Эдс формула: схема, расчет, рисунок, как вычислить?
В разгар учебного года многим ученым деятелям требуется эдс формула для разных расчетов. Эксперименты, связанные с гальваническим элементом, так же нуждаются в информации об электродвижущей силе. Но для начинающих не так-то просто понять, что же это такое.
Формула нахождения эдс
Первым делом разберемся с определением. Что означает эта аббревиатура?
ЭДС или электродвижущая сила – это параметр характеризующий работу любых сил не электрической природы, работающих в цепях где сила тока как постоянного, так и переменного одинакова по всей длине. В сцепленном токопроводящем контуре ЭДС приравнивается работе данных сил по перемещению единого плюсового (положительного) заряда вдоль всего контура.
Ниже на рисунке представлена эдс формула.
Аст – означает работу сторонних сил в джоулях.
q это переносимый заряд в кулонах.
Сторонние силы – это силы которые выполняют разделение зарядов в источнике и в итоге образуют на его полюсах разность потенциалов.
Для этой силы единицей измерения является вольт. Обозначается в формулах она буквой «E».
Только в момент отсутствия тока в батареи, электродвижущая си-а будет равна напряжению на полюсах.
ЭДС индукции:
ЭДС индукции в контуре, имеющем N витков:
При движении:
Электродвижущая сила индукции в контуре, крутящемся в магнитном поле со скоростью w:
Таблица значений
Простое объяснение электродвижущей силы
Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня — это батарейка!
Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено h3O.
В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.
В результате этого:
- Напряжение – это сила с которой вода давит на дно. То есть давление.
- Нулевое напряжение — это дно башни.
С батареей все аналогично.
Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).
Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.
Эдс гальванического элемента формула
Электродвижущую силу батарейки можно вычислить двумя способами:
- Выполнить расчет с применением уравнения Нернста. Нужно будет рассчитать электродные потенциалы каждого электрода, входящего в ГЭ. Затем вычислить ЭДС по формуле .
- Посчитать ЭДС формуле Нернста для суммарной ток образующей реакции, протекающей при работе ГЭ.
Таким образом вооружившись данными формулами рассчитать электродвижущую силу батарейки будет проще.
Где используются разные виды ЭДС?
- Пьезоэлектрическая применяется при растяжении или сжатии материала. С помощью нее изготавливают кварцевые генераторы энергии и разные датчики.
- Химическая используется в гальванических элементах и аккумуляторах.
- Индукционная появляется в момент пересечения проводником магнитного поля. Ее свойства применяют в трансформаторах, электрических двигателях, генераторах.
- Термоэлектрическая образуется в момент нагрева контактов разнотипных металлов. Свое применение она нашла в холодильных установках и термопарах.
- Фото электрическая используется для продуцирования фотоэлементов.
Загрузка…
Формула ЭДС индукции, E
Закон Фарадея – Максвелла для электромагнитной индукции
Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:
где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.
В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:
Частные случаи формул ЭДС индукции
Если контур содержит N витков, которые соединяются последовательно, то ЭДС индукции вычисляют как:
где – потокосцепление.
При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:
где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .
При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:
где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля .
Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:
В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:
Примеры решения задач по теме «ЭДС индукции»
расчет электродвижущей силы по формуле
Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.
Эксперименты Фарадея
Законы Фарадея и Ленца
Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.
Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.
Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.
Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.
Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.
Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.
ЭДС индукции
Формула ЭДС индукции определена как:
Е = – dФ/dt.
Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.
Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.
Движение провода в магнитном поле
Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:
- в случае движения проводника перпендикулярно направлению магнитного поля:
Е = – В x l x v;
- в случае движения под другим углом α:
Е = – В x l x v х sin α.
Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.
Перемещение провода в МП
Вращающаяся катушка
Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.
ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).
Из формулы следует, что Ф подвержен изменениям в следующих случаях:
- меняется интенсивность МП – вектор В;
- варьируется площадь, ограниченная контуром;
- изменяется ориентация между ними, заданная углом.
В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.
Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.
Вращение контура в МП
Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.
Для формулы ЭДС электромагнитной индукции применяется выражение:
Е = В х ω х S x N x sin ωt, где:
- S – площадь, ограниченная одним витком или рамкой;
- N – количество витков;
- ω – угловая скорость, с которой вращается катушка;
- В – индукция МП;
- угол α = ωt.
На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).
ЭДС самоиндукции
Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.
Поскольку МП пропорционально интенсивности тока, то:
Ф = L x I,
где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.
Для ЭДС индукции формула принимает вид:
Е = – L x dI/dt.
Взаимоиндукция
Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.
Взаимоиндукция
Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:
- Взаимоиндуктивность второй катушки относительно первой:
М21 = (N2 x F21)/I1;
- Магнитный поток:
Ф21 = (М21/N2) x I1;
- Найдем индуцированную ЭДС:
Е2 = – N2 x dФ21/dt = – M21x dI1/dt;
- Идентично в первой катушке индуцируется ЭДС:
Е1 = – M12 x dI2/dt;
Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.
Взаимную индуктивность можно признать равной:
М12 = М21 = М.
Соответственно, E1 = – M x dI2/dt и E2 = M x dI1/dt.
М = К √ (L1 x L2),
где К – коэффициент связи между двумя индуктивностями.
Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.
Кроме генерирования, трансформации электроэнергии магнитная индукция применяется в иных устройствах. Например, в магнитных левитационных поездах, которые двигаются не в непосредственном контакте с рельсами, а на несколько сантиметров выше из-за электромагнитной силы отталкивания.
Видео
Оцените статью:ЭДС индукции в движущихся проводниках формула
ЭДС индукции и сила Лоренца
Появление электродвижущей силы (ЭДС) в телах, перемещающихся в магнитном поле легко объяснить, если вспомнить о существовании силы Лоренца. Пусть стержень движется в однородном магнитном поле с индукцией рис.1. Пусть направление скорости движения стержня () и перпендикулярны друг другу.
Между точками 1 и 2 стержня индуцируется ЭДС, которая направлена от точки 1 к точке 2. Движение стержня – это перемещение положительных и отрицательных зарядов, которые входят в состав молекул этого тела. Заряды вместе с телом перемещаются в сторону движения стержня. Магнитное поле оказывает воздействие на заряды при помощи силы Лоренца, пытаясь переместить положительные заряды в сторону точки 2, а отрицательные заряды к противоположному концу стержня. Так, действие силы Лоренца порождает ЭДС индукции.
Если в магнитном поле движется металлический стержень, то положительные ионы, находясь в узлах кристаллической решетки, не могут двигаться вдоль стержня. При этом подвижные электроны скапливаются в избытке на конце стержня около точки 1. Противоположный конец стержня будет испытывать недостаток электронов. Появившееся напряжение определяет собой ЭДС индукции.
В том случае, если движущийся стержень сделан из диэлектрика, разделение зарядов при воздействии силы Лоренца, приводит к его поляризации.
ЭДС индукции будет равна нулю, если проводник перемещается параллельно направлению вектора (то есть угол между и равен нулю).
ЭДС индукции в прямом проводнике, движущемся в магнитном поле
Получим формулу для вычисления ЭДС индукции, которая возникает в прямолинейном проводнике, имеющем длину l, движущемся параллельно самому себе в магнитном поле (рис.2). Пусть v – мгновенная скорость проводника, тогда за время он опишет площадь равную:
При этом проводник пересечет все линии магнитной индукции, которые проходят через площадку . Получим, что изменение магнитного потока () сквозь контур в который входит перемещающийся проводник:
где – составляющая магнитной индукции, перпендикулярная к площадке . Подставим выражение для (2) в основной закон электромагнитной индукции:
получим:
При этом направление тока индукции определено законом Ленца. То есть индукционный ток имеет такое направление, что механическая сила, которая действует на проводник, замедляет перемещение проводника.
ЭДС индукции в плоском витке, вращающемся в магнитном поле
Если плоский виток вращается в однородном магнитном поле, угловая скорость его вращения равна , ось вращения находится в плоскости витка и , тогда ЭДС индукции можно найти как:
где S – площадь, которую ограничивает виток; – поток самоиндукции витка; – угловая скорость; () – угол поворота контура. Необходимо заметить, что выражение (5) справедливо, тогда, когда ось вращения составляет прямой угол с направлением вектора внешнего поля .
Если вращающаяся рамка имеет N витков и ее самоиндукцией можно пренебречь, то:
Примеры решения задач
Подскажите формулу ЭДС источника тока
Электродвижущая сила (ЭДС) источника тока равна работе, которую совершают сторонние силы по перемещению единичного положительного электрического заряда вдоль всей цепи. E=Act\q q — переносимый заряд Аст — работа сторонних сил