Полезная мощность трансформатора формула — Мастерок
Содержание
- Номинальная мощность.
- Коэффициент мощности.
- Потери мощности и КПД.
- Что делать, если вы приобрели б/у оборудование?
- Самостоятельный расчет обмотки мощности трансформатора
- Формула расчета мощности
- Закрепление пройденного материала расчета мощности
При проектировании трансформаторов исходной является мощность, которая связывает габариты трансформатора с полной мощностью нагрузки:
(2.32)
Полная (полезная) мощность многообмоточного трансформатора, есть сумма полных мощностей всех его вторичных обмоток:
(2.33)
При активной нагрузке мощность активна и равна Р2.
Типовой (габаритной) мощностью трансформатора называют полусумму мощностей всех его обмоток
(2.34)
Найдём типовую мощность для двухобмоточного трансформатора.
Полная мощность первичной обмотки (U1, I1 – действующие значения) – эта мощность определяет габариты обмоток: число витков –входным напряжением, а сечения проводов – действующими токами. Габаритная мощность трансформатора (типовая) определяет реальное сечение сердечника – sс и равна
(2.35)
Учитывая, что , где s – теоретическая площадь поперечного сечения магнитопровода ( стали ). Реальная площадь сечения обычно меньше и зависит от толщины пластин (ленты), поэтому вводят, так называемый коэффициент заполнения сердечника – отношение реальной площади сечения к геометрической , которую легко измерить. Величина ( зависит от толщины ленты). Для прессованных сердечников . Таким образом, и выражение для напряжения первичной обмотки принимает вид
(2.36)
Аналогичное выражение можно записать и для вторичной обмотки, а мощности первичной обмотки и типовая соответственно равны
(2.37)
(2.38)
Отношение тока в обмотке к сечению проводника называется плотностью тока и для всех обмоток трансформатора она одинакова.
, (2.39)
где s обм1, sобм2 – площади сечения проводников обмоток.
Заменим токи и , тогда сумма в скобках в (2. 38) равна .
где sм – сечение всех проводников (меди) в окне магнитопровода, как показано на рисунке 2.30.
Рисунок 2.30 – К выводу формулы габаритной мощности
Введём коэффициент заполнения окна медью . Его величина находится в пределах и зависит от толщины изоляции проводов, каркаса, межслойной изоляции, способа намотки и пр. Тогда и выражение для типовой мощности принимает окончательный вид
(2.40)
Из выражения (2.40) следует, что типовая мощность определяется произведением . При увеличении линейного размера трансформатора в m раз, его объём (масса) увеличится в m 3 раз, а мощность возрастёт в m 4 раз. Поэтому, удельные массо-объёмные показатели трансформаторов улучшаются с увеличением габаритной мощности. С этой точки зрения предпочтительны многообмоточные трансформаторы по сравнению с несколькими двухобмоточными.
При конструировании трансформаторов следует стремиться к увеличению коэффициента заполнения окна магнитопровода обмотками – , так как повышается Sтип. Для этого используют провода прямоугольного сечения.
Выражение (2.40) является основой для расчёта трансформатора. Его преобразуют к виду:
(2.41)
По заданной выходной мощности (Sтип) находят произведение и по справочнику выбирают тип и размер магнитопровода, у которого произведение больше или равно найденному из (2.41). Такой сердечник обеспечит требуемую мощность в нагрузке.
2.5.6 Трёхфазные трансформаторы
Трёхфазные системы были разработаны русским электриком М.О. Доливо-Добровольским (1862 – 1919 гг.). Они широко распространены в энергетике и представляют собой симметричную трёхфазную систему напряжений промышленной частоты, сдвинутых между собой на электрический угол 120 0 . Схематическое изображение источников трёхфазных напряжений (генераторов) показано на рисунке 2.31, где начала фаз обозначены латинскими буквами ABC, а концы фаз буквами XYZ (или условно можно обозначить точками вместо букв ).
Рисунок 2. 31 – Схематическое изображение источников трёхфазных
На рисунке 2.32 показаны временное и векторное представления трёхфазной системы напряжений.
Рисунок 2.32 – Временное (а) и векторное (б) представление трёхфазной
На этом рисунке Т – период, Е – фазная ЭДС. Мгновенные значения фазных ЭДС соответственно равны
(2.42)
Это симметричная трёхфазная система, в которой в любой момент времени выполняется равенство
(2.43)
Чередование фаз принято условно положительным по часовой стрелке. Существуют три основные схемы соединения в трёхфазных цепях: звезда, треугольник и зигзаг , но наиболее широко известны первые две – звезда и треугольник (говорят соединение в звезду или в треугольник). Рассмотрим их. На рис.2.33 приведена схема соединения источника и нагрузки звездой.
Рисунок 2.33 – Схема соединения источника и нагрузки звездой
На этом рисунке – фазные напряжения. Проводники, идущие от начал фазных обмоток к нагрузке называют линейными проводами (линия). Соответственно напряжения между проводами называют линейными (например, UAC и UCA). Очевидно, что здесь линейный ток равен фазному, а линейное напряжение превышает фазное в корень из трёх раз, поскольку линейное напряжение равно геометрической разности фазных напряжений (см. рис.2.32 ).
(2.44)
На рис.2.34 приведена схема соединения источника и нагрузки треугольником.
Рисунок 2.34 – Схема соединения источника и нагрузки треугольником
При таком соединении линейные напряжения равны фазным, а линейные токи превышают фазные в корень из трёх раз, поскольку они складываются из фазных.
(2.45)
Мощность в трёхфазной цепи не зависит от схемы соединения и складывается из мощностей отдельных фаз.
(2.46)
(2.47)
(2.48)
Можно перейти к линейным токам и напряжениям.
Так, при соединении звездой получаем:
(2.49)
При соединении треугольником:
(2.50)
То есть, действительно не зависит от схемы соединения.
Трансформацию трёхфазного напряжения можно осуществлять двумя способами:
– тремя отдельными однофазными трансформаторами, как показано на рисунке 2.35а. Это, так называемый, групповой трансформатор.
– одним трёхфазным трансформатором с общей магнитной системой (рис.2.35б).
Рисунок 2.35 – Условное обозначение группового (а) и трёхфазного (б)
трансформаторов при включении звезда-звезда
Первичные обмотки трансформатора называются обмотками высшего напряжения (ВН) и обозначаются заглавными буквами, а вторичные обмотки называются обмотками низшего напряжения (НН) и обозначаются малыми буквами. Первичные и вторичные обмотки соединяются любым способом.
Соединение в зигзаг применяют, чтобы неравномерную нагрузку вторичных обмоток распределить между фазами первичной сети [1] и для получения требуемых фазовых сдвигов в многопульсных схемах выпрямления. На рис. 2.36 показано соединение обмоток звезда – зигзаг и векторная диаграмма напряжений. Видно, что между напряжениями первичной и вторичной обмоток в одноимённых фазах появился фазовый сдвиг , который можно изменять соотношением витков в частях вторичной обмотки. Если вторичная обмотка разделена на две равные части, то угол .
Рисунок 2.36 – Трёхфазный трансформатор при включении звезда-зигзаг
Трёхфазная система напряжений является симметричной, значит и магнитная система трёхфазного трансформатора должна быть симметричной, как показано на рис.2.37а. Изготовить такую магнитную систему очень сложно. Пошли по другому пути. Учитывая, что в трехфазной системе , то и сумма магнитных потоков в центральном стержне . Необходимость в центральном стержне отпадает и, если сократить ярмо фазы В, то получится плоская, широко известная трёхфазная магнитная система (рис.2.37 б и рис. 2.16 г).
Рисунок 2.37 – Магнитная система трёхфазного
трансформатора: а) симметричная, б) несимметричная
Плоская конструкция магнитной системы высоко технологична и удобна при компоновке (размещению трансформаторов), но она в принципе является несимметричной. Вследствие различия магнитных сопротивлений для разных фаз, намагничивающие токи крайних фаз А и С больше тока средней фазы В. Это приводит к нарушению фазовых углов (они отличаются от 120 градусов). Для уменьшения магнитной асимметрии сечение верхнего и нижнего ярма делают на 10…15% больше чем стержня. Но асимметрия всё равно остаётся.
В настоящее время [10] трёхфазные трансформаторы на мощности единицы киловатт и более изготавливают с симметричной магнитной системой, но такой, как показано на рис. 2.38.
Изготовление ярма сложности не представляет – его наматывают из стальной ленты c помощью оправки. Затем стержни с обмотками и оба ярма стягивают крепежом. Конструкция получилась симметричной и весьма технологичной.
Обмотки низшего напряжения часто соединяют треугольником, так как токи в них в раз меньше чем линейные, а поэтому уменьшается влияние асимметрии фазных нагрузок на первичную сеть.
Рисунок 2.38 – Симметричная магнитная система трёхфазного
| | следующая лекция ==> | |
Коэффициент полезного действия трансформатора | | | Импульсные трансформаторы |
Дата добавления: 2017-09-19 ; просмотров: 708 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Номинальная мощность.Номинальной мощностью трансформатора называется мощность, которую он может отдавать длительное время, не перегреваясь свыше допустимой температуры. Нормальный срок службы силового трансформатора должен быть не менее 20 лет. Так как нагрев обмоток зависит от величины протекающего по ним тока, в паспорте трансформатора всегда указывают полную мощность Sном в вольт-амперах или киловольт-амперах.
В зависимости от коэффициента мощности cosφ2, при котором работают потребители, от трансформатора можно получать большую или меньшую полезную мощность. При cosφ2 = l мощность подключенных к нему потребителей может быть равна его номинальной мощности Sном. При cosφ2.
Коэффициент мощности.Коэффициент мощности cosφ трансформатора определяется характером нагрузки, подключенной к его вторичной цепи. При уменьшении нагрузки начинает сильно сказываться индуктивное сопротивление обмоток трансформатора и коэффициент мощности его снижается. При отсутствии нагрузки (при холостом ходе) трансформатор имеет очень низкий коэффициент мощности, что ухудшает показатели работы источников переменного тока и электрических сетей. В этом случае трансформатор необходимо отключать от сети переменного тока.
Потери мощности и КПД.При передаче мощности из первичной обмотки трансформатора во вторичную возникают потери мощности как в самих проводах первичной и вторичной обмоток (электрические потери и или потери в меди), так и в стали магнитопровода (потери в стали ).
При холостом ходе трансформатор не передает электрическую энергию потребителю. Потребляемая им мощность тратится в основном на компенсацию потерь мощности в магнитопроводе от действия вихревых токов и гистерезиса. Эти потери называют потерями в стали или потерями холостого хода. Чем меньше поперечное сечение магнитопровода, тем больше в нем индукция, а следовательно, и потери холостого хода. Они значительно возрастают также при увеличении напряжения, подводимого к первичной обмотке, свыше номинального значения. При работе мощных трансформаторов потери холостого хода составляют 0,3-0,5% его номинальной мощности. Тем не менее их стремятся максимально уменьшить. Объясняется это тем, что потери в стали не зависят от того, работает ли трансформатор вхолостую или под нагрузкой. А так как общее время работы трансформатора обычно довольно велико, то суммарные годовые потери энергии при холостом ходе составляют значительную величину.
При нагрузке к потерям холостого хода добавляются электрические потери в проводах обмоток (потери в меди), пропорциональные квадрату нагрузочного тока. Эти потери при номинальном токе примерно равны мощности, потребляемой трансформатором при коротком замыкании, когда на его первичную обмотку подано напряжение Uк. Для мощных трансформаторов ониобычно составляют 0,5-2% номинальной мощности. Уменьшение суммарных потерь достигается соответствующим выбором сечения проводов обмоток трансформатора (снижение электрических потерь в проводах), применением электротехнической стали для изготовления магнитопровода (снижение потерь от перемагничивания) и расслоением магнитопровода на ряд изолированных друг от друга листов (снижение потерь от вихревых токов).
К. п. д трансформатора равен
КПД трансформатора сравнительно высок и достигает в трансформаторах большой мощности – 98-99%. В трансформаторах малой мощности КПД может снижаться до 50-70%. При изменении нагрузки КПД трансформатора изменяется, так как меняются полезная мощность и электрические потери. Однако он сохраняет большое значение в довольно широком диапазоне изменения нагрузки (рис. 119,6). При значительных недогрузках КПД понижается, так как полезная мощность уменьшается, а потери в стали остаются неизменными. Понижение КПД вызывается также перегрузками, так как резко возрастают электрические потери (они пропорциональны квадрату тока нагрузки, в то время как полезная мощность – только току в первой степени). Максимальное значение КПД имеет при такой нагрузке, когда электрические потери равны потерям в стали.
При проектировании трансформаторов стремятся, чтобы максимальное значение КПД достигалось при нагрузке 50-75% номинальной; этому соответствует наиболее вероятная средняя нагрузка работающего трансформатора. Такая нагрузка называется экономической.
Не нашли то, что искали? Воспользуйтесь поиском:
Каждый из нас знает, что такое трансформатор. Он служит для преобразования напряжения в большее или меньшее значение. Когда мы приобретаем трансформатор в специализированных магазинах, как правило, в инструкции к ним имеется полное техническое описание. Вам нет необходимости считать все его параметры и измерять их, так как они все уже подсчитаны и выведены заводом-изготовителем. В инструкции вы сможете найти такие параметры, как мощность трансформатора, входное напряжение, выходное напряжение, количество вторичных обмоток, если их количество превышает одну.
Основные части конструкции трансформатора.
Что делать, если вы приобрели б/у оборудование?
Но если к вам в руки попало уже использовавшееся оборудование и его функциональность вам неизвестна, необходимо самостоятельно рассчитать обмотку трансформатора и его мощность. Но как рассчитать обмотку трансформатора и его мощность хотя бы приблизительно? Стоит отметить, что такой параметр, как мощность трансформатора, очень важный показатель для данного устройства, так как от него будет зависеть, насколько функциональным будет устройство, собранное из него. Чаще всего его используют для создания блоков питания.
Расчет мощностей различных трансформаторов.
В первую очередь следует обозначить, что мощность трансформатора зависит от потребляемого тока и напряжения, которые необходимы для его функционирования. Для того чтобы подсчитать мощность, вам необходимо перемножить эти два показателя: силу потребляемого тока и напряжение питания устройства. Данная формула знакома каждому еще со школьной скамьи, выглядит она следующим образом:
Uн — напряжение питания, измеряется в вольтах, Iн — сила потребляемого тока, измеряется в амперах, P — потребляемая мощность, измеряется в ваттах.
Если у вас имеется трансформатор, который вы бы хотели измерить, то можете делать это прямо сейчас по следующей методике. Для начала необходимо осмотреть сам трансформатор и определиться с его типом и используемыми в нем сердечниками. Всматриваясь в трансформатор, необходимо понять, какой тип сердечника в нем используется. Самым распространенным считается Ш-образный тип сердечника.
Данный сердечник используется в не самых лучших трансформаторах, с точки зрения коэффициента полезного действия, но их вы можете легко найти на прилавках магазинов по продаже электротехники или выкрутить у старой и неисправной техники. Доступность и достаточно низкая цена делают их достаточно популярными среди любителей собрать устройство своими руками. Также можете приобрести тороидальный трансформатор, который иногда называют кольцевым. Он значительно дороже первого и обладает лучшим коэффициентом полезного действия и другими качественными показателями, используется в достаточно мощных и высокотехнологичных устройствах.
Направляющая для дрели — что это и как использовать.
Самостоятельный расчет обмотки мощности трансформатора
Расчет намотки сварочного трансформатора.
Воспользовавшись книгами по радиотехнике и электронике, мы можем самостоятельно рассчитать обмотку и мощность трансформатора со стандартным Ш-образным сердечником. Для того чтобы рассчитать мощность такого устройства, как трансформатор, необходимо правильно рассчитать сечение магнитопровода. Что касается стандартных трансформаторов с Ш-образным сердечником, размер сечения магнитопровода будет измеряться длиной поставленных пластин, выполненных из специальной электротехнической стали. Итак, для того чтобы определить сечение магнитопровода, необходимо перемножить два таких показателя, как толщина набора пластин и ширина центрального лепестка Ш-образной пластины.
Взяв линейку, мы сможем измерить ширину набора излучаемого трансформатора. Очень важно, что лучше всего все измерения проводить в сантиметрах, как и вычисления. Это сможет исключить появления ошибок в формулах и избавит вас от ненужных вычислений в переводы с сантиметров на метры. Итак, образно возьмем ширину рядов, равную трем сантиметрам.
Дальше необходимо измерить ширину его центрального лепестка. Данная задача может стать проблемной, так как многие трансформаторы могут по своим технологическим особенностям быть закрыты пластиковым каркасом. В таком случае вам будет нельзя, предварительно не видя реальной ширины, сделать какие-либо расчеты, которые хотя бы близко будут походить на реальные. Для того чтобы измерить данный параметр, вам понадобится поискать такие места, где это было бы возможно сделать. В ином случае можно аккуратно разобрать его корпус и измерить данный параметр, но стоит делать это с ювелирной точностью.
Формула расчета мощности
Упрощенный расчет силового трансформатора.
Найдя открытое место или разобрав прибор, вы сможете измерить толщину центрального лепестка. Абстрактно возьмем данный параметр, равный двум сантиметрам. Стоит напомнить, что, примерно рассчитывая мощность, следует как можно точнее проводить измерения. Далее вам необходимо перемножить размер набора магнитопровода, равного трем сантиметрам, и толщину лепестка пластины, равную двум сантиметрам. В итоге мы получаем сечение магнитопровода в шесть квадратных сантиметров. Чтобы делать дальнейший расчет, вам необходимо ознакомиться с такой формулой, как S=1,3*√Pтр, где:
- S — это площадь сечения магнитопровода.
- Pтр — это мощность трансформатора.
- Коэффициент 1,3 является усредненным значением.
Вспомнив формулы из курса математики, мы можем сделать вывод, что, для того чтобы подсчитать мощность, можно сделать следующее преобразование:
Следующий шаг является подстановкой в данную формулу получившегося значения сечения магнитопровода в 6 квадратных сантиметрах, в итоге получим следующие значение:
После всех подсчетов получаем абстрактное значение в 20,35 ватт, которое будет тяжело найти в трансформаторах с Ш-образным сердечником. Реальные значения колеблются в области семи ватт. Данной мощности будет вполне достаточно, чтобы собрать блок питания для аппаратуры, работающей на звуковых частотах и имеющей мощность в пределах от 3 до 5 ватт.
Закрепление пройденного материала расчета мощности
Чтобы закрепить пройденный материал, следует попробовать данный метод на еще одном типе прибора.
Расчет сварочного трансформатора.
Возьмите маломощный трансформатор и попытайтесь рассчитать обмотку трансформатора по уже изученной технологии. Как становится понятно из формулы, мощность трансформатора прямопропорциональна площади его обмотки, из чего можно сделать выводы, что маломощные трансформаторы обладают меньшими размерами. Возьмем одного из таких представителей и измерим размер центрального лепестка. Образно данная цифра будет равна 5 миллиметрам.
Далее, если в данном оборудовании не имеется трудностей с тем, чтобы измерить ширину набора пластин, то вы можете сразу же делать расчеты. Если же вы встретили на своем пути какие-либо препятствия, как описывалось в первом случае, то тогда вам предстоит проделать аналогичные процедуры. После всех действий вы все-таки измерили данный параметр, образно подберем ширину, равную двум сантиметрам. В таком случае вам предстоит перемножить эти две цифры, и получится сечение с размером в один квадратный сантиметр.
Используя формулы для расчета мощности, можно определить, что мощность такого трансформатора составляет 0,56 ватт. Конечно же, как и предполагалось, его мощность достаточно маленькая для каких-либо серьезных устройств. В нем могут находиться две вторичные обмотки с максимальным допустимым значением тока в них в пару десятков миллиампер. Такой трансформатор сможет подойти только для устройств, которые не требуют большого потребления тока.
Если вы действительно хотите сделать правильный расчет, который покажет его реальную мощность, то вам предстоит сделать дополнительные вычисления. Так, например, еще не придумали и, скорее всего, в ближайшее время не смогут найти среду, которая бы передавала электричество без потерь. В любом проводе следует учитывать такой фактор, как потери. Например, если вы делаете подсчет в достаточно массивном трансформаторе, то и, соответственно, потери в нем будут намного больше, чем в трансформаторе с малой обмоткой. Пользуясь данными формулами, вы всегда сможете без труда быстро и правильно выполнить необходимые расчеты по мощности трансформатора.
Мощность, КПД, и коэффициент мощности трансформатора — Студопедия
Поделись
Номинальная мощность.Номинальной мощностью трансформатора называется мощность, которую он может отдавать длительное время, не перегреваясь свыше допустимой температуры. Нормальный срок службы силового трансформатора должен быть не менее 20 лет. Так как нагрев обмоток зависит от величины протекающего по ним тока, в паспорте трансформатора всегда указывают полную мощность Sном в вольт-амперах или киловольт-амперах.
В зависимости от коэффициента мощности cosφ2, при котором работают потребители, от трансформатора можно получать большую или меньшую полезную мощность. При cosφ2 = l мощность подключенных к нему потребителей может быть равна его номинальной мощности Sном. При cosφ2.
Коэффициент мощности.Коэффициент мощности cosφ трансформатора определяется характером нагрузки, подключенной к его вторичной цепи. При уменьшении нагрузки начинает сильно сказываться индуктивное сопротивление обмоток трансформатора и коэффициент мощности его снижается. При отсутствии нагрузки (при холостом ходе) трансформатор имеет очень низкий коэффициент мощности, что ухудшает показатели работы источников переменного тока и электрических сетей. В этом случае трансформатор необходимо отключать от сети переменного тока.
Потери мощности и КПД.При передаче мощности из первичной обмотки трансформатора во вторичную возникают потери мощности как в самих проводах первичной и вторичной обмоток (электрические потери и или потери в меди), так и в стали магнитопровода (потери в стали ).
При холостом ходе трансформатор не передает электрическую энергию потребителю. Потребляемая им мощность тратится в основном на компенсацию потерь мощности в магнитопроводе от действия вихревых токов и гистерезиса. Эти потери называют потерями в стали или потерями холостого хода. Чем меньше поперечное сечение магнитопровода, тем больше в нем индукция, а следовательно, и потери холостого хода. Они значительно возрастают также при увеличении напряжения, подводимого к первичной обмотке, свыше номинального значения. При работе мощных трансформаторов потери холостого хода составляют 0,3-0,5% его номинальной мощности. Тем не менее их стремятся максимально уменьшить. Объясняется это тем, что потери в стали не зависят от того, работает ли трансформатор вхолостую или под нагрузкой. А так как общее время работы трансформатора обычно довольно велико, то суммарные годовые потери энергии при холостом ходе составляют значительную величину.
При нагрузке к потерям холостого хода добавляются электрические потери в проводах обмоток (потери в меди), пропорциональные квадрату нагрузочного тока. Эти потери при номинальном токе примерно равны мощности, потребляемой трансформатором при коротком замыкании, когда на его первичную обмотку подано напряжение Uк. Для мощных трансформаторов ониобычно составляют 0,5-2% номинальной мощности. Уменьшение суммарных потерь достигается соответствующим выбором сечения проводов обмоток трансформатора (снижение электрических потерь в проводах), применением электротехнической стали для изготовления магнитопровода (снижение потерь от перемагничивания) и расслоением магнитопровода на ряд изолированных друг от друга листов (снижение потерь от вихревых токов).
К. п. д трансформатора равен
КПД трансформатора сравнительно высок и достигает в трансформаторах большой мощности – 98-99%. В трансформаторах малой мощности КПД может снижаться до 50-70%. При изменении нагрузки КПД трансформатора изменяется, так как меняются полезная мощность и электрические потери. Однако он сохраняет большое значение в довольно широком диапазоне изменения нагрузки (рис. 119,6). При значительных недогрузках КПД понижается, так как полезная мощность уменьшается, а потери в стали остаются неизменными. Понижение КПД вызывается также перегрузками, так как резко возрастают электрические потери (они пропорциональны квадрату тока нагрузки, в то время как полезная мощность – только току в первой степени). Максимальное значение КПД имеет при такой нагрузке, когда электрические потери равны потерям в стали.
При проектировании трансформаторов стремятся, чтобы максимальное значение КПД достигалось при нагрузке 50-75% номинальной; этому соответствует наиболее вероятная средняя нагрузка работающего трансформатора.
Часто задаваемые вопросы — Schneider Electric
{"searchBar":{"inputPlaceholder":"Поиск по ключевому слову или задать вопрос","searchBtn":"Поиск","error":"Пожалуйста, введите ключевое слово для поиска"} }
В чем основные отличия контакторов LC1D и LC1K?
Проблема: Различия между контакторами LC1D и LC1K Линейка продуктов: Контакторы и пускатели IEC Окружающая среда: Контакторы Tesys K и Tesys D Разрешение: Контакторы D-Line больше, надежнее и…
Можно ли использовать пускатели GV2, GV3 и GV7 с обратной подачей?
Проблема: обратная подача Линейка продуктов GV2, GV3 и GV7: Пускатели и устройства защиты двигателя Окружающая среда: Ручные пускатели PowerPact™ Решение: Не рекомендуется.
Как сохранить параметры в клавиатуре и загрузить в другую идентичную…
Проблема: Попытка сохранить параметры в клавиатуре и загрузить их на другой идентичный привод ATV630. Линейка продуктов: Приводы ATV630 Среда: Клавиатура Причина: Перенос файлов Решение: Перейти к главному…
Максимальное значение Номинал шины для ВСЕХ 150А, 200А и 225…
Проблема: Применение Линейка продуктов: Центр нагрузки HOMELINE Причина: Применение Решение: Номинал шины для ВСЕХ 150А, 200А и 225А как главного наконечника, так и главного Прерыватель, подключаемый нейтральный,. ..
FAQs Popular Videos Popular Videos
Video: Как подключить TeSys T Video к Somove через Modbus…
Преобразование проекта ProWORX 32 в Unity Pro
Видео: Как подключить и запрограммировать привод ATV61/71 для 3-проводной…
Узнайте больше в разделе часто задаваемых вопросов по общим знаниямОбщие знания
Проверка сопротивления изоляции и влажности
Проблема: Как влажность влияет на результаты испытаний сопротивления изоляции? Линейка продуктов: автоматические выключатели Окружающая среда: выключатели в литом и изолированном корпусах Разрешение: высокая влажность может значительно…
5.1.1″> Последнее изменение: 04.11.2021
Почему я теряю лицензию зарегистрированной копии сервера OFS после…
Проблема: потеря лицензии зарегистрированной копии сервера OFS в Windows10, Windows Server 2016 или Windows Server 2019 после обновления до версии сервера OFS 3.63. 08.11.2021
В чем разница между PNP и NPN при описании трехпроводного…
Большинство промышленных бесконтактных датчиков (индуктивные, емкостные, ультразвуковые и фотоэлектрические) являются полупроводниковыми. Термин твердотельный относится к типу компонентов, используемых в датчике. Твердотельный…
Что означают термины AC1 и AC3?
Проблема: Каковы категории использования AC-1 и AC-3? Линейка продуктов: Schneider Electric Products Окружающая среда: Индуктивные и резистивные нагрузки Разрешение: AC-1 — Эта категория применяется ко всем нагрузкам переменного тока.
23.10: Трансформеры — Физика LibreTexts
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 2713
- ОпенСтакс
- ОпенСтакс
Цели обучения
К концу этого раздела вы сможете:
- Объяснять, как работает трансформатор.
- Рассчитать напряжение, ток и/или количество витков с учетом других величин.
Трансформаторы делают то, что следует из их названия — они преобразуют напряжение из одного значения в другое (используется термин напряжение, а не ЭДС, поскольку трансформаторы имеют внутреннее сопротивление). Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие бытовые приборы имеют трансформатор, встроенный в сменный блок (как на рис. \(\PageIndex{1}\)), который изменяет напряжение 120 В или 240 В. переменного тока в любое напряжение, которое использует устройство.
Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке \(\PageIndex{2}\). Энергия передается на большие расстояния при высоком напряжении, потому что для заданной мощности требуется меньший ток, а это означает меньшие потери в линии, как обсуждалось ранее. Но высокое напряжение представляет большую опасность, поэтому для получения более низкого напряжения в месте нахождения пользователя используются трансформаторы.
Тип трансформатора, рассматриваемого в этом тексте (рис. \(\PageIndex{3}\)) основан на законе индукции Фарадея и очень похож по конструкции на аппарат Фарадея, используемый для демонстрации того, что магнитные поля могут вызывать токи. Две катушки называются первичной обмоткой и вторичной обмоткой . При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но и увеличивает его намагниченность. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется на вторичную обмотку, индуцируя ее выходное напряжение переменного тока.
Рисунок \(\PageIndex{3}\): Типичная конструкция простого трансформатора состоит из двух катушек, намотанных на ферромагнитный сердечник, ламинированный для минимизации вихревых токов. Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и усиливается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке индуцирует ток во вторичной.Для простого трансформатора, показанного на рисунке \(\PageIndex{3}\), выходное напряжение \(V_{s}\) почти полностью зависит от входного напряжения \(V_{p}\) и отношения числа контуров в первичной и вторичной обмотках. Закон индукции Фарадея для вторичной катушки дает индуцированное выходное напряжение \(V_{s}\) равным
\[V_{s} = -N\dfrac{\Delta \Phi}{\Delta t},\label{23. 8.1}\]
, где \(N_{s}\) — количество витков вторичной обмотки, а \(\Delta \Phi / \Delta t\) — скорость изменения магнитного потока. Обратите внимание, что выходное напряжение равно ЭДС индукции (\(V_{s} = ЭДС_{s}\)), при условии, что сопротивление катушки мало (разумное предположение для трансформаторов). Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому \(\Delta \Phi / \Delta t\) одинаково с обеих сторон. Входное первичное напряжение \(V_{p}\) также связано с изменением потока на
\[V_{p} = -N_{p}\dfrac{\Delta \Phi}{\Delta t}.\label{23.8.2}\]
Причина этого немного сложнее. Закон Ленца говорит нам, что первичная катушка сопротивляется изменению потока, вызванному входным напряжением \(V_{p}\), отсюда и знак минус подробности в последующих разделах). Предполагая пренебрежимо малое сопротивление катушки, петлевое правило Кирхгофа говорит нам, что ЭДС индукции точно равна входному напряжению. Соотношение этих двух последних уравнений дает полезное соотношение:
\[\dfrac{V_{s}}{V_{p}} = \dfrac{N_{s}}{N_{p}}. \label{23.8.3}\]
Это известно как уравнение трансформатора , и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в его катушках.
Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их обмотках. Некоторые трансформаторы даже обеспечивают переменную мощность, позволяя выполнять подключение в разных точках вторичной обмотки. А 9Повышающий трансформатор 0152 увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение. Предполагая, как и мы, что сопротивление пренебрежимо мало, выходная электрическая мощность трансформатора равна его входной мощности. На практике это почти так — КПД трансформатора часто превышает 99%. Приравнивание входной и выходной мощности,
\[P_{p} = I_{p}V_{p} = I_{s}V_{s} = P_{s}.\label{23.8.4}\]
Перестановка терминов дает
\[\dfrac{V_{s}}{V_{p}} = \dfrac{I_{p}}{I_{s}}. \label{23.8.6}\]
Комбинируя это с уравнением \ref{23.8.3} , мы находим, что
\[\dfrac{I_{s}}{I_{p}} = \dfrac{N_{p}}{N_{s}}.\label{23.8.7}\]
— это соотношение между выходным и входным токами трансформатора. Таким образом, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Пример \(\PageIndex{1}\): Расчет характеристик повышающего трансформатора
Портативный рентгеновский аппарат имеет повышающий трансформатор, входное напряжение которого 120 В преобразуется в выходное напряжение 100 кВ, необходимое для рентгеновская трубка. Первичная обмотка имеет 50 витков и при использовании потребляет ток 10,00 А. а) Сколько петель во вторичном? (b) Найдите текущий выход вторичной обмотки. 9{4}. \end{align*}\]
Обсуждение для (a):
Для создания такого большого напряжения требуется большое количество петель во вторичной обмотке (по сравнению с первичной). Это верно для трансформаторов неоновых вывесок и тех, которые обеспечивают высокое напряжение внутри телевизоров и ЭЛТ.
Стратегия и решение для (b):
Точно так же мы можем найти выходной ток вторичной обмотки, решив уравнение \ref{23.8.7} и \(I_{s}\) и введя известные значения. Это дает 9{4}} \\[5pt] &= 12,0 мА. \end{align*}\]
Обсуждение для (b):
Как и ожидалось, выходной ток значительно меньше входного. В некоторых впечатляющих демонстрациях для создания длинных дуг используются очень большие напряжения, но они относительно безопасны, поскольку выход трансформатора не обеспечивает большой ток. Обратите внимание, что потребляемая мощность здесь
\[\begin{align*}P_{p} = I_{p}V_{p} &= \left(10.00 A \right) \left(120 V \right) \\ [5pt] &= 1,20 кВт. \end{выравнивание*}\]
Это соответствует выходной мощности
\[\begin{align*} P_{p} = I_{s}V_{s} &= \left(12,0 мА \right) \left(100kV \right) \\[ 5pt] &= 1,20 кВт \end{align*}\]
, как мы предполагали при выводе используемых уравнений.
Тот факт, что трансформаторы основаны на законе индукции Фарадея, проясняет, почему мы не можем использовать трансформаторы для изменения постоянного напряжения. Если первичное напряжение не меняется, то и вторичное напряжение не индуцируется. Одна из возможностей состоит в том, чтобы подключить постоянный ток к первичной катушке через переключатель. Когда переключатель размыкается и замыкается, вторичная обмотка создает напряжение, подобное показанному на рисунке \(\PageIndex{4}\). На самом деле это непрактичная альтернатива, и переменный ток широко используется везде, где необходимо увеличить или уменьшить напряжение.
Рисунок \(\PageIndex{4}\): Трансформаторы не работают при чистом входном напряжении постоянного тока, но если его включать и выключать, как на верхнем графике, выход будет выглядеть примерно так, как на нижнем графике. Это не синусоидальный переменный ток, необходимый большинству приборов переменного тока.Пример \(\PageIndex{2}\): Расчет характеристик понижающего трансформатора
Зарядное устройство, предназначенное для последовательного соединения десяти никель-кадмиевых аккумуляторов (общая ЭДС 12,5 В пост. выход для зарядки аккумуляторов. В нем используется понижающий трансформатор с 200-контурной первичной обмоткой и входным напряжением 120 В. а) Сколько витков должно быть во вторичной обмотке? (б) Если зарядный ток равен 16,0 А, каков входной ток?
Стратегия и решение для (a):
Можно ожидать, что вторичный узел будет иметь небольшое количество циклов. Решение уравнения \ref{23.8.3} для \(N_{s}\) и ввод известных значений дает
\[\begin{align*} N_{s} &= N_{p}\dfrac{V_{s} }{V_{p}} \\[5pt] &= \left( 200 \right) \dfrac{15.0 V}{120 V} \\[5pt] &= 25. \end{align*}\]
Стратегия и решение для (b):
Текущие входные данные можно получить, решив уравнение \ref{23.8.7} для \(I_{p}\) и введя известные значения. Это дает
\[\begin{align*} I_{p} = I_{s}\dfrac{N_{s}}{N_{p}} \\[5pt] &= \left( 16,0 A \right) \dfrac {25}{200} \\[5pt] &= 2.00 A. \end{align*}\]
Обсуждение:
Количество витков во вторичной обмотке мало, как и положено для понижающего трансформатора . Мы также видим, что небольшой входной ток создает больший выходной ток в понижающем трансформаторе. Когда трансформаторы используются для работы с большими магнитами, они иногда имеют небольшое количество очень тяжелых петель во вторичной обмотке. Это позволяет вторичной обмотке иметь низкое внутреннее сопротивление и производить большие токи. Еще раз обратите внимание, что это решение основано на допущении о 100% эффективности — или выходная мощность равна входной мощности (\(P_{p} = P_{s}\)) — разумно для хороших трансформаторов. В этом случае первичная и вторичная мощность составляет 240 Вт. (Убедитесь в этом сами для проверки стабильности.) Обратите внимание, что никель-кадмиевые аккумуляторы необходимо заряжать от источника постоянного тока (как и аккумулятор на 12 В). Таким образом, выход переменного тока вторичной катушки необходимо преобразовать в постоянный. Это делается с помощью чего-то, называемого выпрямителем, в котором используются устройства, называемые диодами, которые пропускают ток только в одном направлении.
Трансформаторы имеют множество применений в системах электробезопасности, которые обсуждаются в 23.9.
ИССЛЕДОВАНИЯ PHET: ГЕНЕРАТОР
Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этого явления, исследуя магниты и то, как вы можете использовать их, чтобы зажечь лампочку.
Рисунок \(\PageIndex{5}\): ГенераторРезюме
- Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
- Для трансформатора напряжения на первичной и вторичной обмотках связаны соотношением \[\dfrac{V_{s}}{V_{p}} = \dfrac{N_{s}}{N_{p}},\] где \(V_{p}\) и \(V_{s}\) — напряжения на первичной и вторичной обмотках, имеющих \(N_{p}\) и \(N_{s}\) витков.
- Токи \(I_{p}\) и \(I_{s}\) в первичной и вторичной обмотках связаны соотношением \(\dfrac{I_{s}}{I_{p}} = \dfrac{N_ {p}}{N_{s}}.\)
- Повышающий трансформатор увеличивает напряжение и уменьшает ток, а понижающий трансформатор снижает напряжение и увеличивает ток.
Глоссарий
- трансформатор
- устройство, преобразующее напряжение из одного значения в другое с помощью индукции
- уравнение трансформатора
- уравнение, показывающее, что отношение вторичных и первичных напряжений в трансформаторе равно отношению числа витков в их обмотках; \(\dfrac{V_{s}}{V_{p}} = \dfrac{N_{s}}{N_{p}}\)
- повышающий трансформатор
- трансформатор повышающий напряжение
- понижающий трансформатор
- трансформатор, понижающий напряжение
Эта страница под названием 23.10: Transformers распространяется под лицензией CC BY 4.0 и была создана, изменена и/или курирована OpenStax с использованием исходного контента, который был отредактирован в соответствии со стилем и стандартами платформы LibreTexts; подробная история редактирования доступна по запросу.
- Наверх
- Была ли эта статья полезной?
- Тип изделия
- Раздел или страница
- Автор
- ОпенСтакс
- Лицензия
- СС BY
- Версия лицензии
- 4,0
- Программа ООР или издатель
- ОпенСтакс
- Показать оглавление
- нет
- Метки
- source@https://openstax.