нФ). Во многих случаях рекомендуется заменять неисправный конденсатор на исправный, имеющий аналогичные ёмкостные характеристики. Однако в ремонтной практике бытует мнение о том, что в схемах блоков питания можно ставить конденсатор, несколько превышающий по ёмкости фабричные параметры. К примеру, если мы хотим заменить разорвавшийся электролит на 100мкФ 12Вольт в блоке питания, который призван сгладить колебания после диодного выпрямительного моста, можно смело устанавливать ёмкость даже на 470мкФ 25В. Во-первых, повышенная ёмкость конденсатора только уменьшит пульсации, что само по себе неплохо для блока питания. Во-вторых, повышенное предельное напряжение только повысит общую надёжность схемы. Главное, чтобы отведённое под установку конденсатора место подходило.

Почему взрываются конденсаторы электролитического типа

Самая частая причина, по которой происходит взрыв электролитического конденсатора — это превышение напряжения межу обкладками конденсатора. Не секрет, что во многих приборах китайского производства параметр максимального напряжения точно соответствует приложенному напряжению. По своей задумке производители конденсаторов не предусматривали, что в штатном включении конденсатора в состав электросхемы на его контакты будет подаваться именно максимальное напряжение. К примеру, если на конденсаторе написано 16В 100мкФ, то не стоит его подключать в схему, где на него будет постоянно подаваться 15 или 16В. Безусловно, он выдержит какое-то время такое издевательство, но запас прочности будет практически равен нолю. Гораздо лучше устанавливать такие конденсаторы в цепь с напряжением 10–12В., чтобы был какой-то запас по напряжению.

Полярность подключения электролитических конденсаторов

Электролитические конденсаторы имеют отрицательный и положительный электроды. Как правило, отрицательный электрод определяется по маркировке на корпусе (белая продольная полоса за значками «-»), а положительная обкладка никак не промаркирована. Исключение – отечественные конденсаторы, где, напротив, положительный терминал промаркирован значком «+». При замене конденсаторов необходимо сопоставить и проверить, соответствует ли полярность подключения конденсатора маркировке на печатной плате (кружок, где имеется заштрихованный сегмент). Сопоставив минусовую полосу с заштрихованным сегментом, вы безошибочно вставите конденсатор. Остаётся лишь обрезать ножки конденсатора, обработать места пайки и качественно припаять. Если случайно перепутать полярность подключения, то даже абсолютно новый и вполне исправный конденсатор просто-напросто разорвётся, измазав попутно все соседние компоненты и печатную плату токопроводящим электролитом.

Немного о безопасности

Не секрет, что замена низковольтных конденсаторов может принести вред здоровью лишь в случае ошибки подключения полярности. При первом включении конденсатор взорвётся. Вторая опасность, которую стоит ожидать от конденсаторов, заключается в напряжении между его обкладками. Если вы когда-нибудь разбирали блоки питания от компьютеров, то вы, вероятно, замечали огромные электролиты на 200В. Именно в этих конденсаторах остаётся опасное высокое напряжение, которое может серьёзно травмировать вас. Перед заменой конденсаторов блоков питания рекомендуем полностью его разрядить либо резистором, либо неоновой лампочкой на 220В.

Полезный совет: такие конденсаторы очень не любят разряжаться через короткое замыкание, поэтому не замыкайте их выводы отвёрткой с целью разряда.

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора -характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В — 5000 часов
  • 500 В — 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов . Общая ёмкость будет равна сумме двух конденсаторов:

С общ =С 1 +С 2 +…С п

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65 .

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60 , CBB61 .

Клеммы для удобства соединения сдвоенные или счетверённые.

Приняв решение о замене конденсатора на печатной плате, первым делом следует подобрать конденсатор на замену. Как правило, речь идет об электролитическом конденсаторе, который по причине исчерпания своего рабочего ресурса начал создавать нештатный режим вашему электронному устройству, либо конденсатор лопнул из-за перегрева, а может быть вы просто решили поставить поновее или получше.

Выбираем подходящий конденсатор на замену

Параметры конденсатора на замену непременно должны подходить: его номинальное напряжение ни в коем случае не должно быть ниже, чем у заменяемого конденсатора, а емкость — никак не ниже, или может быть процентов на 5-10 выше (если это допустимо в соответствии с известной вам схемой данного устройства), чем была изначально.

Наконец, убедитесь, что новый конденсатор подойдет по размеру на то место, которое покинет его предшественник. Если он окажется чуть-чуть поменьше диаметром и высотой — не страшно, но если диаметр или высота больше — могут помешать компоненты, расположенные на этой же плате поблизости или он будет упираться в элементы корпуса. Эти нюансы важно учесть. Итак, конденсатор на замену выбран, он вам подходит, теперь можно приступать к демонтажу старого конденсатора.

Готовимся к процессу

Сейчас необходимо будет устранить с платы неисправный конденсатор, и подготовить место для установки сюда же нового. Для этого вам потребуется, конечно, а также удобно к данному действу подготовить кусок медной оплетки для снятия припоя. Как правило, мощности паяльника в пределах 40 Вт будет вполне достаточно даже если на плате был изначально применен тугоплавкий припой.

Что же касается медной оплетки для устранения припоя, то если у вас такой нет, ее весьма несложно изготовить самостоятельно: возьмите кусок не очень толстого медного провода, состоящего из тонких медных жилок, снимите с него изоляцию, слегка (можно простой сосновой канифолью), — теперь эти пропитанные флюсом жилки легко, словно губка, вберут в себя припой с ножек выпаиваемого конденсатора.

Выпаиваем старый конденсатор

Сначала посмотрите, какова полярность выпаиваемого конденсатора на плате: в какую сторону минусом он стоит, чтобы когда будете впаивать новый — не допустить ошибки с полярностью. Обычно минусовая ножка отмечена полосой. Итак, когда оплетка для удаления припоя приготовлена, а паяльник уже достаточно разогрет, сначала прислоните оплетку к основанию той из ножек конденсатора, которую вы решили освободить от припоя первой.

Аккуратно расплавьте припой на ножке прямо через оплетку, чтобы оплетка тоже разогрелась и быстро втянула в себя припой с платы. Если припоя на ножке многовато, двигайте оплетку по мере того как она будет заполняться припоем, собирая на нее весь припой с ножки, чтобы ножка в итоге осталась свободной от припоя. Проделайте это же самое со второй ножкой конденсатора. Теперь конденсатор можно легко выдернуть рукой или пинцетом.

Впаиваем новый конденсатор

Новый конденсатор необходимо установить с соблюдением полярности, то есть минусовой ножкой туда же, где была минусовая ножка выпаянного. Обычно минус обозначен полоской, а плюсовая ножка длиннее минусовой. Обработайте ножки конденсатора флюсом.

Вставьте конденсатор в отверстия. Не нужно заранее укорачивать ножки. Разогните ножки немного в разные стороны, чтобы конденсатор хорошо держался на месте и не выпадал.

Теперь, прогревая ножку возле самой платы кончиком жала паяльника, поднесите тычком припой к ножке, чтобы ножка окуталась, смочилась, окружилась припоем. То же самое проделайте со второй ножкой. Когда припой остынет, вам останется укоротить ножки конденсатора кусачками (до той длины, что и у соседних деталей на вашей плате).

В элементной базе компьютера (и не только) есть одно узкое место — электролитические конденсаторы. Они содержат электролит, электролит — это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке — дело регулярное.

Поэтому замена конденсаторов — это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата — это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже — насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

Электролитический конденсатор где плюс. Как самому перепаять конденсаторы

В элементной базе компьютера (и не только) есть одно узкое место — электролитические конденсаторы. Они содержат электролит, электролит — это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке — дело регулярное.

Поэтому замена конденсаторов — это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата — это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже — насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

В основном, по конструктивному исполнению конденсаторы делятся на два типа: полярные и неполярные.

К полярным конденсаторам относятся конденсаторы которые имеют полярность, грубо говоря, плюс и минус. К ним чаще всего относятся электролитические конденсаторы, но бывают также и электролитические неполярные конденсаторы. Полярные конденсаторы надо паять в схемы только определенным образом: плюсовый контакт конденсатора к плюсу схему, минусовый контакт – к минусу схемы.

Если полярность такого конденсатора нарушить, то он может серьезно пострадать и даже взорваться. Поверьте мне, взрыв конденсатора – это очень зрелищно, но электролит, который там находится, может серьезно повредить вас и ваше окружение. В основном, это только касается советских конденсаторов.

У импортных конденсаторов сверху имеется небольшое вдавление в виде крестика или какой-нибудь другой фигурки. Их толщина меньше, чем остальная толщина крышечки конденсатора. Как мы с вами знаем, где тонко, там и рвется. Это предусмотрено в целях безопасности. Поэтому, если все-таки импортный конденсатор желает взорваться, то его верхняя часть просто-напросто превратится в розочку.

На фото ниже вздутый конденсатор на материнской плате компьютера. Разрыв идет ровно по линии.


Для того, чтобы проверить конденсатор, надо вспомнить общее свойство всех конденсаторов: конденсатор пропускает только переменный ток, постоянный ток он пропускает только в самом начале на несколько долей секунд (это время зависит от его емкости), а потом – не пропускает. Более подробно про это свойство можно прочитать в этой статье. Для того, чтобы проверить конденсатор с помощью мультиметра, должно соблюдаться условие, что его емкость должна быть от 0,25 мкФ.

Как проверить полярный конденсатор

Ну что же, давайте проверим нашего подопечного. Вот собственно и он, самый настоящий импортный электролитический полярный конденсатор:


Для того, чтобы разобраться, где у него минус, а где плюс, производители нанесли маркировку. Минус конденсатора указывает галочка на самом корпусе. Видите эту черную галочку на золотой толстой линии конденсатора? Она указывает на минусовый вывод.

Давайте узнаем, жив или мертв наш пациент? Для начала его надо разрядить металлическим предметом. Я использовал пинцет.


Следующим шагом берем мультиметр и ставим его крутилку на прозвонку или на измерение сопротивления, и щупами дотрагиваемся до выводов конденсатора. Так как у нас мультиметр на прозвонке и на измерении сопротивления выдает постоянный ток, значит, в какой-то момент времени ток будет течь, следовательно, в этот момент сопротивление конденсатора будет минимальным. Далее мы продолжаем держать щупы на выводах конденсатора и, сами того не понимая, заряжаем его. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое. Давайте глянем на практике, как все это выглядит.

Вот в этом момент мы только-только коснулись щупами выводов конденсатора.


Держим и видим, что сопротивление у нас растет


и пока не станет очень большим


Очень удобен в проверке конденсаторов аналоговый мультиметр, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультике.

Если же у нас при прикасании щупов к конденсатору мультиметр начинает пищать и показывать нулевое сопротивление, значит, в конденсаторе произошло короткое замыкание . А если сразу же показывается единичка на мультиметре, значит внутри конденсатора произошел обрыв. Конденсаторы с такими дефектами считаются нерабочими и их можно смело выбрасывать.

Как проверить неполярный конденсатор

Неполярные конденсаторы проверяются еще проще. Ставим предел измерения на мультиметре на Мегаомы и касаемся щупами выводов конденсатора. Если сопротивление меньше 2 Мегаом, то скорее всего конденсатор неисправен.

Конденсаторы полярные и неполярные номиналом меньше, чем 0,25мкФ могут с помощью мультиметра проверяться только на КЗ. Чтобы проверить все-таки их на работоспособность, нужен специальный прибор – LC – метр или универсальный R/L/C/Transistor-metr , но и некоторые мультиметры могут также измерять емкость конденсаторов, имея внутри себя такую функцию. Например, мой мультиметр может без труда определить емкость конденсатора до 200 мкФ. Имейте ввиду, что внутри мультиметра есть . Если он перегорает, то некоторые функции мультиметра теряются. На моем мультиметре при перегорании внутреннего предохранителя не работала функция измерения силы тока и измерение емкости конденсатора.

Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В. , это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный


Керамический

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3. 3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы


Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

Обсудить статью КОНДЕНСАТОР

Электролитический конденсатор является странным электронным компонентом, сочетающим в себе свойства пассивного элемента и полупроводникового прибора. В различие от обыкновенного конденсатора, он является полярным элементом.

Инструкция

1. У электролитических конденсаторов отечественного производства, итоги которых расположены радиально либо аксиально, для определения полярности обнаружьте знак плюса, расположенный на корпусе. Тот из итогов, ближе к которому он размещен, является позитивным. Аналогичным образом промаркированы и некоторые ветхие конденсаторы чешского производства.

2. Конденсаторы коаксиальной конструкции, у которых корпус рассчитан на соединение с шасси; обыкновенно предуготовлены для применения в фильтрах анодного напряжения устройств, исполненных на лампах. От того что оно является правильным, минусовая обкладка у них в большинстве случаев выведена на корпус, а плюсовая – на центральный контакт. Но из этого правила могут быть и исключения, следственно в случае всяких сомнений поищите на корпусе прибора маркировку (обозначение плюса либо минуса) либо, при отсутствии таковой, проверьте полярность методом, описанным ниже.

3. Нестандартный случай появляется при проверке электролитических конденсаторов типа К50-16. Такой прибор имеет пластмассовое дно, а маркировка полярности помещена прямо на нем. Изредка знаки минуса и плюса расположены таким образом, что итоги проходят прямо через их центры.

4. Конденсатор устаревшего типа ЭТО непосвященный может принять за диод. Обыкновенно полярность на его корпусе указана методом, описанным в шаге 1. При отсутствии маркировки знайте, что итог, расположенный со стороны утолщения корпуса, подключен к правильной обкладке. Ни в коем случае не разбирайте такие конденсаторы – в них содержатся ядовитые вещества!

5. Полярность современных электролитических конденсаторов привозного производства, самостоятельно от их конструкции, определяйте по полосе, расположенной рядом с минусовым итогом. Она нанесена цветом, контрастным к цвету корпуса, и является прерывистой, т.е. как бы состоит из минусов.

6. Для определения полярности конденсатора, не имеющего маркировки, соберите цепь, состоящую из источника непрерывного напряжения в несколько вольт, резистора на один килоом и микроамперметра, объединенных ступенчато. Всецело разрядите прибор, и лишь после этого включите в эту цепь. Позже полной зарядки прочитайте показания прибора. После этого отключите конденсатор от цепи, вновь всецело разрядите, включите в цепь, дождитесь полной зарядки и прочитайте новые показания. Сравните их с предыдущими. При подключении в положительной полярности утрата приметно поменьше.

В автомагазинах продаются свинцово-кислотные аккумуляторные батареи прямой (ими комплектуются все отечественные автомобили) и обратной полярности (устанавливаются на некоторых машинах зарубежного производства). Перед покупкой батареи, нужно верно определить ее полярность .

Вам понадобится

  • Вольтметр

Инструкция

1. Срок службы всякий аккумуляторной батареи лимитирован и составляет, как водится, не больше пяти лет. Отработав положенное время, непременно наступает момент замены энергоблока. И если у обладателей автомобилей отечественного производства задача заключается в том, дабы предпочесть АКБ соответствующей емкости и отдать предпочтение определенной торговой марке, то владельцам привозных машин нужно узнать перед покупкой полярность аккумулятора.

2. Для достижения поставленной задачи батарея извлекается из аккумуляторного гнезда и располагается таким образом, что при визуальном осмотре сверху ее клеммы обязаны быть внизу. Обратите внимание, что одна из них немножко тоньше иной (она минусовая).

3. Если минусовая клемма расположена на аккумуляторе слева (внизу), то батарея обратной полярности.

4. В тех случаях, когда больше тонкая клемма справа – АКБ прямой полярности.

5. Дабы окончательно удостовериться в правильности определения полярности аккумулятора, присоедините к нему вольтметр. При этом алый щуп прибора снимает напряжение с толстой клеммы, а черный – с тонкой. Показание на шкале без знака «минус» подтверждает исследуемые параметры АКБ.

Видео по теме

Обратите внимание!
Установка аккумулятора ненадлежащей полярности в автомобиль пугает тем, что к его клеммам не получиться присоединить кабели.

Всякий диод меняет свою проводимость в зависимости от полярности приложенного к нему напряжения. Расположение же электродов на его корпусе указано не неизменно. Если соответствующая маркировка отсутствует, определить, какой электрод подключен к какому итогу, дозволено и самосильно.

Инструкция

1. Первым делом, определите полярность напряжения на щупах того измерительного прибора, которым вы пользуетесь. Если он универсальный, переведите его в режим омметра. Возьмите всякий диод, на корпусе которого обозначено расположение электродов. На этом обозначении «треугольник» соответствует аноду, а «полосочка» – катоду. Испробуйте подключать щупы к диоду в разных полярностях. Если он проводит ток, значит, щуп с правильным потенциалом подключен к аноду, а с негативным – к катоду. Помните, что полярность в режиме измерения сопротивления на стрелочных приборах может отличаться от той, которая указана для режимов измерения напряжения и тока. А вот на цифровых приборах она традиционно идентична во всех режимах, но осуществить проверку все равно не помешает.

2. Если проверяется вакуумный диод с прямым накалом, раньше каждого, обнаружьте у него сочетание штырьков, между которыми ток проходит само­стоятельно от полярности подключения измерительного прибора. Это – нить накала, она же является и катодом. По справочнику обнаружьте номинальное напряжение накала диода . Подайте на нить накала непрерывное напряжение соответствующей величины. Щуп прибора, на котором находится негативный потенциал, подключите к одному из штырьков нити накала, а позитивным щупом прикасайтесь по очереди к остальным итогам лампы. Найдя штырек, при прикосновении щупа к которому отображается сопротивление, меньшее бесконечности, сделайте итог, что это – анод. Сильные вакуумные диоды с прямым накалом (кенотроны) могут иметь два анода.

3. У вакуумного диода с косвенным накалом подогреватель изолирован от катода. Обнаружив его, подайте на него переменное напряжение, действующее значение которого равно указанному в справочнике. После этого среди остальных итогов обнаружьте два таких, между которыми при определенной полярности проходит ток. Тот из них, к которому подключен щуп с позитивным потенциалом, является анодом, противоположный – катодом. Помните, что многие вакуумные диоды с косвенным накалом имеют по два анода, а некоторые – и два катода.

4. Полупроводниковый диод имеет каждого два итога. Соответственно, прибор к нему дозволено подключить каждого двумя методами. Обнаружьте такое расположение элемента, при котором ток через него проходит. Щуп с позитивным потенциалом при этом окажется подключенным к аноду, а с негативным – к катоду.

На 1-й взор, обозначать на динамике полярность нет смысла, от того что подается на него переменное напряжение. Но когда в акустической системе несколько динамических головок, их нужно включать синфазно. Принято обозначать на итогах головки такую полярность , при которой диффузор перемещается вперед.

Инструкция

1. Изготовьте для проверки динамиков особый пробник. Для этого возьмите обычный карманный фонарь на основе лампы накаливания. Удалите из него выключатель, а взамен последнего подключите два щупа. У них неукоснительно обязаны быть изолированные ручки, от того что в момент отключения напряжения на итогах головки появляется напряжение самоиндукции. Проверьте полярность напряжения на щупах при помощи контрольного вольтметра. Нанесите на них соответствующие обозначения. Удостоверитесь, что если щупы замкнуть, лампа светится.

2. Отключите усилитель и каждый стереокомплекс (в том числе и из розетки). Отключите оба итога динамической головки от остальных цепей акустической системы. Подключите щупы к итогам головки, не касаясь ни последних, ни металлических частей щупов. В данный момент наблюдательно глядите на диффузор. Если при подключении он перемещается наружу, а при отключении – вовнутрь, полярность положительная. Если же отслеживается обратная картина, поменяйте полярность подключения щупов, позже чего повторите проверку. После этого обозначьте на каркасе динамической головки несмываемым фломастером полярность , соответствующую полярности подключения щупов.

3. Осуществите аналогичную операцию в отношении остальных динамиков в предела одной акустической системы. Самостоятельно от того, как они подключены (напрямую либо через кроссовер), подключите их синфазно таким образом, дабы красному контакту на задней стенке колонки соответствовали плюсовые итоги головок.

4. Так же проверьте и при необходимости переделайте вторую акустическую систему. Закрыв корпуса обеих колонок, проверьте, верно ли они подключены к усилителю. На кабеле, которым осуществляется такое соединение, имеются особые красные метки. Во всех случаях проводник с меткой подключайте к красной клемме, а проводник без метки – к черной.

5. Включите стереокомплекс. Сравните его звучание с тем, которое имело место до переделки.

Видео по теме

Казалось бы, для чего обозначать полярность на динамике стереосистемы? На него чай подается переменное напряжение. Впрочем если акустических головок в системе несколько, включать их надобно синфазно. На итогах той либо другой головки обозначают то значение полярности, при котором диффузор перемещается в направлении вперед.

Вам понадобится

  • – карманный фонарь с лампой накаливания;
  • – щупы с изолированными ручками;
  • – несмываемый маркер;
  • – вольтметр.

Инструкция

1. Дабы определить полярность динамика, сделайте устройство-пробник. Возьмите обыкновенный карманный фонарь с лампой накаливания. Отсоедините от него выключатель, взамен которого надобно будет подключить два щупа. Щупы обязаны быть с изолированными ручками, так как, когда напряжение отключается, на итогах головки возникает напряжение самоиндукции.

2. С поддержкой контрольного вольтметра осуществите проверку полярности на щупах, позже чего нанесите на щупы соответствующие обозначения. Когда щупы замыкаются, лампа должна гореть.

3. Отключите усилитель и вообще всю акустическую систему, выньте шнур из розетки. После этого отключите от остальных цепей системы итоги динамической головки. Дальше подключите оба щупа к итогам головки, чураясь касания итогов и металлических частей самих щупов. И на диффузор глядите наблюдательно. Если он при подключении перемещается наружу, и вовнутрь – при отключении, значит, полярность положительная. Если картина отслеживается противоположная, необходимо поменять полярность подключения щупов, а после этого повторить проверку.

4. На каркасе головки обозначьте полярность, желанно несмываемым маркером, которая соответствует полярности подключения щупов.

5. Проделайте те же самые операции и для остальных динамиков акустической системы. И не значимо, через кроссовер они подключены либо напрямую, необходимо их подключить синфазно так, дабы плюсовые итоги головок соответствовали контакту красного цвета на задней стенке собственно колонки.

6. Проверьте и переделайте, если надобно, вторую акустическую систему. Проверьте, закрыв корпуса 2-х колонок, положительно ли осуществлено их подключение к усилителю. На осуществляющем такое соединение кабеле дозволено подметить красные метки. В любом случае, проводник с меткой должен подключаться к клемме красного цвета, а тот, что без метки – к клемме черного цвета.

7. Включите стереосистему и сравните звучание, которая она издает сейчас, с тем звучанием, что она издавала до вашего вмешательства.

Медики и психофизиологи давным-давно обратили внимание на тот факт, что тот либо другой цвет идентично влияет на всех людей. Скажем, алый цвет оказывает возбуждающее влияние, фиолетовый беспокоит, синий успокаивает, а зеленый создает чувство стабильности в жизни.

Самый знаменитый эксперт, тот, что занимался постижением воздействия цветов на душевное состояние людей, Макс Люшер. Он выделил четыре психотипа людей, базируясь на их цветовых предпочтениях.

Цветовые типы личности

Красный психотип

Люди, отдающие предпочтение красному, дюже энергичны, их дозволено сравнить с «нерушимым мотором». Они, как водится, непрерывно находятся в возбуждении и любят это состояние. В итоге напряжения они дюже зачастую испытывают нервозное истощение и раздражение.

Желтый психотип

Людям этого типа дюже главна их личная воля и вероятность самореализации. Они любят эксперименты, не страшатся изменений в жизни. Из-за своей автономности они зачастую ощущают себя неудовлетворительно любимыми и утраченными.

Синий психотип

Для этих людей дюже значимым в жизни является мирный темп жизни, они любят покой и умиротворенность. Из-за того, что они выбирают «ровное существование», без сюрпризов и незапланированных действий, эти люди зачастую тоскуют и испытывают отчужденность, находясь рядом с людьми, которые их любят.

Зеленый психотип

Люди этого склада нрава любят руководить обстановкой и собой. Они заблаговременно просчитывают становление событий, знают, что хотят получить и что готовы за это отдать. Спонтанность не входит в список их качеств. Для этих людей значимо, как они выглядят в глазах окружающих и они воспользуются всякий вероятностью, дабы повысить свой ранг.

Видео по теме

Обратите внимание!
Всецело разряжайте конденсатор перед проверкой и прикосновением к его итогам. При сборке либо ремонте конструкции неизменно устанавливайте прибор только в верной полярности, напротив допустим его обрыв.

плюс-минус по внешнему виду

Многие типы электрических конденсаторов не имеют полярности и поэтому их включение в цепь не составляет труда. Электролитические аккумуляторы заряда составляют особый класс, т.к. имеют положительный и отрицательный выводы, поэтому при их подключении часто возникает проблема, как определить полярность конденсатора.

Содержание

  • 1 Как определить полярность электролитического конденсатора?
  • 2 По маркировке
  • 3 Плюс конденсатора
  • 4 Маркировка минуса
  • 5 По снимку
  • 6 С помощью мультиметра

Как определить полярность электролитического конденсатора?

Проверить расположение плюса и минуса на устройстве можно несколькими способами. Полярность конденсатора определяется следующим образом:

  • по маркировке, т. е. по надписям и рисункам на его корпусе;
  • по внешнему виду;
  • с помощью универсального измерительного прибора — мультиметра.

Важно правильно определить положительный и отрицательный контакты, чтобы после установки при подаче напряжения цепь не вышла из строя.

По маркировке

Маркировка аккумуляторов заряда, в том числе электролитических, зависит от страны, фирмы-производителя и стандартов, которые со временем меняются. Поэтому вопрос, как определить полярность на конденсаторе, не всегда имеет однозначный ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях маркировался только положительный контакт — знаком «+». Этот знак был нанесен на корпус рядом с плюсовой клеммой. Иногда в литературе положительный вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и служат для фильтрации переменного тока, т. е. обладают свойствами активного полупроводникового прибора. В некоторых случаях знак «+» ставится на печатной плате рядом с плюсовым выводом размещенного на ней запоминающего устройства.

На изделиях серии К50-16 маркировка полярности нанесена на днище, выполненное из пластика. Другие модели серии К50, такие как К50-6, имеют знак «плюс», нарисованный на нижней части алюминиевого корпуса, рядом с плюсовой клеммой. Иногда на дне маркируется и импортная продукция, произведенная в бывшем соцлагере. Современная отечественная продукция соответствует мировым стандартам.

Маркировка конденсаторов SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обычной. Плоские модели имеют черный или коричневый корпус в виде небольшой прямоугольной пластины, с серебристой полосой со знаком «плюс» на плюсовой клемме.

Маркировка минуса

Принцип маркировки полярности импортной продукции отличается от традиционных стандартов отечественной промышленности и заключается в алгоритме: «чтобы знать, где плюс, надо сначала найти, где минус». Расположение минусового контакта показано как специальными знаками, так и цветом корпуса.

Например, черный цилиндрический корпус имеет светло-серую полосу по всей высоте цилиндра со стороны отрицательного вывода, иногда называемого катодом. Полоска печатается штриховой линией, или вытянутыми эллипсами, или знаком «минус», и 1 или 2 угловыми скобками с острым углом, направленным к катоду. Диапазон с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне минусового контакта.

Другие цвета также используются для маркировки по общему принципу: темное тело и светлая полоса. Эта маркировка никогда полностью не стирается и поэтому всегда можно определить полярность «электролита», как для краткости называют электролитические конденсаторы на радиотехническом жаргоне.

Корпус конденсаторов SMD, выполненный в виде алюминиевого металлического цилиндра, остается неокрашенным и имеет натуральный серебристый цвет, а сегмент круглого верхнего торца окрашивается в насыщенный черный, красный или синий цвет и соответствует положению отрицательный терминал. После установки элемента на поверхность печатной платы на схеме хорошо виден частично окрашенный конец корпуса, обозначающий полярность, так как он имеет большую высоту, чем плоские элементы.

На поверхность платы нанесена соответствующая полярность маркировка цилиндрического SMD устройства: это круг с заштрихованным белыми линиями сегментом, где расположен минусовой контакт. Однако учтите, что некоторые производители предпочитают маркировать плюсовой контакт устройства белым цветом.

По внешнему виду

Если маркировка стерта или нечеткая, иногда можно определить полярность конденсатора по внешнему виду корпуса. У многих конденсаторов с клеммами на одной стороне, которые не были собраны, плюсовая сторона длиннее, чем отрицательная. Продукты ETO, ныне устаревшие, имеют вид двух цилиндров, установленных друг на друга: большего диаметра и меньшей высоты, и меньшего диаметра, но значительно выше. Контакты центрируются на концах цилиндров. Положительный вывод установлен на конце цилиндра большего диаметра.

Некоторые мощные электролиты имеют катодный вывод, выведенный на корпус, который припаивается к корпусу схемы. Соответственно плюсовая клемма изолирована от корпуса и расположена сверху на нем.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов определяется по светлой полоске, связанной с отрицательным полюсом прибора. Если ни по маркировке, ни по внешнему виду электролита полярность определить не удается, то и тогда проблема «как узнать полярность конденсатора» решается с помощью универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением опытов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИПТ) не превышало 70-75% номинального значения, указанного на футляре для хранения или в справочнике книга. Например, если электролит рассчитан на 16 В, блок питания должен выдавать не более 12 В. Если номинал электролита неизвестен, начните эксперимент с малых значений в диапазоне 5-6 В, а затем постепенно увеличить напряжение на выходе блока питания.

Конденсатор должен быть полностью разряжен — для этого соедините его ножки или выводы, закороченные на несколько секунд металлической отверткой или пинцетом. К ним можно подключить лампу накаливания от карманного фонаря, пока не погаснет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и комплектующие:

  • ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • принадлежности для сборки: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Далее необходимо собрать электрическую цепь:

  • параллельно резистору с помощью «крокодилов» (т.е. щупов с зажимами) подключить мультиметр, установленный для измерения постоянного тока;
  • Подключите плюсовую клемму источника питания к клемме резистора;
  • подключите другой вывод резистора к выводу конденсатора, а его второй вывод подключите к минусовой клемме источника питания.

При правильной полярности подключения электролита мультиметр не будет регистрировать ток. Значит, контакт, подключенный к резистору, будет положительным. В противном случае мультиметр покажет ток. При этом плюсовой контакт электролита был соединен с минусовой клеммой источника питания.

Другой способ проверки отличается тем, что мультиметр, подключенный параллельно резистору, переводится в режим измерения постоянного напряжения. В этом случае, если емкость подключена правильно, прибор покажет напряжение, значение которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала упадет, но затем зафиксируется на ненулевом значении.

По способу 3 прибор для измерения постоянного напряжения подключают параллельно не сопротивлению, а проверяемой емкости. Если полюса емкости подключены правильно, напряжение достигнет значения, установленного на источнике питания. Если минус блока питания соединить с плюсом емкости, т.е. неправильно, то напряжение на конденсаторе поднимется до значения, равного половине значения, выдаваемого блоком питания. Например, если клеммы источника питания 12 В, емкость будет 6 В.

После завершения испытаний конденсатор следует разрядить так же, как и в начале эксперимента.

Статьи по теме:

Как отличить положительный и отрицательный выводы конденсатора?

Источник

Конденсаторы являются пассивными компонентами электрических цепей; они удерживают электрическую энергию в электрическом поле. Когда питание отключено, конденсатор используется в качестве батареи в электрической цепи; они являются компонентами хранения энергии. Конденсатор имеет две клеммы, так как определить положительные и отрицательные клеммы конденсатора?

Как определить положительный и отрицательный выводы конденсатора?

Чтобы определить положительный и отрицательный выводы конденсатора, вам нужно найти знак минус или большую полосу, или и то, и другое на одной из сторон конденсатора. Отрицательный вывод находится ближе всего к знаку «минус» или к полосе, а немаркированный вывод — к положительному.

Еще один способ определить положительный и отрицательный выводы конденсатора — это длина двух выводов . Более длинный провод — это положительный вывод, а более короткий — отрицательный.

Как определить номинал конденсатора?

Чтобы определить номинал конденсатора, нужно найти значение, указанное на корпусе конденсатора; между тем, если ваш конденсатор имеет небольшой размер , места для отметки значения не останется. Таким образом, вместо того, чтобы указывать значение на корпусе, производители используют коды для небольших конденсаторов.

Связанные чтения:

Как определить конденсатор SMD? (С и без…

Как проверить регулятор напряжения на тракторе? Вот как!

Как определить положительную и отрицательную клемму двигателя постоянного тока?

Почему напряжение уменьшается при увеличении тока?

Почему напряжение в параллельной цепи постоянно, но не…

Как определить сгоревший компонент поверхностного монтажа?(каждый тип поверхностного монтажа)

Как проверить конденсатор?

Чтобы проверить конденсатор, вы можете сделать это многими способами, вы можете использовать настройку емкости в мультиметре , вы можете использовать мультиметр без режима измерения емкости и использовать постоянную времени для проверки конденсатора; кроме того, вы можете проверить конденсатор с помощью вольтметра или аналогового мультиметра.

Разрядка конденсатора

Перед тестированием или проверкой конденсатора его необходимо сначала разрядить, поскольку конденсаторы могут сохранять заряд даже после отключения  от источника питания. Если конденсатор не разряжается должным образом, и вы намеренно прикасаетесь к выводам конденсатора, он разрядится через вас, и вы можете получить удар током.

Разрядить конденсатор можно с помощью отвертки или разрядного резистора; помните, что разрядка конденсатора является очень важным шагом перед началом проверки конденсатора. Чтобы разрядить конденсатор, вы можете использовать следующие методы:

Метод отвертки

Важное предупреждение перед использованием этого метода, не рекомендуется для начинающих, так как при разрядке конденсатора будут искры . Искры могут вызвать множество травм и ожогов; они могут даже повредить другие компоненты.

Отсоедините конденсатор от печатной платы «PCB», затем отпаяйте его паяльником, но будьте осторожны, чтобы не коснуться его выводов . На следующем этапе возьмите хорошо изолированную отвертку; желательно, чтобы у него была длинная ручка, вы должны использовать только одну руку. Наконец, используйте другую руку, чтобы взять конденсатор.

Прикоснитесь к клеммам конденсатора металлической частью отвертки, чтобы разрядить конденсатор . Когда отвертка касается клемм, раздаются искры и треск; это означает, что конденсатор разряжается; повторите этот шаг несколько раз, чтобы убедиться, что конденсатор правильно разряжен.

Метод разрядного резистора

Этот метод безопаснее предыдущего и более рекомендуется при разрядке конденсатора . Он используется в источниках питания и других схемах, где конденсатор размещается параллельно резистору, известному как продувочный резистор. Затем питание отключается, так что весь оставшийся заряд в конденсаторе разряжается через стабилизирующий резистор.

Для выполнения этого метода возьмите большой резистор; например, любой резистор с сопротивлением в несколько кОм будет работать правильно . Подключите резистор параллельно конденсатору, чтобы иметь одинаковые начальный и конечный узлы. Заряд будет передаваться от конденсатора и разряжаться через резистор.

Источник

1). Мультиметр с емкостным методом

Для этого метода вам придется использовать цифровой мультиметр среднего или высокого класса, поскольку емкостной режим недоступен в младших мультиметрах . Кроме того, этот метод является самым быстрым и простым способом проверки любого конденсатора.

  1. Снимите конденсатор с платы и разрядите его должным образом.
  2. Если номиналы конденсаторов указаны на его корпусе , запишите их, чтобы проверить их позже, единица измерения емкости — фарад или микрофарад , а единица номинального напряжения — вольт .
  3. Настройте цифровой мультиметр на емкостной режим .
  4. Если у вас есть поляризованный конденсатор, подключенный к черному щупу к отрицательной клемме , это провод с меньшей длиной. Подключите красный щуп к положительной клемме к положительной клемме; это поводок большей длины.
  5. Если у вас есть неполяризованный конденсатор , вы можете подключить любой щуп к любому проводу, поскольку это не имеет значения, поскольку полярность отсутствует.
  6. Сравните характеристики конденсатора, которые вы записали , с цифрами, появившимися на цифровом экране мультиметра. Если разница невелика, конденсатор в хорошем состоянии; между тем, если разница велика, конденсатор находится в плохом состоянии и должен быть заменен.

2). Мультиметр без емкостного метода

Вы можете использовать его, если у вас есть дешевый или недорогой мультиметр и вы не хотите покупать еще один средний или дорогой мультиметр . Мультиметр младшего класса не имеет режима измерения емкости, доступного в мультиметре среднего или высокого класса.

  1. Снимите конденсатор с платы и разрядите его должным образом.
  2. Настройте мультиметр на режим Ом или сопротивление ; в ручных мультиметрах режим сопротивления может иметь множество диапазонов; вы можете выбрать высокий диапазон, например, от 200 кОм до 20 кОм .
  3. Если у вас есть поляризованный конденсатор, подключенный к черному щупу к отрицательной клемме , это провод с меньшей длиной. Подключите красный щуп к положительной клемме к положительной клемме; это поводок большей длины.
  4. Если у вас есть неполяризованный конденсатор , вы можете подключить любой щуп к любому проводу, поскольку это не имеет значения, поскольку полярность отсутствует.
  5. Проверить показания мультиметра ; мультиметр покажет показание на короткое время, затем оно изменится на бесконечность или обрыв цепи. Вы должны записать показания, появившиеся на короткое время, чтобы потом сравнить их.
  6. Снимите конденсатор с мультиметра и повторите предыдущие шаги несколько раз.
  7. Если каждый раз появляются одинаковые результаты , конденсатор в хорошем состоянии; если нет, то конденсатор в плохом состоянии.

3). Метод измерения постоянной времени для проверки конденсатора

Этот метод можно использовать только в том случае, если известно значение емкости , а затем вы используете емкость, чтобы проверить, находится ли конденсатор в плохом или хорошем состоянии.

  1. Снимите конденсатор с платы и разрядите его должным образом.
  2. Подсоедините последовательно конденсатор с резистором из 10 кОм .
  3. Используйте источник питания с известным напряжением для замыкания цепи.
  4. Включите источник питания и рассчитайте время, необходимое конденсатору для зарядки 63,2% напряжения питания; например, если у вас есть источник питания 24 вольт, он достигнет 15,168 вольт.
  5. Используйте сопротивление и время для расчета емкости и сравните его с уже известным вам значением.
  6. Если разница составляет небольшое значение , конденсатор в хорошем состоянии; между тем, если разница велика, конденсатор находится в плохом состоянии и должен быть заменен.

4). Простой вольтметр для проверки конденсатора Метод

  1. Снимите конденсатор с платы и разрядите его должным образом.
  2. Найдите номинальное напряжение конденсатора ; он должен быть отмечен рядом с номиналом емкости; это может быть 50В, 25В или 16В. Номинальное напряжение относится к максимальному напряжению, которому может подвергаться конденсатор.
  3. Подключите конденсатор к источнику питания с напряжением ниже номинального напряжения конденсатора ; например, если номинальное напряжение конденсатора составляет 16 вольт, напряжение питания должно быть около 9 вольт.
  4. Используйте блок питания для кратковременной зарядки конденсатора , 5-6 секунд.
  5. Переведите мультиметр в режим вольтметра постоянного тока и подключите щупы мультиметра к конденсатору.
  6. Если у вас есть поляризованный конденсатор, подключенный к черному щупу к отрицательной клемме , это провод с меньшей длиной. Подключите красный щуп к положительной клемме к положительной клемме; это поводок большей длины.
  7. Если у вас есть неполяризованный конденсатор , вы можете подключить любой щуп к любому проводу, поскольку это не имеет значения, поскольку полярность отсутствует.
  8. Начальное показание мультиметра должно быть аналогичным на уровне источника питания или близко к нему.
  9. Если разница составляет небольшое значение , конденсатор в хорошем состоянии; между тем, , если разница велика , конденсатор в плохом состоянии и должен быть заменен.

5). Аналоговый мультиметр для проверки метода конденсатора

  1. Снимите конденсатор с печатной платы и разрядите его должным образом.
  2. Настройте мультиметр на режим Ом или сопротивление ; в ручных мультиметрах режим сопротивления может иметь множество диапазонов; вы можете выбрать высокий диапазон, например, от 200 кОм до 20 кОм .
  3. Если у вас есть поляризованный конденсатор, подключенный к черному щупу к отрицательной клемме , это провод с меньшей длиной. Подключите красный щуп к положительной клемме к положительной клемме; это поводок большей длины.
  4. Если у вас неполяризованный конденсатор , вы можете подключить любой щуп к любому проводу, так как это не имеет значения, потому что полярность отсутствует.
  5. Если ваш конденсатор в хорошем состоянии , значение сопротивления сначала будет небольшим, а затем постепенно увеличится.
  6. Если ваш конденсатор находится в плохом состоянии , показания сопротивления всегда будут низкими.
  7. Если показания отсутствуют или аналог не двигается , у вас обрыв конденсатора.

Вывод

Подводя итог, вы можете узнать, какой вывод является положительным, а какой отрицательным в любом конденсаторе двумя способами :

  • Вы должны искать знак минус, большую полосу или и то, и другое  на одном из стороны конденсатора. Отрицательный вывод находится ближе всего к знаку «минус» или к полосе, а немаркированный вывод — к положительному.
  • Длина двух проводов . Более длинный провод — это положительный вывод, а более короткий — отрицательный.

Чтобы определить номинал конденсатора, нужно найти значение, указанное на корпусе конденсатора; между тем, если ваш конденсатор имеет небольшой размер , места для отметки значения не останется. Таким образом, вместо того, чтобы указывать значение на корпусе, производители используют коды для небольших конденсаторов.

Если вы хотите проверить свой конденсатор, вы должны сначала разрядить его для вашей безопасности от искр и ударов ; можно сделать это отверткой; однако не рекомендуется делать это таким образом, если вы новичок. Более рекомендуемый и безопасный метод — подключить параллельный резистор к конденсатору для разряда через него.

Мухаммад Яссер

Я амбициозный и миролюбивый человек, который всегда стремится стать лучше и узнать больше. Я люблю читать и писать, письмо помогает мне очистить свой разум и лучше думать. Одним из моих увлечений являются проекты «сделай сам», я люблю делать все сам, и мне так приятно учить других людей тому, что знаешь ты. Помощь людям делает из вас великого человека.

Полярность конденсатора: как определить

Существование полярных и неполярных конденсаторов происходит из-за различий в диэлектрическом материале между пластинами, используемыми для хранения зарядов. Диэлектрический материал в неполярных конденсаторах равномерно распределяет положительные и отрицательные заряды, в то время как в полярных конденсаторах положительные и отрицательные заряды разделены по направлению к полюсу.

Использование двух типов конденсаторов очень похоже, за исключением того факта, что полярные конденсаторы должны располагаться только в одном направлении из-за их полярности. С другой стороны, неполярные конденсаторы, такие как пленочные и керамические конденсаторы, также могут быть расположены наоборот.

Электролитические конденсаторы являются основным типом полярных конденсаторов, представленных на рынке. Размещение полярных конденсаторов может быть немного сложным, поскольку следует обращать внимание на полярность. Существует несколько методов определения полярности полярного конденсатора, в том числе:

  1. Визуальная идентификация
  2. Использование мультиметра

 

I. Визуальная идентификация

Полярность конденсатора можно определить визуально без использования мультиметра с помощью некоторых общепринятых методов, включая следующие:

 

1.

Полярность радиальных электролитических конденсаторов

Корпуса радиальных электролитических конденсаторов в основном черно-серого или зелено-черного цвета, с двумя выводами разной длины. Эти характеристики, цвет и длина выводов конденсаторов могут быть использованы в качестве метода идентификации полярности.

Здесь более длинный штифт обозначает положительный полюс (т. е. анод), а более короткий штырь обозначает отрицательный полюс (т. е. катод).

Идентификация по цветам: черная (в сочетании черный-серый) или зеленая (в сочетании зелено-черный) часть корпуса относится к аноду конденсатора, а серая или черная (в сочетании зелено-черный) часть указывает катод.

Черно-серый радиальный электролитический конденсатор

 

2. Полярность танталовых конденсаторов

Типичный танталовый конденсатор поляризован и имеет положительный и отрицательный полюса. Компонент обычно желтого цвета и предназначен для поверхностного монтажа на печатной плате. На поверхности корпуса конец, отмеченный штрихом, обозначает положительный полюс, и, следовательно, отрицательный полюс находится на другом конце.

Танталовый конденсатор

 

Метод идентификации полярности танталовых конденсаторов аналогичен методу определения полярности SMD-диодов. Однако следует отметить, что помеченный конец диода обозначает отрицательный полюс, противоположный полюсу танталового конденсатора.

 

3. Полярность алюминиевых электролитических конденсаторов

Алюминиевые электролитические конденсаторы обычно окрашены преимущественно в серый цвет. Конденсатор также имеет геометрическую форму, имеет разные стороны с прямыми и трапециевидными углами, которые также служат для идентификации полярности.

Алюминиевый электролитический конденсатор

 

Сторона серого цвета обозначает положительный полюс (анод), а черная часть обозначает отрицательный полюс или катод. При этом штифт, соответствующий прямоугольной кромке основания, относится к катоду, а штырь, соответствующий трапециевидной кромке, относится к аноду.

 

 

II. Использование мультиметра

Несмотря на простоту определения полярности конденсатора по его внешнему виду, некоторые могут не знать или не знать идентификационных характеристик. Поэтому общепринятой практикой является определение полярности конденсатора с помощью мультиметра. Используя профессиональное оборудование, мы можем гарантировать точность результатов.

Общеизвестно, что ток, проходящий через электролитический конденсатор, мал (т. е. имеет большое сопротивление утечки), когда его анод подключен к положительному полюсу источника питания (черная ручка мультиметра для измерения сопротивления), а катод подключен к источнику питания. подайте минус (красная ручка мультиметра). В противном случае ток утечки электролитического конденсатора будет высоким.

 

Метод проверки с использованием мультиметра:

  1. Для измерения сначала предполагается, что один контакт является анодом, который необходимо соединить с черным стержнем мультиметра, а затем соединить другой полюс с красным стержнем мультиметра.
  2. Возьмите показание, на котором остановится указатель (большее значение в левой части указателя). Для измерения желательно установить показания R*100 или R*1K.
  3. Разрядите конденсатор (чтобы удалить накопившиеся заряды), а затем снова поменяйте ручки мультиметра для измерения.
  4. Из двух тестов тест, в котором стрелка останавливается с левой стороны (более высокое значение сопротивления), указывает на то, что полюс, соединенный с черной ручкой, является просто анодом электролитического конденсатора.

 

Примечания: 

  • Используйте резистор или дополнительный провод для разрядки возможного остаточного электричества конденсатора перед выполнением любых измерений;
  • Поскольку измерение представляет собой процесс зарядки, потребуется некоторое время, прежде чем показания станут в основном стабильными 
  • Черная ручка измерителя является положительной, а красная — отрицательной, в то время как для цифрового измерителя все наоборот.

 

 

Вот несколько способов определения полюсов конденсатора. Не забудьте подключить анод (положительный полюс) конденсатора к соответствующему положительному полюсу источника питания. Только таким образом цепь может быть замкнута, и конденсатор сможет работать, как положено.

 

Сообщение от Джун Чжан

Джун — инженер-электрик в NexPCB

OpenStax College Physics Solution, глава 21, задача 66 (задачи и упражнения)

Chapter 21 question:

1PE2PE3PE4PE5PE6PE7PE8PE9PE10PE11PE12PE13PE14PE15PE16PE17PE18PE19PE20PE21PE22PE23PE24PE25PE26PE27PE28PE29PE30PE31PE32PE33PE34PE35PE36PE37PE38PE39PE40PE41PE42PE43PE44PE45PE46PE47PE48PE49PE50PE51PE52PE53PE54PE55PE56PE57PE58PE59PE60PE61PE62PE63PE64PE65PE66PE67PE68PE69PE70PE71PE72PE73PE74PE75PE76PE77PE

Изменить главу

Расширенный поиск

Вопрос

Конденсатор $2,00\textrm{ }\mu\textrm{F}$ и $7,50\textrm{ }\mu\textrm{F}$ могут быть соединены последовательно или параллельно, как можно резистор $25,0\textrm{ k}\Omega$ и $100\textrm{ k}\Omega$. Рассчитайте четыре RC-постоянные времени, возможные при последовательном соединении результирующих емкости и сопротивления.

Вопрос от OpenStax находится под лицензией СС BY 4.0. 9{-2}\textrm{ s}$
Резисторы последовательно, конденсаторы параллельно: 1,19 с
Оба параллельно: 0,190 с

Видео решения

Зарегистрируйтесь, чтобы посмотреть это видео решения!

Начать бесплатную неделю

Trustpilot

Рейтинг

ПлохоНе так уж плохоСреднеХорошоОчень хорошо

2 голоса со средней оценкой 5.

Скриншоты калькулятора

Стенограмма видео

Это ответы по физике в колледже с Шоном Дычко. У нас есть два конденсатора и два резистора, и мы собираемся соединить их в конденсаторах последовательно и параллельно, и мы соединим резисторы последовательно и параллельно, и соединим эти две комбинации вместе, чтобы у нас было четыре различных способа расположения этих элементов схемы, и каждый этих механизмов будут иметь разные постоянные времени. Итак, первый конденсатор на 2,00 мкФ, а второй на 7,50 мкФ; первый резистор 25,0 кОм а второй 100 кОм и я написал все те с их вместо префиксов с их временами 10 на то что им нужно и в первой схеме у нас будут резисторы последовательно и конденсаторы последовательно и поэтому постоянная времени будет равна общему сопротивлению, умноженному на общую емкость. Таким образом, для резисторов, соединенных последовательно, мы добавляем их напрямую, общее сопротивление будет равно 9.0606 R 1 плюс R 2 ; для последовательно соединенных конденсаторов мы добавляем их так же, как мы добавляем резисторы параллельно, мы берем обратную величину каждой емкости, складываем эти обратные величины, а затем берем обратную величину этой суммы. Это также может быть записано как C s равно 1 больше C 1 плюс 1 больше C 2 все в степени отрицательной единицы вы могли видеть это написанным таким образом, или вы можете увидеть 1 больше C s равно 1 больше C 1 плюс 1 больше C 2 все это одно и то же, просто написано по-разному Я предпочитаю писать так, потому что так я вбиваю это в свой калькулятор. Я иду в скобки сначала емкость, а затем есть отрицательная кнопка экспоненты плюс вторая отрицательная емкость Кнопка экспоненты закрыть квадратную скобку минус один экспонент на все это, и это дает нам ответ для последовательной емкости. Хорошо! Итак, у нас есть 25,0 кОм плюс 100 кОм, умноженные на 2,00 мкФ к отрицательному плюс 7,50 мкФ к отрицательному, и все это к отрицательному, что дает нам 0,19.7 секунд — это постоянная времени, когда все последовательно. Затем у нас есть резисторы, соединенные параллельно, и конденсаторы, соединенные последовательно, так что это формула для сложения сопротивлений параллельно, и она аналогична сложению конденсаторов последовательно. Таким образом, у нас есть 25,0 кОм к отрицательному плюс 100 кОм к отрицательному, все к отрицательному, а затем умножаем этот результат на два микрофарад к отрицательному плюс 7,50 микрофарад к отрицательному, все к отрицательному, что дает нам 3,16 раза. От 10 до минус 2 секунд — постоянная времени при параллельном соединении резисторов и последовательном соединении конденсаторов. Тогда у нас есть резисторы, соединенные последовательно, но конденсаторы, соединенные параллельно, и когда конденсаторы соединены параллельно, они складываются напрямую. Таким образом, в этом случае постоянная времени будет 25 кОм плюс 100 кОм, умноженные на 2,00 мкФ плюс 7,50 мкФ, и получится 1,19.секунды. Затем у нас есть резисторы, соединенные параллельно, и конденсаторы, поэтому резисторы, соединенные параллельно, добавляют таким образом R 1 к отрицательному, плюс R 2 к отрицательному, все к отрицательному, а затем параллельные конденсаторы просто добавляют емкости вместе, С 1 плюс С 2 . Таким образом, у нас есть 25 кОм к минусу плюс 100 кОм к минусу, все к минусу умножить на 2,00 умножить на 10 до минус 6 фарад плюс 7,50 умножить на 10 до минус 6 фарад, что дает нам 0,190 секунд для постоянной времени в этом случае, когда все параллельно.

Solutions for problems in chapter 21

1PE2PE3PE4PE5PE6PE7PE8PE9PE10PE11PE12PE13PE14PE15PE16PE17PE18PE19PE20PE21PE22PE23PE24PE25PE26PE27PE28PE29PE30PE31PE32PE33PE34PE35PE36PE37PE38PE39PE40PE41PE42PE43PE44PE45PE46PE47PE48PE49PE50PE51PE52PE53PE54PE55PE56PE57PE58PE59PE60PE61PE62PE63PE64PE65PE66PE67PE68PE69PE70PE71PE72PE73PE74PE75PE76PE77PE

Конденсаторы

Google Реклама

  • • Распознавать распространенные типы конденсаторов и их применение.
  • • Основные символы цепей для конденсаторов

Рис. 2.1.1 Обозначения основных цепей для конденсаторов

Конденсаторы (и катушки индуктивности) способны накапливать электрическую энергию, катушки индуктивности накапливают энергию в виде магнитного поля вокруг компонента, а конденсатор хранит электрическую энергию в виде ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, которое созданный между двумя тонкими листами металла, называемыми «пластинами», каждый из которых имеет различный электрический потенциал (или напряжение).

На рис. 2.1.1 показаны символы цепей Великобритании и США для различных типов конденсаторов. Конденсатор основного типа с фиксированной емкостью состоит из двух пластин из металлической фольги, разделенных изолятором. Это может быть сделано из различных изоляционных материалов, обладающих хорошими диэлектрическими свойствами. Некоторые основные типы конструкций конденсаторов показаны на рис. 2.1.2а.

Рис. 2.1.2 Распространенные типы конденсаторов

Конденсаторы имеют множество применений.

Конденсаторы широко используются в электронных схемах. Каждая цель использует одну или несколько функций, описанных в этом модуле. На рис. 2.1.2 показаны различные конденсаторы. Типичные варианты использования включают:

  • Высоковольтный электролит, используемый в источниках питания.
  • Осевой электролитический; более низкое напряжение меньшего размера для общего назначения, где необходимы большие значения емкости.
  • Высоковольтный диск керамический; небольшой размер и значение емкости, отличные характеристики допуска.
  • Металлизированный полипропилен; небольшой размер для значений до 2 мкФ хорошая надежность.
  • Сверхминиатюрный конденсатор с многослойной керамической микросхемой (для поверхностного монтажа). относительно высокая емкость для размера достигается за счет нескольких слоев. Эффективно несколько конденсаторов параллельно.

Рис. 2.1.3 Конструкция — конденсаторы с фиксированной емкостью

Конструкция конденсатора

Конструкция неполяризованных конденсаторов аналогична конструкции многих типов. Различия заключаются в площади пластин и типе диэлектрического материала, используемого для данной емкости; в идеале диэлектрик, выбранный для любого конденсатора, должен удовлетворять трем основным критериям.

1. Он будет максимально тонким, т.к. емкость обратно пропорциональна расстоянию между пластинами.

2. Диэлектрическая проницаемость материала должна быть максимально возможной, так как диэлектрическая проницаемость напрямую влияет на эффективность диэлектрика.

3. Диэлектрическая прочность должна быть достаточной, чтобы выдерживать требуемое номинальное напряжение конденсатора.

Каждый из основных типов конденсаторов, показанных на рис. 2.1.3 (за исключением миниатюрных керамических микросхем), будет покрыт изолирующим слоем (часто эпоксидной смолой).

Рис. 2.1.4 Конструкция электролитического конденсатора

Электролитические конденсаторы

Конструкция электролитических конденсаторов в некоторых отношениях аналогична конденсатору из фольги. За исключением того, что, как показано на рис. 2.1.4, слои между фольгой теперь представляют собой два очень тонких слоя бумаги, один из которых образует изолятор (3), разделяющий скрученные пары слоев, а другой — слой ткани (4). между положительной (1) и отрицательной (2) пластинами из фольги, пропитанными электролитом, который делает ткань проводящей!

Из предыдущего абзаца следует, что пропитанная ткань создает короткое замыкание между пластинами. Но настоящий диэлектрический слой создается после завершения строительства в процессе, называемом «формование». Через конденсатор проходит ток, и под действием электролита на положительной пластине образуется очень тонкий слой оксида алюминия (5). Именно этот чрезвычайно тонкий слой используется в качестве изолирующего диэлектрика. Это обеспечивает конденсатору очень эффективный диэлектрик, дающий значения емкости во много раз большие, чем это возможно с обычным конденсатором из пластиковой пленки аналогичного физического размера.

Недостатком этого процесса является то, что конденсатор поляризован и не должен иметь обратной полярности напряжения. Если это происходит, изолирующий оксидный слой очень быстро снимается с положительной пластины, позволяя конденсатору пропускать большой ток. Поскольку это происходит в закрытой емкости, «жидкий» электролит быстро закипает и быстро расширяется. Это может привести к сильному взрыву в течение нескольких секунд! НИКОГДА не подключайте электролитический конденсатор неправильно! Из-за этой опасности электролитические конденсаторы имеют маркировку, указывающую полярность их соединительных проводов. Обычная маркировка полярности (6) показана на рис. 2.1.4, состоящая из полосы символов минус (-), обозначающих отрицательный вывод конденсатора.

Обратите также внимание на то, что на конце конденсатора есть три канавки, образующие слабое место в герметичном корпусе, так что в случае взрыва верхняя часть корпуса выйдет из строя, что сведет к минимуму повреждение окружающих компонентов.

Все конденсаторы, независимо от их типа, также имеют максимальное безопасное рабочее напряжение (Vwkg). Если напряжение, указанное на конденсаторе (7), превышено, существует высокий риск того, что изоляция диэлектрического слоя, разделяющего две пластины, разрушится и вызовет короткое замыкание между пластинами, что также может вызвать быстрый и сильный перегрев, приводящий к возможный взрыв.

Рис. 2.1.5 Переменные конденсаторы

Переменные конденсаторы

Переменные конденсаторы, показанные на рис. 2.1.5 используются в качестве настроечных конденсаторов в AM-радиоприемниках, хотя они в значительной степени были заменены диодами «Varicap» (переменная емкость) с небольшой емкостью, которую можно изменять, прикладывая переменное напряжение. но конденсаторы с механической переменной по-прежнему можно найти на принципиальных схемах и в каталогах поставщиков для замены.

Подстроечные конденсаторы, независимо от их типа, обычно имеют очень малые значения емкости, обычно от нескольких пФ до нескольких десятков пФ. Большие воздушные диэлектрики, такие как анимированный на рис. 2.1.5, были заменены миниатюрными типами диэлектриков из ПВХ, как показано вверху справа на рис. 2.1.5. На видах спереди и сзади показаны крошечные предустановленные или триммерные конденсаторы, доступ к которым осуществляется через отверстия в задней части корпуса).

Символы переменных конденсаторов

Рис. 2.1.6 Символы переменных и предустановленных конденсаторов

Символы переменных конденсаторов приведены на рис. 2.1.6. Переменные конденсаторы часто доступны в виде компонентов GANGED. Обычно два переменных конденсатора регулируются одним управляющим шпинделем. Символ стрелки указывает на переменный конденсатор (регулируемый пользователем оборудования, а диагональ в виде буквы Т указывает на предустановленный конденсатор, предназначенный только для настройки техническим специалистом. Пунктирная линия, соединяющая пару переменных конденсаторов, указывает на то, что они объединены в группы.

Эти небольшие предустановленные конденсаторы доступны в различных очень маленьких конструкциях и работают так же, как и более крупные переменные, с крошечными вращающимися пластинами и обычно диэлектрическими слоями из ПВХ-пленки между ними. Их емкость составляет всего несколько пикофарад, и они часто используются в сочетании с большими переменными конденсаторами (и даже устанавливаются внутри корпуса настроечных конденсаторов) для повышения точности.

 

Калькулятор конденсаторов | Код конденсатора

Создано Войцехом Сас, докторантом

Отзыв от Bogna Szyk и Jack Bowater

Последнее обновление: 20 июня 2020 г.

Содержание:
  • Формула конденсатора
  • Код конденсатора
  • Что такое код допуска конденсатора

инструмент, который поможет вам ответить на вопросы Что такое код конденсатора? и Какова общая формула конденсаторов?

В то время как этот калькулятор является кодом для емкости и емкость в преобразователь кода , он также находит запасенный заряд для конденсатора с определенными параметрами. Вы когда-нибудь задумывались, что означают трехзначные коды конденсаторов? В тексте вы найдете объяснение — с примерами!

Формула конденсатора

Наиболее общее уравнение для конденсаторов гласит:

C = Q / V ,

где:

  • C – емкость электронного элемента.
  • Вопрос — это электрический заряд, хранящийся в конденсаторе.
  • В это напряжение на конденсаторе.

Формула показывает, что конденсатор представляет собой пассивный элемент, способный накапливать электрический заряд до тех пор, пока на него подается некоторое напряжение.

Знаете ли вы, что существует несколько типов конденсаторов? Наиболее популярны параллельные пластины и цилиндрические, но мы также используем сферические. Тем не менее, общая формула конденсатора в каждом случае одинакова — на противоположных сторонах конденсатора хранятся заряды одинаковой абсолютной величины, но разных знаков.

Причем конденсаторы могут быть расположены как последовательно, так и параллельно. В любом случае мы можем рассматривать такие системы как системы, содержащие один конденсатор, результирующая емкость которого представляет собой сумму всех частей.

Код конденсатора

Каждый конденсатор обычно имеет два числа, которые его характеризуют. Это его емкость и номинальное напряжение . Последнее говорит нам о максимальном напряжении, при котором элемент еще будет исправно работать. Емкость часто пишут напрямую, поэтому, когда вы видите конденсатор с 220 мкФ 25 В , это просто означает, что он имеет емкость 220 мкФ и безопасно работает с напряжением до 25 В .

Однако, когда емкость меньше 100 мкФ , мы обычно можем найти 3-значный код конденсатора, который определяет значение. Правило простое: Первая и вторая цифры говорят нам о емкости в пФ (пФ), а третья цифра является множителем (степень 10) — для числа n , емкость умножается на 10ⁿ . Это просто еще один способ использовать научную нотацию для описания больших чисел. Последняя цифра обычно находится в диапазоне 0-6.

Если имеется одно- или двузначное число, оно просто определяет значение в пФ.

Давайте рассмотрим пример. У нас есть код конденсатора 104 :

  • Первые две цифры говорят о емкости в пФ, то есть 10 пФ
  • Цифра 3ʳᵈ — множитель — 10⁴ или 10 000
  • Полученное значение равно 10 пФ * 10⁴ = 10⁵ пФ , или 100 нФ , или 0,1 мкФ

Можно также задать обратный вопрос: Какой код конденсатора известной емкости? Попробуем с конденсатором C = 1,24 мкФ :

  • Нам нужны две цифры для начальных двух цифр кода, поэтому пришло время округлить значение до двух значащих цифр — 1,24 мкФ 1,2 мкФ . Таким образом, код будет начинаться с 12 ·
  • .
  • Чтобы найти последнюю цифру, мы должны использовать соответствующие единицы измерения емкости, пФ — 1,2 мкФ = 1 200 000 пФ = 12 * 10⁵ пФ
  • Из этой формы мы можем сразу определить, что цифра 3ʳᵈ — это 5
  • .
  • Таким образом, код конденсатора для емкости 1,24 мкФ: 125

К счастью, этот конденсаторный калькулятор работает как преобразователь кода в емкость и как преобразователь емкости в код ! Просто выберите подходящее поле для ввода данных, и результат появится в мгновение ока!

Что такое код допуска конденсатора

Рядом с 3-значным кодом конденсатора обычно можно найти букву, описывающую диапазон допуска , в котором находится фактическое значение емкости. Можно записывать как абсолютные значения, так и процентные диапазоны. Мы собрали наиболее часто используемые коды допусков в следующей таблице:

Буква
Допуск
Б
±0,1 пФ
С
±0,25 пФ
Д
±0,5 пФ
Ф
±1%
Г
±2%
Дж
±5%
К
±10 %
М
±20 %
З
+80%, -20%

Давайте посмотрим, как наш конденсаторный калькулятор работает с кодом, содержащим букву допуска, например, 104K :

  1. Из предыдущего абзаца мы можем записать значение емкости, 100 нФ .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *