Site Loader

Содержание

Самоиндукция. Энергия магнитного поля.

Определение 1

Самоиндукция – это значимый частный случай электромагнитной индукции, когда магнитный поток, изменяясь и вызывая ЭДС индукции, создается током в самом контуре.

В случае, когда ток рассматриваемого контура по каким-либо причинам изменен, то имеет место изменение и магнитного поля этого тока, а значит и собственного магнитного потока, проходящего через контур. В контуре создается ЭДС самоиндукции, создавая препятствие для изменений тока в контуре (по правилу Ленца).

Собственный магнитный поток Φ, который проходит через контур или катушку с током, является пропорциональным силе тока I: Φ=LI.

Определение 2

Коэффициент пропорциональности L в формуле Φ=LI есть коэффициент самоиндукции или индуктивность катушки. Единица индуктивности в СИ носит название генри (Гн). Индуктивность контура или катушки равна 1 Гн, когда при силе постоянного тока 1 А собственный поток составляет 1 Вб: 1 Гн=1 Вб1 А.

Расчет индуктивности

Пример 1

Для наглядности произведем расчет индуктивности длинного соленоида, который имеет

N витков, площадь сечения S и длину l. Соленоид – это цилиндрическая катушка индуктивности, у которой длина много больше диаметра. Магнитное поле соленоида задается формулой:

B=μ0nI,

где I является обозначением тока в соленоиде, n = Ne указывает число витков на единицу длины соленоида.

Магнитный поток внутри катушки соленоида, проходящий через все N витков, составляет:

Φ=B·S·N=μ0n2Sl

Таким образом, индуктивность соленоида будет выражена формулой:

L=μ0n2S·l=μ0n2V,

где V=Sl – объем соленоида, содержащий магнитное поле.

Результат, который мы получили, не берет в расчет краевых эффектов, а значит он является приближенно верным лишь для катушек достаточной длины. Когда соленоид заполнен веществом, имеющим магнитную проницаемость μ, при заданном токе I индукция магнитного поля будет возрастать по модулю в μ раз, а значит и индуктивность катушки с сердечником тоже получит увеличение в μ раз:

Lμ=μ·L=μ0·μ·n2·V.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание Определение 3

ЭДС самоиндукции, которая возникает в катушке при постоянном значении индуктивности, в соответствии с законом Фарадея записывается в виде формулы:

δинд=δL=-∆Φ∆t=-L∆I∆t.

ЭДС самоиндукции является прямо пропорциональной индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле выступает носителем энергии. Так же, как заряженный конденсатор обладает запасом электрической энергии, катушка, по виткам которой проходит ток, обладает запасом магнитной энергии. Включив электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, при размыкании ключа будем наблюдать короткую вспышку лампы (рис. 1.21.1). Ток в цепи появится под влиянием ЭДС самоиндукции. Источником энергии, которая будет выделяться в этом процессе электрической цепью, будет служить магнитное поле катушки.

Рисунок 1.21.1. Магнитная энергия катушки. В момент размыкания ключа K лампа ярко вспыхнет.

Закон сохранения энергии позволяет говорить, что вся энергия, составляющая запас катушки, будет выделена в виде джоулева тепла. Обозначим как Rполное сопротивление цепи, тогда за время Δt будет выделено количество теплоты ΔQ=I2·R·Δt.

Ток в цепи составляет:

I=δLR=-LR∆I∆t

Выражение для ΔQ можем записать так:

∆Q=-L·I·∆I=-Φ(I)∆I

В данной записи ΔI < 0; значение тока в цепи постепенно снижается от изначального I0 до нуля. Полное количество теплоты, которое выделится в цепи, возможно получить, осуществив действие интегрирования в пределах от I0 до 0. Тогда получим:

Q=LI022

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:

Рисунок 1.21.2. Вычисление энергии магнитного поля.

В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:

Wм=ΦI2=LI22=Φ22L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B

, создаваемого током I, получим запись:

Wм=μ0·μ·n2·I22V=B22μ0·μV

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Определение 4

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Явление самоиндукции.Индуктивность. Энергия магнитного поля тока. Работа поля. Тесты, курсы по физике

Тестирование онлайн

  • Явление самоиндукции. Индуктивность. Основные понятия

  • Явление самоиндукции. Энергия магнитного поля

Явление самоиндукции

Мы уже изучили, что около проводника с током возникает магнитное поле. А также изучили, что переменное магнитное поле порождает ток (явление электромагнитной индукции). Рассмотрим электрическую цепь. При изменении силы тока в этой цепи произойдет изменение магнитного поля, в результате чего в этой же цепи возникнет дополнительный индукционный ток. Такое явление называется самоиндукцией, а ток, возникающий при этом, называется током самоиндукции.

Явление самоиндукции — это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

ЭДС самоиндукции определяется по формуле:

Явление самоиндукции подобно явлению инерции. Так же, как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет явления самоиндукции. Если в цепь, состоящую из двух параллельно подключенных к источнику тока одинаковых ламп, последовательно со второй лампой включить катушку, то при замыкании цепи первая лампа загорается практически сразу, а вторая с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки очень часто перегорают при выключении света.

Энергия магнитного поля

Энергия магнитного поля контура с током:

Формула эдс через индуктивность

Самоиндукция: — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур. Самоиндукция — частный случай электромагнитной индукции.

Индуктивность: L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком. Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. 1 Гн = 1 Вб / 1 А.

ЭДС самоиндукции: ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Индуктивность соленоида:Магнитное поле соленоида определяется формулой: , .

Магнитный поток, пронизывающий все N витков соленоида, равен: .

Следовательно, индуктивность катушки равна: .

Электродвижущая сила(ЭДС) это работа сторонних сил по перемещению единичного положительного заряда по замкнутому контору.

Энергия взаимодействия токов. Энергия и плотность энергии магнитного поля.

Энергия взаимодействия токов:

Для n токов: i = от 1 доn

Энергия магнитного поля:При отсутствии ферромагнетиков контур с индуктивностью L, по которому течет ток I, обладает магнитной энергией (собственной энергией тока), т. е.

Плотность энергии магнитного поля:— физическая величина, равная отношению:

— энергии магнитного поля в некотором объеме; к

— величине этого объема.

, — плотность энергии магнитного поля соленоида.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8561 — | 7411 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ ( S ) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ ( B ) ​, площади поверхности ​ ( S ) ​, пронизываемой данным потоком, и косинуса угла ​ ( alpha ) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ ( Phi ) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ ( alpha ) ​ магнитный поток может быть положительным ( ( alpha ) ( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ ( N ) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ ( R ) ​:

При движении проводника длиной ​ ( l ) ​ со скоростью ​ ( v ) ​ в постоянном однородном магнитном поле с индукцией ​ ( vec ) ​ ЭДС электромагнитной индукции равна:

где ​ ( alpha ) ​ – угол между векторами ​ ( vec ) ​ и ( vec ) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ ( varepsilon_ ) ​, возникающая в катушке с индуктивностью ​ ( L ) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ ( Phi ) ​ через контур из этого проводника пропорционален модулю индукции ​ ( vec ) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ ( L ) ​ между силой тока ​ ( I ) ​ в контуре и магнитным потоком ​ ( Phi ) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида.

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность [1] , краем которой является этот контур. [2][3][4] .

— магнитный поток, — ток в контуре, — индуктивность.

Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно — в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока [4] :

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током [4] :

.

Обозначение и единицы измерения

В системе единиц СИ индуктивность измеряется в генри [7] , сокращенно Гн, в системе СГС — в сантиметрах (1 Гн = 10 9 см) [4] . Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I — сила тока, протекающего по контуру в данное мгновение времени.

Символ , используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz) [ источник не указан 1017 дней ] . Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry) [8] . Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года [ источник не указан 1017 дней ] .

Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: (1) где коэффициент пропорциональности L называетсяиндуктивностью контура. При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией. Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В

Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μμ(N 2 I/l)S . Подставив в (1), найдем (2) т. е. индуктивность соленоида зависит от длиныl солениода, числа его витков N, его , площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида. Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и(3) где знак минус, определяемый правилом Ленца, говорит о том, чтоналичие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем увеличивается, то (dI/dt 0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξs >1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

43. Явление взаимной индукции. Трансформатор.

Рассмотрим два неподвижных контура (1 и 2), которые расположены достаточно близко друг от друга (рис. 1). Если в контуре 1 протекает ток I1, то магнитный поток, который создавается этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), прямо пропорционален I1. Обозначим через Ф21 часть потока,пронизывающая контур 2. Тогда (1) где L21 — коэффициент пропорциональности.

Если ток I1 меняет свое значение, то в контуре 2 индуцируется э.д.с. ξi2 , которая по закону Фарадея будет равна и противоположна по знаку скорости изменения магнитного потока Ф21, который создается током в первом контуре и пронизыващет второй: Аналогичным образом, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 1 штрихами) пронизывает первый контур. Если Ф12 — часть этого потока, который пронизывает контур 1, то Если ток I2 меняет свое значение, то в контуре 1 индуцируется э.д.с. ξi1 , которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, который создается током во втором контуре и пронизывает первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, которые подтверждены опытом, показывают, что L21 и L12 равны друг другу, т. е. (2) Коэффициенты пропорциональности L12 и L21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Найдем взаимную индуктивность двух катушек, которые намотаны на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 2). Магнитная индукция поля, которое создавается первой катушкой с числом витков N1, током I1 и магнитной проницаемостью μ сердечника, B = μμ(N1I1/l) где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Ф2 = BS = μμ(N1I1/l)S

Значит, полный магнитный поток (потокосцепление) сквозь вторичную обмотку, которая содержит N2 витков, Поток Ψ создается током I1, поэтому, используя (1), найдем (3) Если рассчитать магнитный поток, который создавается катушкой 2 сквозь катушку 1, то для L12 получим выражение в соответствии с формулой (3). Значит, взаимная индуктивность двух катушек, которые намотаны на общий тороидальный сердечник,

Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока

расчет электродвижущей силы по формуле

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

Ф = L x I,

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Кроме генерирования, трансформации электроэнергии магнитная индукция применяется в иных устройствах. Например, в магнитных левитационных поездах, которые двигаются не в непосредственном контакте с рельсами, а на несколько сантиметров выше из-за электромагнитной силы отталкивания.

Видео

Оцените статью:

Эдс самоиндукции расчет. Формула ЭДС индукции определена как

Э. д. с. самоиндукции. Э. д. с. e L , индуцирования в проводнике или катушке в результате изменения магнитного потока, созданного током, проходящим по этому же проводнику или катушке, носит название э. д. с. самоиндукции (рис. 60). Эта э. д. с. возникает при всяком изменении тока, например при замыкании и размыкании электрических цепей, при изменении нагрузки электродвигателей и пр. Чем быстрее изменяется ток в проводнике или катушке, тем больше скорость изменения пронизывающего их магнитного потока и тем большая э. д. с. самоиндукции в них индуцируется. Например, э. д. с. самоиндукции e L возникает в проводнике АБ (см. рис. 54) при изменении протекающего по нему тока i 1 . Следовательно, изменяющееся магнитное поле индуцирует э. д. с. в том же самом проводнике, в котором изменяется ток, создающий это поле.

Направление э. д. с. самоиндукции определяется по правилу Ленца. Э. д. с. самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Следовательно, при возрастании тока в проводнике (катушке) индуцированная в них э. д. с. самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию (рис. 61, а), и наоборот, при уменьшении тока в проводнике (катушке) возникает э. д. с. самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию (рис. 61, б). Если же ток в катушке не изменяется, то э. д. с. самоиндукции не возникает.

Из рассмотренного выше правила для определения направления э. д. с. самоиндукции вытекает, что эта э. д. с. оказывает тормозящее действие на изменение тока в электрических цепях. В этом отношении ее действие аналогично действию силы инерции, которая препятствует изменению положения тела. В электрической цепи (рис. 62, а), состоящей из резистора с сопротивлением R и катушки К, ток i создается совместным действием напряжения U источника и э. д. с. самоиндукции e L индуцируемой в катушке. При подключении рассматриваемой цепи к источнику э. д. с. самоиндукции e L (см. сплошную стрелку) сдерживает нарастание силы тока. Поэтому ток i достигает установившегося значения I=U/R (согласно закону Ома) не мгновенно, а в течение определенного промежутка времени (рис. 62, б). За это время в электрической цепи происходит переходный процесс, при котором изменяются e L и i. Точно

так же при выключении электрической цепи ток i не уменьшается мгновенно до нуля, а из-за действия э. д. с. e L (см. штриховую стрелку) постепенно уменьшается.

Индуктивность. Способность различных проводников (катушек) индуцировать э. д. с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с. Индуктивность измеряется в генри (Гн), 1 Гн = 1 Ом*с. На практике индуктивность часто измеряют в тысячных долях генри — миллигенри (мГн) и в миллионных долях генри — микрогенри (мкГн).

Индуктивность катушки зависит от числа витков катушки? и магнитного сопротивления R м ее магнитопровода, т. е. от его магнитной проницаемости? а и геометрических размеров l и s. Если в катушку вставить стальной сердечник, ее индуктивность резко возрастает из-за усиления магнитного поля катушки. В этом случае ток 1 А создает значительно больший магнитный поток, чем в катушке без сердечника.

Используя понятие индуктивности L, можно получить для э. д. с. самоиндукции следующую формулу:

e L = – L ?i / ?t (53)

Где?i – изменение тока в проводнике (катушке) за промежуток времени?t.

Следовательно, э. д. с. самоиндукции пропорциональна скорости изменения тока.

Включение и отключение цепей постоянного тока с катушкой индуктивности. При подключении к источнику постоянного тока с напряжением U электрической цепи, содержащей R и L, выключателем B1 (рис. 63, а) ток i возрастает до установившегося значения I уст =U/R не мгновенно, так как э. д. с. самоиндукции e L , возникающая в индуктивности, действует против приложенного напряжения V и препятствует нарастанию тока. Для рассматриваемого процесса характерным является постепенное изменение тока i (рис. 63, б) и напряжений u а и u L по кривым — экспонентам. Изменение i, u а и u L по указанным кривым называется апериодическим.

Скорость нарастания силы тока в цепи и изменения напряжений u а и u L характеризуется постоянной времени цепи

T = L/R (54)

Она измеряется в секундах, зависит только от параметров R и L данной цепи и позволяет без построения графиков оценить длительность процесса изменения тока. Эта длительность теоретически бесконечно велика. Практически же обычно считают, что она составляет (3-4) Т. За это время ток в цепи достигает 95-98 % установившегося значения. Следовательно, чем больше сопротивление и чем меньше индуктивность L, тем быстрее протекает процесс изменения тока в электрических цепях с индуктивностью. Постоянную времени Т при апериодическом процессе можно определить как отрезок АВ, отсекаемый касательной, проведенной из начала координат к рассматриваемой кривой (например, тока i) на линии, соответствующей установившемуся значению данной величины.
Свойством индуктивности замедлять процесс изменения тока пользуются для создания выдержек времени при срабатывании различных аппаратов (например, при управлении работой песочниц для периодической подачи порций песка под колеса локомотива). На использовании этого явления основана также работа электромагнитного реле времени (см. § 94).

Коммутационные перенапряжения. Особенно сильно проявляет себя э. д. с. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками (например, обмотки генераторов, электродвигателей, трансформаторов и пр.), т. е. цепей, обладающих большой индуктивностью. В этом случае возникающая э. д. с. самоиндукции e L может во много раз превысить напряжение U источника и, суммируясь с ним, послужить причиной возникновения перенапряжений в электрических цепях (рис. 64, а), называемых коммутационными (возникающими при коммутации — переключениях электрических цепей). Они являются опасными для обмоток электродвигателей, генераторов и трансформаторов, так как могут вызвать пробой их изоляции.

Большая э. д. с. самоиндукции способствует также возникновению электрической искры или дуги в электрических аппаратах, осуществляющих коммутацию электрических цепей. Например, в момент размыкания контактов рубильника (рис. 64, б) образующаяся э. д. с. самоиндукции сильно увеличивает разность потенциалов между разомкнутыми контактами рубильника и пробивает воздушный промежуток. Возникающая при этом электрическая дуга поддерживается в, течение некоторого времени э. д. с. самоиндукции, которая, таким образом, затягивает процесс отключения тока в цепи. Это явление весьма нежелательно, так как дуга оплавляет контакты отключающих аппаратов, что приводит к быстрому выходу их из строя. Поэтому во всех аппаратах, служащих для размыкания электрических цепей, предусматриваются специальные дугогасительные устройства, обеспечивающие ускорение гашения дуги.

Кроме того, в силовых цепях, обладающих значительной индуктивностью (например, обмотки возбуждения генераторов), параллельно цепи R-L (т. е. соответствующей обмотке) включают разрядный резистор R р (рис. 65, а). В этом случае после отключения выключателя В1 цепь R-L не прерывается, а оказывается замкнутой на резистор R р. Ток в цепи i при этом уменьшается не мгновенно, а постепенно — по экспоненте (рис. 65,6), так как э. д. с. самоиндукции e L , возникающая в индуктивности L, препятствует уменьшению тока. Напряжение u p на разрядном резисторе в течение процесса изменения тока также изменяется по экспоненте. Оно равно напряжению, приложенному к цепи R-L, т. е. к зажимам соответ-

ствующей обмотки. В начальный момент U p нач = UR p /R, т. е. зависит от сопротивления разрядного резистора; при больших значениях Rp это напряжение может оказаться чрезмерно большим и опасным для изоляции электрической установки. Практически для ограничения возникающих перенапряжений сопротивление R p разрядного резистора берут не более чем в 4-8 раз больше сопротивления R соответствующей обмотки.

Условия возникновения переходных процессов. Рассмотренные выше процессы при включении и выключении цепи R-L называют переходными процессами . Они возникают при включении и выключении источника или отдельных участков цепи, а также при изменении режима работы , например при скачкообразном изменении нагрузки, обрывах и коротких замыканиях. Такие же переходные процессы имеют место при указанных условиях и в цепях, содержащих конденсаторы, обладающие емкостью С. В ряде случаев переходные процессы являются опасными для источников и приемников, так как возникающие токи и напряжения могут во много раз превышать номинальные значения, на которые рассчитаны эти устройства. Однако в некоторых элементах электрооборудования, в частности в устройствах промышленной электроники, переходные процессы являются рабочими режимами.

Физически возникновение переходных процессов объясняется тем, что катушки индуктивности и конденсаторы являются накопителями энергии, а процесс накопления и отдачи энергии в этих элементах не может происходить мгновенно, следовательно, не может мгновенно измениться ток в катушке индуктивности и напряжение на конденсаторе. Время переходного процесса, в течение которого при включениях, выключениях и изменениях режима работы цепи происходит постепенное изменение тока и напряжения, определяется значениями R, L и С цепи и может составить доли и единицы секунд. После окончания переходного процесса ток и напряжение приобретают новые значения, которые называют установившимися .

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-14-210×140..jpg 614w»>

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-10-768×454..jpg 960w»>

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Jpg?x15027″ alt=»Перемещение провода в МП»>

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-10-768×536..jpg 900w»>

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-5.jpg 680w»>

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

При изменении тока в контуре меняется поток магнитной индукции через поверхность , ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L :

.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи , при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

Wikimedia Foundation . 2010 .

Смотреть что такое «ЭДС самоиндукции» в других словарях:

    эдс самоиндукции — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN self induced emfFaraday voltageinductance voltageself induction… …

    Это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение… … Википедия

    — (от лат. inductio наведение, побуждение), величина, характеризующая магн. св ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо… … Физическая энциклопедия

    реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

    Раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

    Электрический машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нём двух обмоток первичной и… … Энциклопедический словарь

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.
Самоиндукция — явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Возникающая при этом ЭДС называетсяЭДС самоиндукции

Замыкание цепи

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключенииярко вспыхивает.

Вывод

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

От чего зависит ЭДС самоиндукции?

Эл. ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:


где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:



Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
(возможен сердечник).


ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равнасобственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ
по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток (определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле (причина появления, чертеж, формула, входящие величины, их ед. измерения).
7. Самоиндукция (кратко проявление в электротехнике, определение).
8. ЭДС самоиндукции (ее действие и формула).
9. Индуктивность (определение, формулы, ед. измерения).
10. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Формула ЭДС индукции, E

Закон Фарадея – Максвелла для электромагнитной индукции

Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:

   

где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.

В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:

   

Частные случаи формул ЭДС индукции

Если контур содержит N витков, которые соединяются последовательно, то ЭДС индукции вычисляют как:

   

где – потокосцепление.

При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:

   

где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .

При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:

   

где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля .

Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:

   

В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:

   

Примеры решения задач по теме «ЭДС индукции»

Явление самоиндукции формула. Эдс самоиндукции и индуктивность цепи

Согласно закону Фарадея ℰ is = – . Если Ф = LI , то ℰ is = = – . При условии, что индуктивность контура в процессе изменения тока не меняется (т.е. не меняются геометрические размеры контура и магнитные свойства среды), то

is = – . (13.2)

Из этой формулы видно, что если индуктивность катушки L достаточно велика, а время изменения тока мало, то величина ℰ is может достигнуть большой величины и превысить ЭДС источника тока при размыкании цепи. Именно этот эффект мы наблюдали в опыте 1.

Из формулы (13.2) можно выразить L :

L = – ℰ is /(DI /Dt ),

т.е. индуктивность имеет еще один физический смысл: она численно равна ЭДС самоиндукции при скорости изменения тока через контур 1 А в 1 с.

Читатель : Но тогда получится, что размерность индуктивности

[L ] = Гн = .

СТОП! Решите самостоятельно: А3, А4, В3–В5, С1, С2.

Задача 13.2. Какова индуктивность катушки с железным сердечником, если за время Dt = 0,50 с ток в цепи изменился от I 1 = = 10,0 А до I 2 = 5,0 А, а возникшая при этом ЭДС самоиндукции по модулю равна |ℰ is | = 25 В?

Ответ : L = ℰ is » 2,5 Гн.

СТОП! Решите самостоятельно: А5, А6, В6.

Читатель : А какой смысл имеет знак минус в формуле (13.2)?

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл. ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл. поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.
Самоиндукция — явление возникновения ЭДС индукции в эл. цепи в результате изменения силы тока.
Возникающая при этом ЭДС называетсяЭДС самоиндукции

Замыкание цепи

При замыкании в эл. цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл. поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключенииярко вспыхивает.

Вывод

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

От чего зависит ЭДС самоиндукции?

Эл. ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл. цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:


где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:



Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
(возможен сердечник).


ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии.
В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равнасобственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ
по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток (определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле (причина появления, чертеж, формула, входящие величины, их ед. измерения).
7. Самоиндукция (кратко проявление в электротехнике, определение).
8. ЭДС самоиндукции (ее действие и формула).
9. Индуктивность (определение, формулы, ед. измерения).
10. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Рис. 13.6

Автор : Рассмотрим какой-либо проводящий контур, по которому течет ток. Выберем направление обхода контура – по или против часовой стрелки (рис. 13.6). Вспомним: если направление тока совпадает с выбранным направлением обхода, то сила тока считается положительной, а если нет – отрицательной.

Изменение тока DI = I кон – I нач – также величина алгебраическая (отрицательная или положительная). ЭДС самоиндукции – это работа, совершаемая вихревым полем при перемещении единичного положительного заряда по контуру вдоль направления обхода контура . Если напряженность вихревого поля направлена вдоль направления обхода контура, то эта работа положительна, а если против – отрицательна. Таким образом, знак минус в формуле (13.2) показывает, что величины DI и ℰ is всегда имеют разные знаки.

Покажем это на примерах (рис. 13.7):

а) I > 0 и DI > 0, значит, ℰ is

б) I > 0 и DI is >

в) I I| > 0, т.е. модуль тока возрастает, а сам ток становится все «более отрицательным». Значит, DI is > 0, т.е. ЭДС самоиндукции «включена» вдоль направления обхода;

г) I I| I > 0, тогда ℰ is

В задачах, по возможности, следует выбирать такое направление обхода, чтобы ток был положительным.

Задача 13.3. В цепи на рис. 13.8, а L 1 = 0,02 Гн и L 2 = 0,005 Гн. В некоторый момент ток I 1 = 0,1 А и возрастает со скоростью 10 А/с, а ток I 2 = 0,2 А и возрастает со скоростью 20 А/с. Найти сопротивление R .

а б Рис. 13.8 Решение. Так как оба тока возрастают, то в обеих катушках возникают ЭДС самоиндукции ℰ is 1
L 1 = 0,02 Гн L 2 = 0,005 Гн I 1 = 0,1 А I 2 = 0,2 А DI 1 /Dt = 10 А/с DI 2 /Dt = 20 А/с
R = ?

и ℰ is 2 , включенные навстречу токам I 1 и I 2 (рис. 13.8, б ), где

|ℰ is 1 | = ; |ℰ is 2 | = .

Выберем направление обхода по часовой стрелке (см. рис. 13.8,б ) и применим второе правило Кирхгофа

–|ℰ is 1 | + |ℰ is 2 | = I 1 R – I 2 R ,

R = |ℰ is 2 | – |ℰ is 1 | / (I 1 – I 2) = =

1 Ом.

Ответ : R = » 1 Ом.

СТОП! Решите самостоятельно: В7, В8, С3.

Задача 13.4. Катушка сопротивлением R = 20 Ом и индуктивностью L = 0,010 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на DФ = = 0,001 Вб, ток в катушке возрос на DI = 0,050 А. Какой заряд прошел за это время по катушке?

дукции |ℰ is | = . Причем ℰ is «включилась» навстречу ℰ i , так как ток в цепи возрастал (рис. 13.9).

Возьмем направление обхода контура по часовой стрелке. Тогда согласно второму правилу Кирхгофа получим:

|ℰ i | – |ℰ is | = IR ,

I = (|ℰ i | – |ℰ is |)/R = .

Заряд q , прошедший по катушке за время Dt , равна

q = I Dt =

Ответ : 25 мкКл.

СТОП! Решите самостоятельно: В9, В10, С4.

Задача 13.5. Катушка с индуктивностью L и электрическим сопротивлением R подключена через ключ к источнику тока с ЭДС ℰ. В момент t = 0 ключ замыкают. Как изменяется со временем сила тока I в цепи сразу же после замыкания ключа? Через длительное время после замыкания? Оцените характерное время t возрастания тока в такой цепи. Внутренним сопротивлением источника тока можно пренебречь.

Рис. 13.10

Рис. 13.11

Сразу же после замыкания ключа I = 0, поэтому можно считать » ℰ/L , т.е. ток возрастает с постоянной скоростью (I = (ℰ/L )t ;рис. 13.11).

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье «Явление электромагнитной индукции «, эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси — ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени — 4 А, в третий — 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукции Рисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Рисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

Ф = L × I ,

где L — коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Ом × сек иначе называется генри (Гн).

1 генри = 10 3 ; миллигенри (мГн) = 10 6 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 10 9 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi , то магнитный поток изменится на величину Δ Ф:

Δ Ф = L × Δ i .

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

На основании последней формулы можно дать определение единицы индуктивности — генри:

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Самоиндукция

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.

Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи

При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

В электротехнике явление самоиндукции проявляется при замыкании цепи (электрический ток нарастает постепенно) и при размыкании цепи (электрический ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции?

Электрический ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ

по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток (определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле (причина появления, чертеж, формула, входящие величины, их ед. измерения).
8. Самоиндукция (кратко проявление в электротехнике, определение).
9. ЭДС самоиндукции (ее действие и формула).
10. Индуктивность (определение, формулы, ед. измерения).
11. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Изменяющийся по величине ток всегда создает изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции. Когда ЭДС в катушке индуктируется за счет изменения собственного магнитного потока, величина этой ЭДС зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции. Величина ЭДС самоиндукции зависит также от числа витков катушки, густоты их намотки и размеров катушки. Чем больше диаметр катушки, число ее витков и густота намотки, тем больше ЭДС самоиндукции. Эта зависимость ЭДС самоиндукции от скорости изменения тока в катушке, числа ее витков и размеров имеет большое значение в электротехнике. Направление ЭДС самоиндукции определяется по закону Ленца. ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока.

Дисперсия света (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше скорость волны в среде:

у света красного цвета скорость распространения в среде максимальна, а степень преломления — минимальна,

у света фиолетового цвета скорость распространения в среде минимальна, а степень преломления — максимальна.

Разложение белого света призмой в спектр было известно очень давно. Однако разобраться в этом явлении до Ньютона никто не смог.

Ученых, занимающихся оптикой, интересовал вопрос о природе цвета. Наиболее распространенным было мнение о том, что белый свет является простым. Цветные же лучи получаются в результате тех или иных его изменений. Существовали различные теории по этому вопросу, на которых мы останавливаться не будем.

Изучая явление разложения белого света в спектр, Ньютон пришел к заключению, что белый свет является сложным светом. Он представляет собой сумму простых цветных лучей.

Ньютон работал с простой установкой. В ставне окна затемненной комнаты было проделано маленькое отверстие. Через это отверстие проходил узкий пучок солнечного света. На пути светового луча ставилась призма, а за призмой экран. На экране Ньютон наблюдал спектр, т. е. удлиненное изображение круглого отверстия, как бы составленного из многих цветных кружков. При этом наибольшее отклонение имели фиолетовые лучи – один конец спектра – и наименьшее отклонение – красные – другой конец спектра.-3 Дж

1. Строение ядра. Модель атома. Опыты Резерфорда.

2. Трансформатор. Устройство, принцип действия, применение.

3. при разрядки батареи состоящей из 20 параллельно включенных одинаковых конденсаторов ёмкостью 4 мкФ каждый,выделилось 10 Дж тепла. Определить.до какой разности потенциалов были заряжены конденсаторы.

Ответы на Билет№26

1) Атомное ядро- центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным и связанным с ним магнитным моментом. Единственный атом, не содержащий нейтрон в ядре — лёгкий водород (протий).

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

Атом — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро, несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе Менделеева и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N — определённому изотопу этого элемента. Единственный атом, не содержащий нейтронов в ядре — лёгкий водород (протий). Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Индуктивность катушки и самоиндуктивность Учебное пособие

Индукторы делают это, генерируя внутри себя эдс самоиндуцированной в результате изменения магнитного поля. В электрической цепи, когда ЭДС индуцируется в той же цепи, в которой изменяется ток, этот эффект называется Самоиндукция , (L), но иногда его обычно называют обратной ЭДС, поскольку ее полярность противоположна. приложенному напряжению.

Когда ЭДС индуцируется в соседний компонент, расположенный в одном и том же магнитном поле, считается, что ЭДС индуцируется Взаимная индукция , (M), и взаимная индукция является основным принципом работы трансформаторов, двигателей, реле и т. Д.Самоиндукция — это особый случай взаимной индуктивности, и поскольку она создается в одной изолированной цепи, мы обычно называем самоиндукцию просто , индуктивностью .

Базовая единица измерения индуктивности называется Henry , (H) в честь Джозефа Генри, но она также имеет единицы измерения Webers на ампер (1 H = 1 Вт / А).

Закон Ленца гласит, что индуцированная ЭДС генерирует ток в направлении, которое противодействует изменению потока, которое в первую очередь вызвало ЭДС, принцип действия и противодействия.Тогда мы можем точно определить Индуктивность как: «Катушка будет иметь значение индуктивности в один Генри, когда в катушке индуцируется ЭДС в один вольт, если ток, протекающий через указанную катушку, изменяется со скоростью один ампер в секунду. ».

Другими словами, катушка имеет индуктивность (L) в один Генри (1H), когда ток, протекающий через катушку, изменяется со скоростью один ампер в секунду (А / с). Это изменение вызывает в нем напряжение в один вольт (V L ). Таким образом, математическое представление скорости изменения тока через намотанную катушку в единицу времени дается как:

Где: di — это изменение тока в амперах, а dt — время, необходимое для изменения этого тока в секундах.Тогда напряжение, индуцированное в катушке (V L ) с индуктивностью L Генри в результате этого изменения тока, выражается как:

Обратите внимание, что отрицательный знак указывает на то, что индуцированное напряжение противодействует изменению тока через катушку в единицу времени (di / dt).

Таким образом, индуктивность катушки из приведенного выше уравнения может быть представлена ​​как:

Индуктивность катушки

Где: L — индуктивность в единицах Генри, В , L — напряжение на катушке, а di / dt — скорость изменения тока в Амперах в секунду, А / с.

Индуктивность , L на самом деле является мерой «сопротивления» индуктивности изменению тока, протекающего по цепи, и чем больше его значение в Генри, тем ниже будет скорость изменения тока.

Из предыдущего урока по индуктору мы знаем, что индукторы — это устройства, которые могут накапливать свою энергию в виде магнитного поля. Индукторы состоят из отдельных витков проволоки, объединенных в катушку, и если количество витков внутри катушки увеличивается, то при том же количестве тока, протекающего через катушку, магнитный поток также увеличивается.

Таким образом, увеличивая количество витков или витков в катушке, увеличивается индуктивность катушек. Тогда соотношение между самоиндуктивностью (L) и количеством витков (N) для простой однослойной катушки можно представить как:

Самоиндуктивность катушки

  • Где:
  • L находится в Генри
  • N — количество витков
  • Φ — это магнитный поток
  • Ι в амперах

Это выражение также можно определить как связь магнитного потока, (NΦ), деленную на ток, так как фактически одно и то же значение тока протекает через каждый виток катушки.Обратите внимание, что это уравнение применимо только к линейным магнитным материалам.

Пример индуктивности №1

Катушка индуктивности с полым сердечником состоит из 500 витков медной проволоки, которая создает магнитный поток 10 мВт при прохождении постоянного тока 10 ампер. Вычислите самоиндукцию катушки в миллигенри.

Пример индуктивности №2

Рассчитайте значение самоиндуцированной ЭДС, возникающей в той же катушке через время 10 мс.

Самоиндуктивность катушки или, точнее, коэффициент самоиндукции также зависит от характеристик ее конструкции. Например, размер, длина, количество витков и т. Д. Следовательно, можно иметь индукторы с очень высокими коэффициентами самоиндукции за счет использования сердечников с высокой магнитной проницаемостью и большого количества витков катушки. Тогда для катушки магнитный поток, создаваемый в ее внутреннем сердечнике, равен:

Где: Φ — магнитный поток, B — плотность потока, A — площадь.

Если внутренний сердечник длинной катушки соленоида с числом витков N на метр длины является полым, «с воздушным сердечником», то магнитная индукция внутри его сердечника будет иметь вид:

Тогда, подставив эти выражения в первое уравнение выше для индуктивности, мы получим:

Если исключить и сгруппировать одинаковые термины, то окончательное уравнение для коэффициента самоиндукции для катушки с воздушным сердечником (соленоида) будет иметь следующий вид:

  • Где:
  • L находится в Генри
  • μ ο — проницаемость свободного пространства (4.π.10 -7 )
  • N — количество витков
  • A — площадь внутреннего ядра (πr 2 ), м 2
  • ℓ — длина Катушки в метрах

Поскольку индуктивность катушки обусловлена ​​магнитным потоком вокруг нее, чем сильнее магнитный поток для данного значения тока, тем больше будет индуктивность. Таким образом, катушка из многих витков будет иметь более высокое значение индуктивности, чем одна из нескольких витков, и, следовательно, приведенное выше уравнение даст индуктивность L, пропорциональную числу витков в квадрате N 2 .

EEWeb имеет бесплатный онлайн-калькулятор индуктивности катушки для расчета индуктивности катушки для различных конфигураций сечения провода и расположения.

Помимо увеличения количества витков катушки, мы также можем увеличить индуктивность за счет увеличения диаметра катушки или удлинения сердечника. В обоих случаях требуется больше проволоки для создания катушки, и, следовательно, существует больше силовых линий для создания требуемой обратной ЭДС.

Индуктивность катушки может быть увеличена еще больше, если катушка намотана на ферромагнитный сердечник, то есть на сердечник из мягкого железа, чем на неферромагнитный сердечник или сердечник с полым воздухом.

Ферритовый сердечник

Если внутренний сердечник изготовлен из какого-либо ферромагнитного материала, такого как мягкое железо, кобальт или никель, индуктивность катушки значительно увеличится, потому что при той же величине протекания тока генерируемый магнитный поток будет намного сильнее. Это связано с тем, что материал концентрирует силовые линии сильнее через более мягкий ферромагнитный материал сердечника, как мы видели в учебнике по электромагнитам.

Так, например, если материал сердечника имеет относительную проницаемость в 1000 раз больше, чем свободное пространство, 1000μ ο , такое как мягкое железо или сталь, то индуктивность катушки будет в 1000 раз больше, поэтому мы можем сказать, что индуктивность катушка увеличивается пропорционально увеличению проницаемости сердечника.

Тогда для катушки, намотанной вокруг каркаса или сердечника, приведенное выше уравнение индуктивности необходимо будет изменить, чтобы включить относительную проницаемость μ r нового материала каркаса.

Если катушка намотана на ферромагнитный сердечник, индуктивность будет выше, так как проницаемость сердечника будет изменяться в зависимости от плотности потока. Однако, в зависимости от типа ферромагнитного материала, магнитный поток внутреннего сердечника может быстро достичь насыщения, создавая нелинейное значение индуктивности.Поскольку плотность потока вокруг катушки с проволокой зависит от тока, протекающего через нее, индуктивность L также становится функцией этого протекания тока, т.е.

В следующем уроке по индукторам мы увидим, что магнитное поле, создаваемое катушкой, может вызвать протекание тока во второй катушке, расположенной рядом с ней. Этот эффект называется взаимной индуктивностью и является основным принципом работы трансформаторов, двигателей и генераторов.

Собственная индуктивность | Примечания по электронике

— основная информация о самоиндукции, о том, как она возникает, основная формула самоиндукции и соответствующие расчеты.


Учебное пособие по индуктивности и трансформатору Включает:
Индуктивность Символы Закон Ленца Собственная индуктивность Расчет индуктивного реактивного сопротивления Теория индуктивного реактивного сопротивления Индуктивность проволоки и катушек Трансформеры


Самоиндукция — это эффект, который замечается, когда одна катушка испытывает влияние индуктивности.

Под действием самоиндукции и изменения тока индуцируют ЭДС или электродвижущую силу в том же проводе или катушке, создавая то, что часто называют обратной ЭДС.

Поскольку эффект наблюдается в том же проводе или катушке, которые генерируют магнитное поле, эффект известен как самоиндукция.

Определения самоиндукции

Есть различные определения, связанные с самоиндукцией, которые полезно упомянуть.

  • Самоиндукция: Самоиндукция определяется как явление, при котором изменение электрического тока в цепи создает индуцированную электродвижущую силу в той же цепи.
  • Единица самоиндукции: Самоиндукция катушки считается равной одному генри, если изменение тока в цепи на один ампер в секунду создает в цепи электродвижущую силу в один вольт.

Основы самоиндукции

Когда ток проходит по проводу, особенно когда он проходит через катушку или индуктор, индуцируется магнитное поле. Он выходит наружу от провода или индуктора и может соединяться с другими цепями.Однако он также связан с цепью, из которой он настроен.

Магнитное поле можно представить в виде концентрических контуров магнитного потока, которые окружают провод, и более крупных, которые соединяются с другими из других контуров катушки, обеспечивая самосвязь внутри катушки.

Когда ток в катушке изменяется, это вызывает индуцирование напряжения в различных контурах катушки — результат самоиндукции.

Самоиндукция

С точки зрения количественной оценки влияния индуктивности, основная формула, приведенная ниже, дает количественную оценку этого эффекта.

Где:
VL = индуцированное напряжение в вольтах
N = количество витков в катушке
dφ / dt = скорость изменения магнитного потока в веберах / секунду

Индуцированное напряжение в катушке индуктивности также может быть выражено через индуктивность (в генри) и скорость изменения тока.

Самоиндукция — это способ работы одиночных катушек и дросселей. Дроссель используется в радиочастотных цепях, потому что он противодействует любому изменению, то есть радиочастотному сигналу, но допускает любое устойчивое, т.е.е. Постоянный ток течет.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ шум
Вернуться в меню «Основные понятия электроники». . .

Самоиндуктивность — определение, формула, единицы измерения и ответы на часто задаваемые вопросы

Давайте рассмотрим волшебство концепции самоиндукции.

Рассмотрим катушку и пропустим через нее ток, не только ток, но и изменяющийся ток.

Теперь из-за изменения тока в нем индуцируется дополнительный ток, то есть индуцированный ток.

Итак, вы знаете, что означает этот наведенный ток?

Ну, индуцированный ток нематериален, и это свойство катушки генерировать его из-за изменяющегося тока, подаваемого нами через батарею.

Не все ли так просто?

Однако наше внимание сосредоточено на самоиндукции, поэтому давайте вернемся к рассмотрению этой волшебной концепции.

Итак, что вы наблюдали в этом явлении и почему оно волшебное?

Итак, волшебство заключается в следующем: при пропускании тока в катушку она индуцирует внутри себя ток, известный как самоиндуцированный. Вот почему это явление известно как самоиндукция.

Собственная индуктивность катушки

Рассмотрим катушку и пропустим через нее ток. Подача тока является первичным током, и здесь мы рассмотрим два случая, а именно:

  1. Подача тока, которая увеличивается, и

  2. Подача тока уменьшается.

Случай a: Рассмотрим катушку, в которой первичный (подаваемый) ток увеличивается в направлении, показанном на диаграмме ниже.

(изображение будет загружено в ближайшее время)

Как вы знаете, возрастающий (изменяющийся) ток генерирует индуцированный ток сам по себе, то есть самоиндуцированный ток и внутри себя, но он течет в направлении, противоположном направлению тока ток поставлен. Направление этого самоиндуцированного тока показано на диаграмме ниже.

(изображение будет загружено в ближайшее время)

Этот индуцированный ток препятствует любому изменению (или увеличению тока) того тока, из-за которого он возникает.

Теперь возьмем другой случай:

Случай b: Рассмотрим катушку, в которой ток уменьшается. Здесь происходит следующее: этот индуцированный ток способствует изменению (или уменьшению) приложенного тока.

Это означает, что индуцированный ток течет в направлении приложенного тока и способствует его увеличению.

(изображение будет загружено в ближайшее время)

Мы поняли, что индуцированный ток препятствует увеличению тока и поддерживает его уменьшение.

(изображение скоро будет загружено)

Что такое самоиндуктивность?

Рассмотрим круг, в котором изменяющийся ток создает магнитное поле (B).

Направление этого поля можно определить, согнув пальцы правой руки, и мы получим направление B, которое указывает внутрь, что можно увидеть в виде крестиков на диаграмме ниже:

(изображение будет загружу скоро)

Теперь при увеличении тока силовые линии магнитного поля тоже увеличиваются.Это означает B α i.

Из-за увеличения B также увеличивается поток (ΦB).

Как только поток увеличивается, тогда, согласно закону индукции Фарадея, в этой катушке возникает наведенная ЭДС.

По закону Ленца,

Эта наведенная ЭДС представляет собой разность потенциалов между двумя точками в этой катушке, из-за которой генерируется наведенный ток. Этот индуцированный ток уменьшит первичный ток. Его направление наружу, т. Е. Противоположно направлению B.

Этот ток создает свой поток, который противодействует потоку (ΦB), из-за которого он был создан.

Итак, это явление самоиндукции.

Формула самоиндуктивности

Давайте рассмотрим катушку с током, имеющую количество витков N, как показано ниже:

(изображение будет загружено в ближайшее время)

Если поток через одну катушку равен Φ, то для N количества витков катушек, это будет:

ΦT (общий поток) = NΦ, и

ΦT α i

Убрав знак пропорциональности, получим

ΦT = Li ⇒ L = \ [\ frac {N \ Phi T} {i} \]

Где L — коэффициент самоиндукции.

Здесь L — постоянная, не зависящая от Φ и i. Скорее, это зависит от следующего:

  1. Геометрия,

  2. Форма и

  3. Размер индуктора (катушки).

Это означает, что индуктивность не изменяется при увеличении или уменьшении при изменении Φ и i.

Единица самоиндукции

Единица самоиндукции — Вебер / Ампер или Генри «H».

Размер самоиндукции составляет [ML 2 T -2 A -2 ].

Определение коэффициента самоиндукции

По закону Фарадея ЭДС, \ [e = — \ frac {\ Phi T} {dt} \]

Итак, \ [e = | — L \ frac {di} {dt} | \ Rightarrow L = \ frac {e} {| \ frac {di} {dt} |} \]

Если значение изменения тока или di / dt составляет 1 ампер / секунду, тогда L = e. Это определение коэффициента самоиндукции.

Мы знаем, что индуктивность — это свойство электрического проводника, благодаря которому изменение тока создает ЭДС.

Самоиндукция и взаимная индукция

S.№

Самоиндукция

Взаимная индукция

1. Определение

Если скорость тока вызывает ЭДС или напряжение в той же катушке, то этот тип индукции является самоиндукция.

Если скорость изменения тока вызывает наведенную ЭДС в соседней катушке, то это взаимная индукция.

2. Формула

\ [e = — L \ frac {di} {dt} \] и \ [L = \ frac {e} {| di / dt |} \]

Для N числа витков в катушке, \ [L = \ frac {N \ Phi T} {i} \]

Если ток течет в первичной катушке, то коэффициент взаимной индукции, \ [ M = \ frac {N_ {2} \ Phi_ {12}} {i_ {1}} \]

Если ток течет во вторичной катушке, то \ [M = \ frac {N_ {1} \ Phi_ { 21}} {i_ {2}} \]

Взаимное | Определение самоиндуктивности | Формула

При изменении магнитного потока, связанного с катушкой (или проводником), в катушке индуцируется ЭДС.Эту ЭДС можно вызвать двумя способами:

  • Путем вращения катушки в стационарном магнитном поле или вращением магнитного поля в стационарной катушке (как в генераторах переменного и постоянного тока). ЭДС, наведенная таким образом, называется динамически индуцированной ЭДС. Это так называется потому, что в этом случае движется либо магнитное поле, либо катушка.
  • Магнитное поле и катушка неподвижны. Но поток, связанный с катушкой, изменяется путем изменения тока, создающего этот поток (как в трансформаторах).Наведенная таким образом ЭДС называется статически индуцированной ЭДС. Это так называется, потому что магнитное поле и катушка в этом случае неподвижны. Статически индуцированная ЭДС может быть далее подразделена на следующие две категории:
  • Самоиндуцированная ЭДС
  • Взаимно индуцированная ЭДС

Самоиндуцированная ЭДС


ЭДС, индуцированная в катушке из-за изменения магнитного потока, создаваемого ею при соединении с собственными витками, известна как самоиндуцированная ЭДС.

Рассмотрим катушку, имеющую N витков на железном сердечнике, подключенном к батарее, как показано на рисунке. Ток I протекает через катушку, он создает магнитный поток φ. Этот поток также связан со своими поворотами. Если ток, протекающий через катушку, изменяется путем изменения переменного сопротивления R, это изменяет магнитную связь с катушкой, и, следовательно, в катушке индуцируется ЭДС.

ЭДС, индуцированная таким образом, называется самоиндуцированной ЭДС. Направление наведенной ЭДС таково, что она противодействует изменению тока i.е. причина, которая его порождает (закон Ленца).

Величина самоиндуцированной ЭДС прямо пропорциональна скорости изменения магнитного потока, связанного с катушкой (закон Фарадея). Но скорость изменения магнитного потока, связанного с катушкой, прямо пропорциональна скорости изменения тока в катушке.

Следовательно, самоиндуцированная ЭДС, e α — d I / dt

Или e = — L (d I / dt) ………. (I)

Где L — константа пропорциональности и известна как коэффициент самоиндукции или самоиндукции или индуктивности катушки.


Свойство катушки противодействовать любому изменению тока, протекающего через нее, известно как самоиндукция или индуктивность катушки.

Самоиндуктивность, L = (N 2 µ o µ r a) ÷ l

где N = количество витков катушек,
a = площадь поперечного сечения магнитопровода,
l = длина магнитной цепи.
Катушка приобретает это свойство за счет самоиндуцированной ЭДС в катушке , когда ток, протекающий через нее, изменяется.

Как показано на рисунке, если ток в катушке увеличивается (путем изменения сопротивления реостата), самоиндуцированная ЭДС устанавливается в таком направлении, чтобы противодействовать увеличению тока, т.е. -индуцированная ЭДС на противоположна приложенному напряжению.

Точно так же, если ток в катушке уменьшается, самоиндуцированная ЭДС устанавливается в таком направлении, чтобы противодействовать падению тока, то есть направление самоиндуцированной ЭДС находится в том же направлении , что и направление приложенное напряжение.

Можно отметить, что самоиндукция не предотвращает изменение тока, так как дополнительная энергия выдается аккумулятором для преодоления этого противодействия. Однако задерживает изменение тока через катушку .

Можно отметить, что наличие индуктивности в цепи проявляется только при изменении тока в цепи.

Например, если устойчивый (прямой) поток через катушку, имеющую индуктивность (в силу ее геометрических и магнитных свойств), не будет проявлять ее присутствие.

Однако, когда переменный (непрерывно изменяющийся) ток течет через одну и ту же катушку, он будет эффективно проявлять свое присутствие.

Единица индуктивности — Генри (Гн).

Если в уравнении (i) выше, e = 1 В и d I / dt = 1 А / секунду, то L = 1 Гн.

Следовательно, катушка (или цепь), как говорят, имеет индуктивность один Генри, если в нем индуцируется ЭДС в 1 вольт при изменении тока через него со скоростью один ампер в секунду.

Из приведенного выше выражения ясно, что индуктивность обратно пропорциональна сопротивлению магнитной цепи.Следовательно, катушка, намотанная на магнитный сердечник (с низким сопротивлением), имеет большую индуктивность, чем эквивалентная катушка с воздушным сердечником.

Взаимно индуцированная ЭДС


ЭДС, индуцированная в катушке из-за изменения магнитного потока, создаваемого другой катушкой, называется взаимно индуцированной ЭДС.

Рассмотрим катушку X, имеющую N 1 витков, и катушку Y, имеющую N 2 витков, намотанных на железный стержень. Когда эти катушки подключены по схеме, как показано на рисунке, ток течет через катушку X и создает магнитный поток φ 1 .

Часть этого потока также связана с катушкой Y. Если ток, протекающий через катушку X, изменяется путем изменения переменного сопротивления R, он изменяет поток, связывающий с другой катушкой Y, и, следовательно, в катушке Y индуцируется ЭДС.

ЭДС, индуцированная таким образом, известна как взаимно индуцированная ЭДС. Направление взаимно индуцированной ЭДС таково, что она противодействует изменению тока в катушке X, то есть причине, которая его вызывает (закон Ленца).

Математически взаимно индуцированная ЭДС, e m α — d I 1 / dt

или e m = — M (d I 1 / dt)

Где M — константа пропорциональности, известная как коэффициент взаимной индуктивности или взаимной индуктивности катушки.


Взаимная индуктивность между двумя катушками может быть определена как свойство второй катушки, благодаря которому она противодействует изменению тока в первой катушке. Выражения для взаимной индуктивности:

M = (N 1 N 2 µ o µ r1 a 1 ) ÷ l 1

M = (N 1 N 2 µ o µ r2 a 2 ) ÷ l 2

где, N 1 , N 2 = количество витков витков,
a 1 , a 2 = площади поперечного сечения магнитных цепей,
l 1 , l 2 = длины магнитных цепей.

Коэффициент сцепления


Доля магнитного потока, создаваемого током в первой катушке, которая связана со второй катушкой, называется коэффициентом связи (k) между двумя катушками.

Коэффициент связи, k = M ÷ √ (L 1 L 2 )

где M = взаимная индуктивность между двумя катушками,
L 1 = собственная индуктивность первой катушки,
L 2 = Самоиндукция второй катушки.

Значение k равно единице, если поток, создаваемый одной катушкой, полностью связан с другой. Из-за эффекта рассеяния потока значение k всегда меньше единицы. Величина взаимной индуктивности зависит от значения коэффициента связи (k). Его значение максимально при k = 1.

Электромагнетизм | Все сообщения

© http://www.yourelectricalguide.com/ Определение и формула самоиндукции.

Взаимная индуктивность и самоиндукция | Формула и пример

Электромагнитная индукция возникает, когда магнитный поток, движущийся относительно одиночного проводника или катушки, индуцирует ЭДС в проводнике или катушке.Поскольку рост или уменьшение тока через катушку генерирует изменяющийся поток, ЭДС индуцируется в катушке из-за ее собственного изменения тока. Тот же эффект может вызвать ЭДС в соседней катушке. Уровень наведенной ЭДС в каждом случае зависит от самоиндукции катушки или от взаимной индуктивности между двумя катушками. Во всех случаях полярность наведенной ЭДС такова, что она противодействует первоначальному изменению, вызвавшему ЭДС.

Компоненты, называемые индукторами или дросселями, сконструированы с заданными значениями индуктивности.Индукторы могут работать последовательно или параллельно. Даже самый короткий проводник имеет индуктивность. Обычно это нежелательная величина, называемая паразитной индуктивностью.

Самоиндуктивность

Катушка и индуктивность проводника

Было показано, что ЭДС индуцируется в проводнике, движущемся через магнитное поле, и что рост тока в катушке может индуцировать ЭДС в другом магнитном поле. спаренная катушка. Катушка также может индуцировать в себе напряжение при изменении уровня тока.Это явление известно как самоиндукция, и его принцип показан на рисунке 1.

Рисунок 1: Токопроводящая катушка и ее площадь поперечного сечения

Магнитный поток, растущий наружу вокруг витков катушки, разрезает (или задевает) другие витки катушки и индуцирует ЭДС в катушке.

Катушка и ее площадь поперечного сечения показаны на рисунке 1, концы стрелок и точки указывают направления тока в каждом витке. Каждый виток катушки имеет магнитный поток вокруг него, создаваемый током, протекающим через катушку.Однако для удобства на рисунке показано увеличение потока только вокруг одного витка катушки. Видно, что по мере роста тока поток расширяется наружу и срезает (или сметает) другие витки. Это вызывает индукцию токов в других витках, и направление индуцированных токов таково, что они создают поток, противодействующий индуцирующему их потоку.

Помня, что ток через катушку вызывает рост потока вокруг всех витков одновременно, видно, что поток от каждого витка индуцирует ток, который противодействует ему на каждом втором витке.

Чтобы установить встречные потоки, индуцированный ток в катушке должен быть противоположен току, протекающему через катушку от внешнего источника питания. Наведенный ток, конечно же, является результатом наведенной ЭДС. Таким образом, видно, что самоиндукция катушки создает наведенную ЭДС, которая противодействует внешней ЭДС, которая пропускает ток через катушку. Поскольку эта наведенная ЭДС противоположна напряжению питания, ее обычно называют противо-ЭДС или противоэдс.Противоэдс возникает только тогда, когда ток в катушке растет или уменьшается. Когда ток достигает постоянного уровня, поток больше не меняется, и противоэдс не генерируется.

Даже один проводник имеет самоиндукцию. На рис. 2 показано, что при нарастании тока в проводнике поток может расти наружу от центра проводника. Этот поток разрезает другие части проводника и вызывает противоэдс.

Рис. 2: поперечное сечение проводника

Рост тока внутри проводника индуцирует ЭДС на других участках проводника.

На рисунке 3 показана полярность противоэдс, наведенная в катушке, для данной полярности напряжения питания. На рисунке 3 (а) переключатель замкнут, и ток I начинает расти с нуля. Полярность противоэдс (e L ) такова, что она противодействует росту I, поэтому она последовательно противодействует напряжению питания. Когда переключатель разомкнут (рисунок 3 (b)), ток стремится к нулю. Но теперь полярность e L такова, что противостоит закату I.это последовательно с питающим напряжением. Фактически, e L может вызвать искрение на выводах переключателя, поскольку это зависит от индуктивности катушки.

Рис.3: Полярность наведенной ЭДС

Противоэдс, наведенная в катушке, всегда противодействует увеличению или уменьшению тока.

Единицей индуктивности в системе СИ является Генри (Гн).

Индуктивность цепи равна одному Генри, когда ЭДС 1 В индуцируется изменением тока со скоростью 1 А / с.

Таким образом, соотношение между индуктивностью, наведенным напряжением и скоростью изменения тока будет следующим:

\ [\ begin {matrix} L = \ frac {{{e} _ {L}}} {{\ Delta i} / {\ Delta t} \;} & {} & \ left (1 \ right) \\\ end {matrix} \]

Где L — индуктивность по Генри, e L — наведенная противоэдс в вольтах. и — скорость изменения тока в А / с. знак минус иногда ставится перед e L , чтобы показать, что наведенная ЭДС противоположна приложенной ЭДС.Когда e L = 1 В и = 1 А / с, L = 1H. Если скорость изменения тока составляет 2 А / с и e L = 1 В, индуктивность составляет 0,5 Гн.

Катушка, сконструированная так, чтобы иметь определенную индуктивность, обычно называется индуктором или дросселем. Обратите внимание на графические символы для катушки индуктивности, показанные на рисунке 3.

Формула самоиндуктивности

Выражение для индуктивности может быть получено с учетом размеров катушки и количества витков [см. Рисунок 4].

Рис.4: Количество витков в катушке

Индуктивность катушки зависит от количества витков, а также от магнитного потока и изменений тока.

Из уравнения (2):

\ [\ begin {matrix} {{e} _ {L}} = N \ frac {\ Delta \ phi} {\ Delta t} & {} & \ left ( 2 \ right) \\\ end {matrix} \]

Подстановка e L в уравнение (1) дает

\ [L = N \ frac {{\ Delta \ phi} / {\ Delta t} \ ;} {{\ Delta i} / {\ Delta t} \;} \]

Или

\ [\ begin {matrix} L = N \ frac {\ Delta \ phi} {\ Delta i} & {} & \ left (3 \ right) \\\ end {matrix} \]

Также

\ [\ phi = B \ times A \]

и

$ B = {{\ mu} _ {o }} \ times {{\ mu} _ {r}} \ times H = {{\ mu} _ {o}} \ times {{\ mu} _ {r}} \ times \ frac {IN} {l} $

Следовательно,

$ \ phi = {{\ mu} _ {o}} \ times {{\ mu} _ {r}} \ times IN \ times \ frac {A} {l} $

Поскольку I — максимальный уровень тока, он также представляет изменение тока (∆i) от нуля до максимального уровня.{A} / {} _ {l} & {} & \ left (4 \ right) \\\ end {matrix} \]

Обратите внимание, что, как показано на Рисунке 5, индуктивность пропорциональна поперечному сечению площадь катушки и квадрат числа витков. Он также обратно пропорционален длине катушки. Таким образом, максимальная индуктивность достигается при использовании короткой катушки с большой площадью поперечного сечения и большим количеством витков.

Рис. 5: Размеры катушки

Индуктивность катушки можно рассчитать, исходя из ее размеров и проницаемости сердечника.

Уравнение (4) теперь позволяет рассчитать индуктивность катушки известных размеров. В качестве альтернативы его можно использовать для определения требуемых размеров катушки с заданной индуктивностью. Однако его не так просто применить к катушкам с железным сердечником, потому что проницаемость ферромагнитного материала изменяется при изменении плотности потока. Следовательно, индуктивность катушки с железным сердечником постоянно изменяется по мере увеличения и уменьшения тока катушки.

Неиндуктивная катушка

Во многих случаях желательно иметь неиндуктивную катушку; например, прецизионные резисторы обычно не являются индуктивными.Чтобы построить такую ​​катушку, обмотка сделана из двух расположенных бок о бок проводников, как показано на рисунке 6. Каждый виток катушки имеет соседний виток, несущий ток в противоположном направлении. Магнитные поля, создаваемые соседними витками, нейтрализуют друг друга. Следовательно, противоэдс не генерируется, и катушка неиндуктивна.

Рис.6: Неиндуктивная катушка

Пример самоиндуктивности

Соленоид с 900 витками имеет общий поток 1,33 X 10 -7 Вт через воздушный сердечник при токе катушки 100 мА.{-3}}} = 1,6 мВ \]

Взаимная индуктивность

Когда поток от одной катушки разрезает другую соседнюю (или магнитно связанную) катушку, во второй катушке индуцируется ЭДС. Следуя закону Ленца, ЭДС, индуцированная во второй катушке, создает поток, противодействующий исходному потоку из первой катушки. Таким образом, индуцированная ЭДС снова является противоэдс, и в этом случае индуктивный эффект называется взаимной индуктивностью. На рисунке 7 показаны графические символы, используемые для катушек с взаимной индуктивностью, также называемых связанными катушками.

Рис.7: Графические символы для катушек с воздушным и железным сердечником

Как и самоиндукция, взаимная индуктивность измеряется в Генри (H) .

Формула взаимной индуктивности

Две катушки имеют взаимную индуктивность 1 Гн, когда ЭДС 1 В индуцируется в одной катушке за счет изменения тока со скоростью 1 А / с в другой катушке.

Это определение приводит к уравнению, связывающему взаимную индуктивность с наведенным напряжением и скоростью изменения тока:

\ [\ begin {matrix} M = \ frac {{{e} _ {L}}} {{{ \ Delta i} / {\ Delta t} \;} & {} & \ left (5 \ right) \\\ end {matrix} \]

Где M — взаимная индуктивность по Генри, e L — ЭДС в вольтах, индуцированная во вторичной катушке, и представляет собой скорость изменения тока в первичной катушке в А / с.

Катушка, через которую проходит ток от внешнего источника, называется первичной, а катушка, в которой наведена ЭДС, называется вторичной.

Уравнение для ЭДС, индуцированной во вторичной катушке, можно записать как:

\ [\ begin {matrix} {{e} _ {L}} = {{N} _ {s}} \ frac {\ Delta \ phi} {\ Delta t} & {} & \ left (6 \ right) \\\ end {matrix} \]

Здесь ∆ϕ — полное изменение магнитного потока во вторичной обмотке, N с — количество витков вторичной обмотки, а ∆t — время, необходимое для изменения магнитного потока.

Подстановка e L из уравнения (6) в уравнение (5) дает

\ [M = {{N} _ {s}} \ frac {{\ Delta \ phi} / {\ Delta t} \ ;} {{\ Delta i} / {\ Delta t} \;} \]

Следовательно,

\ [\ begin {matrix} M = {{N} _ {s}} \ frac {\ Delta \ phi } {\ Delta i} & {} & \ left (7 \ right) \\\ end {matrix} \]

Рисунок 8 (a) иллюстрирует тот факт, что когда две катушки намотаны на один ферромагнитный сердечник, эффективно весь поток, создаваемый первичной катушкой, соединяется с вторичной катушкой.Однако, когда катушки имеют воздушный сердечник, только часть потока от первичной обмотки может соединяться с вторичной (см. Рисунок 8 (b)). В зависимости от того, какая часть первичного потока пересекает вторичную, катушки могут быть классифицированы как слабо связанные или сильно связанные. Один из способов обеспечить плотное соединение показан на Рисунке 8 (c), где каждый виток вторичной обмотки находится рядом с одним витком первичной обмотки. Катушки, намотанные таким образом, называют бифилярными.

Рис.8: Потоковые связи в первичной и вторичной обмотках

Величина магнитного потока от первичной обмотки, которая связана со вторичной, зависит от того, насколько тесно связаны катушки. Коэффициент сцепления определяет сцепление.

Величина магнитной связи между первичной обмоткой и вторичной обмоткой также определяется в терминах коэффициента связи, k. Если весь первичный поток связан с вторичной обмоткой, коэффициент связи равен 1. Когда только 50% первичного потока соединяется с вторичной обмоткой, коэффициент связи равен 0.5. Таким образом,

\ [k = \ frac {flux \ text {} связей \ text {} между \ text {} primary \ text {} и \ text {} \ sec ondary} {total \ text {} fluxproduced \ text {} by \ text {} primary} \]

Возвращаясь к уравнению (7). Когда ∆ϕ — полное изменение магнитного потока в первичной обмотке, магнитная связь с вторичной обмоткой равна k∆ϕ. Следовательно, уравнение для M

\ [\ begin {matrix} M = k {{N} _ {s}} \ frac {\ Delta \ phi} {\ Delta i} & {} & \ left (8 \ right ) \\\ end {matrix} \]

Также, заменив $ \ Delta \ phi = {{\ mu} _ {o}} \ times {{\ mu} _ {r}} \ times \ Delta i \ times N \ times \ frac {A} {l} $ в уравнение (8) дает

\ [M = \ frac {k {{N} _ {s}}} {\ Delta i} \ times {{\ mu } _ {o}} \ times {{\ mu} _ {r}} \ times \ Delta i \ times {{N} _ {p}} \ times \ frac {A} {l} \]

или

\ [\ begin {matrix} M = k \ times {{N} _ {p}} \ times {{N} _ {s}} \ times {{\ mu} _ {o}} \ times {{\ mu} _ {r}} \ times \ frac {A} {l} & {} & \ left (9 \ right) \\\ end {matrix} \]

Каждая рассматриваемая обмотка сама по себе имеет самоиндукцию, которая может рассчитывается по уравнению (4).{2}} $

или

\ [\ begin {matrix} \ sqrt {{{L} _ {1}} \ times {{L} _ {2}}} = {{N} _ {p} } \ times {{N} _ {s}} \ times {{\ mu} _ {o}} \ times {{\ mu} _ {r}} \ times \ frac {A} {l} & {} & \ left (10 \ right) \\\ end {matrix} \]

Сравнивая уравнения 9 и 10, видно, что

\ [\ begin {matrix} M = k \ sqrt {{{L} _ { 1}} \ times {{L} _ {2}}} & {} & \ left (11 \ right) \\\ end {matrix} \]

Пример взаимной индуктивности

Две одинаковые катушки намотаны железный сердечник кольцевой формы с относительной проницаемостью 500.{-2}}} \ cong 9.42mH \\\ end {align} \]

Поскольку катушки намотаны на один и тот же железный сердечник, k = 1. Уравнение (11):

$ M = k \ sqrt {{{L} _ {1}} \ times {{L} _ {2}}} = \ sqrt {9.42 \ times 9.42} = 9,42 мГн $

Самоиндукция, самоиндукция и вывод индуктивности

Самоиндукция

Самоиндукция — это явление, при котором изменяющийся электрический ток вызывает наведенную ЭДС в самой катушке.

Собственная индуктивность

Собственная индуктивность — это отношение наведенной электродвижущей силы (ЭДС) на катушке к скорости изменения тока в катушке.Мы обозначаем собственную индуктивность или коэффициент английской буквой L. Единица измерения — Генри (H).
Поскольку наведенная ЭДС (E) пропорциональна скорости изменения тока, мы можем написать,
Но фактическое уравнение:

Почему стоит знак минус (-)?
Согласно закону Ленца, индуцированная ЭДС противоположна направлению скорости изменения тока. Значит, их значение одинаковое, но разный знак.

Определение индуктивности

Для источника постоянного тока, когда переключатель включен, т.е.как раз в момент t = 0 + ток начинает течь от своего нулевого значения до определенного значения, и относительно времени будет происходить кратковременное изменение тока. Этот ток вызывает изменение потока (φ) через катушку. При изменении тока поток (φ) также изменяется, и скорость изменения относительно времени составляет

Теперь, применяя закон электромагнитной индукции Фарадея, мы получаем,

Где N — число витков катушки, а e — наведенная ЭДС на этой катушке.
Учитывая закон Ленца, мы можем записать приведенное выше уравнение как

Теперь мы можем изменить это уравнение, чтобы вычислить значение индуктивности.

Итак, [B — плотность потока, т.е. B = φ / A, A — площадь катушки],
[Nφ или Li называется связью магнитного потока и обозначается Ѱ]
Где H — сила намагничивания из-за к которой проходят линии магнитного потока от южного к северному полюсу внутри катушки, l (маленький L) — эффективная длина катушки, а



r — радиус площади поперечного сечения катушки.

Самостоятельная индуктивность, L — геометрическая величина; это зависит только от размеров соленоида и количества витков соленоида. Кроме того, в цепи постоянного тока, когда переключатель просто замкнут, в катушке возникает лишь кратковременный эффект самоиндукции. Через некоторое время в катушке не остается эффекта самоиндукции , потому что через определенное время ток становится стабильным.

Но в цепи переменного тока переменное воздействие тока всегда вызывает самоиндукцию в катушке, и определенное значение этой самоиндукции дает индуктивное реактивное сопротивление (X L = 2πfL) в зависимости от значения частоты питающей сети. .

Видео-презентация самоиндукции

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследовать
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *