Site Loader

ЭДС и напряжение. Внутреннее сопротивление источников питания.

РадиоКот >Обучалка >Аналоговая техника >Основы электроники >

ЭДС и напряжение. Внутреннее сопротивление источников питания.

Ликбез так ликбез!
Несмотря на то, что многие из посетителей этого сайта являются продвинутыми радиокотами и уже успешно занимаются программированием и конструированием, существуют еще отдельные котята, у которых возникают иногда вопросы, связанные с азами радио- (или даже электро) техники.

Итак, вернемся к азам… По азу- я всех везу! Ой! Это из другой оперы…

Закон Ома. Вот я о чем.

О законе Ома мы уже говорили. Поговорим еще раз — с несколько иной стороны. Не вдаваясь в физические подробности и выражаясь простым кошачьим языком, закон Ома гласит: чем больше э.д.с. ( электродвижущая сила), тем больше ток, чем больше сопротивление, тем меньше ток.

Переведя сие заклинание на язык сухих формул получаем:

I=E/R

где:
I — сила тока,
E — Э.Д.С. — электродвижущая сила
R — сопротивление

Ток измеряется в амперах, э.д.с. — в вольтах, а сопротивление носит гордое имя товарища Ома.
Э.д.с. — это есть характеристика идеального генератора, внутренне сопротивление которого принято считать бесконечно малым. В реальной жизни такое бывает редко, поэтому в силу вступает закон Ома для последовательной цепи (более знакомый нам):

I=U/R

где:
U — напряжение источника непосредственно на его клеммах.

Рассмотрим простой пример.

Представим себе обычную батарейку в виде источника э.д.с. и включенного последовательно с ним некоего резистора, который будет олицетворять собой внутреннее сопротивление батарейки. Подключим параллельно батарейке вольтметр. Его входное сопротивление значительно больше внутреннего сопротивления батарейки, но не бесконечно большое — то есть, через него потечет ток. Величина напряжения, которую покажет вольтметр будет меньше величины э.д.с. как раз на величину падения напряжения на внутреннем воображаемом резисторе при данном токе.
Но, тем не менее именно эта величина и принимается за напряжение батарейки.

Формула конечного напряжения при этом будет иметь следующий вид:

U(бат)=E-U(внутр)

Так как со временем у всех элементов питания внутреннее сопротивление увеличивается, то и падение напряжения на внутреннем сопротивлении тоже увеличивается. При этом напряжение на клеммах батарейки уменьшается. Мяу!

Разобрались!

Что же происходит, если вместо вольтметра к батарейке подключить амперметр? Так как собственное сопротивление амперметра стремится к нулю, мы фактически будем измерять ток, протекающий через внутреннее сопротивление батарейки. Так как внутренне сопротивление источника очень небольшое, измеренный при этом ток может достигать н ескольких ампер.

Однако следует заметить, что внутреннее сопротивление источника является таким же элементом цепи, как и все остальные. Поэтому при увеличении тока нагрузки падение напряжения на внутреннем сопротивлении также увеличится, что приводит к уменьшению напряжения на нагрузке. Или как мы, радиокоты, любим выражаться — к просадке напруги.

Чтобы изменение нагрузки как можно меньше влияло на выходное напряжение источника его внутреннее сопротивление стараются свести к минимуму.

Можно так подобрать элементы последовательной цепи, чтобы на каком-нибудь из них получить напряжение, уменьшенное, по сравнению с исходным, во сколько угодно раз.

Простейший делитель напряжения состоит из двух резисторов.
Чем меньшую часть исходного напряжения мы хотим получить и передать в нагрузку, тем меньше должно быть сопротивление резистора, с которого оно снимается. Кроме того, сопротивление этого резистора должно быть значительно меньше, чем сопротивление нагрузки, иначе подключение нагрузки изменит сопротивление всего участка, и напряжение на нем изменится.

Частенько вместо одного из резисторов делителя используют саму нагрузку. В этом случае второй резистор, на котором гасится избыток напряжения, называют гасящим сопротивлением.

Подключив резистор параллельно нагрузке, можно уменьшить идущий через нее ток. Резистор, который включается для ответвления лишнего тока, порядочные коты называют шунтом (ШУНТ в переводе на русский — обходной путь).

Нормальные герои всегда идут шунтом! (Шутка!)

Чем меньше сопротивление шунта, тем большая часть тока пойдет через него и меньшая через нагрузку.
Уф! Запарилась писать такие объемы на своей КПКошке…
Вопросы есть? Будут — пишите. Может, чего еще из школьной программы вспомню.

<<—Вспомним пройденное—-Поехали дальше—>>


Как вам эта статья?

Заработало ли это устройство у вас?

Урок 31. Лабораторная работа № 08. Измерение ЭДС и внутреннего сопротивления источника тока.

Лабораторная работа № 8

   Тема: «Определение электродвижущей силы и внутреннего сопротивления источника тока».

   Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.

   Оборудование: 1. Амперметр лабораторный;

                             2. Источник электрической энергии;

                             3. Соединительные провода,

                             4. Набор сопротивлений 2 Ом и 4 Ом;

                             5. Переключатель однополюсный; ключ.

Теория.

   Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.

   Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

   При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

   Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):

 

   ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.

   Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].

   Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи.

   Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют 

внутренним сопротивлением источника и обозначают r.

   Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е. ε = IR + Ir.

   Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то,  согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где 

IR – напряжение на внешнем участке цепи, а Ir — напряжение на внутреннем участке цепи.

   Таким образом, для участка цепи, содержащего ЭДС:

   Эта формула выражает закон Ома для полной цеписила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.

   ε и r можно определить опытным путем.

   Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.

   При последовательном соединении два соседних источника соединяются разноименными полюсами.

   Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

   Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

   1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε1 + ε2 + ε3

   2. Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников rбатареи= r1 + r2 + r3

Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε1, а сопротивление rбатареи= nr1

   3. Сила тока в такой цепи по закону Ома 

   При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.

   Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

   Параллельно соединяют только источники с одинаковой ЭДС. Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.

 


1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε1= ε2 = ε3

2. Сопротивление батареи меньше, чем сопротивление одного источника rбатареи= r1/n
3. Сила тока в такой цепи по закону Ома 

   Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

   Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.

Ход работы.

   1. Начертите таблицу:

опыта

Источник электрической энергии ВУП, В

1-й отсчет

2-й отсчет

Э.Д.С.

ε , В

Внутреннее сопротивление,

r , Ом

R1,

Ом

Сила тока

I1 , А

R2,

Ом

Сила тока

I2 , А

1

 

1

1

 

2

 

 

 

   2. Рассмотрите  шкалу амперметра  и определите цену одного деления.
   3. Составьте электрическую цепь по схеме, изображенной на рисунке 1. Переключатель поставить в среднее положение.


Рисунок 1.

   4. Замкнуть цепь, введя меньшее сопротивление R1. Записать величину силы тока I1. Разомкнуть цепь.

   5. Замкнуть цепь, введя большее сопротивление R2. Записать величину силы тока I2. Разомкнуть цепь.

   6. Вычислить значение ЭДС и внутреннего сопротивления источника электрической энергии.

   Закон Ома для полной цепи для каждого случая:     и    

   Отсюда получим формулы для вычисления ε и r:

   

  

   7. Результаты всех измерений и вычислений запишите в таблицу.

   8. Сделайте вывод.

   9. Ответьте на контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

   1. Раскройте физический смысл понятия «электродвижущая сила источника тока».

   2. Определить сопротивление внешнего участка цепи, пользуясь результатами полученных измерений и законом Ома для полной цепи.

   3. Объяснить, почему внутреннее сопротивление возрастает при последовательном соединении аккумуляторов и уменьшается при параллельном в сравнении с сопротивлением r0 одного аккумулятора.

   4. В каком случае вольтметр, включенный на зажимы генератора, показывает ЭДС генератора и в каком случае напряжение на концах внешнего участка цепи? Можно ли это напряжение считать также и напряжением на концах внутреннего участка цепи?

Вариант выполнения измерений.

Опыт 1. Сопротивление R1=2 Ом, сила тока I1=1,3 А.

              Сопротивление R2=4 Ом, сила тока I2=0,7 А.

Нахождение внутреннего сопротивления и ЭДС источника.

В статье расчёт в маткаде переходных процессов в ёмкостном фильтре исследовался переходный процесс в фильтре поставленном на выходе однофазного однополупериодного выпрямителя, при этом в схеме замещения выпрямитель с источником переменного напряжения заменены последовательным соединением источника ЭДС и резистора, такая замена делает возможным расчёт схем но при этом для расчётов требуется найти ЭДС источника и его внутреннее сопротивление. Найти ЭДС источника и его внутреннее сопротивление эксперементально можно проделав опыт холостого хода и опыт короткого замыкания но это не всегда возможно, например когда необходимо найти ЭДС и внутреннее сопротивление источника представляющего собой вторичную обмотку трансформатора, поэтому бывает необходимо определить параметры схемы замещения источника не внося больших изменений сопротивления нагрузки в схему. Рассмотрим схему на рисунке 1:

Рисунок 1 — Схема для определения параметров схемы замещения источника.

В этой схеме значения ЭДС источника и его внутреннего сопротивления неизвестны, известны только показания амперметра и вольтметра. Учтём что тока в цепи вольтметра нет, так как у него большое сопротивление и его проводимостью можно пренебреч а сопротивление амперметра настолько мало что им тоже можно пренебреч и заменить амперметр перемычкой. Ток в этой цепи обозначим как I1 (его показывает амперметр) а напряжение на R1 и G обозначим как U1 (его показывает вольтметр) при этом будем считать что ток направлен как показано на рисунке 1, а напряжения на R1 и r направлены в туже сторону что и ток. Рассмотрим схему на рисунке 2 в которой изменено (в нашем случае увеличено) сопротивление реостата:

Рисунок 2 — Схема для определения параметров схемы замещения источника с изменённым сопротивлением реостата.

В этой схеме показание амперметра обозначим как I2 а показание вольтметра как U2.

Из схемы на рисунке 1, составим уравнение по второму закону Кирхгофа для контура который остаётся если заменить вольтметр разрывом:

Здесь E — ЭДС источника, U1 — напряжение на реостате (показывает вольтметр), I1 — ток в цепи (показывает амперметр), r — внутреннее сопротивление источника. Выразим из уравнения (1) напряжение U1:

Аналогично найдём U2, используя схему на рисунке 2:

Подставим (1) в (3):

Выразим из уравнения (4) внутреннее сопротивление источника r:

 Подставим (6) в (1) и найдём ЭДС источника:

По формулам (6) и (7) находятся параметры схемы замещения источника электрической энергии (по формуле (7) его ЭДС, по формуле (6) его внутреннее сопротивление). Последовательно с реостатом можно поставить измерительный резистор и использовать его для измерения тока вольтметром тогда измерения можно проводить одним вольтметром сначала подключая его паралельно источнику G, а потом паралельно измерительному резистору.
Для расчёта внутреннего сопротивления и ЭДС источника можно воспользоваться программой:
Первое измерение должно быть с меньшим сопротивлением реостата, а второе с большим.

Внутреннее сопротивление источника

На внутреннем сопротивлении источника, как и на внешнем, происходит падение напряжения. Поэтому напряжение на зажимах источника  меньше ЭДС как раз на эту величину.

Задача 1. Гальванический элемент с ЭДС E = 1,5 В и внутренним сопротивлением r = 0,5 Ом замкнут накоротко. Определить силу тока короткого замыкания.

При коротком замыкании  сопротивляться току будет только внутреннее сопротивление источника:

    \[I=\frac{E}{r}=\frac{1,5}{0,5}=3\]

Ответ: 3 А.

Задача 2. ЭДС элемента E = 1,5 В, а внутреннее сопротивление r=  0,50 Ом. Какой будет сила тока во внешней цепи, если ее сопротивление равно 0,50; 1; 2 Ом?

К внутреннему сопротивлению здесь добавится еще внешнее сопротивление нагрузки, тогда

    \[I=\frac{E}{r+R}\]

Следовательно

    \[I_1=\frac{E}{r+R_1}=\frac{1,5}{0,5+0,5}=1, 5\]

    \[I_2=\frac{E}{r+R_2}=\frac{1,5}{0,5+1}=1\]

    \[I_3=\frac{E}{r+R_3}=\frac{1,5}{0,5+2}=0,6\]

Ответ: I_1=1, 5 А, I_2=1 А, I_3=0,6 А.

Задача 3. Каково внутреннее сопротивление элемента, если его ЭДС E = 1,2 В и при внешнем сопротивлении R = 5 Ом сила тока I= 0,2 А?

    \[I=\frac{E}{r+R}\]

Следовательно

    \[r+R=\frac{E}{I}=\frac{1,2}{0,2}=6\]

Таким образом, при R=5r=1.

Ответ: r=1 Ом.

Задача 4. ЭДС батарейки от карманного фонаря E = 3,7 В, внутреннее сопротивление r= 1,5 Ом. Батарейка замкнута на сопротивление R= 11,7 Ом. Каково напряжение на зажимах батарейки?

Определим сначала ток:

    \[I=\frac{E}{r+R}=\frac{3,7}{11,7+1,5}=0,28\]

Следовательно, на внутреннем сопротивлении источника произойдет падение напряжения

    \[U_r=I r=0,28\cdot 1,5=0,42\]

На зажимах батарейки будет напряжение

    \[U=E-U_r=3,7-0,42=3,28\]

Ответ: U=3,28 В.

Задача 5. ЭДС батареи E = 6 В, внешнее сопротивление цепи R = 11,5 Ом, а внутреннее –r = 0,5 Ом. Найти силу тока в цепи, напряжение на зажимах батареи и падение напряжения внутри батареи.

Определим сначала ток:

    \[I=\frac{E}{r+R}=\frac{6}{11,5+0,5}=0,5\]

Следовательно, на внутреннем сопротивлении источника произойдет падение напряжения

    \[U_r=I r=0,5\cdot 0,5=0,25\]

На зажимах батарейки будет напряжение

    \[U=E-U_r=6-0,25=5,75\]

Ответ: U=5,75 В.

Задача 6. Каково напряжение U на полюсах источника с ЭДС, равной E, когда сопротивление внешней части цепи равно внутреннему сопротивлению источника?
Определим сначала ток:

    \[I=\frac{E}{r+R}=\frac{E}{2r}\]

На внутреннем сопротивлении упадет

    \[U=Ir=\frac{E}{2}\]

Таким же будет напряжение на зажимах источника.

Ответ: U=\frac{E}{2}.

Формула закона Ома

ОПРЕДЕЛЕНИЕ

Сила тока в проводнике равна разности потенциалов (напряжению) между концами проводника, делённой на сопротивление проводника.

   

Здесь – сила тока, – напряжение, – сопротивление. Это равенство называют законом Ома для участка цепи.

Единица измерения силы тока – А (ампер).

Указанная формула верна для участка цепи, в котором напряжение постоянно (сила тока тоже будет постоянной). Для полной цепи формула усложняется:

   

Где – электродвижущая сила (ЭДС) источника питания, – внутреннее сопротивление источника питания, а – сопротивление всех внешних элементов цепи. Это равенство называют законом Ома для полной цепи. Из этой формулы следует, что ЭДС источника равна сумме падений напряжения в самом источнике и во внешней цепи.

Примеры решения задач по теме «Закон Ома»

ПРИМЕР 1
Задание Найти силу тока, если напряжение на участке цепи с сопротивление 5 кОм равно 100 В.
Решение Напомним, что 5 кОм = 5 000 Ом. Подставим численные значения в формулу:

   

Ответ Сила тока в цепи равна 0,02 ампера.
Понравился сайт? Расскажи друзьям!

3.2.5 Источники тока. ЭДС и внутреннее сопротивление источника тока

Видеоурок 1: Источники тока. Энергетическое описание электрического тока

Видеоурок 2: ЭДС — электродвижущая сила

Лекция: Источники тока. ЭДС и внутреннее сопротивление источника тока


Источники тока

Для того, чтобы передвинуть некоторый заряд на неопределенное расстояние, следует приложить сторонние силы. Как уже было сказано раннее, такие сторонние силы можно получить благодаря источнику тока.

Любой источник тока характеризуется ЭДС. Данная величина показывает, какая сторонняя работа была приложена к заряду для его передвижения на некоторое расстояние.


ЭДС имеет природу, подобную напряжению. Поэтому не зря данная физическая величина измеряется в вольтах (В).


Типы ЭДС

ЭДС может быть различной в зависимости типа энергии, которая преобразуется:

1. Механическая. Данное ЭДС возникает в результате механических движений частей источника тока. То есть механическая энергия, возникающая во время трения, преобразуется в электрическую энергию. Примером является электрофорная машина.

2. Термальная. Примером появления данного ЭДС являются термоэлементы. Сплавы подвергаются нагреву, в результате чего тепловая энергия переходит в электрическую.

3. Фотоэлектрическая. Это преобразование энергии фотонов в электрическую энергию. Примером являются солнечные панели.

4. Химическая. Примером являются аккумуляторы и гальваноэлементы. Энергия, полученная в результате химических реакций, преобразуется в электрическую энергию.


Метод эквивалентного генератора — Википедия

Материал из Википедии — свободной энциклопедии

Метод эквивалентного генератора — метод преобразования электрических цепей, в котором схемы, состоящие из нескольких ветвей с источниками ЭДС, приводятся к одной ветви с эквивалентным значением.

Метод эквивалентного генератора используется при расчёте сложных схем, в которых одна ветвь выделяется в качестве сопротивления нагрузки, и требуется исследовать и получить зависимость токов в цепи от величины сопротивления нагрузки.

В соответствии с данным методом неизменная часть схемы преобразовывается к одной ветви, содержащей ЭДС и внутреннее сопротивление эквивалентного генератора.

Применение метода эквивалентного генератора

ЭДС эквивалентного генератора определяется по формуле:

Eeqv=∑i=1nEiGi∑i=1nGi=E1G1+E2G2+E3G3+…+EiGiG1+G2+G3+…+Gi,{\displaystyle E_{eqv}={\frac {\sum _{i=1}^{n}{E_{i}G_{i}}}{\sum _{i=1}^{n}{G_{i}}}}={\frac {{E_{1}G_{1}}+{E_{2}G_{2}}+{E_{3}G_{3}}+\ldots +{E_{i}G_{i}}}{G_{1}+G_{2}+G_{3}+\ldots +G_{i}}},}

где: Gi{\displaystyle G_{i}} — проводимость участка цепи, равная 1Ri.{\displaystyle {\frac {1}{R_{i}}}.}

Для определения эквивалентного сопротивления генератора применяется расчет последовательно и параллельно соединённых сопротивлений, а также, в случае более сложных схем, применяют преобразование треугольник-звезда.

После определения параметров эквивалентного генератора можно определить ток в нагрузке при любом значении сопротивления нагрузки по формуле:

IH=EeqvReqv+RH.{\displaystyle I_{H}={\frac {E_{eqv}}{R_{eqv}+R_{H}}}.}

Любой сколь угодно сложный активный двухполюсник можно представить эквивалентным генератором, ЭДС которого равна напряжению холостого хода на зажимах двухполюсника, а внутреннее сопротивление равно входному сопротивлению пассивного двухполюсника со стороны тех же зажимов. При определении входного сопротивления все источники должны быть заменены своими внутренними сопротивлениями — источники ЭДС закорачиваются, а источники тока размыкаются.

  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. 2002. — ISBN 5-8297-0026-3

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *