Site Loader

Правильная фазировка силовых трансформаторов, проверка

На электрических схемах принято отмечать жирной точной начало намотки отдельных катушек трансформатора, если это необходимо. Но, выводы катушек реального трансформатора могут не иметь вообще никакой маркировки.

При прозвонке неизвестного трансформатора, может понадобиться определить начало намотки некоторых катушек. Например, если две отдельные части первичной обмотки включить навстречу друг другу, то они просто могут выйти из строя.

неправильная фазирвка трансформатораНа картинке изображён трансформатор, у которого первичная обмотка состоит из двух частей и эти части подключены в противофазе, что недопустимо (!).

Для фазировки обмоток трансформатора можно использовать стрелочный вольтметр постоянного тока и батарейку (химический элемент питания) включённые по приведённой схеме.

фазировка
схема фазировки обмоток

Диапазон измеряемого напряжения вольтметра нужно подобрать так, чтобы было хорошо заметно движение стрелки. Начинать лучше с большего диапазона.

Если при замыкании выключателя, стрелка вольтметра отклонилась в прямом направлении, то за начало фазируемых обмоток трансформатора нужно принять «+» (плюс) батареи и «+» вольтметра.

Если стрелка отклонилась в обратном направлении, обмотки подключены в противофазе относительно «+» батареи и «+» вольтметра.

Нужно иметь в виду, что при замыкании выключателя, стрелка вольтметра будет отклоняться в одну сторону, а при размыкании в противоположную, из-за возникшей ЭДС самоиндукции. Ориентироваться нужно по отклонению стрелки именно в момент включения выключателя.

При подключении катушек витых стержневых или штампованных стержневых трансформаторов, у которых два симметрично расположенных каркаса, нужно иметь в виду, что силовые магнитные линии выходят из одного каркаса, но входят в другой.

фазировка на примере, фотоНа картинке изображён трансформатор, у которого первичная обмотка состоит из двух симметричных катушек с выводами 1, 2 и 1’, 2’. Катушки расположены на двух симметрично расположенных друг относительно друга каркасах.правильная фазировка первичной обмотки трансформатора
правильная фазировка первичной обмотки трансформатора

Например, чтобы соединить катушки такого трансформатора последовательно, нужно соединить выводы 2 и 2’, а сеть подключить к выводам 1, 1’.

Видео: Фазировка трансформаторов

Методы фазировки трансформаторов. Как правильно фазировать обмотки. Теория и практика.

4. Фазировка в трансформаторах | 9. Трансформаторы | Часть2

4. Фазировка в трансформаторах

Фазировка в трансформаторах

Поскольку трансформаторы являются, по существу, устройствами переменного тока, нам необходимо знать фазовые соотношения между первичной и вторичной цепями. Используя SPICE пример из предыдущей статьи, мы можем построить графики напряжений для первичной и вторичной цепей и увидеть их фазовые соотношения:

 

spice transient analysis file for use with nutmeg:

transformer
v1 1 0 sin(0 15 60 0 0)
rbogus1 1 2 1e-12
v2 5 0 dc 250
l1 2 0 10000
l2 3 5 100
k l1 l2 0.999
vi1 3 4 ac 0
rload 4 5 1k
.tran 0.5m 17m
.end
 
nutmeg commands:
setplot tran1
plot v(2) v(3,5)

 

Вторичное напряжение U(3,5) синфазно с первичным напряжением U(2) и уменьшено в десять раз.

При переходе от первичного U(2) ко вторичному U(3,5), напряжение уменьшилось в десять раз (рис. выше), а ток,соответственно, увеличился в 10 раз (рис. ниже). И ток (рис. ниже) и напряжение (рис. выше) при переходе от первичной обмотки к вторичной, находятся в одной фазе.

 

nutmeg commands:
setplot tran1
plot I(L1#branch) I(L2#branch)

 

Первичный и вторичный токи синфазны. Вторичный ток увеличивается в десять раз.

 

Похоже, что напряжения и токи в двух обмотках трансформатора синфазны друг с другом, по крайней мере, для нашей резистивной нагрузки. Все это достаточно просто, но было бы неплохо узнать, каким образом мы должны подключить трансформатор, чтобы обеспечить правильные фазовые соотношения. В конце концов, трансформатор представляет собой не что иное, как набор магнитно-связанных катушек индуктивности, а катушки, как правило, не имеют каких-либо обозначений полярности. Если мы посмотрим на немаркированный трансформатор, то не сможем визуально определить способ его подключения к цепи, чтобы получить синфазные (или сдвинутые на 180

o) напряжения и токи:

 

На практике полярность трансформатора может быть неоднозначной.

 

Поскольку это является практической проблемой, производители трансформаторов придумали своего рода стандарт маркировки полярности для обозначения фазовых соотношений. Данный стандарт представляет собой не что иное, как точку, расположенную рядом с каждой обмоткой трансформатора:

 

Пара точек указывает на полярность.

 

На трансформатор иногда наносится схема, обозначающая провода первичной и вторичной обмоток. На этой же схеме присутствует пара точек, похожих на те, что показаны на рисунке выше. Иногда точки на схему трансформатора не наносятся. В этих случаях полярность обмотки представляют номера индексов, следующих за символами, обозначающими провода обмоток трансформатора «H» и «X». Провод «1» (h2 и X1) представляет собой место, где обычно размещаются точки маркировки полярности.

Подобное размещение точек рядом с верхними концами первичной и вторичной обмотки говорит нам о том, что любая мгновенная полярность напряжения в первичной обмотке, будет такой же, как и во вторичной обмотке. Другими словами, сдвиг фазы от первичной обмотки к вторичной будет равен нулю.

И наоборот, если точки будут располагаться на противоположных концах обмоток, то фазовый сдвиг между первичной и вторичной обмотками будет составлять 180o:

 

Понятие о фазировке

Дата публикации: .
Категория: Электротехника.

Под фазировкой в широком смысле этого слова подразумевается согласование соединяемых фаз. Сфазированные между собой обмотки правильно соединяются в звезды и треугольники, несфазированные обмотки образуют вместо звезды «елочку» (смотрите статью «Некоторые ошибки при соединениях в звезду, треугольник, зигзаг») и тому подобное.

Но фазировкой самих обмоток далеко не исчерпываются задачи, стоящие при включении в сеть электрооборудования, так как правильно сфазированный аппарат или электрическую машину нужно еще сфазировать с сетью, к которой он или она присоединяется. Задача состоит в том, чтобы не только исключить короткие замыкания при соединении двух источников тока, но и не допустить между ними уравнительных токов, а в отношении электродвигателей – обеспечить необходимое направление вращения.

Итак, в общем случае имеется сеть, фазы которой a, b, c определены и принимаются за исходные (рисунок 1, а). К сети должна присоединяться нагрузка.

Если это лампы, печи и другие электроприемники, не являющиеся источниками или преобразователями тока, то фазировка безразлична. Важно только, чтобы нуль нагрузки не попал ошибочно на фазу (рисунок 1, г), иначе лампы перегорят.

Если нагрузкой являются электродвигатели, то необходимо, чтобы они вращались в определенном направлении. А это достигается вполне определенной последовательностью присоединения электродвигателя к сети. Пусть, например, вращение фаз в сети происходит против часовой стрелки (рисунок 1, а), Если присоединить электродвигатель Д так, как показано на рисунке 1, б, то ток будет достигать максимальных значений в обмотке 2 (которая присоединена к фазе a), затем в обмотке 3 (так как за фазой a следует фаза b) и, наконец, в обмотке 1. Значит, ротор электродвигателя будет вращаться против часовой стрелки.

Если присоединить электродвигатель иначе (рисунок 1, в), так, что ток будет достигать максимального значения сначала в обмотке 3, затем в обмотке 2 и, наконец, в обмотке 1, ротор будет вращаться по часовой стрелке. Чтобы изменить направление вращения электродвигателя, достаточно поменять местами на его зажимах любые две фазы. Действительно, для электродвигателя важно только направление вращения, а оно сохраняется при трех вариантах присоединения, а именно: a, b, c; b, c, a; c, a, b, но изменяется на обратное, если в любом из этих вариантов поменять местами любые две фазы: a, c, b; b, a, c; c, b, a.

Рассмотрим два типичных случая присоединения трансформатора T2 к сети, которая получает питание от трансформатора T1. Трансформаторы имеют равные вторичные напряжения, одинаковые группы соединения (смотрите статью «Группы соединения трансформаторов») и, значит, могут работать параллельно, но еще не сфазированы. Задача состоит в том, чтобы их сфазировать, то есть выводы a1, b1 и c1 трансформатора T2 присоединить соответственно к шинам a, b и c.

На рисунке 1 выводы a1, b1 и c1 обозначены. Но при фазировке неизвестно, в каком порядке они подходят к шинам. Поэтому, прежде чем присоединять трансформатор T2 к шинам, необходимо произвести соответствующие измерения, например с помощью вольтметра 1.

Принципиальные схемы фазировкиПринципиальные схемы фазировки

Рисунок 1. Принципиальные схемы фазировки

1-й случай. Нейтрали трансформаторов соединены (рисунок 1, д).
Вольтметр V включают поочередно между каждым выводом трансформатора a1, b1 и c1 и шинами a, b и c, например в таком порядке, как перечислено в таблице к рисунку. Между разными фазами a1b, a1c, b1a, b1c, c1b, c1a вольтметр показывает напряжение. Между одинаковыми фазами a1a, b1b, c1c напряжения нет. В справедливости этого вывода легко убедиться по векторной диаграмме, приведенной там же.

2-й случай. Нейтрали трансформаторов не соединены. В этом необходимо предварительно убедиться, так как они могут случайно соединяться через землю, если неисправны пробивные предохранители (смотрите статью «Схема соединения «Звезда», рисунок 11).

Перед измерением нужно соединить один из выводов, например a1 (рисунок 1, е), с одной из шин, например с шиной b. На рисунке показано соединение через сопротивление r, которое всегда полезно включить во избежание короткого замыкания по непредвиденным причинам. Измерение поочередно производится между выводами b1 и c1 и шинами a и c согласно таблице и векторной диаграмме. Из нее видно, что фазировка не получилась. Почему? Потому что мы соединили фазу a1 с шиной b, то есть нефазированные выводы. Ясно, что и другие пары выводов не могли оказаться сфазированными.

Не добившись успеха при соединении вывода a1 с шиной b, приходится испытать другое соединение (рисунок 1, ж). Оно оказалось удачным: вывод b1 соединен с шиной b, то есть сфазирован. Поэтому при измерениях между выводами a1 и шиной a, а также между выводом c1 и шиной c напряжения нет (смотрите таблицу), что свидетельствует о том, что и они сфазированы.

Видео 1. Процедура фазировки линий трехфазной сети на подстанциях

Некоторые ошибки при фазировке и их предупреждение

Фазировка – дело сложное и весьма разнообразное. Здесь же обратим внимание на две распространенные ошибки: на фазировку с помощью фазоуказателя, чего ни в коем случае делать нельзя; на неправильное отношение к присоединению к шинам генераторов и вторичных обмоток трансформаторов, питающих сеть.

Фазоуказатель указывает только направление вращения фаз и не больше, но как было уже указано, вращение имеет одно и то же направление при нескольких вариантах присоединения, среди которых есть и такое, при котором не исключено соединение разноименных фаз, то есть короткое замыкание.

Рисунок 2 иллюстрирует ошибку при фазировке перед соединением двух секций с разным расположением шин. На 1-й секции шины расположены в порядке a, b, c, на 2-й – c, a, b. Фазоуказатели ФУ показывают, несмотря на это, одно и то же направление вращения. И если на этом основании сделать ошибочное заключение о том, что шины обеих секций сфазированы, и соединить их, как показано на рисунке 2, то произойдет короткое замыкание.

Понятие о фазировкеПонятие о фазировке

Рисунок 2. Нельзя выполнить фазировку с помощью фазоуказателя

Неправильное присоединение к шинам питающего генератора или вторичной обмотки трансформатора может привести к тому, что последовательность фаз на шинах изменится. В результате такой ошибки все электродвигатели, питающиеся, от шин, пойдут в обратную сторону, в чем легко убедиться по рисунку 3. Сверху на нем показано правильное присоединение генератора Г к шинам, при котором роторы двигателей Д вращаются против часовой стрелки. На нижнем рисунке показана ошибка: при присоединении к шинам генератора левый и средний выводы «перекрещены». Из-за этого порядок следования фаз в обмотках электродвигателей изменился, поэтому их роторы стали вращаться в обратную сторону.

Перекрещивание фазПерекрещивание фаз

Рисунок 3. При перекрещивании фаз источники электропитания изменяется направление вращения всех присоединенных к нему электродвигателей


1 Лампами для этой цели пользоваться опасно, так как между несфазированными выводами может получиться двойное линейное напряжение. В сетях 380 / 220 В оно составит 760 В.

Источник: Каминский Е. А., «Звезда, треугольник, зигзаг» – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

8.2. Методы фазировки

Фазировка может быть предварительной, выполняемой в процессе монтажа И ремонта оборудования, и при вводе в работу, производимой непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов обору-дования. Так. например, при ремонте поврежденного кабеля определяют, какие жилы кабеля, находившегося в эксплуатации, и ремонтной вставки должны соединяться между собой, чтобы фазы кабельной линии и сборных шин РУ совпали. Произвольное соединение токоведущих жил может нарушить порядок чередования фаз, и это приведет к необходимости менять местами жилы у концевых муфт или изменять монтаж шин в ячейке РУ. Ясно, что обе эти операции не только нежелательны, но часто и невыполнимы. Поэтому перед соединением жил проверяют их фазировку. Предварительная фазировка производится на оборудовании, не наводящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегаомметра или импульсного искателя.

Независимо от того, проводилась или не проводилась предварительная фазировка оборудования в период его монтажа или ремонта, оно обязательно фазируется при вводе в работу, так как только в этом случае можно быть уверенным в согласованности фаз всех элементов электрической цепи.

Фазировка при вводе в работу произво-дится исключительно электрическими методами. Выбор метода зависит от вида фазируемого оборудования (генератор, трансформатор, линия) и класса напряжения, на котором оно должно включаться в работу. Различают прямые (см. § 8.3) и косвенные (см. § 8.4) методы фазировки оборудования при вводе в работу. Прямыми методами называют такие, при которых фазировка производится на вводах оборудования, нахо-дящегося непосредственно под рабочим напряжением; эти методы наглядны и их широко применяют в установках до 110 кВ.

Косвенными называют такие методы, при которых фазировка производится не на рабочем напряжении установки, а на вторичном напряжении трансформаторов напряжения, присоединенных к фазируемым частям установки. Косвенные методы менее наглядны, чем прямые, но применение

их не ограничивается классом на-пряжения установки.

Оперативному персоналу подстанций, как правило, не приходится иметь дело с предварительной фазировкой оборудования, поэтому методы ее проведения здесь не рассматриваются. Из прямых методов фазировки представляют интерес методы фазировки трансформаторов и линий электропередачи.

8.3. Прямые методы фазировки

Фазировка трансформаторов, имеющих обмотки НН до 380 В, без установки перемычки между зажимами.

Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выве-денной нулевой точкой, а также измерительные трансформаторы напряжения, имеющие вторичные обмотки с заземленной нейтралью. Фазировку производят с помощью вольтметра со стороны обмотки НН. Вольтметр дол-жен быть рассчитан на двойное фазное напряжение, так как появление такого напряжения между зажимами фазируемых трансформаторов не исключено.

Фазируемые трансформаторы включают по схеме, представленной на рис. 8.3. Нулевые точки вторичных обмоток при этом должны быть надежно заземлены или присоединены к общему нулевому проводу, что следует проверить перед началом фазировки. Объединение нулевых точек необходимо для создания между фазируемыми трансформаторами электрической связи, образующей замкнутый контур для прохождения тока через прибор.

Прежде чем приступить к фазировке, проверяют симметричность напряжений трансформаторов. Для этого вольтметр поочередно подключают к зажимам a1-b1; b1-c1; c1-a1; a2-b2; b2-c2; c2-a2.

Если значения измеренных напряжений сильно отличаются друг от друга, проверяют положение переключа-телей ответвлений обоих трансформаторов. Перелючением ответвлений уменьшают разницу напряжений. Фазировка допускается, если разность напряжений не превышает 10%.

После проведения перечисленных операций приступают собственно к фазировке. Сущность ее заключается в отыскании выводов, между которыми разность напряжений практически близка к нулю. Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим проводом поочередно касаются трех выводов второго трансформатора (например, измеряют напряжения между выводами a1— a2; a1-b2; a1-c2-)Дальнейший ход фазировки зависит от полученных результатов. Если при одном измерении (допустим, между выводами a1— a2 )п оказание вольтметра было близким к нулю, то эти выводы замечают, а вольтметр присое-диняют ко второму выводу (например, b1) первого трансформатора и измеряют напряжение между выводами b1-b2; b1-c2. Если опять одно из показаний вольтметра (например, между выводами b1-b2) окажется близким к нулю, то фазировку считают законченной (рис. 8.4, а). Особой необходимости в измерении напряжения между выводами c1-c2 нет, так как при двух нулевых показаниях вольтметра (a1— a2 и b1-b2) напряжение между третьей парой фаз, естественно, должно быть близким к нулю. Однако для подтверждения полученных результатов о совпадении фаз все же производят измерение между c1-c2. Выводы, между которыми не было разности напряжений, соединяют при включении трансформаторов на параллельную работу. У каждого полюса коммутационного аппарата такие выводы должны находиться непосредственно друг против друга.

Если после измерения (a1— a2; a1-b2; a1-c2; b1a2; b1b2; b1c2) ни одно из показаний вольтметра не было близким к нулю, то это говорит о том, что фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо. Фазировку на этом прекращают. На основании измерений строят векторные диаграммы и по ним судят, можно ли включать трансформаторы параллельно и какие пересоединения надо для этого выполнить.

Техника построения векторных диаграмм на основании результатов измерений линейных напряжений показана на рис. 8.4, б. Треугольник линейных напряжений первого трансформатора строят произвольно, а точки вершин второго треугольника находят путем засечек, радиусы которых численно равны напряжениям между зажимами a1— a2 и b1a2; a1-b2 и b1b2.

Фазировка кабельных и воздушных линий 6-110 кВ. При фазировке линий напряжением 6—10 кВ пользуются индикаторами, например, типа УВН-80, УВНФ и др. Фазировка выполняется в следующей последовательности. На выводы разъединителей или выключателя подают фазируемые напряжения (рис. 8.5).

Проверяют исправность индикатора. Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 8.5,а), при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной токопроводящей части (рис. 8.5, б). Лампа индикатора при этом не должна гореть. Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 8.5, в. Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие неисправности предохранителя). Абсолютные значения напряжения между фазой и землей здесь не играют роли, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на незначительную разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят просто по свечению лампы индикатора.

Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например фазы с а щупом другой трубки — поочерёдно трех выводов со стороны фазируемой линии (рис. 8.5, г). В двух случаях касаний (С – А1 и С – В1) лампа будет ярко загораться, в третьем (С –С1) гореть не будет, что укажет на одноименность фаз.

После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например А – А1 и А – В1. Отсутствие свечения лампы индикатора в одном касании укажет на одноименность следующей пары выводов. Совпадение фаз третьей пары выводов В — В1 проверяют только в целях контроля — фазы должны совпасть.

Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителей или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

Фазировка воздушных и кабельных линий прямым методом возможна и на напряжении 35 и 110 кВ. Для этой цели в Мосэнерго используют индикатор типа УВНФ-35-110, конструкция которого аналогична индикатору УВНФ на 10 кВ. От последнего его отличает наличие в схеме полистирольных конденсаторов вместо резистора. Фазировка производится на отключенных разъединителях (или отделителях), выводы которых находятся под напряжением: с одной стороны от шин РУ, с другой от фазируемой линии. Сначала на всех фазах разъединителей проверяют наличие напряжения прикосновением щупов указателя к фазе и к заземленной конструкции, затем на крайних фазах разъединителей проверяют совпадение напряжений по фазе (рис. 8.6). На средней фазе проверку не производят. Если лампа индикатора не загорается при фазировке на крайних фазах, то фазировку считают законченной — фазы совпадают. При свечении лампы индикатора на обеих крайних фазах или только на одной фазировку прекращают — фазы не совпадают.

В Ленэнерго для фазировки линий 35-110 кВ применяют индикатор, в котором использован принцип сравнения напряжений на двух одинаковых делителях напряжения, собранных из резисторов (рис. 8.7). Производят фазировку, касаясь щупами индикатора проводов каждой фазы разъединителей так, как это показано на рис. 8.8. При совпадении фаз напряжений стрелка прибора не должна значительно отклоняться от нуля шкалы. Возможно лишь небольшое отклонение стрелки, что объясняется некоторой разностью фазируемых напряжений или сдвигом напряжений по углу при фазировке линий большой протяженности. При несовпадении напряжений по фазе стрелка прибора отклонится до конца шкалы.

Условия безопасности при фазировке индикаторами напряжения. Прежде чем приступить к фазировке, необходимо убедиться в выполнении как общих требований техники безопасности по подготовке рабочего места, так и специальных требований по работе с измерительными штангами на оборудовании, находящемся под напряжением.

Электрические аппараты, на выводах которых будет производиться фазировка, еще до подачи на них напряжения должны быть надежно заперты, должны быть также приняты меры, предотвращающие их включение.

Индикаторы напряжения перед началом работы под напряжением должны быть подвергнуты тщательному наружному осмотру, при этом обращается внимание на то, чтобы лаковый покров трубок и изоляции соединительного провода не имели видимых повреждений и царапин. Срок годности индикатора проверяется по штампу периодических испытаний. Не допускается применять индикаторы, срок годности которых истек.

При работах с индикатором напряжения обязательно применение диэлектрических перчаток. В ходе фазировки не рекомендуется приближать соединительный провод к заземленным частям. Располагать рабочие и изолирующие части индикатора следует так, чтобы не возникла опасность перекрытия по их поверхности между фазами или на землю.

Фазировку индикатором напряжения нельзя производить во время дождя, снегопада, при тумане, так как изолирующие части его могут увлажниться, что приведет к их перекрытию.

Трансформаторы и их фазировка перед подключение в параллель

Фазировка трансформаторная проводится для правильного включения их на работу в параллель.

Для работы в параллели нескольких трансформаторов нужны условия:

 

1. – групповое соединение обмоток трансформаторов включаемых в параллель обязано быть одинаковым;

2. –должно соблюдаться коэффициентное равенство трансформаций в линейных напряжениях при холостом ходу;

3. –обязательное равенство напряжения короткого замыкания.

Что же такое фазировка трансформатора это обследование совпадения фаз при вторичных напряжениях у 2 трансформаторов, подключаемых на параллельную работу.

Как выполняют фазировку трансформатора

Почти всегда фазировка воплощается в действие на минимальных напряжениях трансформаторов. На катушках обмоток с максимальным напряжением до 1000 вольт фазировку проводят специальным прибором (вольтметром) на соответственное напряжение. Для приобретения замкнутого электромагнитных контуров при проведении измерений, фазируемых обмоток надлежит, соблюдая предварительность объединить в единой точке, у обмоток с заземленной общей точкой подобной точкой выражается совмещение общих точек сквозь землю.

Для трансформаторов с изолированной общей точкой обмоток многофазных аппаратов перефазировкой объединяют произвольные два выхода обмоток, на которых проводится фазирование.

При фазировке трансформаторов с заземленными общими точками, предложены на рисунке а – измеряются напряжения между тремя выводами (а2, в2, с2) и выводом (а1) потом в промежуток с выводом (в1) и указанными выше тремя выводами, и последнее между точкой (с1) и всё теми же принятыми выше тремя выводами.

Схема фазировок трансформаторов для подключения их в параллельную работу

В случае фазировки трансформаторов без заземленной общей точки, рассмотрите рисунок б, ставят перемычку, соблюдая последовательность, в первую очередь в промежуток между выводами (а2 – а1) и вольтметром производят замеры напряжений между выводами каждой из пар(b2 – b1), (c2 – c1), следующим этапом перемычку устанавливают в промежуток выводов (b2 – b1) и производят замеры напряжений между (а2 – а1и с2 – с1), и в последнюю очередь устанавливаю перемычку соединяющую точки (с2 – с1) и опять производят замеры напряжений между (а2 – а1), (b2 – b1). Все замеры фиксируются в журнале для последующего анализа. Для включения трансформаторов в параллель соединяют те выводы, между которыми отсутствует напряжение.

Мы ремонтируем трансформаторы, выполняем техническое обслуживание — звоните!

Фазировка трансформаторов для включения их на параллельную работу

Разместить публикацию Мои публикации Написать
28 января 2012 в 10:00

Фазировка трансформаторов для включения их на параллельную работу

Фазировка трансформаторов проводится для включения их на параллельную работу.

Условия параллельной работы трансформаторов:

  1.  – группы соединений обмоток трансформаторов должны быть одинаковы;
  2.  – равенство коэффициентов трансформации линейных напряжений на холостом ходу;
  3.  – равенство напряжений короткого замыкания. Фазировка трансформаторов это проверка совпадения фаз вторичных напряжений у двух трансформаторов, включаемых на параллельную работу.

Как выполнить фазировку трансформаторов

Как правило фазировка выполняется на низшем напряжении трансформаторов. На обмотках напряжением до 1000 В фазировка проводится вольтметром на соответствующее напряжение.

Для получения замкнутого электрического контура при выполнении измерений, фазируемые обмотки следует предварительно соединить в одной точке, у обмоток с заземленной нейтралью такой точкой является соединение нейтралей через землю.

У обмоток с изолированной нейтралью перефазировкой соединяют любые два вывода фазируемых обмоток.

При фазировке трансформаторов с заземленными нейтралями, смотрите рисунок а – измеряют напряжение между выводом а1 и тремя выводами а2, в2, с2, затем между выводом в1 и этими же тремя выводами, и наконец между с1 и всё теми же тремя выводами.

Фазировка трансформаторов для включения их на параллельную работу

При фазировке трансформаторов без заземленных нейтралей, смотрите рисунок б, последовательно ставят перемычку сначала между выводами а2 – а1 и измеряют напряжение между выводами b2 – b1 и c2 – c1, затем ставят перемычку между выводами b2 – b1 и замеряют напряжение между выводами а2 – а1 и с2 – с1, и наконец ставят перемычку между выводами с2 – с1 и замеряют напряжение между выводами а2 – а1 и b2 – b1.

Для параллельной работы трансформаторов соединяются те выводы между которыми нет напряжения.

Фазировка трансформаторов для включения их на параллельную работу

6 февраля в 13:01 14

5 февраля в 22:07 21

5 февраля в 15:22 23

4 февраля в 22:30 35

4 февраля в 22:23 19

4 февраля в 18:50 22

3 февраля в 14:24 23

30 января в 20:30 48

30 января в 12:55 61

29 января в 11:46 30

4 июня 2012 в 11:00 88340

12 июля 2011 в 08:56 19929

14 ноября 2012 в 10:00 11050

25 декабря 2012 в 10:00 10114

28 ноября 2011 в 10:00 9908

21 июля 2011 в 10:00 9164

24 мая 2017 в 10:00 7955

29 февраля 2012 в 10:00 7912

16 августа 2012 в 16:00 7598

27 февраля 2013 в 10:00 7278

Условия параллельной работы трансформаторов – в каких случая допускается?

Условия параллельной работы трансформаторов – когда соединение образуют одноименные контакты ВН и НН, подключенные к одноименным проводам или сборным шинам электрической сети. Такая работа трансформатора отличается удобством и экономичным потреблением электроэнергии.

Можно использовать трансформатор с большой мощностью, которой будет достаточно для требуемой нагрузки электросети. В этом случае трансформатор должен быть включённым постоянно, но на максимальной нагрузке он будет работать лишь часть времени. При этом он будет потреблять определенную часть электроэнергии впустую. Именно по этой причине мощный трансформатор заменяется на два, но с меньшей мощностью.

В статье будут рассмотрены основные технические характеристики и правила параллельного подключения трансформаторов.  Также бонусом к статье будет подробный видеоролик о трансформаторах и учебный материал “Параллельная работа трехфазных трансформаторов”.

Условия параллельной работы

Условия параллельной работы трансформаторов.

Технические особенности

Параллельная работа нескольких трансформаторов имеет ряд следующих технических и экономических преимуществ по сравнению с работой одного мощного трансформатора:

  • надежность снабжения потребителей электроэнергией, так как выход из строя одного из трансформаторов не лишает потребителей энергии. Нагрузка выбывшего трансформатора может быть временно принята полностью или частично оставшимися трансформаторами;
  • резервная мощность трансформаторов при их параллельном включении будет значительно меньшей, чем при питании потребителей от одного мощного трансформатора;
  • в периоды снижения нагрузок (в течение суток или весеннего и летнего сезона) в энергетических системах — на повышающих, понижающих или на районных трансформаторных подстанциях — часть трансформаторов может быть отключена, что обеспечит более экономичный режим работы подстанции за счет уменьшения потерь холостого хода трансформаторов и их загрузки на максимальный к. п. д.;
  • постепенное развитие подстанций. При подключении новых потребителей электрической энергии увеличение трансформаторной мощности может быть выполнено дополнительным включением одного или нескольких трансформаторов на параллельную работу.

Это особенно необходимо на районных понижающих подстанциях, снабжающих энергией большие промышленные районы.

Необходимые условия для выполнения параллельной работы трансформаторов

Схема параллельного подключения трансформаторов.

Условия включения

Параллельная работа подразумевает обязательные и, несомненно, важные условия параллельной работы трансформаторов, всего существует 5 условий. Самое важное условие параллельной работы – сфазированность трансформаторов, в противном случае произойдет короткое замыкание.

Необходимые условия для выполнения параллельной работы трансформаторов

Фазировка обмоток.

Фазировка выполняется при помощи цепей вторичного напряжения. Фазировка трансформатора обуславливает согласование фаз всех рабочих элементов электрической цепи со стороны высокого и низкого напряжения. Напряжения на первичных и вторичных обмотках обоих трансформаторов должны иметь равное значение. Напряжение трансформаторов должно соответствовать классу изоляции.

Из этого следует, что коэффициенты трансформации (Ктр) также должны быть равными, их различие не должно быть выше +-0.5%.. разница Ктр или даже несовпадение состояния РПН или ПБВ соответствующего положения отпаек, способствует возникновению результирующего напряжения, которое появляется во вторичной обмотке.

Напряжения короткого замыкания обоих трансформаторов должны быть также равны, это требование вытекает из того, что чем выше напряжение к. з. тем выше значение сопротивления обмотки, а значит, трансформатор с малым значением напряжения (Uк.з.) будет работать с постоянным перегрузом из-за потребления высокой нагрузки, максимальная разница в отношении Uк.з не должна превышать 10%.

Здесь можно почитать об устройстве силового трансформатора и сфере его применения.

Группы соединений обмоток должны соответствовать друг другу и быть одинаковыми. Разные группы соединений влекут сдвиг фазы, что способствует возникновению уравнительных токов. Мощность обоих трансформаторов не должна быть различной более чем в 3 раза, если это условие не выдержано трансформатор с меньшей мощностью будет перегружен. Соблюдая условия включения трансформаторов на параллельную работу, достигается надежность и безопасность работы электроустановки.

Условия параллельной работы трансформаторов

Условия параллельной работы трансформаторов.

Как рассчитать мощность

Под нормальной параллельной работой трансформаторов понимают работу, при которой в режиме холостого хода нет тока в цепи вторичных обмоток, а при питании потребителей (в режиме нагрузки) токи распределяются пропорционально номинальным мощностям трансформаторов. В режиме холостого хода в цепи вторичных обмоток может быть так называемый уравнительный ток.

Необходимые условия для выполнения параллельной работы трансформаторов

Этот ток в цепи вторичных обмоток загружает трансформатор и вызывает неоправданный нагрев его обмоток и дополнительный расход энергии. В режиме нагрузки уравнительные токи накладываются на токи потребителей и создают неравномерную нагрузку трансформаторов.

Таким образом, первым необходимым условием нормальной параллельной работы трансформаторов является равенство номинальных вторичных напряжений. Из эквивалентной схемы параллельно работающих трансформаторов следует, что токи в двух параллельно включенных обмотках распределяются обратно пропорционально сопротивлениям короткого замыкания.

При соблюдении первых двух условий параллельной работы поменять местами концы одной из обмоток трансформатора, то в контуре вторичных обмоток ЭДС и будут направлены не встречно, а согласно, что равносильно короткому замыканию трансформатора. Для трехфазных трансформаторов также требуется идентичность групп соединения.

Необходимые условия для выполнения параллельной работы трансформаторов

Если это условие не выполнено, ЭДС и соответствующей пары обмоток не совпадают по фазе и в результате появляется уравнительный ток, который может значительно превысить номинальное значение тока и даже быть близким к току короткого замыкания.

Интересный материал в тему: как собрать повышающий трансформатор самостоятельно.

Например, при соединении групп и угол сдвига фаз между одноименными ЭДС (напряжениями) составит 30° и, как показывают расчеты, уравнительный ток будет в 5 раз больше номинального. Следовательно, третьим условием нормальной параллельной работы трансформаторов является идентичность групп соединения обмоток.

Параллельная работа

Условия включения. При параллельной работе первичные обмотки трансформаторов присоединены к общим шинам питающей сети, вторичные — к общим шинам потребителя (рис. 3.22, а). Мощность всех параллельно работающих трансформаторов равна сумме их мощностей.

Необходимые условия для выполнения параллельной работы трансформаторов

При включении на параллельную работу пользуются условным понятием начала и конца обмоток. На рис. 3.23 схематично изображена часть стержня магнитопровода, на который намотаны первичная и вторичная обмотки трансформатора. При изменении потока взаимоиндукции (например, при увеличении) в них индуктируются ЭДС. 

Если обмотки намотаны в одну сторону и имеют одинаковую маркировку, значит векторы ЭДС будут направлены в одну сторону. Если в одной из обмоток начало и конец поменять местами, вектор изменит направление на обратное, хотя физическая картина осталась такой же. Аналогичный сдвиг фазы ЭДС на векторной диаграмме можно получить изменяя направление намотки витков.

Необходимые условия для выполнения параллельной работы трансформаторов

Параллельное подключение трансформаторов.

Для того чтобы охарактеризовать сдвиг фаз линейных э. д. с. первичной и вторичной обмоток с учетом обозначения зажимов, вводится понятие группы соединения трансформатора. В однофазном, трансформаторе может быть две группы соединения, в трехфазном — двенадцать.

При обозначении группы соединений пользуются аналогией с часовым циферблатом. При этом вектор линейной э. д. с. первичной обмотки мысленно совмещают с минутной стрелкой часов, расположенной на цифре 12, а с направлением вектора вторичной линейной э. д. с. совмещают часовую стрелку. Цифра, на которой она расположена, определяет группу соединения трансформатора.

Угловое расстояние между двумя соседними цифрами циферблата составляет 30°. Поэтому для определения угла сдвига линейных э. д. с. обмоток следует умножить номер группы на 30°. Например, число 6 обозначает, что сдвиг между линейными э. д. с. обмоток составляет 180° = 6×30°. Меняя маркировку выводов, можно изменить группу соединения трансформатора.

При нормальной параллельной работе между трансформаторами не должны проходить уравнительные токи. Уравнительные токи отсутствуют, если первичные э. д. с. всех трансформаторов одинаковы и вторичные э. д. с. также одинаковы и находятся в фазе. Это достигается при соблюдении следующих условий: равенство коэффициентов трансформации; равенство напряжений короткого замыкания; принадлежность трансформаторов к одной группе.

Стандарт допускает параллельную работу трансформаторов при условии, что коэффициенты трансформации отклоняются не более, чем на 0,5% от среднего арифметического значения, и напряжения короткого замыкания отклоняются не более чем на 10% от среднего арифметического значения. Перед включением на параллельную работу необходимо опытным путем проверить соблюдение первого и третьего условий. При их соблюдении напряжение между зажимами разомкнутого рубильника (см. рис 2.22, а) равно нулю.

Равенство групп соединения обмоток

Существует несколько групп соединений обмоток трансформатора. Каждая группа отличается своим углом сдвига фаз первичного и вторичного напряжений. Поэтому если включить два трансформатора с разными группами соединения обмоток на параллельную работу, то это приведет к возникновению больших уравнительных токов в обмотках, которые приведут к выходу из строя трансформаторы. Поэтому важным условием включения трансформаторов на параллельную работу является равенство их групп соединений обмоток.

Проверка схем и групп соединения обмоток

На практике проверку схем и групп соединения обмоток трехфазных трансформаторов выполняют по методу двух вольтметров, который основан на измерении напряжений между соответствующими выводами обмоток трансформатора с последующим их сравнением с расчетными значениями. Измеренные напряжения должны быть равны расчетным для заданной группы соединений.

 

Необходимые условия для выполнения параллельной работы трансформаторов

Схема параллельного подключения трансформаторов

 

Чтобы исключить ошибки при параллельном включении трансформаторов, стандартами установлено для каждого трансформатора определенной мощности и напряжения обмотки ВН определенное значение напряжения короткого замыкания. Так, ГОСТ 12022—76 для трансформаторов мощностью 400 кВА и напряжением 10 кВ установил uк равным 4,5%, а напряжением 35 кВ — 6,5%.

Интересный материал для прочтения: факты о понижающих трансформаторах.

ГОСТ 11920—73 для трансформаторов мощностью 2500 кВА и напряжением 10 кВ установил uк равным 5,5%, а напряжением 35 кВ – 6,5%. Однако при практическом исполнении трансформаторов всегда возможны некоторые отступления в размерах обмоток или каналов между ними, что, как известно, влияет на величину uк. Поэтому ГОСТ 11677—75 разрешает включать на параллельную работу трансформаторы с некоторым отступлением от номинальных значений uк (в пределах ±10%). Третье условие параллельной работы заключается в том, чтобы все предназначенные для нее трансформаторы имели одинаковые группы соединения.

Необходимые условия для выполнения параллельной работы трансформаторов

Определение напряжения между обмотками.

Другими словами, необходимо при равенстве напряжений ВН иметь еще и одинаковые углы между векторами линейных напряжений обмоток ВН и НН. Чтобы убедиться в необходимости одинаковых групп соединения, рассмотрим простой пример. Пусть два трансформатора имеют схемы и группы соединения Y/Δ — 11 и Y/Δ — 1.

На рисунке показаны совмещенные векторы линейных напряжений обмоток ВН и НН первого и второго трансформаторов. Если первичные напряжения (ВН) у них одинаковы, то при параллельном соединении между вторичными напряжениями a1b1 и a2b2 появится сдвиг 60°. Вследствие этого получится геометрическая разность напряжений a1b1 и a2b2, показанная на рисунке отрезком b1b2. Треугольник a1b1b2 равносторонний, поэтому отрезок b1b= a2b1 = a2b2, т. е. равен по величине линейному напряжению обмотки НН.

Номинальная мощность трансформаторов

Условие, необходимое для возможности включения трансформаторов на параллельную работу – соотношение их номинальной мощности не более 1 к 3. Например, если номинальная мощность одного силового трансформатора 1000 кВА, то он может быть включен на параллельную работу с другим трансформатором, мощностью от 400 кВА до 2500 кВА – все величины из данного диапазона мощности в соотношении с мощностью 1000 кВА не более 1 к 3.

Необходимые условия для выполнения параллельной работы трансформаторов

Параллельная работа трансформаторов, принадлежащих к разным группам соединения, невозможна, так как между их обмотками проходит недопустимо большой уравнительный ток.

Коэффициент трансформации

Определение коэффициентов трансформации трансформатора

Определение коэффициентов трансформации.

Равенство номинальных напряжений обмоток подключаемых на совместную работу трансформаторов обязательно для параллельной работы. Если напряжение на вторичных обмотках трансформаторов будет отличаться.

Это приведет к возникновению уравнительных токов, которые в свою очередь приводят к падениям напряжения и нежелательным потерям. Допускается незначительное отклонение напряжений – разница коэффициентов трансформации в пределах до 0,5%.

На трансформаторах, где предусмотрена возможность регулировки коэффициента трансформации путем увеличения или уменьшения количества витков обмотки, нужно учитывать положение переключающих устройств – ПБВ или РПН.

При необходимости посредством применения данных устройств можно откорректировать напряжение на трансформаторе до требуемых значений, после чего можно соединять вторичные обмотки – включать трансформаторы на параллельную работу.

В данной статье были рассмотрены основные факты о параллельной работе трансформаторов. Больше по этой теме можно узнать из учебного материала Параллельная работа трехфазных трансформаторов.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.forca.com

www.silovoytransformator.ru

www.zei.narod.ru

www.enargys.ru

www.electrono.ru

www.servomotors.ru

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *