Site Loader

ПОЛЕ ФИЗИЧЕСКОЕ это что такое ПОЛЕ ФИЗИЧЕСКОЕ: определение — Философия.НЭС

Поле физическое

особая форма материи; система с бесконечным числом степеней свободы. К физическим полям относятся электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантованные) поля. Источниками полей являются частицы. Создаваемые частицами поля переносят (с конечной скоростью) взаимодействие между соответствующими частицами (в квантовой теории взаимодействие обусловлено обменом квантами поля между частицами). (См. Квант, Частицы элементарные).

Оцените определение:

Источник: Концепции современного естествознания. Словарь основных терминов

ПОЛЕ ФИЗИЧЕСКОЕ

одно из осн. понятий физики, возникшее во 2-й пол. 17 в. [хотя термин «П. ф.» был введен в физику значительно позднее англ. физиком Дж. К. Максвеллом; в математике появление; термина «поле» связано с работой англ. математика У. Р. Гамильтона «О кватернионах» (W. R. Hamilton, Lectures on quarternions, Dublin, 1853)]. С этого времени понятие П. ф. неоднократно изменяло свой смысл, сохранив, однако, на всех этапах этого изменения тесную связь с понятием пространства, выражающуюся в использовании понятия П. ф. для характеристики пространственно непрерывного распределения физич. величин. Представления совр. физики о П. ф. развертываются по двум существенно различным линиям – к л а с с и ч е с к о й и к в а н т о в о й. Классическая линия развития понятия П. ф. Эта линия начинается с установления Ньютоном закона всемирного тяготения (1687), который позволил вычислять П. ф. сил тяготения. Она продолжается в гидродинамич. работах Эйлера (50-е гг. 18 в.), рассматривавшего распределение скоростей в пространстве, заполненном движущейся идеальной жидкостью (поле скоростей). Наибольшие заслуги в становлении понятия П. ф. принадлежат англ. физику М. Фарадею (30-е гг. 19 в.), детально разработавшему понятие о силовых линиях П. ф. Классич. линия развития понятия П. ф. разветвляется на две. Главная ветвь связана с изучением П. ф. электрических и магнитных сил (закон Кулона, 1785), к-рые считались сначала независимыми, но благодаря работам дат. физика X. Эрстеда (1821), франц. физика А. Ампера (1826) и Фарадея (1831) они стали рассматриваться совместно – как компоненты единого электромагнитного П. ф. В этот период смысл понятия П. ф. зависел от представлений о природе действия сил. В концепции дальнодействия, восходящей к Ньютону, понятие П. ф. играло вспомогат. роль, оно служило лишь сокращенным обозначением области пустого пространства, в к-ром могут проявиться дальнодействующие силы. Зная потенциал П. ф., можно было вычислить в каждой точке пространства силу, действующую на помещенное туда тело, не обращаясь к закону взаимодействия тел. Носителями атрибутов физич. реальности (массы, энергии, импульса, заряда, силы) в этой концепции были тела, взаимодействующие на расстоянии без помощи к.-л. посредствующих агентов. При отсутствии хотя бы одного из взаимодействовавших тел отсутствовали и силы, т.е. П. ф. не имело самостоят. существования. В концепции близкодействия, берущей начало от Декарта, взаимодействие осуществлялось посредством изменения состояния промежуточной среды – эфира, заполняющего все пространство. Носителями энергии в этой концепции были не только взаимодейств. тела, но и окружающий их эфир, так что наряду с п о л е м с и л можно было говорить и о п о л е э н е р г и и. При этом как в механич. теориях, объяснявших возникновение сил механич. перемещением и упругим натяжением эфира, так и в чисто электромагнитных теориях, оставлявших эфир неподвижным и не деформируемым, П. ф. было по-прежнему лишено самостоят. существования. Будучи характеристикой изменения состояния эфира – субстанции, обладавшей первичной реальностью, П. ф. имело онтологич. статус его аттрибута, т.е. обладало только вторичной реальностью. Изменение это вызывалось дискретными источниками П. ф. – токами и зарядами, так что П. ф., неразрывно связанное с ними, в свободном от источников П. ф. эфире не существовало. Следующий шаг в развитии классич. понятия П. ф. связан с достижениями теории свободного динамич. электромагнитного П. ф. (электромагнитных волн, частным случаем к-рых является свет), к-рое, будучи создано, может существовать вне зависимости от породивших его источников (Максвелл, 1864; Герц, 1888). Благодаря этому стало возможным приписать П. ф. импульс. Однако поскольку эфир продолжал выполнять функцию материального носителя и для динамич. П. ф., последнее по-прежнему было лишено самостоят. существования, так что импульс П. ф. (равно как и его энергия) фактически был характеристикой не П. ф., а эфира. Вследствие этого выражение «энергия поля» следовало понимать не в его буквальном смысле, а как «поле энергии». Классич. теория электромагнитного П.ф. была

Поле (физика) | Наука | Fandom

У этого термина существуют и другие значения, см. Поле.

По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной[1] (называемой полевой переменной[2]), определенной во всех[3] точках пространства (и принимающей вообще говоря разные значения в разных точках пространства, к тому же меняющейся со временем[4]).

В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.

Полевая парадигма, представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей[5].

  • Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы[6]) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления
    [7]
    , а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации.

Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.

Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

Также полем в физике называют физическую величину, рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела — сплошной среды, описывающий в своей совокупности состояние или движение этого протяженного тела[8]. Примерами таких полей может быть:

  • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) — (скалярное) поле температуры,
  • скорость всех элементов некоторого объема жидкости — векторное поле скоростей,
  • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

Динамика таких полей также описывается дифференциальными уравнениями в частных производных, и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной Максвеллом — изначально с использованием механической модели гипотетической сплошной среды — эфира, но затем вышедшей за рамки использования механической модели.

    Фундаментальные поля Править

    Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:

    • фундаментальные фермионные поля, прежде всего представляющие физическую основу описания вещества,
    • фундаментальные бозонные поля (включая гравитационное, представляющее собой тензорное калибровочное поле), являющиеся расширением и развитием концепции максвелловского электромагнитного и ньютоновского гравитационного полей; на них строится теория фундаментальных взаимодействий.

    Существуют теории (например, теория струн, различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, еще более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении, как «феноменологическое» следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.

    История Править

    Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей

    [9]) поля, ответственные за электромагнитное (электрическое и магнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов
    [10]
    . Но начиная с Фарадея и Максвелла подход к полю (в данном случае — к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.

    Поля, соответствующие слабому взаимодействию и сильному взаимодействию, (играющие важную роль в ядерной физике ядерных и физике частиц; последнее — в числе прочего в объяснении ядерных сил) открыты гораздо позднее, поскольку практически проявляются лишь в физике атомного ядра и частиц, при таких энергиях и расстояниях, которые в принципе относятся к области квантовых теорий.

    Тем не менее, в принципе (несмотря на то, что не для всех из них это легко непосредственно обнаружить), все четыре упомянутые поля проявляют себя как посредники при взаимодействии заряженных (различными видами зарядов) тел (частиц), перенося это взаимодействие с конечной скоростью (скоростью света), при этом интенсивность (сила) взаимодействия определяется, кроме положения и движения тел, их зарядами: массой (гравитационным зарядом) для гравитационного поля, электрическим зарядом для электромагнитного и т. д.

    Еще одним решительным моментом в завоевании полевой концепцией признания физиков стало экспериментальное подтверждение теории Максвелла в 1887 году

    Поле (фізика) — Вікіпедія

    У Вікіпедії є статті про інші значення цього терміна: Поле.

    Фізи́чне по́ле — вид матерії на макроскопічному рівні, посередник взаємодії між частинками речовини або віддаленими одне від одного макроскопічними тілами.

    Фізичне поле – особлива форма матерії, яка здійснює взаємодію між частинками, наприклад, гравітаційне поле (поле тяжіння) здійснює притягання між частинками речовини, електричне поле – притягання або відштовхування частинок речовини, заряджених електрикою різного або однакового знака (відповідно). Фізичне поле може виявлятися у вигляді окремих порцій – квантів, наприклад, електромагнітне поле – у вигляді квантів світла – фотонів.

    Прикладами фізичних полів є електромагнітне поле, гравітаційне поле, слабка і сильна взаємодії.

    Часто поняття «поле» застосовують до сукупності розподілених фізичних величин, як, наприклад, векторне поле швидкостей та скалярні поля тисків і температур у потоці рідини чи газу, тензорне поле механічних напружень у деформованому твердому тілі. На відміну від цих полів, які є певними збуреннями в середовищі, фізичні поля є матеріальними, тобто не потребують іншого субстрату для свого існування.

    Поняття силового поля виникло у класичній механіці, яка використовує принцип далекодії, і було способом опису взаємодії між частинками речовини.

    Фізичне поле набуло характеру фізичної реальності зі встановленням скінченності швидкості поширення взаємодії (електромагнітне та гравітаційне поля) і виникненням класичної електродинаміки й теорії відносності. Протиставлення речовини і поля як дискретного і неперервного було знято на рівні елементарних частинок.

    Квантова теорія поля за допомогою квантування ставить кожній частинці у відповідність поле з певними трансформаційними властивостями відносно простору-часу і груп симетрій частинок.

    Поле в класичній фізиці[ред. | ред. код]

    Ідея силового поля в класичній фізиці полягає у тому, щоб виділити в силах, які діють на фізичне тіло, множники, що характеризують тіло, і множники, що характеризують інші тіла. Наприклад, сила гравітації, що діє на тіло з масою m з боку інших тіл із масами mj{\displaystyle m_{j}} може бути записана згідно із законом всесвітнього тяжіння у вигляді

    F=−∑jGmmjRj3Rj{\displaystyle \mathbf {F} =-\sum _{j}G{\frac {mm_{j}}{R_{j}^{3}}}\mathbf {R} _{j}},

    де G — гравітаційна стала, а Rj=r−rj{\displaystyle \mathbf {R} _{j}=\mathbf {r} -\mathbf {r} _{j}} — віддаль між даним тілом і тілом з індексом j.

    Виділяючи у цьому виразі масу вибраного тіла, можна записати

    F=mg{\displaystyle \mathbf {F} =m\mathbf {g} },

    де величина

    g(r)=−∑jGmjRj3Rj{\displaystyle \mathbf {g} (\mathbf {r} )=-\sum _{j}G{\frac {m_{j}}{R_{j}^{3}}}\mathbf {R} _{j}}

    не залежить від характеристики (маси) досліджуваного тіла.

    Векторне поле g(r){\displaystyle \mathbf {g} (\mathbf {r} )} у фізиці називають гравітаційним полем.

    Аналогічним чином, для заряду q, що взаємодіє з іншими зарядами qi{\displaystyle q_{i}} можна записати

    F=qE{\displaystyle \mathbf {F} =q\mathbf {E} },

    де E{\displaystyle \mathbf {E} } — векторне поле, яке називається напруженістю електричного поля й дорівнює

    E=∑jqjRj3Rj{\displaystyle \mathbf {E} =\sum _{j}{\frac {q_{j}}{R_{j}^{3}}}\mathbf {R} _{j}}. [1]

    В цьому випадку сила взаємодії теж записується як добуток характеристики досліджуваного тіла (заряду), а вся інформація про інші заряди зводиться до введення єдиної векторної величини — напруженості електричного поля.

    Приведені визначення полів опираються на принцип далекодії та справедливі лише для класичної фізики. Якщо частинки, які визначають поле, рухатимуться, то в рамках класичної фізики досліджувана частинка моментально відчуватиме зміну їхнього положення.

    Поле у релятивістській фізиці[ред. | ред. код]

    У теорії відносності постулюється, що усі взаємодії мають швидкість розповсюдження, що дорівнює швидкості світла. Таким чином, якщо частинка-джерело поля змінить своє положення, то інші частинки зреагують на це лише через деякий час, що залежить від відстані між ними і джерелом поля. Протягом цього часу, вони будуть рухатись так, ніби частинка діє на них зі свого старого положення. Цей уявний експеримент показує, що поле — це реальна фізична сутність, що існує окремо від частинки, що його створює, хоч і пов’язане з нею.

    Таким чином, сучасна фізика побудована на принципі близькодії — частинки впливають на поле безпосередньо біля себе, і зазнають впливу поля, що знаходиться безпосередньо біля них.

    Для описання поля використовується 4-потенціал Аi, перша компонента якого називається скалярним потенціалом поля (позначається як φ, або А0), а решта три — векторним потенціалом (позначається як А).

    Наприклад, у випадку малих швидкостей і зарядів, рівняння руху заряду у полі запишеться як:

    F=e(−1c∂A∂t−grad⁡ϕ)+ec[vrot⁡A]{\displaystyle F=e(-{\frac {1}{c}}{\frac {\partial \mathbf {A} }{\partial t}}-\operatorname {grad} \phi )+{\frac {e}{c}}[\mathbf {v} \operatorname {rot} \mathbf {A} ]},

    Перший доданок, що залежить лише від величини заряду, є електричним полем, другий, що залежить також від швидкості, є магнітним, проте вони невідділимі один від одного і є частинами одного електромагнітного поля.

    Математично, 4-потенціал зручно виражати за допомогою 4-тензору поля, таких як тензор електромагнітного поля і метричний тензор для гравітаційного поля.

    Інваріанти поля[ред. | ред. код]

    Із компонент поля можна скласти вирази, що не будуть змінюватись при перетвореннях Лоренца. Для електромагнітного поля такими інваріантами є, наприклад, E2-H2 або EH. Це означає, що, якщо кут між напрямками електричного і магнітного полів у деякій точці гострий, прямий або тупий, то він лишиться гострим, прямим або тупим відповідно у будь якій системі відліку. Якщо абсолютна величина електричного поля більша ніж у магнітного, то це справедливо у будь-якій системі відліку (і навпаки).

    Хвилі[ред. | ред. код]

    У електромагнітному і гравітаційному полі, існують конфігурації поля, що мають ненульову напруженість за відсутності джерел. Такі поля створюються при русі джерела поля з прискоренням (у випадку електромагнітного поля) або зі змінним прискоренням (у випадку гравітаційного), а після утворення існують незалежно від своїх джерел. Електромагнітні хвилі, у рамках корпускулярно-хвильового дуалізму, співставляються з частинками фотонами. Гравітаційні хвилі, передбачені ще Ейнштейном, були вперше зафіксовані лише у 2015 році.

    Квантова теорія поля[ред. | ред. код]

    У квантовій теорії поля втрачається принципова різниця між частинками (джерелами поля) і власне полем. Усі елементарні частинки у КТП вважаються квантами відповідних полів (електрони для електронного поля і т.п.) Кожному типу частинок ставиться у відповідність комплексна функція Ψ(x,y,z,t){\displaystyle \Psi (x,y,z,t)}, квадрат якої пропорційний ймовірності знаходження частинки у деякій точці простору-часу. Ця функція називається хвильовою функцією. Поля взаємодіють між собою у кожній точці. Поля, кванти яких мають спін 1/2, називають ферміонними, і вони складають звичну нам матерію — електрони, кварки, нейтріно. Поля, кванти яких мають спін 0, 1 або 2 називають бозонними, і вони відповідають за «класичні» поля — гравітаційне, електромагнітне, а також поле ядерних сил, слабкої взаємодії і поле Хіґґса.[6]

    • Філософський словник / за ред. В. І. Шинкарука. — 2-ге вид., перероб. і доп. — К. : Головна ред. УРЕ, 1986.
    • Л.Д.Ландау, Е.М.Лифщиц. Теория поля // Теоретическая физика. — 6. — М. : «Наука», 1973. — Т. 2. — 504 с.
    1. ↑ Формули на цій сторінці записані в системі СГС (СГСГ). Для перетворення в систему СІ дивись Правила переводу формул із системи СГС в систему СІ.
    2. ↑ Квантовая теория поля(рос.)

    Поле Хиггса — Википедия

    Материал из Википедии — свободной энциклопедии

    Поле Хиггса или хиггсовское поле — поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, британского физика Питера Хиггса. Квант этого поля — хиггсовская частица (хиггсовский бозон).

    Наличие хиггсовского поля является неотъемлемой частью Стандартной модели (теории Вайнберга — Салама), объединившей слабое и электромагнитное взаимодействия. С помощью этого поля объясняется наличие инертной массы частиц-переносчиков слабого взаимодействия[уточнить] (W- и Z-бозоны) и отсутствие массы у частицы-переносчика сильного (глюон) и электромагнитного взаимодействия (фотон).

    После открытия бозона Хиггса поле Хиггса некорректно стали называть пятым фундаментальным взаимодействием[1].

    Вакуумное среднее равно 240 ГэВ[2].

    Кварки одного поколения были бы неразличимы, если бы не поле Хиггса[3].

    Предсказанные Стандартной моделью W- и Z-бозоны обладают параметрами, совпадающими с полученными экспериментально с очень высокой точностью. Но о массе хиггсовского бозона эта модель ничего не говорит, и для ответа на вопрос о массе хиггсовской частицы и связанных с ней параметрами хиггсовского поля необходимы экспериментальные исследования.

    С появлением Большого адронного коллайдера, который в сентябре 2008 года был введён в строй в ЦЕРНе (Швейцария), были связаны надежды на обнаружение хиггсовского бозона. 4 июля 2012 года, на научном семинаре ЦЕРНа, проходившем в рамках научной конференции ICHEP 2012 в Мельбурне[4], были изложены предварительные результаты экспериментов ATLAS и CMS по поиску бозона Хиггса на LHC за первую половину 2012 года. Оба детектора наблюдали новую частицу с массой около 125—126 ГэВ/c² с уровнем статистической значимости 5 сигма. Предполагается что данная частица — бозон, при этом она — самый тяжёлый из когда-либо обнаруженных бозонов[5][6]. На семинар были приглашены физики Франсуа Энглер, Карл Хаген[en], Питер Хиггс и Джеральд Гуральник[en], которые являются одними из «авторов» механизма Хиггса[7].

    14 марта 2013 года отдельные исследователи из ЦЕРНа высказали уверенность, что найденная полугодом ранее частица действительно является бозоном Хиггса[8].

    Поле (физика) Википедия

    У этого термина существуют и другие значения, см. Поле.

    По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной[1] (называемой полевой переменной[2]), определённой во всех[3] точках пространства (и принимающей, вообще говоря, разные значения в разных точках пространства, к тому же меняющейся со временем[4]).[источник не указан 2283 дня]

    В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.

    Полевая парадигма, представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей[5].

    Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы[6]) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления[7], а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации[8].

    Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.

    Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

    Также полем в физике называют физическую величину, рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела — сплошной среды, описывающий в своей совокупности состояние или движение этого протяженного тела[9]. Примерами таких полей может быть:

    • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) — (скалярное) поле температуры,
    • скорость всех элементов некоторого объёма жидкости — векторное поле скоростей,
    • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

    Динамика таких полей также описывается дифференциальными уравнениями в частных производных, и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

    Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной

    Поле (физика) — Вики

    У этого термина существуют и другие значения, см. Поле.

    По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной[1] (называемой полевой переменной[2]), определённой во всех[3] точках пространства (и принимающей, вообще говоря, разные значения в разных точках пространства, к тому же меняющейся со временем[4]).[источник не указан 2283 дня]

    В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.

    Полевая парадигма, представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей[5].

    Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы[6]) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления[7], а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации[8].

    Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.

    Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

    Также полем в физике называют физическую величину, рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела — сплошной среды, описывающий в своей совокупности состояние или движение этого протяженного тела[9]. Примерами таких полей может быть:

    • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) — (скалярное) поле температуры,
    • скорость всех элементов некоторого объёма жидкости — векторное поле скоростей,
    • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

    Динамика таких полей также описывается дифференциальными уравнениями в частных производных, и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

    Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной Максвеллом — изначально с использованием механической модели гипотетической сплошной среды — эфира, но затем вышедшей за рамки использования механической модели.

    Физика невозможного — Защитное силовое поле — Альтернативный взгляд Salik.biz

    «Поднять щиты!» — так звучит первый приказ, который в бесконечном сериале «Звездный путь» отдает резким голосом капитан Кирк своему экипажу; послушный приказу экипаж включает силовые поля, призванные защитить космический корабль «Энтерпрайз» от огня противника.

    В сюжете «Звездного пути» силовые поля настолько важны, что их состояние вполне может определить исход сражения. Стоит энергии силового поля истощиться, и корпус «Энтерпрайза» начинает получать удары, чем дальше, тем сокрушительнее; в конце концов поражение становится неизбежным.

    — Salik.biz

    Так что же такое защитное силовое поле? В научной фантастике это обманчиво простая штука: тонкий невидимый, но при этом непроницаемый барьер, способный одинаково легко отражать лазерные лучи и ракеты. На первый взгляд силовое поле представляется настолько простым, что создание — и скорое — боевых щитов на его основе кажется неминуемым. Так и ждешь, что не сегодня-завтра какой-нибудь предприимчивый изобретатель объявит, что ему удалось получить защитное силовое поле. Но истина гораздо сложнее.

    Подобно лампочке Эдисона, которая коренным образом изменила современную цивилизацию, силовое поле способно глубоко затронуть все без исключения стороны нашей жизни. Военные воспользовались бы силовым полем, чтобы стать неуязвимыми, создали бы на его основе непроницаемый щит от вражеских ракет и пуль. В теории можно было бы создавать мосты, великолепные шоссе и дороги одним нажатием кнопки. Целые города возникали бы в пустыне словно по мановению волшебной палочки; все в них, вплоть до небоскребов, строилось бы исключительно из силовых полей. Купола силовых полей над городами позволили бы их обитателям произвольно управлять погодными явлениями — штормовыми ветрами, снежными бурями, торнадо. Под надежным пологом силового поля можно было бы строить города даже на дне океанов. От стекла, стали и бетона можно было бы вообще отказаться, заменив все строительные материалы силовыми полями.


    Но, как ни странно, силовое поле оказывается одним из тех явлений, которые чрезвычайно сложно воспроизвести в лаборатории. Некоторые физики даже полагают, что это вообще не удастся сделать без изменения его свойств.

    Майкл Фарадей

    Концепция физического поля берет начало в работах великого британского ученого XIX в. Майкла Фарадея.

    Рекламное видео:

    Родители Фарадея принадлежали к рабочему классу (его отец был кузнецом). Сам он в начале 1800-х гг. состоял в подмастерьях у переплетчика и влачил достаточно жалкое существование. Но юный Фарадей был зачарован недавним гигантским прорывом в науке — открытием таинственных свойств двух новых сил, электричества и магнетизма. Он жадно поглощал всю доступную ему информацию по этим вопросам и посещал лекции профессора Хамфри Дэви из Королевского института в Лондоне.

    Однажды профессор Дэви серьезно повредил глаза во время неудачного химического эксперимента; понадобился секретарь, и он взял на эту должность Фарадея. Постепенно молодой человек завоевал доверие ученых Королевского института и получил возможность проводить собственные важные эксперименты, хотя нередко ему приходилось терпеть и пренебрежительное отношение. С годами профессор Дэви все ревнивее относился к успехам своего талантливого молодого помощника, который поначалу считался в кругах экспериментаторов восходящей звездой, а со временем затмил славу самого Дэви. Только после смерти Дэви в 1829 г. Фарадей получил научную свободу и осуществил целую серию поразительных открытий. Результатом их стало создание электрических генераторов, обеспечивших энергией целые города и изменивших ход мировой цивилизации.

    Ключом к величайшим открытиям Фарадея стали силовые, или физические, поля. Если поместить железные опилки над магнитом и встряхнуть, выяснится, что опилки укладываются в рисунок, напоминающий паутину и занимающий все пространство вокруг магнита. «Нити паутины» — это и есть фарадеевы силовые линии. Они наглядно показывают, как распределяются в пространстве электрическое и магнитное поля. К примеру, если изобразить графически магнитное поле Земли, то обнаружится, что линии исходят откуда-то из области Северного полюса, а затем возвращаются и снова уходят в землю в области Южного полюса. Аналогично, если изобразить силовые линии электрического поля молнии во время грозы, выяснится, что они сходятся на кончике молнии.

    Пустое пространство для Фарадея вовсе не было пустым; оно было заполнено силовыми линиями, при помощи которых можно было заставить отдаленные предметы двигаться.

    (Бедная юность не позволила Фарадею получить систематическое образование, и он практически не разбирался в математике; вследствие этого его записные книжки были заполнены не уравнениями и формулами, а нарисованными от руки диаграммами силовых линий. По иронии судьбы именно недостаток математического образования заставил его разработать великолепные диаграммы силовых линий, которые сегодня можно увидеть в любом учебнике физики. Физическая картина в науке нередко более важна, чем математический аппарат, который используется для ее описания.)

    Историки выдвинули немало предположений о том, что именно привело Фарадея к открытию физических полей — одного из важнейших понятий в истории всей мировой науки. Фактически вся без исключения современная физика написана на языке фарадеевых полей. В 1831 г. Фарадей совершил ключевое открытие в области физических полей, навсегда изменившее нашу цивилизацию. Однажды, пронося магнит — детскую игрушку — над проволочной рамкой, он заметил, что в рамке возникает электрический ток, хотя магнит с ней не соприкасается. Это означало, что невидимое поле магнита способно на расстоянии заставить электроны двигаться, создавая ток.

    Силовые поля Фарадея, которые до этого момента считались бесполезными картинками, плодом досужей фантазии, оказались реальной материальной силой, способной двигать объекты и генерировать энергию. Сегодня можно сказать наверняка: источник света, которым вы пользуетесь, чтобы прочесть эту страницу, получает энергию благодаря открытиям Фарадея в области электромагнетизма. Вращающийся магнит создает поле, которое толкает электроны в проводнике и заставляет их двигаться, рождая электрический ток, который затем можно использовать для питания лампочки. На этом принципе основаны генераторы электричества, обеспечивающие энергией города всего мира. К примеру, поток воды, падающий с плотины, заставляет вращаться гигантский магнит в турбине; магнит толкает электроны в проводе, формируя электрический ток; ток, в свою очередь, течет по высоковольтным проводам в наши дома.

    Другими словами, силовые поля Майкла Фарадея и есть те самые силы, что движут современной цивилизацией, всеми ее проявлениями — от электровозов до новейших вычислительных систем, Интернета и карманных компьютеров.

    Полтора столетия фарадеевы физические поля вдохновляли физиков на дальнейшие исследования. На Эйнштейна, к примеру, они оказали такое сильное воздействие, что он сформулировал свою теорию гравитации на языке физических полей. На меня тоже работы Фарадея произвели сильнейшее впечатление. Несколько лет назад я успешно сформулировал теорию струн в терминах физических полей Фарадея, заложив таким образом фундамент для полевой теории струн. В физике сказать про кого-то, что он мыслит силовыми линиями, означает сделать этому человеку серьезный комплимент.

    Четыре фундаментальных взаимодействия

    Одним из величайших достижений физики за последние два тысячелетия стало выделение и определение четырех видов взаимодействия, которые правят вселенной. Все они могут быть описаны на языке полей, которым мы обязаны Фарадею. К несчастью, однако, ни один из четырех видов не обладает в полной мере свойствами силовых полей, описанных в большинстве фантастических произведений. Перечислим эти виды взаимодействия.


    1. Гравитация. Безмолвная сила, не позволяющая нашим ногам оторваться от опоры. Она не дает рассыпаться Земле и звездам, помогает сохранить целостность Солнечной системы и Галактики. Без гравитации вращение планеты вышвырнуло бы нас с Земли в космос со скоростью 1000 миль в час. Проблема в том, что свойства гравитации в точности противоположны свойствам фантастических силовых полей. Гравитация — сила притяжения, а не отталкивания; она чрезвычайно слаба — относительно, разумеется; она работает на громадных, астрономических расстояниях. Другими словами, являет собой почти полную противоположность плоскому, тонкому, непроницаемому барьеру, который можно встретить едва ли не в любом фантастическом романе или фильме. К примеру, перышко к полу притягивает целая планета — Земля, но мы легко можем преодолеть притяжение Земли и поднять перышко одним пальцем. Воздействие одного нашего пальца способно преодолеть силу притяжения целой планеты, которая весит больше шести триллионов килограммов.

    2. Электромагнетизм (ЭМ). Сила, освещающая наши города. Лазеры, радио, телевидение, современная электроника, компьютеры, Интернет, электричество, магнетизм — все это следствия проявления электромагнитного взаимодействия. Возможно, это самая полезная сила, которую удалось обуздать человечеству на протяжении всей его истории. В отличие от гравитации она может работать и на притяжение, и на отталкивание. Однако и она не годится на роль силового поля по нескольким причинам. Во-первых, ее можно легко нейтрализовать. К примеру, пластик или любой другой непроводящий материал без труда проникнет в мощное электрическое или магнитное поле. Кусок пластика, брошенный в магнитное поле, свободно пролетит его насквозь. Во-вторых, электромагнетизм действует на больших расстояниях, его непросто сосредоточить в плоскости. Законы ЭМ-взаимодействия описываются уравнениями Джеймса Клерка Максвелла, и похоже, силовые поля не являются решением этих уравнений.

    3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие — это сила радиоактивного распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, землетрясениями и дрейфом континентальных плит. Сильное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимодействие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.

    Хотя защитные поля в научной фантастике и не подчиняются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фундаментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от нескольких дюймов до фута — а не на астрономических расстояниях. (Правда, первые попытки обнаружить пятый вид взаимодействия дали отрицательные результаты.)

    Во-вторых, нам, возможно, удастся заставить плазму имитировать некоторые свойства силового поля. Плазма — это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, — твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электронов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.

    Видимое вещество вселенной существует по большей части в форме различного рода плазмы; из нее образованы солнце, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого достаточно взглянуть на молнию, солнце или экран плазменного телевизора.

    Плазменные окна

    Как уже отмечалось выше, если нагреть газ до достаточно высокой температуры и получить таким образом плазму, то при помощи магнитного и электрического полей можно будет ее удерживать и придавать ей форму. К примеру, плазме можно придать форму листа или оконного стекла. Более того, такое «плазменное окно» можно использовать в качестве перегородки между вакуумом и обычным воздухом. В принципе, таким образом можно было бы удерживать воздух внутри космического корабля, не давая ему улетучиться в пространство; плазма в этом случае образует удобную прозрачную оболочку, границу между открытым космосом и кораблем.

    В сериале «Звездный путь» силовое поле используется, в частности, для того, чтобы изолировать отсек, где находится и откуда стартует небольшой космический челнок, от космического пространства. И это не просто хитрая уловка, призванная сэкономить деньги на декорациях; такая прозрачная невидимая пленка может быть создана.

    Плазменное окно придумал в 1995 г. физик Эди Гершкович в Брукхейвенской национальной лаборатории (Лонг-Айленд, штат Нью-Йорк). Это устройство было разработано в процессе решения другой задачи — задачи сварки металлов при помощи электронного луча. Ацетиленовая горелка сварщика плавит металл потоком раскаленного газа, а затем уже соединяет куски металла воедино. При этом известно, что пучок электронов способен сваривать металлы быстрее, чище и дешевле, чем получается при обычных методах сварки. Главная проблема метода электронной сварки состоит в том, что осуществлять ее необходимо в вакууме. Это требование создает большие неудобства, поскольку означает сооружение вакуумной камеры — размером, возможно, с целую комнату.

    Для решения этой проблемы д-р Гершкович изобрел плазменное окно. Это устройство размером всего 3 фута в высоту и 1 фут в диаметре; оно нагревает газ до температуры 6500 °С и тем самым создает плазму, которая сразу же попадает в ловушку электрического и магнитного полей. Частицы плазмы, как частицы любого газа, оказывают давление, которое не дает воздуху ворваться и заполнить собой вакуумную камеру. (Если использовать в плазменном окне аргон, он испускает голубоватое свечение, совсем как силовое поле в «Звездном пути».)

    Плазменное окно, очевидно, найдет широкое применение в космической отрасли и промышленности. Даже в промышленности для микрообработки и сухого травления часто необходим вакуум, но применение его в производственном процессе может оказаться очень дорогим. Но теперь, с изобретением плазменного окна, удерживать вакуум одним нажатием кнопки станет несложно и недорого.

    Но можно ли использовать плазменное окно как непроницаемый щит? Защитит ли оно от выстрела из пушки? Можно вообразить появление в будущем плазменных окон, обладающих гораздо большей энергией и температурой, достаточной для испарения попадающих в него объектов. Но для создания более реалистичного силового поля с известными по фантастическим произведениям характеристиками потребуется многослойная комбинация нескольких технологий. Возможно, каждый слой сам по себе не будет достаточно прочным, чтобы остановить пушечное ядро, но вместе нескольких слоев может оказаться достаточно.


    Попробуем представить себе структуру такого силового поля. Внешний слой, к примеру сверхзаряженное плазменное окно, разогретое до температуры, достаточной для испарения металлов. Вторым слоем может оказаться завеса из высокоэнергетических лазерных лучей. Такая завеса из тысяч перекрещивающихся лазерных лучей создавала бы пространственную решетку, которая нагревала бы проходящие через нее объекты и эффективно испаряла их. Более подробно мы поговорим о лазерах в следующей главе.

    Далее, за лазерной завесой, можно вообразить себе пространственную решетку из «углеродных нанотрубок» — крохотных трубочек, состоящих из отдельных атомов углерода, со стенками толщиной в один атом. Таким трубки во много раз прочнее стали. На данный момент самая длинная из полученных в мире углеродных нанотрубок имеет длину всего около 15 мм, но можно уже предвидеть день, когда мы сможем создавать углеродные нанотрубки произвольной длины. Предположим, что из углеродных нанотрубок можно будет сплести пространственную сеть; в этом случае мы получим чрезвычайно прочный экран, способный отразить большинство объектов. Экран этот будет невидим, так как каждая отдельная нанотрубка по толщине сравнима с атомом, но пространственная сеть из углеродных нанотрубок превзойдет по прочности любой другой материал.

    Итак, мы имеем основания предположить, что сочетание плазменного окна, лазерной завесы и экрана из углеродных нанотрубок может послужить основой для создания почти непроницаемой невидимой стены.

    Но даже такой многослойный щит будет не в состоянии продемонстрировать все свойства, которые научная фантастика приписывает силовому полю. Так, он будет прозрачен, а значит, не сможет остановить лазерный луч. В битве с применением лазерных пушек наши многослойные щиты окажутся бесполезными.

    Чтобы остановить лазерный луч, щит должен будет кроме перечисленного обладать сильно выраженным свойством «фотохроматичности», или переменной прозрачности. В настоящее время материалы с такими характеристиками используются при изготовлении солнечных очков, способных затемняться при воздействии УФ-излучения. Переменная прозрачность материала достигается за счет использования молекул, которые могут существовать по крайней мере в двух состояниях. При одном состоянии молекул такой материал прозрачен. Но под воздействием УФ-излучения молекулы мгновенно переходят в другое состояние и материал теряет прозрачность.

    Возможно, когда-нибудь мы сможем при помощи нанотехнологии получить вещество, прочное, как углеродные нанотрубки, и способное менять свои оптические свойства под воздействием лазерного луча. Щит из такого вещества сможет останавливать не только потоки частиц или орудийные снаряды, но и лазерный удар. В настоящее время, однако, не существует материалов с переменной прозрачностью, способных остановить лазерный луч.

    Магнитная левитация

    В научной фантастике силовые поля выполняют еще одну функцию, кроме отражения ударов из лучевого оружия, а именно служат опорой, которая позволяет преодолевать силу притяжения. В фильме «Назад в будущее» Майкл Фокс катается на «ховерборде», или «парящей доске»; эта штука во всем напоминает привычный скейтборд, вот только «ездит» по воздуху, над поверхностью земли. Физические законы — такие, какими мы их знаем на сегодняшний день, — не позволяют реализовать подобное подобное антигравитационное устройство (как мы увидим в главе 10). Но можно представить себе в будущем создание других устройств — парящих досок и парящих автомобилей на магнитной подушке; эти машины позволят нам без труда поднимать и удерживать на весу крупные объекты. В будущем, если «сверхпроводимость при комнатной температуре» станет доступной реальностью, человек сможет поднимать в воздух предметы, используя возможности магнитных полей.

    Если мы поднесем северный полюс постоянного магнита к северному же полюсу другого такого же магнита, магниты будут отталкиваться друг от друга. (Если мы перевернем один из магнитов и поднесем его южным полюсом к северному полюсу другого, два магнита будут притягиваться.) Этот же принцип — то, что одноименные полюса магнитов отталкиваются, — можно использовать для подъема с земли огромных тяжестей. Уже сейчас в нескольких странах идет строительство технически передовых поездов на магнитной подвеске. Такие поезда проносятся не по путям, а над ними на минимальном расстоянии; на весу их удерживают обычные магниты. Поезда как бы парят в воздухе и могут благодаря нулевому трению развивать рекордные скорости.

    Первая в мире коммерческая автоматизированная транспортная система на магнитной подвеске была запущена в действие в 1984 г. в британском городе Бирмингеме. Она соединила терминал международного аэропорта и расположенный неподалеку железнодорожный вокзал. Поезда на магнитной подвеске действуют также в Германии, Японии и Корее, хотя большинство из них не предназначены для высоких скоростей. Первый скоростной коммерческий поезд на магнитной подвеске начал ходить по запущенному в действие участку трассы в Шанхае; этот поезд движется по трассе со скоростью до 431 км/ч. Японский поезд на магнитной подвеске в префектуре Яманаси разогнался до скорости 581 км/ч — т. е. двигался значительно быстрее, чем обычные поезда на колесах.

    Но устройства на магнитной подвеске чрезвычайно дороги. Один из путей к увеличению их эффективности — использование сверхпроводников, которые при охлаждении до температур, близких к абсолютному нулю, полностью теряют электрическое сопротивление. Явление сверхпроводимости открыл в 1911 г. Хейке Камерлинг-Оннес. Суть его состояла в том, что некоторые вещества при охлаждении до температуры ниже 20 К (20° выше абсолютного нуля) теряют всякое электрическое сопротивление. Как правило, при охлаждении металла его электрическое сопротивление постепенно уменьшается. {Дело в том, что направленному движению электронов в проводнике мешают случайные колебания атомов. При уменьшении температуры размах случайных колебаний уменьшается, и электричество испытывает меньшее сопротивление.) Но Камерлинг-Оннес, к собственному изумлению, обнаружил, что сопротивление некоторых материалов при определенной критической температуре резко падает до нуля.

    Физики сразу поняли важность полученного результата. При передаче на большие расстояния в линиях электропередачи теряется значительное количество электроэнергии. Но если бы сопротивление удалось устранить, электроэнергию можно было бы передавать в любое место почти даром. Вообще, возбужденный в замкнутом контуре электрический ток мог бы циркулировать в нем без потерь энергии миллионы лет. Более того, из этих необычайных токов несложно было бы создать магниты невероятной мощности. А имея такие магниты, можно было бы без усилий поднимать громадные грузы.

    Несмотря на чудесные возможности сверхпроводников, применять их очень непросто. Держать большие магниты в баках с чрезвычайно холодными жидкостями очень дорого. Чтобы сохранять жидкости холодными, потребуются громадные фабрики холода, которые поднимут стоимость сверхпроводящих магнитов до заоблачных высот и сделают их использование невыгодным.

    Но однажды физикам, возможно, удастся создать вещество, которое сохранит сверхпроводящие свойства даже при нагреве до комнатной температуры. Сверхпроводимость при комнатной температуре — «святой Грааль» физиков-твердотельщиков. Получение таких веществ, по всей вероятности, послужит началом второй промышленной революции. Мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько дешевыми, что даже «планирующие автомобили», возможно, окажутся экономически выгодными. Очень может быть, что с изобретением сверх-проводников, сохраняющих свои свойства при комнатной температуре, фантастические летающие машины, которые мы видим в фильмах «Назад в будущее», «Особое мнение» и «Звездные войны», станут реальностью.

    В принципе вполне пред ставимо, что человек сможет надевать специальный пояс из сверхпроводящих магнитов, который позволит ему свободно левитировать над землей. С таким поясом можно было бы летать по воздуху, подобно Супермену. Вообще, сверхпроводимость при комнатной температуре явление настолько замечательное, что изобретение и использование таких сверхпроводников описано во множестве научно-фантастических романов (таких, как серия романов про Мир-Кольцо, созданная Ларри Нивеном в 1970 г.).

    Десятки лет физики безуспешно искали вещества, которые обладали бы сверхпроводимостью при комнатной температуре. Это был утомительный скучный процесс — искали методом проб и ошибок, испытывая один материал за другим. Но в 1986 г. был открыт новый класс веществ, получивших название «высокотемпературные сверхпроводники»; эти вещества обретали сверхпроводимость при температурах порядка 90° выше абсолютного нуля, или 90 К. Это открытие стало настоящей сенсацией в мире физики. Казалось, распахнулись ворота шлюза. Месяц за месяцем физики соревновались друг с другом, стремясь установить новый мировой рекорд сверхпроводимости. Какое-то время даже казалось, что сверхпроводимость при комнатной температуре вот-вот сойдет со страниц научно-фантастических романов и станет реальностью. Но после нескольких лет бурного развития исследования в области высокотемпературных сверхпроводников начали замедляться.

    В настоящее время мировой рекорд для высокотемпературных сверхпроводников принадлежит веществу, представляющему собой сложный оксид меди, кальция, бария, таллия и ртути, которое становится сверхпроводящим при 138 К (-135 °С). Эта относительно высокая температура все еще очень далека от комнатной. Но и это—важный рубеж. Азот становится жидким при температуре 77 К, а жидкий азот стоит примерно столько же, сколько обычное молоко. Поэтому для охлаждения высокотемпературных сверхпроводников можно использовать обычный жидкий азот, это недорого. (Разумеется, сверхпроводники, остающиеся таковыми и при комнатной температуре, совсем не потребуют охлаждения.)

    Неприятно другое. В настоящее время не существует теории, которая объясняла бы свойства высокотемпературных сверхпроводников. Более того, предприимчивого физика, который сумеет объяснить, как они работают, ждет Нобелевская премия. (В известных высокотемпературных сверхпроводниках атомы организованы в четко выраженные слои. Многие физики предполагают, что именно слоистость керамического материала дает возможность электронам свободно передвигаться внутри каждого слоя, создавая таким образом сверхпроводимость. Но как именно и почему это происходит — по-прежнему загадка.)

    Недостаток знаний вынуждает физиков искать новые высокотемпературные сверхпроводники по старинке, методом проб и ошибок. Это означает, что пресловутая сверхпроводимость при комнатной температуре может быть открыта когда угодно—завтра, через год, или вообще никогда. Никто не знает, когда будет найдено вещество с такими свойствами и будет ли оно найдено вообще.

    Но если сверхпроводники при комнатной температуре будут открыты, их открытие, скорее всего, породит громадную волну новых изобретений и коммерческих приложений. Обычными, возможно, станут магнитные поля, в миллион раз более сильные, чем магнитное поле Земли (которое составляет 0,5 Гс).

    Одно из свойств, присущих всем сверхпроводникам, носит название эффекта Мейснера. Если поместить магнит над сверхпроводником, магнит зависнет в воздухе, как будто поддерживаемый некой невидимой силой. [Причина эффекта Мейснера заключается в том, что магнит обладает свойством создавать внутри сверхпроводника собственное «зеркальное отражение», так что настоящий магнит и его отражение начинают отталкиваться друг от друга. Еще одно наглядное объяснение этого эффекта — в том, что сверхпроводник непроницаем для магнитного поля. Он как бы выталкивает магнитное поле. Поэтому, если поместить магнит над сверхпроводником, силовые линии магнита при контакте со сверхпроводником исказятся. Эти силовые линии и будут выталкивать магнит вверх, заставляя его левитировать.)

    Если человечество получит возможность использовать эффект Мейснера, то можно вообразить шоссе будущего с покрытием из такой специальной керамики. Тогда при помощи магнитов, размещенных у нас на поясе или на днище автомобиля, мы сможем волшебным образом парить над дорогой и нестись к месту назначения без всякого трения или потерь энергии.

    Эффект Мейснера работает только с магнитными материалами, такими как металлы, Но можно использовать сверхпроводниковые магниты и для левитирования немагнитных материалов, известных как парамагнетики или диамагнетики. Эти вещества сами по себе не обладают магнитными свойствами; они обретают их только в присутствии и под воздействием внешнего магнитного поля. Парамагнетики притягиваются внешним магнитом, диамагнетики отталкиваются.

    Вода, к примеру, диамагнетик. Поскольку все живые существа состоят из воды, они тоже могут левитировать в присутствии мощного магнитного поля. В поле с магнитной индукцией около 15 Т (в 30 000 раз более мощном, чем магнитное поле Земли) ученым уже удалось заставить левитировать небольших животных, таких как лягушки. Но если сверхпроводимость при комнатной температуре станет реальностью, можно будет поднимать в воздух и крупные немагнитные объекты, пользуясь их диамагнитными свойствами.

    В заключение отметим, что силовые поля в том виде, в каком их обычно описывает фантастическая литература, не согласуются с описанием четырех фундаментальных взаимодействий в нашей Вселенной. Но можно предположить, что человеку удастся имитировать многие свойства этих выдуманных полей при помощи многослойных щитов, включающих в себя плазменные окна, лазерные завесы, углеродные нанотрубки и вещества с переменной прозрачностью. Но реально такой щит может быть разработан лишь через несколько десятилетий, а то и через столетие. И в случае, если сверхпроводимость при комнатной температуре будет обнаружена, у человечества появится возможность использовать мощные магнитные поля; возможно, с их помощью удастся поднять в воздух автомобили и поезда, как мы видим в фантастических фильмах.

    Принимая все это во внимание, я бы отнес силовые поля к I классу невозможности, т. е. определил их как нечто невозможное для сегодняшних технологий, но реализуемое в модифицированной форме в течение ближайшего столетия или около того.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *