Site Loader

Содержание

ESR (ЭПС)-метр своими руками | Каталог самоделок

Неисправность электролитических конденсаторов чаще всего является причиной дефектов в радиоэлектронных аппаратах. При этом ёмкостный показатель неисправного конденсатора может совсем немного отличаться от его нормального значения, а ЭПС быть больше. Поэтому зачастую найти поломку в электролитическом конденсаторе с помощью измерителя ёмкости бывает крайне сложно.

В связи с этим именно увеличенный показатель ЭПС является единственным признаком ненормальной работы конденсатора в радиоаппаратуре.

В поиске увеличенного значения ЭПС может помочь специальный прибор, который называется ЭПС-метр. Его можно сделать самостоятельно.

Этот прибор измеряет сопротивление, которое выдаёт конденсатор при частоте в 100 кГц.

Плюсом этого прибора является то, что он не требует абсолютной точности в измерениях, ведь показатель ЭПС дефектного конденсатора обычно в разы превышает установленную норму.

Конструирование ЭПС-метра должно начинаться с составления схемотехнического рисунка в системе LTspice. В итоге должен получиться график, демонстрирующий отклонение стрелки амперметра в зависимости от показателя ЭПС.

По результатам схемотехнического рисунка, который был составлен ранее, можно спроектировать схему в программе OrCAD.

Известно, что в приборе установлено 9-вольтовое питание и регулятор напряжения, за основу которого берётся схема LM 7805. Также для прибора нужны транзисторные приёмники, которые можно выбрать на своё усмотрение, но всё же лучше подойдут 2N3904 (n-p-n) и 2N3906 (p-n-p). Ещё в приборе применимы диоды 1N5711 и измерительная головка с силой тока в 50 мкА.

Небольшое напряжение в конденсаторе, позволяет использовать устройство без его снятия.

В итоге получается разводка односторонней платы без перемычек. Для платы использовались чип-компоненты и проделывались отверстия для крепления деталей, которые позже нужно припаять.

Плата изготавливается с помощью фоторезистора, ЛУТ или ЧПУ.

Для создания шкалы прибора, необходимо произвести практические замеры, которые позже переносится в программу и распечатывается. После этого можно производить сборку всех компонентов.

В заключении, стоит заметить, что перед тем, как измерять показатель ЭПС с помощью самодельного прибора, его необходимо полностью разрядить.

 

Автор: Орлов Александр, Москва.

 


ИЗМЕРИТЕЛЬ ESR

ИЗМЕРИТЕЛЬ ESR

   Для проверки конденсаторов, решил собрать так называемый «измеритель ESR”. Ведь с испытанием диодов и резисторов проблем не возникает, а вот с конденсаторами сложнее. Как известно, ESR – это сокращение от Equivalent Serial Resistance, — означает «эквивалентное последовательное сопротивление”. Объясним проще. В упрощенном виде электролитический конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного электролитом (отсюда и название электролитический). Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности. К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость. 

   В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками. Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, который находится в самом конденсаторе. Зарядные и разрядные токи вызывают нагрев этого «резистора”, что еще больше усиливает разрушительный процесс. Другая причина выхода из строя электролитического конденсатора – это «высыхание”, когда из-за плохой герметизации происходит испарение электролита. В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается. Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением десяток Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения). Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до пары Ом) на работе импульсных блоков питания. 

   Принцип работы данного измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. 

   Как известно,

Xс=1/2πfC, где 

Xс – емкостное сопротивление, Ом;
f – частота, Герц;
С – емкость, Фарад.

   Например, конденсатор емкостью 10 мкФ на частоте 100 кГц будет иметь емкостное сопротивление 0,16 Ом, 100 мкФ – 0,016 Ом и т.д. В реальном конденсаторе это значение будет несколько выше из-за наличия паразитной индуктивности, но тут особая точность измерений не нужна. Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (то есть ESR) задают именно на этой частоте. Схема измерителя ESR.

   На микросхеме DD1 собран генератор прямоугольных импульсов (элементы D1.1, D1.2), буферный усилитель (элементы D1.3, D1.4) и усилительный каскад на транзисторах. Частота генерации определяется элементами С1 и R1 и равна 100 кГц. Прямоугольные импульсы через разделительный конденсатор С2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде включен микроамперметр, по шкале которого отсчитывают значение ESR. Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению «бесконечность” измеряемого ESR. Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю. При наличии же в измеряемом конденсаторе дефекта, в нем повышается значение ESR. Часть переменного тока потечет через обмотку, и стрелка будет все меньше отклоняться от значения «бесконечность”. Чем больше ESR, тем больший ток протекает через обмотку и меньший через конденсатор, и тем ближе к положению «бесконечность” находится стрелка.

   Трансформатор наматывают на ферритовом кольце с внешним диаметром 10…15 мм. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,5 мм, вторичная – 200 витков ПЭВ-2 диаметром 0,1 мм. Диод обязательно должен быть германиевым, например Д9, Д310, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5…0,7 В), что приведет к сильной нелинейности шкалы измерителя в области измерения малых сопротивлений. Градуируют измеритель ESR с помощью нескольких резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании. Поэтому провода, идущие к щупам, должны быть по возможности короткими. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом. Затем подключают резисторы на 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, но уже не долго:)

   В качестве корпуса для карманного измерителя ESR был использован нерабочий стрелочный тестер, купленный 5 лет назад за доллар. Благодаря удобной большой шкале, щупам и батареечному отсеку на две пальчиковые батарейки, он идеально подошёл для заданных целей.

   Форум по измерительным приборам

Прибор для измерения esr своими руками. ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание. Схема электрическая esr измерителя конденсаторов

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель — тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR — mikro». Остановило то, что уж больно здорово хвалили — «через край». В общем, решился на самостоятельные действия. Так как на замахиваться не хотелось — выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось — не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» — со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества — пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой — далеко не миниатюрный.

Обратная сторона — плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал — способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления — резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем — соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее — враг хорошего» трогать его не позволил — сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении . Про свои хлопоты и радости поведал Babay .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Выполненный по приведённой ниже схеме, как измерительную приставку к мультиметру. С обязанностями своими справляется на «ура», доволен им, за исключением как бы незначительного момента — для его использования необходим мультиметр, который нужно достать с полки, убрать щупы, выставить предел измерения, подсоединить пробник… и читать-то эти подробности муторно, а каждый раз это делать? А если нужно проверить конденсаторы, стоящие на плате ремонтируемого электронного устройства, да вдобавок плата не маленького размера, тогда вообще получается вместо любимого «хобби» сплошная суета с примесью досады. Вот и решил собрать мобильный вариант пробника с собственным индикатором для дефектовки электролитических конденсаторов. Отличие этой схемы от схемы приставки в том, что результаты измерения выводятся не на жидкокристаллический дисплей мультиметра а на стрелочный индикатор от магнитофона. Для того чтобы индикатор функционировал в схему введён трансформатор на ферритовом кольце (взят от энергосберегающей лампочки, это важно). Первичная обмотка выполнена проводом диаметром 0,1 мм — 150 витков, вторичная проводом диаметром 0,5 мм — 8 витков (количество витков подбирается, 1 = 100 — 200, 2 = 5 — 10). Изменён номинал резистора R2 cо 100 Ом до 10 кОм. Напряжение питания снижено с 9 до 5 вольт (U питания микросхемы К561ЛН2 от 5 до 15 вольт).

Схема

Основным несущим компонентом для монтажа всего и получения, в конечном счете, желаемого выбрал прочный пластмассовый пинцет, входящий в набор устройства для производства оттиска печати на документах (наборная печать). К нему, при помощи металлической пластины, прикрепил М4762 предназначенный для работы в вертикальном положении шкалы, с током отклонения 220 — 270 мкА, внутренним сопротивлением 2800 Ом, с габаритными размерами 49 х 45 х 32 мм и длиной шкалы — 34 мм. Так же установил на него щупы — контакты и разъём питания.

Шкалу индикатора заменил. Символ бесконечности придаёт ей несколько вызывающий вид, но по сути всё верно, тут важно через увиденное понять, что у измеряемого конденсатора нет превышения допускаемого эквивалентного последовательного сопротивления (ESR), а всё что свыше того (до бесконечности) к эксплуатации не пригодно. Градуировка новой шкалы полностью соответствует задачам дефектовки. В дальнейшем предполагается отклонение стрелки измерительного прибора выставлять, при помощи подстроечного резистора, на конечное деление шкалы, которое будет соответствовать определённому значению ESR. Можно установить полное отклонение стрелки при 1 Ом, а можно и при 10 Ом и т.д. (как будет желаемо).

Печатная плата была разведена только под часть электронных компонентов, остальные (в данном конкретном случае) гораздо удобней разместить навесным способом. И в первую очередь это касается подстроечного резистора который будет размещён снаружи корпуса. Доступность регулировки позволит при необходимости в любой момент перенастроить значение ESR относительно полного отклонения стрелки на шкале индикатора.

По готовности печатной платы и трансформатора была произведена предварительная сборка и опробована работоспособность пробника. Подключённый резистор сопротивлением в 10 Ом удачно вписался в показания стрелки, она отклонилась почти на всю шкалу, что означило максимально возможный для визуального восприятия ESR и будет в данном случае равен 10 Ом.

Конденсатор и два диода были смонтированы навесным способом монтажа на контактах индикатора, всё остальное (за исключением подстроечного резистора) установлено на плату.

После окончательного, чистового соединения всех узлов ещё раз проверил работоспособность — без замечаний. Трансформатор приклеен к плате клеем «Мастер».

Печатная плата помещена в металлический корпус, в качестве которого использована часть пришедшего в негодность печатного вала катриджа принтера. Корпус одет на цилиндрическую часть (выступ) индикатора. Заглушкой для торцевой части послужила подходящая пластиковая пробочка. На ней установлен подстроечный резистор, а лучше поставить маленький переменник (буду менять). Габаритные размеры пробника, как видно на фото, сопоставимы со спичечным коробком, изначально задуманный мобильный с возможностью все доступности вариант думаю удался.

После полуминутной настройки стрелка занимает следующие положения на шкале индикатора: при накоротко замкнутых контактах.

При подключении резистора номиналом 0,1 Ом.

При подключении резистора номиналом 1 Ом, а при 2,5 Ом стрелка встаёт перед последним делением.

Результат проведённой дефектовки припасённых к этому случаю электролитических конденсаторов б/у.

Как это происходило — индикатор в работе.

Видео

Пока питание на пробник подаю с лабораторного БП, но это не то. Нужен индивидуальный компактный хорошо стабилизированный источник питания на 5 вольт. В заключении хочу поблагодарить любителя электроники с просторов интернета Olegm Wolf за помощь в доработке схемы. С уважением, Babay .

Обсудить статью ESR ТЕСТЕР

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока , то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P=I 2 xR

где

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло;-) И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром :


Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к . С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:


Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.

Для того, чтобы не травить лишний раз платку, я взял и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.


С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ


Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как М онтажный, Г ибкий, Т еплостойкий, в Ф торопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:


Микросхемы по привычке всегда ставлю в панельки:


При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:


Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:


Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп :


Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:


Провода, идущие к пинцету, закреплены каплей термоклея . Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф , замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:


Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора





Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (Н изкоЧ астотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

ESR метр своими руками . Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический . Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность , приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать .

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на , которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

Начало

Да, эта тема многократно обсуждалась, в том числе и здесь. Я собрал два варианта схемы Ludens и они очень хорошо себя зарекомендовали, тем не менее, у всех предлагаемых ранее вариантов есть недостатки. Шкалы приборов со стрелочными индикаторами очень нелинейны и требуют для калибровки много низкоомных резисторов, эти шкалы надо рисовать и вставлять в головки. Приборные головки велики и тяжелы, хрупки, а корпуса малогабаритных пластмассовых индикаторов обычно запаяны и они часто имеют мелкую шкалу. Слабым местом почти всех предыдущих конструкций является их низкая разрешающая способность. А для конденсаторов LowESR как раз надо измерять сотые доли Ома в диапазоне от нуля до половины Ома. Предлагались также приборы на основе микроконтроллеров с цифровой шкалой, но не всякий занимается микроконтроллерами и их прошивками, устройство получается неоправданно сложным и относительно дорогим. Поэтому в журнале «Радио» сделали разумную рациональную схему — цифровой тестер есть у любого радиолюбителя, да и стоит он копейки.

Я внес минимальные изменения. Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N , транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 — перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens .
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

Файлы

Печатная плата:
▼ 🕗 25/09/11 ⚖️ 14,22 Kb ⇣ 669 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!

Простые схемы измерителей esr оксидных конденсаторов

Теория

Итак, обо всем по порядку.

Для начала позвольте немного теории, чтобы полнее представлять суть проблемы. ESR — это аббревиатура от английских слов Equivalent Serial Resistance, в переводе означает «эквивалентное последовательное сопротивление».

В упрощенном виде электролитический (оксидный) конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного специальным составом — электролитом.

Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности.

К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют большую емкость.

В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками.

Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, причем последний находится в самом конденсаторе.

Зарядные и разрядные токи вызывают нагрев этого «резистора», что еще больше усугубляет разрушительный процесс. Другая причина выхода из строя электролитического конденсатора — это известное радиолюбителям «высыхание», когда из-за плохой герметизации происходит испарение электролита.

В этом случае возрастает реактивное емкостное (Хс) сопротивление конденсатора, так как емкость последнего уменьшается.

Наличие последовательного сопротивления негативно сказывается на работе устройства, нарушая логику работы конденсатора в схеме. (Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением 10…20 Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения.).

Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до 3…5 Ом) на работе импульсных блоков питания, выводя из строя более дорогостоящие транзисторы или микросхемы.

Принцип работы описываемых измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. Из курса радиотехники известна формула:

где Хс — емкостное сопротивление, Ом; f -частота, Гц; С — емкость, Ф. Например, конденсатор емкостью 10 мкФ на частоте 100 кГц будет иметь емкостное сопротивление 0,16 Ом, 100 мкФ — 0,016 Ом и т.д. В реальном конденсаторе это значение будет несколько выше из-за наличия паразитной индуктивности (сопротивления потерь), однако для наших целей особая точность измерений не нужна.

Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (т.е. ESR) задают именно на этой частоте.

Следует отметить, что формула (1) справедлива для переменного тока синусоидальной формы, описываемые же измерители работают с генераторами прямоугольных импульсов. Но, как было замечено выше, нам нужно не точность измерений, а возможность различать конденсаторы с ESR, например, 0,5 и 5 Ом.

Что такое ESR

Электролитические конденсаторы имеют ряд параметров, важных для их правильной работы в схеме устройства. Это и его ёмкость, и сопротивление диэлектрика между выводами и корпусом, и собственная индуктивность, эквивалентное последовательное сопротивление или, на американский манер, Equivalent Series Resistance. ESR — это сопротивление обкладок конденсатора и его ножек, которыми он припаивается к плате, выводов.

Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей — ёмкости и поддерживаемого напряжения.

Схема ESR метра

   А печатную плату доделал по-хитрому. Стала она «двухсторонней» — со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества — пробник нужен.

   Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.

   Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал — способны на контакт с электролитическим конденсатором любого размера.

   Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

   И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

   А 10 Ом соответствует 49 мВ.

   Исправный конденсатор, соответствует примерно 0,1 Ом.

   Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

   А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее — враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.

   Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Порядок калибровки прибора

После монтажа устройства на плате и первичных тестов, его необходимо откалибровать. Для этого понадобится осциллограф и набор резисторов для подстройки номиналом от 1 до 80 Ом. Порядок калибровки:

  1. Измеряем осциллографом частоту на щупах. Она должна быть в пределах 120—180 кГц. При более низкой или более высокой частоте она корректируется подбором резистора из набора.
  2. Подсоединяем мультиметр к щупам, выбираем режим измерения в милливольтах.
  3. Резистор в 1 Ом подключаем к щупам. С помощью подстроечного резистора в схеме выставляем на мультиметре значение напряжения в 1 милливольт.
  4. Подключаем следующий по номиналу резистор, не меняя значение, и записываем показания мультиметра. Повторяем со всем набором и составляем табличку.

После калибровки прибором можно пользоваться. Он поможет в обнаружении неисправностей, связанных с реактивным сопротивлением. Их невозможно диагностировать другим способом.

https://youtube.com/watch?v=lhLTf571GK4

Как сделать ESR-метр конденсаторов своими руками

При ремонте техники специалисты-радиомеханики сталкиваются с различными проблемами — повреждённые дорожки на платах, окисление, выгоревшие элементы, вздувшиеся конденсаторы. Эти неисправности прекрасно видны при первичном осмотре аппаратуры и устранить их с помощью самых базовых инструментов любого инженера не составляет труда. Но есть случаи, в которых визуального осмотра недостаточно.

Конденсаторы бывают разной ёмкости, как очень большой (4000, 10000 мкФ), так и очень малой (0,33 мкФ, например, такие детали активно используются при сборке комплектующих различной оргтехники). И если вздутие верхней крышки первых отлично заметно из-за их размеров, то со вторыми выявление их неисправности может доставить немало проблем.

В этом поможет простой прибор для проверки конденсаторов — ESR-метр. Своими руками его изготовить несложно, имея достаточные познания в схемотехнике. Он может быть как самостоятельным устройством, так и выполнен в виде приставки к цифровому мультиметру. С его помощью можно легко установить такие неисправности, как пробой и высыхание.

Основные элементы устройства

В основе схемы ESR-метра лежит микросхема генератора импульсов типа К561ЛН2, работающая на частоте до 120 кГц. Для дополнительного удобства саму микросхему можно не впаивать напрямую в плату, а использовать специальную панель с необходимым количеством ножек. Это позволит оперативно сменить вышедшую из строя деталь и заменить её без дополнительных операций с паяльником и отсосом припоя. В качестве аналога этого генератора можно использовать похожий по характеристикам К1561ЛН2.

Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.

В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.

Сборку тестера конденсаторов можно производить как на макетной плате размером примерно 4 на 6 сантиметров, так и на специальных печатных платах. Второй вариант получится немного дороже, но его преимуществом является наличие на плате обозначений всех нужных элементов и дорожек, их соединяющих.

Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.

При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.

В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.

Возможные недостатки и замечания по работе этого устройства:

  1. При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
  2. Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.

Первый и второй недостатки имеют общее решение — достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Оригинальная статья в журнале «Радио» № 8 за 2011 год: ▼ radio-8-2011-esr-meter.7z 13/08/16 ️ 1,09 Mb ⇣ 55

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Выполнение измерения емкости

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

Высокоточное измерение

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Существуют специальные измерители емкости.

Аналоговое устройство

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Измеритель емкости

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Протечка электролита

Примеры проблем, связанных с ESR

Конденсаторы используются практически повсюду. Ни одна схема устройства, обладающего хоть минимальной сложностью, не обходится без них.

В персональных компьютерах они встречаются в блоках питания, мониторах, около важных узлов материнских плат — сетевых и звуковых микросхем, в системе питания процессора, южного и северного мостов, оперативной памяти.

В акустических системах и сетевом оборудовании (роутерах, коммутаторах, например) они встречаются около усилителей и LAN-портов. Все они обеспечивают стабильное питание этих элементов, а малейшие проблемы с питанием, как известно, могут привести как к проблемам в работе — зависаниям, торможению, так и к банальному отказу работать.

Высохшие и пробитые конденсаторы невозможно обнаружить простым осмотром, поэтому именно измеритель ESR, может установить причину неисправности. Для этого детали, на которые пало подозрение, выпаиваются с платы и проверяются прибором. Проверять их без выпаивания не рекомендуется — показатели в этом случае могут быть слишком неточными. Если показатель сопротивления слишком высок, компонент должен быть заменён аналогом с наиболее низким ESR.

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Как сделать ESR метр своими руками

Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.

Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.

Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.

Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.

Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.

Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.

Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.

Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.

Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.

Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом

На изображении показана плата, на которую уже напаяны компоненты:

Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.

Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.

А вот и готовый прибор:

Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.

Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.

Что такое ESR

Электролитические конденсаторы имеют ряд параметров, важных для их правильной работы в схеме устройства. Это и его ёмкость, и сопротивление диэлектрика между выводами и корпусом, и собственная индуктивность, эквивалентное последовательное сопротивление или, на американский манер, Equivalent Series Resistance. ESR — это сопротивление обкладок конденсатора и его ножек, которыми он припаивается к плате, выводов.

Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей — ёмкости и поддерживаемого напряжения.

Оцените статью:

ESR метр своими руками — схема и печатная плата

Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.

Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.

Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.

Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.

Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.

Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.

Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.

Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.

Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.

Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом

На изображении показана плата, на которую уже напаяны компоненты:

Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.

Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.

А вот и готовый прибор:

Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.

Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.

Измеритель esr электролитических конденсаторов своими руками

В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.

Не буду перечислять все дестабилизирующие факторы в работе этих трудяг, (об этом сейчас разве что только на заборах не пишут), рассмотрим лучше вкратце один из параметров – ESR и конструкции нескольких простых приборов для оценки качества электролитических конденсаторов, которые были мною успешно повторены, кое чего изменено, но главное, и самое ценное, это конечно полученный опыт, которым я и собираюсь в данной статье поделиться с вами. Статья написана для начинающих, поэтому и изложение будет простым, совсем без формул.

Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.

Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» – так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html

Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.

Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.

Мой первый пробник ЕПС, исправно работающий по сегодняшний день.

Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:

Были произведены следующие изменения:

1. Питание от литиевого аккумулятора мобильника
2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.

В общем получился такой вот девайс:

После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички :).

Для большей универсализации, мною были добавлены дополнительный функции:

1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
2. подсветка места касания щупами конденсаторов
3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях .

А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.

Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:

Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:

Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.

Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)

Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:

Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».

Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.

Корпус приспособил от маркера

Печатку выцарапал скальпелем, щупы-контакты от реле мку48.

Трансформатор намотал на кольце от КЛЛ, остальное собрал на макетке.

В корпусе платку приклеил дусторонним скотчем.

Частота генератора АЦП немного низковата, поэтому, путем уменьшения емкости из 100 до 33 пикофарад удалось довести до примерно 40-45 килогерц, это уже более менее приемлемо.

Отсюда берем прямоугольные импульсы. Конденсатор под белым проводником меняем на меньшего значения, в пределах 30-40 пик номинал не критичен

При ремонте техники специалисты-радиомеханики сталкиваются с различными проблемами — повреждённые дорожки на платах, окисление, выгоревшие элементы, вздувшиеся конденсаторы. Эти неисправности прекрасно видны при первичном осмотре аппаратуры и устранить их с помощью самых базовых инструментов любого инженера не составляет труда. Но есть случаи, в которых визуального осмотра недостаточно.

Конденсаторы бывают разной ёмкости, как очень большой (4000, 10000 мкФ), так и очень малой (0,33 мкФ, например, такие детали активно используются при сборке комплектующих различной оргтехники). И если вздутие верхней крышки первых отлично заметно из-за их размеров, то со вторыми выявление их неисправности может доставить немало проблем.

В этом поможет простой прибор для проверки конденсаторов — ESR-метр. Своими руками его изготовить несложно, имея достаточные познания в схемотехнике. Он может быть как самостоятельным устройством, так и выполнен в виде приставки к цифровому мультиметру. С его помощью можно легко установить такие неисправности, как пробой и высыхание.

Что такое ESR

Электролитические конденсаторы имеют ряд параметров, важных для их правильной работы в схеме устройства. Это и его ёмкость, и сопротивление диэлектрика между выводами и корпусом, и собственная индуктивность, эквивалентное последовательное сопротивление или, на американский манер, Equivalent Series Resistance. ESR — это сопротивление обкладок конденсатора и его ножек, которыми он припаивается к плате, выводов.

Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей — ёмкости и поддерживаемого напряжения.

Примеры проблем, связанных с ESR

Конденсаторы используются практически повсюду. Ни одна схема устройства, обладающего хоть минимальной сложностью, не обходится без них.

В персональных компьютерах они встречаются в блоках питания, мониторах, около важных узлов материнских плат — сетевых и звуковых микросхем, в системе питания процессора, южного и северного мостов, оперативной памяти.

В акустических системах и сетевом оборудовании (роутерах, коммутаторах, например) они встречаются около усилителей и LAN-портов. Все они обеспечивают стабильное питание этих элементов, а малейшие проблемы с питанием, как известно, могут привести как к проблемам в работе — зависаниям, торможению, так и к банальному отказу работать.

Высохшие и пробитые конденсаторы невозможно обнаружить простым осмотром, поэтому именно измеритель ESR, может установить причину неисправности. Для этого детали, на которые пало подозрение, выпаиваются с платы и проверяются прибором. Проверять их без выпаивания не рекомендуется — показатели в этом случае могут быть слишком неточными. Если показатель сопротивления слишком высок, компонент должен быть заменён аналогом с наиболее низким ESR.

Основные элементы устройства

В основе схемы ESR-метра лежит микросхема генератора импульсов типа К561ЛН2, работающая на частоте до 120 кГц. Для дополнительного удобства саму микросхему можно не впаивать напрямую в плату, а использовать специальную панель с необходимым количеством ножек. Это позволит оперативно сменить вышедшую из строя деталь и заменить её без дополнительных операций с паяльником и отсосом припоя. В качестве аналога этого генератора можно использовать похожий по характеристикам К1561ЛН2.

Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.

В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.

Сборку тестера конденсаторов можно производить как на макетной плате размером примерно 4 на 6 сантиметров, так и на специальных печатных платах. Второй вариант получится немного дороже, но его преимуществом является наличие на плате обозначений всех нужных элементов и дорожек, их соединяющих.

Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.

При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.

В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.

Возможные недостатки и замечания по работе этого устройства:

  1. При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
  2. Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.

Первый и второй недостатки имеют общее решение — достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.

Порядок калибровки прибора

После монтажа устройства на плате и первичных тестов, его необходимо откалибровать. Для этого понадобится осциллограф и набор резисторов для подстройки номиналом от 1 до 80 Ом. Порядок калибровки:

  1. Измеряем осциллографом частоту на щупах. Она должна быть в пределах 120—180 кГц. При более низкой или более высокой частоте она корректируется подбором резистора из набора.
  2. Подсоединяем мультиметр к щупам, выбираем режим измерения в милливольтах.
  3. Резистор в 1 Ом подключаем к щупам. С помощью подстроечного резистора в схеме выставляем на мультиметре значение напряжения в 1 милливольт.
  4. Подключаем следующий по номиналу резистор, не меняя значение, и записываем показания мультиметра. Повторяем со всем набором и составляем табличку.

После калибровки прибором можно пользоваться. Он поможет в обнаружении неисправностей, связанных с реактивным сопротивлением. Их невозможно диагностировать другим способом.

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель – тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR – mikro». Остановило то, что уж больно здорово хвалили – «через край». В общем, решился на самостоятельные действия. Так как на микроконтроллерные устройства замахиваться не хотелось – выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось – не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» – со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества – пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.

Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал – способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее – враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Прибор для проверки эквивалентного последовательного сопротивления (ЭПС) электролитических конденсаторов

Добавил: Chip,Дата: 04 Апр 2018

Прибор для проверки эквивалентного последовательного сопротивления (ЭПС) электролитических конденсаторов

При ремонте аппаратуры часто появляется необходимость в проверке электролитических конденсаторов. Они наиболее частые виновники поломок.

Состояние конденсаторов часто видно визуально: они вздутые, подтёкшие. Но иногда казалось бы на вид хороший конденсатор при проверке оказывается неисправным.

Эту задачу поможет решить прибор для проверки ESR или эквивалентного последовательного сопротивления (ЭПС) .

Ранее была опубликована схема простого прибора для проверки ЭПС на микросхеме К561ЛА7.

Сегодня рассмотрим схему измерения ESR на транзисторах.

Принципиальная схема прибора

Внешний вид платы прибора

Эскиз печатной платы

Внешний вид собранного прибора

Таблица эквивалентного последовательного сопротивления оксидных конденсаторов

Этот тестер можно использовать как для проверки конденсаторов выпаеных, так и для проверки «в цепи», без потребности выпаивать каждый конденсатор из платы.



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:
  • Новый способ изготовления печатных плат с помощью инструментальной головки
  • Инструментальная головка и способ изготовления печатных  плат, реализуемый посредством головки

    «Инструментальная головка» рассчитана для электронщиков-разработчиков и для радиолюбителей-самодельщиков всех стран. Посредством «головки»  разработчики и самодельщики смогут на разрабатываемых или на самодельных печатных платах  выполнять токопроводящий рисунок проволокой из любого металла и сплава,  делать электропереходы в двухсторонних платах, выполнять платы на любой подложке, например, на подложке сворачиваемой или складываемой и условно целой с длиной до метров.

    Подробнее…

  • Гидравлический электроклапан своими руками
  • Переделка клапана от стиральной машины на питание напряжением 12 вольт постоянного тока

    Для автоматического управления различными гидравлическими системами необходимы электрические клапаны. Готовые изделия достаточно дороги. Поищем решение подешевле.

    Подробнее…

  • Индикатор приближения человека или животного
  • Схема данного индикатора способна улавливать приближение человека или животного на расстоянии до 0,5 м, а также его можно использовать в качестве охранного устройства, определения действующей скрытой проводки или просто для развлечения.

    Принцип его работы – увеличение наводки переменного напряжения в антенне при приближении к ней объекта с последующей индикацией, с помощью мигающего светодиода.

    Подробнее…


Популярность: 6 483 просм.

Простая схема измерителя ESR — Самодельные проекты схем

В этом посте обсуждается простая схема измерителя ESR, которую можно использовать для определения неисправных конденсаторов в электронной схеме, практически не снимая их с печатной платы. Идея была предложена Руководством Sofian

Технические характеристики

У вас есть схема измерителя СОЭ. Техники рекомендуют мне сначала проверять электролит каждый раз, когда я обнаруживаю неисправную цепь, но я не знаю, как это измерить.

Заранее благодарю за ответ.

Что такое ESR??????? из-за старения значение ESR может увеличиваться до аномальных уровней, что отрицательно сказывается на общем качестве и отклике задействованной цепи.

Развивающееся ESR в конкретном конденсаторе может постепенно увеличиваться от нескольких миллиомов до 10 Ом, что сильно влияет на отклик схемы.

Однако объясненное выше ESR может не обязательно означать, что емкость конденсатора также будет затронута, на самом деле значение емкости может остаться неизменным и хорошим, но при этом характеристики конденсатора ухудшатся.

Из-за этого сценария нормальный измеритель емкости полностью не может обнаружить неисправный конденсатор, на который влияет высокое значение ESR, и технический специалист обнаруживает, что конденсаторы в порядке с точки зрения его значения емкости, что, в свою очередь, делает поиск неисправностей чрезвычайно трудным.

Там, где обычные измерители емкости и омметры становятся совершенно неэффективными при измерении или обнаружении аномального ESR в неисправных конденсаторах, измеритель ESR становится чрезвычайно удобным для идентификации таких вводящих в заблуждение устройств.

Разница между ESR и емкостью

По сути, значение ESR конденсатора (в омах) показывает, насколько хорош конденсатор.

Чем ниже значение, тем выше рабочие характеристики конденсатора.

Тест ESR дает нам быстрое предупреждение о неисправности конденсатора и намного более полезен по сравнению с тестом емкости.

На самом деле, некоторые дефектные электролитические детали могут показывать ОКОНЧАНИЕ при проверке с помощью стандартного измерителя емкости.

В последнее время мы разговаривали со многими людьми, которые не поддерживают значение СОЭ и то, в каком именно восприятии оно отличается от емкости.

Поэтому я думаю, что стоит предоставить отрывок из технологических новостей известного журнала, автором которого является Дуг Джонс, президент Independence Electronics Inc. Он эффективно решает проблему ESR.«ESR — это активное естественное сопротивление конденсатора по отношению к сигналу переменного тока.

Более высокое ESR может привести к постоянным во времени осложнениям, перегреву конденсатора, увеличению нагрузки схемы, общему отказу системы и т. Д.

Какие проблемы могут вызывать ESR ?

Импульсный источник питания с конденсаторами с высоким ESR может не запуститься оптимально или просто не запуститься вообще.

Экран телевизора может быть перекошен сбоку / сверху / снизу из-за конденсатора с высоким ESR. также может привести к преждевременному отказу диодов и транзисторов.

Все эти и многие другие проблемы обычно вызваны конденсаторами с надлежащей емкостью, но большим ESR, которые не могут быть обнаружены как статические значения и по этой причине не могут быть измерены с помощью стандартного измерителя емкости или омметра постоянного тока.

ESR появляется только тогда, когда к конденсатору подключен переменный ток или когда диэлектрический заряд конденсатора постоянно переключает состояния.

Это можно рассматривать как полное синфазное сопротивление переменного тока конденсатора, объединенное с сопротивлением постоянному току проводов конденсатора, сопротивлением постоянному току межсоединения с диэлектриком конденсатора, сопротивлением пластин конденсатора и внутренним сопротивлением материала диэлектрика. сопротивление фазы переменного тока при определенной частоте и температуре.

Все элементы, вызывающие образование ESR, можно рассматривать как резистор, соединенный последовательно с конденсатором. Этот резистор на самом деле не существует как физический объект, поэтому немедленное измерение «резистора ESR» просто невозможно. Если, с другой стороны, доступен подход, который помогает корректировать результаты емкостного реактивного сопротивления и предполагает, что все сопротивления совпадают по фазе, ESR может быть определено и испытано, используя формулу фундаментальной электроники E = I x R!

ОБНОВЛЕНИЕ более простой альтернативы

Схема на основе ОУ, приведенная ниже, без сомнения, выглядит сложной, поэтому, немного подумав, я мог прийти к этой простой идее для быстрой оценки ESR любого конденсатора.

Однако для этого вам необходимо сначала рассчитать, какое сопротивление в идеале имеет конкретный конденсатор, используя следующую формулу:

Xc = 1 / [2 (pi) fC]

  • где Xc = реактивное сопротивление (сопротивление в Ом),
  • pi = 22/7
  • f = частота (для этого приложения возьмем 100 Гц)
  • C = емкость конденсатора в фарадах

Значение Xc даст вам эквивалентное сопротивление (идеальное значение) конденсатор.

Затем найдите ток по закону Ома:

I = V / R, Здесь V будет 12 x 1,41 = 16,92 В, R будет заменен на Xc, как получено из приведенной выше формулы.

После того, как вы найдете идеальный номинальный ток конденсатора, вы можете использовать следующую практическую схему, чтобы сравнить результат с вычисленным выше значением.

Для этого вам понадобятся следующие материалы:

  • Трансформатор 0–12 В / 220 В
  • 4 диода 1N4007
  • 0–1 амперметр с подвижной катушкой FSD или любой стандартный амперметр

Приведенная выше схема обеспечит прямой чтение относительно того, какой ток может пропускать через него конденсатор.

Запишите ток, измеренный с помощью вышеуказанной настройки, и ток, полученный по формуле.

Наконец, снова воспользуйтесь законом Ома, чтобы оценить сопротивления по двум показаниям тока (I).

R = V / I, где напряжение V будет 12 x 1,41 = 16,92, «I» будет согласно показаниям.

Быстрое получение идеального значения конденсатора

В приведенном выше примере, если вы не хотите проводить вычисления, вы можете использовать следующее контрольное значение для получения идеального реактивного сопротивления конденсатора для сравнения.

Согласно формуле, идеальное реактивное сопротивление конденсатора 1 мкФ составляет около 1600 Ом при 100 Гц. Мы можем взять это значение в качестве критерия и оценить значение любого желаемого конденсатора с помощью простого обратного перекрестного умножения, как показано ниже.

Предположим, мы хотим получить идеальное значение конденсатора 10 мкФ, это будет очень просто:

1/10 = x / 1600

x = 1600/10 = 160 Ом

Теперь мы можем сравнить этот результат с результат, полученный путем решения тока амперметра по закону Ома.Разница скажет нам относительно эффективного ESR конденсатора.

ПРИМЕЧАНИЕ. Напряжение и частота, используемые в формуле и практическом методе, должны быть идентичными.

Использование операционного усилителя для создания простого измерителя ESR

Измеритель ESR может использоваться для определения исправности сомнительного конденсатора при поиске неисправностей в старой электронной схеме или блоке.

Кроме того, эти измерительные приборы хороши тем, что их можно использовать для измерения ESR конденсатора без необходимости извлечения или изоляции конденсатора от печатной платы, что значительно упрощает работу пользователя.

На следующем рисунке показана простая схема измерителя ESR, которую можно построить и использовать для предлагаемых измерений.

Принципиальная схема

Как это работает

Схема может быть понята следующим образом:

TR1 вместе с присоединенным NPN-транзистором образует простой блокирующий генератор с обратной связью, который генерирует колебания с очень высокой частотой.

Колебания вызывают пропорциональную величину напряжения на 5 витках вторичной обмотки трансформатора, и это индуцированное высокочастотное напряжение прикладывается к рассматриваемому конденсатору.

Также можно увидеть операционный усилитель, подключенный к вышеупомянутому низковольтному высокочастотному источнику питания и сконфигурированный как усилитель тока.

При отсутствии ESR или в случае нового исправного конденсатора измеритель настроен так, чтобы показывать отклонение полной шкалы, указывающее минимальное значение ESR на конденсаторе, которое пропорционально уменьшается до нуля для разных конденсаторов, имеющих разное количество уровней ESR.

Более низкое ESR вызывает относительно более высокий ток, развивающийся через инвертирующий вход считывания операционного усилителя, который, соответственно, отображается в измерителе с более высокой степенью отклонения и наоборот.

Верхний транзистор BC547 вводится как каскад регулятора напряжения с общим коллектором, чтобы управлять каскадом генератора с более низким напряжением 1,5 В, чтобы другое электронное устройство в печатной плате вокруг тестируемого конденсатора поддерживалось под нулевым напряжением от теста. частоту от измерителя СОЭ.

Процесс калибровки измерителя прост. Удерживая тестовые провода закороченными, предустановка 100k рядом с мкА-метром регулируется до тех пор, пока на шкале измерителя не будет достигнуто полное отклонение шкалы.

После этого различные конденсаторы с высокими значениями ESR могут быть проверены в измерителе с соответственно более низкими степенями отклонения, как описано в предыдущем разделе этой статьи.

Трансформатор построен на любом ферритовом кольце с использованием любого тонкого магнитного провода с указанным числом витков.

Еще один простой тестер ESR с одним светодиодом

Схема обеспечивает отрицательное сопротивление для ограничения ESR конденсатора, которое тестируется, создавая непрерывный последовательный резонанс через постоянную катушку индуктивности.На рисунке ниже показана принципиальная схема измерителя esr. Отрицательное сопротивление создается IC 1b: Cx указывает на тестируемый конденсатор, а L1 позиционируется как фиксированная катушка индуктивности.

Базовая работа

Горшок VR1 облегчает регулировку отрицательного сопротивления. Чтобы проверить, просто продолжайте поворачивать VR1, пока колебания не прекратятся. Как только это будет сделано, значение ESR можно будет проверить по шкале, прикрепленной за циферблатом VR1.

Описание схемы

При отсутствии отрицательного сопротивления L1 и Cx работают как последовательный резонансный контур, который подавляется сопротивлением L1 и ESR Схемы.Этот контур ESR начнет колебаться, как только на него будет подано питание от триггера напряжения. IC1a работает как генератор для генерации прямоугольного выходного сигнала с некоторой низкой частотой в Гц. Этот конкретный выход дифференцируется для создания всплесков напряжения (импульсов), которые запускают подключенный резонансный контур.

Как только ESR конденсатора вместе с сопротивлением R1 стремятся закончиться отрицательным сопротивлением, звонковые колебания превращаются в постоянные колебания.После этого загорится светодиод D1. Как только колебание прекращается из-за падения отрицательного сопротивления, светодиод выключается.

Обнаружение закороченного конденсатора

В случае обнаружения короткозамкнутого конденсатора на Cx, светодиод загорается с повышенной яркостью. В течение периода колебаний резонансного контура светодиод включается только в течение полупериодов сигнала с положительной кромкой, что заставляет его светиться только на 50% от его общей яркости.IC 1 d обеспечивает половину напряжения питания, которое используется в качестве опорного для IC1b.

S1 можно использовать для регулировки усиления ICIb, который, в свою очередь, изменяет отрицательное сопротивление для обеспечения широких диапазонов измерения ESR в диапазоне 0–1, 0–10 и 0–100 Ом.

Список деталей

Конструкция L1

Индуктор L1 изготавливается путем намотки непосредственно на 4 внутренние стойки корпуса, которые можно использовать для завинчивания углов печатной платы.

Число витков может достигать 42 при использовании медного эмалированного медного провода 30 SWG.Создавайте L1 до тех пор, пока не получите сопротивление на концах обмотки 3,2 Ом или значение индуктивности около 90 мкГн.

Толщина провода не имеет значения, но значения сопротивления и индуктивности должны быть такими, как указано выше.

Результаты испытаний

При описанных выше деталях обмотки конденсатор емкостью 1000 мкФ, протестированный в разъемах Cx, должен генерировать частоту 70 Гц. Конденсатор емкостью 1 пФ может вызвать увеличение этой частоты примерно до 10 кГц.

Во время исследования схемы я подключил кварцевый наушник через конденсатор емкостью 100 нФ на R19, чтобы проверить уровни частоты.Щелчок частоты прямоугольной волны был хорошо слышен, в то время как VR1 был отрегулирован на большом расстоянии от того места, где колебания прекратились. По мере того, как VR1 настраивался на критическую точку, я мог начать слышать чистый звук синусоидальной частоты низкого напряжения.

Как калибровать

Возьмите высококачественный конденсатор емкостью 1000 мкФ с номинальным напряжением не менее 25 В и вставьте его в точки Cx. Постепенно изменяйте VR1, пока не увидите, что светодиод полностью погас.Отметьте эту конкретную точку за шкалой шкалы как 0,1 Ом.

Затем подключите известный резистор последовательно с существующим тестируемым Cx, что вызовет загорание светодиода, теперь снова регулируйте VR1, пока светодиод просто не выключится.

На этом этапе отметьте шкалу шкалы VR1 новым значением общего сопротивления. Возможно, будет предпочтительнее работать с шагом 0,1 Ом в диапазоне 1 Ом и более подходящим шагом в двух других диапазонах.

Интерпретация результатов

На приведенном ниже графике показаны стандартные значения СОЭ, согласно записям производителей и с учетом того факта, что СОЭ, рассчитанное на частоте 10 кГц, обычно составляет 1/3 от значения, измеренного на частоте 1 кГц.Значения ESR с конденсаторами стандартного качества 10 В могут быть в 4 раза выше, чем у конденсаторов с низким ESR 63 В.

Следовательно, всякий раз, когда конденсатор типа с низким ESR деградирует до уровня, при котором его ESR очень похож на ESR типичного электролитического конденсатора, условия его внутреннего нагрева увеличиваются в 4 раза!

Если вы видите, что протестированное значение ESR более чем в 2 раза превышает значение, показанное на следующем рисунке, вы можете предположить, что конденсатор больше не находится в лучшем состоянии.

Значения ESR для конденсаторов с номинальным напряжением, отличным от указанного ниже, будут находиться между соответствующими линиями на графике.

Измеритель СОЭ с использованием микросхемы IC 555

Нетипичный, но эта простая схема СОЭ чрезвычайно точна и проста в сборке. В нем используются самые обычные компоненты, такие как IC 555, источник постоянного тока 5 В и несколько других пассивных компонентов.

Схема построена на КМОП IC 555 с коэффициентом заполнения 50:50.
Рабочий цикл можно изменить с помощью резистора R2 и r.
Даже небольшое изменение значения r, которое соответствует ESR рассматриваемого конденсатора, вызывает значительное изменение выходной частоты ИС.

Выходная частота определяется по формуле:

f = 1 / 2CR1n (2 — 3k)

В этой формуле C представляет собой емкость, R состоит из (R1 + R2 + r), r обозначает ESR конденсатора C, при этом k позиционируется как множитель, равный:

k = (R2 + r) / R.

Для обеспечения правильной работы схемы значение коэффициента k не должно быть выше 0.333.

Если оно будет увеличено выше этого значения, IC 555 перейдет в неконтролируемый колебательный режим с чрезвычайно высокой частотой, которая будет контролироваться исключительно задержкой распространения микросхемы.

Вы обнаружите экспоненциальное увеличение выходной частоты ИС в 10 раз в ответ на увеличение коэффициента k с 0 до 0,31.

При дальнейшем увеличении с 0,31 до 0,33 выходная частота увеличивается еще на 10 раз.

Предполагая, что R1 = 4k7, R2 = 2k2, минимальное ESR = 0 для C, коэффициент k должен быть около 0.3188.

Теперь предположим, что у нас есть значение ESR около 100 Ом, что приведет к увеличению значения k на 3% до 0,3286. Теперь это заставляет IC 555 колебаться с частотой, которая в 3 раза выше по сравнению с исходной частотой при r = ESR = 0.

Это показывает, что по мере увеличения r (ESR) происходит экспоненциальный рост частоты выходного сигнала IC. .

Как тестировать

Сначала вам необходимо откалибровать отклик схемы, используя высококачественный конденсатор с незначительным ESR и имеющий значение емкости, идентичное тому, которое необходимо проверить.

Также у вас должно быть несколько разных резисторов с точными значениями от 1 до 150 Ом.

Теперь постройте график выходной частоты против r для значений калибровки,

Затем подключите конденсатор, который необходимо проверить на ESR, и начните анализировать его значение ESR, сравнивая соответствующую частоту IC 555. и соответствующее значение на построенном графике.

Для обеспечения оптимального разрешения для более низких значений ESR, например, менее 10 Ом, а также для устранения несоответствия частот рекомендуется добавить резистор между 10 Ом и 100 Ом последовательно с тестируемым конденсатором.

Кроме того, используемый источник питания должен быть очень хорошего качества с регулируемым постоянным током. Лучше всего подойдет батарея на 9 В с регулятором 7805 IC.

После того, как значение r получено из графика, вы просто должны вычесть значение постоянного резистора из этого r , чтобы получить значение ESR.

Конструкция измерителя ESR IC 555 № 2

Эквивалентное последовательное сопротивление (ESR) конденсатора можно рассчитать с помощью этой схемы и хорошего вольтметра переменного тока. IC1 работает как генератор прямоугольных сигналов с частотой 50 кГц.

Он проталкивает сигнал тока приблизительно ± 180 мА внутрь тестируемого конденсатора с помощью R1 и R2. Когда потенциометр R3 настроен на правильное сопротивление, падение потенциала на «эквивалентном последовательном резисторе» точно прекращается инвертирующим усилителем (IC2). Таким образом, Vo — это истинное напряжение конденсатора, которое является самым низким напряжением, которое обычно создается на выходе Vo.

Чтобы получить показание переменного напряжения, вам необходимо настроить R3 до тех пор, пока вы не найдете минимальное напряжение на выходе Vo.Затем посмотрите на размещение потенциометра и умножьте его на значение R2, в данном случае 10 Ом.

Умноженный результат будет эквивалентен ESR конденсатора. Для смещения тестируемого конденсатора используется напряжение 7,5 В, поэтому конденсаторы с более низким напряжением, чем это, нельзя тестировать с помощью этой схемы измерителя ESR.

Изменяя значение R2, мы можем модернизировать схему для дополнительных диапазонов измерения ESR. При этом для меньшего значения R2 уровень усилителя должен быть выше, чтобы обеспечить справедливое падение напряжения на R2.Это может потребовать какой-либо промежуточной стадии буфера.

Схема будет работать с конденсаторами выше 100 мкФ. Напряжение пульсаций будет больше для конденсаторов меньшего размера с уменьшением уровня точности.

ESR метр / емкость / индуктивность / тестер транзисторов





Список компонентов измерителя СОЭ:

1x Набор для измерения ESR / емкости / индуктивности / транзисторов PCB
1x 16 x 2 ЖК-дисплей с зеленой подсветкой
1x Программируемый микроконтроллер ATMEGA328
1x 28-DIP IC Socket
1x 16-контактный позолоченный штыревой разъем (ЖК-дисплей)
1x 16-контактный позолоченный женский разъем (PCB)
1x 3-контактный позолоченный женский разъем
1x 2-контактный позолоченный мужской разъем
1x 78L05 Регулятор напряжения 5 В
1x Тактильный переключатель
1x 10K ЖК-потенциометр контрастности
1x 1000pF 2.Конденсатор 5% WIMA
1x 10 мкФ / 35 В конденсатор Panasonic
2x 100 нФ Майларовые конденсаторы
Металлопленочные резисторы 11 x 1%

Технический Технические характеристики:

Измерения СОЭ: 2.2 мкФ — 20 000 мкФ
Разрешение ESR: 0,01 Ом — 0,1 Ом
Измерения емкости: 100 пФ — 20 000 мкФ
Измерения сопротивления: 0,1 Ом — 20 МОм
Транзисторы: Проверяет и идентифицирует контакты всех транзисторов: Биполярный ( NPN, PNP), полевые транзисторы, полевые МОП-транзисторы (N-канальные, P-канальные, полевые МОП-транзисторы в режиме улучшения и истощения), тиристоры, тиристоры и симисторы.
Диоды: Проверяет и идентифицирует контакты и напряжение диодов, двойных диодов, диодов варикапа (и их емкости), стабилитронов (испытательное напряжение до 5 В) и светодиодов.
Требования к питанию: 7-16 В
Потребляемый ток: 40 мА

ESR метр / емкость / индуктивность / тестер транзисторов


ESR Meter — незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов.В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеритель одновременно измеряет значение ESR конденсатора, а также его емкость. Кроме того, ESR Meter также проверяет и идентифицирует PIN-коды всех транзисторов, таких как биполярные (NPN, PNP), полевые транзисторы, полевые МОП-транзисторы (N-канал, P-канал, полевые МОП-транзисторы в режиме улучшения и истощения), тиристоры, тиристоры и симисторы. Проверяет и определяет контакты и напряжение диодов, двойных диодов, диодов варикапа (и их емкости), стабилитронов (испытательное напряжение до 5 В) и светодиодов.Он измеряет сопротивление резисторов, силовых резисторов, катушек от 0,1 Ом до 20 МОм.

Что такое СОЭ?


«ESR» означает эквивалентное последовательное сопротивление. ESR — одна из характеристик, определяющих производительность электролитического конденсатора. Низкое значение ESR очень желательно для конденсатора, поскольку любая пульсация тока через конденсатор вызывает нагрев конденсатора из-за потерь сопротивления.Этот нагрев ускоряет выход конденсатора из строя за счет высыхания электролита с постоянно увеличивающейся скоростью. В течение срока службы конденсатора нередко увеличивается ESR в 10–30 раз или даже возникает разрыв цепи. Типичный срок службы электролитов составляет 2000-15000 часов и очень зависит от температуры окружающей среды. По мере увеличения ESR фильтрующая способность конденсатора ухудшается, и в конечном итоге схема перестает работать правильно.

Электролитические конденсаторы — это электронные компоненты, которые быстрее всего стареют.Если у вас есть какое-либо электронное оборудование, которое на протяжении многих лет ухудшало свою производительность, проявляло причуды, иногда заканчиваясь полным отказом, велика вероятность того, что один или несколько электролитических конденсаторов внутри него вышли из строя, что привело к проблеме. Электролитические конденсаторы стареют по нескольким причинам: они могут стать электрически негерметичными, вызывая через них постоянный ток, который может вызвать их взрыв. Они могут изменять значение емкости. Но наиболее распространенный способ их ухудшения — это чрезмерное увеличение их эквивалентного последовательного сопротивления, которое представляет собой нежелательное внутреннее сопротивление, которое появляется последовательно с желаемой емкостью на данной частоте.

ESR обычно может дать нам лучшее представление о исправности конденсатора. Когда электролитический конденсатор начинает высыхать, на ESR влияет гораздо больше, чем на емкость. Конденсатор с правильным значением емкости, но аномально высоким ESR находится на пути к отказу, потому что высокое ESR вызовет большее нагревание, что в конечном итоге приведет к разрушению конденсатора. Если конденсатор уже потерял часть своего первоначального значения емкости, ESR обычно увеличивается во много раз.

Значение сопротивления ESR хорошего конденсатора зависит от многих факторов, наиболее важным является значение емкости. Чем выше емкость, тем ниже ESR. В любом конденсаторе емкостью более нескольких десятков мкФ оно будет составлять доли Ом, а даже в самых маленьких электролитических конденсаторах оно будет не более нескольких Ом. Следующим наиболее важным фактором для данной емкости является качество конструкции и изготовления. Некоторые конденсаторы спроектированы и изготовлены с гораздо более низким ESR, чем другие.После этих двух факторов есть другие, которые влияют на номинальное напряжение (для того же типа / серии конденсаторов, чем выше номинальное напряжение, тем выше ESR) и температурный рейтинг (чем выше номинальная температура, тем выше ESR).

Справочные значения ESR


При измерении электролитических конденсаторов используйте следующую таблицу, чтобы определить качество измеряемого конденсатора. Это нормально, что конденсаторы с меньшей емкостью (1 мкФ 47 мкФ) обычно имеют более высокое значение ESR, в то время как конденсаторы с большей емкостью будут иметь более низкое значение ESR.

Емкость

Качество конденсатора

мкФ

Очень высокий

Высокая

Нормальный

Низкий

Очень низкий

1,0

2.000

5.000

12,500

31,250

78,125

2,2

1,125

2,812

7.030

17,574

43,936

4,7

0,646

1,616

4.039

10.098

25,244

10

0,372

0,931

2,328

5,819

14,548

22

0,209

0,524

1,309

3,273

8.181

47

0,120

0,301

0,752

1,880

4,701

100

0,069

0,173

0,433

1.084

2,709

220

0.039

0,097

0,244

0.609

1,523

470

0,022

0,056

0,140

0,350

0,875

1000

0,013

0,032

0.081

0,202

0,504

2200

0,007

0,018

0,045

0,113

0,284

4700

0,004

0,010

0,026

0,065

0.163

10000

0,002

0,006

0,015

0,038

0,094

Включение измерителя СОЭ


1. Подключите измеритель СОЭ к источнику питания 7–16 В / батарее

2.Подключите проверяемый компонент к входным клеммам (1/2/3)

3. Нажмите кнопку «ТЕСТ»

4. Значение компонента будет отображаться на ЖК-дисплее



ESR Meter — Измерительные конденсаторы


ESR Meter — Тестирование транзисторов


ESR Meter — Измерительные резисторы



Измеритель СОЭ — Тестирование диодов и светодиодов


Регулировка контрастности ЖК-дисплея


Если на ЖК-дисплее видны квадратные блоки, возможно, необходимо изменить настройки контрастности ЖК-дисплея.Отсоедините ЖК-дисплей 16×2 от основной платы и отрегулируйте синий триммер (102) против часовой стрелки. Если текст слишком светлый, отрегулируйте триммер по часовой стрелке. Повторно подключите ЖК-дисплей и включите измеритель СОЭ, чтобы на ЖК-дисплее отображался самый четкий текст без отображения квадратных блоков на заднем плане.

Комплект измерителя СОЭ


Вы можете приобрести полный комплект измерителя ESR / емкости / индуктивности / транзистора премиум-класса в магазине электроники-DIY , пожалуйста, перейдите по ссылке для получения более подробной информации.



Accurate LC Meter

Создайте свой собственный Accurate LC Meter (измеритель индуктивности емкости) и начните создавать свои собственные катушки и индукторы. Этот LC-метр позволяет измерять невероятно малые индуктивности, что делает его идеальным инструментом для изготовления всех типов ВЧ-катушек и индукторов. LC Meter может измерять индуктивность от 10 нГн до 1000 нГн, 1 мкГн — 1000 мкГн, 1 мГн — 100 мГн и емкости от 0.1 пФ до 900 нФ. Схема включает автоматический выбор диапазона, а также переключатель сброса и обеспечивает очень точные и стабильные показания.

PIC Вольт-амперметр

Вольт-амперметр измеряет напряжение 0-70 В или 0-500 В с разрешением 100 мВ и потребляемый ток 0-10 А или более с разрешением 10 мА. Счетчик является идеальным дополнением к любым источникам питания, зарядным устройствам и другим электронным проектам, в которых необходимо контролировать напряжение и ток.В измерителе используется микроконтроллер PIC16F876A с ЖК-дисплеем с подсветкой 16×2.


Частотомер / счетчик 60 МГц

Частотомер / счетчик измеряет частоту от 10 Гц до 60 МГц с разрешением 10 Гц. Это очень полезное стендовое испытательное оборудование для тестирования и определения частоты различных устройств с неизвестной частотой, таких как генераторы, радиоприемники, передатчики, функциональные генераторы, кристаллы и т. Д.

1 Гц — 2 МГц XR2206 Функциональный генератор

1 Гц — 2 МГц Функциональный генератор XR2206 выдает высококачественные синусоидальные, квадратные и треугольные сигналы с высокой стабильностью и точностью. Формы выходных сигналов могут модулироваться как по амплитуде, так и по частоте. Выход 1 Гц — 2 МГц Функциональный генератор XR2206 может быть подключен непосредственно к счетчику 60 МГц для настройки точной выходной частоты.


BA1404 HI-FI стерео FM-передатчик

Будьте в прямом эфире со своей собственной радиостанцией! Стерео FM-передатчик BA1404 HI-FI передает высококачественный стереосигнал в диапазоне FM 88–108 МГц.Его можно подключить к любому типу стереофонического аудиоисточника, например iPod, компьютеру, ноутбуку, проигрывателю компакт-дисков, Walkman, телевизору, спутниковому ресиверу, магнитофонной кассете или другой стереосистеме для передачи стереозвука с превосходной четкостью по всему дому, офису, двору или палаточный лагерь.

USB IO Board

USB IO Board — это крошечная впечатляющая маленькая плата разработки / замена параллельного порта с микроконтроллером PIC18F2455 / PIC18F2550.Плата USB IO совместима с компьютерами Windows / Mac OSX / Linux. При подключении к плате ввода-вывода Windows будет отображаться как COM-порт RS232. Вы можете управлять 16 отдельными выводами ввода / вывода микроконтроллера, отправляя простые последовательные команды. Плата USB IO получает питание от порта USB и может обеспечить до 500 мА для электронных проектов. Плата USB IO совместима с макетной платой.


ESR Meter / Capacitance / Inductance / Transistor Tester Kit

ESR Meter Kit — удивительный мультиметр, который измеряет значения ESR, емкость (100 пФ — 20000 мкФ), индуктивность, сопротивление (0.1 Ом — 20 МОм), тестирует множество различных типов транзисторов, таких как NPN, PNP, полевые транзисторы, полевые МОП-транзисторы, тиристоры, тиристоры, симисторы и многие типы диодов. Он также анализирует такие характеристики транзистора, как напряжение и коэффициент усиления. Это незаменимый инструмент для поиска и устранения неисправностей и ремонта электронного оборудования путем определения производительности и исправности электролитических конденсаторов. В отличие от других измерителей ESR, которые измеряют только значение ESR, этот измеритель одновременно измеряет значение ESR конденсатора, а также его емкость.

Комплект усилителя для наушников для аудиофилов

Комплект усилителя для наушников для аудиофилов включает в себя высококачественные компоненты аудиофайла, такие как операционный усилитель Burr Brown OPA2134, потенциометр регулировки громкости ALPS, разветвитель шины Ti TLE2426, конденсаторы с FM-фильтрацией Panasonic со сверхнизким ESR 220 мкФ / 25 В, Высококачественные входные и развязывающие конденсаторы WIMA и резисторы Vishay Dale. Разъем для микросхем 8-DIP позволяет заменять OPA2134 на многие другие микросхемы двойных операционных усилителей, такие как OPA2132, OPA2227, OPA2228, двойной OPA132, OPA627 и т. Д.Усилитель для наушников достаточно мал, чтобы поместиться в жестяной коробке Altoids, и благодаря низкому энергопотреблению может питаться от одной батареи на 9 В.


Комплект прототипа Arduino

Прототип Arduino — это впечатляющая плата для разработки, полностью совместимая с Arduino Pro. Он совместим с макетной платой, поэтому его можно подключить к макетной плате для быстрого прототипирования, и на обеих сторонах печатной платы имеются выводы питания VCC и GND.Он небольшой, энергоэффективный, но настраиваемый с помощью встроенной перфорированной платы 2 x 7, которую можно использовать для подключения различных датчиков и разъемов. Arduino Prototype использует все стандартные компоненты со сквозными отверстиями для легкой конструкции, два из которых скрыты под разъемом IC. Плата оснащена 28-контактным разъемом DIP IC, заменяемым пользователем микроконтроллером ATmega328 с загрузчиком Arduino, кварцевым резонатором 16 МГц и переключателем сброса. Он имеет 14 цифровых входов / выходов (0-13), из которых 6 могут использоваться как выходы ШИМ и 6 аналоговых входов (A0-A5).Эскизы Arduino загружаются через любой USB-последовательный адаптер, подключенный к 6-контактному гнезду ICSP. Плата питается напряжением 2-5 В и может питаться от аккумулятора, такого как литий-ионный элемент, два элемента AA, внешний источник питания или адаптер питания USB.

4-канальный беспроводной радиочастотный пульт дистанционного управления на частоте 433 МГц, 200 м

Возможность беспроводного управления различными приборами внутри или снаружи дома является огромным удобством и может сделать вашу жизнь намного проще и веселее.Радиочастотный пульт дистанционного управления обеспечивает дальность действия до 200 м / 650 футов и может найти множество применений для управления различными устройствами, и он работает даже через стены. Вы можете управлять освещением, вентиляторами, системой переменного тока, компьютером, принтером, усилителем, роботами, гаражными воротами, системами безопасности, занавесками с электроприводом, моторизованными оконными жалюзи, дверными замками, разбрызгивателями, моторизованными проекционными экранами и всем остальным, о чем вы можете подумать.


ТОП-10 лучших измерителей СОЭ 2021 г.

Signstek MESR-100 V2 Автоматическое определение диапазона в цепи Конденсатор измерителя ESR LCR / измеритель низкого сопротивления До 0.01 до …

Портативный измеритель LCR DE-5000

BSIDE ESR02 PRO Цифровой транзистор SMD Компоненты Тестер Диодный Триод Емкость Индуктивность…

Лучший выбор

Signstek MESR-100 V2 Автоматическое определение диапазона в цепи Конденсатор измерителя ESR LCR / измеритель низкого сопротивления До 0.01 до …

Портативный измеритель LCR DE-5000

BSIDE ESR02 PRO Цифровой транзистор SMD Компоненты Тестер Диодный Триод Емкость Индуктивность…

Ознакомьтесь с 10 лучшими измерителями СОЭ после 48 часов тестирования экспертом, мы составили список лучших на рынке надежных, точных показаний, отличной эффективности для вашей профессиональной, промышленной и личной работы. Какой на рынке лучший внутрисхемный измеритель СОЭ для вашей безупречной работы?

Какой марки подходит для измерителя СОЭ? У нас есть измерители Signstek, DROK, Blue ESR — лучшие измерители с большой надежностью.

Наша рекомендация Signstek for ESR работает безупречная отделка, чистый и четкий большой дисплей, удобный портативный компьютер может заряжаться от зарядного устройства 5 В постоянного тока. Ознакомьтесь с нашим полным обзором, который подходит вам в соответствии с вашими потребностями.

10 лучших обзоров измерителей СОЭ

01. Signstek MESR-100 V2 Автоматическое определение диапазона в цепи ESR LCR meter

Signstek MESR 100 — один из лучших измерителей СОЭ на рынке. Если вы ищете высокопроизводительный и качественный измеритель СОЭ, вы получите короткий список, и, конечно же, в этом списке вы получите эту модель измерителя СОЭ.Это также лучший дешевый измеритель СОЭ по своему качеству.

Signstek ESR — это точный измеритель синусоидальной волны 100 кГц, обеспечивающий превосходную точность измерения.

Вес всего 218 г, легкий, удобный для переноски. Он питается от двух батареек AA 1,5 В, и вы можете включить его через микро-USB 5 В.

Внешний вид этого счетчика фантастический, безупречная отделка, чистый и четкий четырехзначный дисплей. Вы найдете таблицу параметров СОЭ на корпусе этого превосходного измерителя.

Есть кнопки обнуления для ручного обнуления счетчика на левой кнопке питания и в правом диапазоне режимов.Вы получите руководство пользователя, тестовые клипы с измерителем СОЭ.

Окончательный вердикт для этого измерителя — это широкий спектр высококачественных конденсаторных измерителей ESR с автоматическим выбором диапазона.

Основные характеристики:
  • Автоматический выбор диапазона
  • Широкий диапазон измерений
  • Размеры: 5,7 × 3,1 × 1,2 дюйма
  • Вес: 218 г
  • 4-значный дисплей
  • Питание от аккумулятора 1,5 В
  • Внешнее питание через микро-USB 5 В
  • Включает измеритель СОЭ, тестовые зажимы, руководство пользователя

02.Измеритель СОЭ DROK автоматический 2020

Несколько тестеров

DROK — отличный выбор для использования измерителя СОЭ.

Этот измеритель имеет функцию автоматической идентификации, которая может автоматически обнаруживать компонент.

Это питание от батареи, а также автоматическое отключение системы, когда она не используется в течение нескольких минут.

Дисплей DROK чистый и большой. Показания могут быть сняты точно, а точность измерения надежна для качественного продукта.

Тестер

DROK — это кабель многократного измерения ESR, SCR, индуктора, конденсатора, полевого транзистора, диода, резистора и т. Д. И т. Д.

Это один из идеальных вариантов для измерения ESR с возможностью измерения других компонентов.

Точность измерения отличная, надежный, высокопроизводительный прибор для домашнего, промышленного или лабораторного использования.

Основные характеристики:
  • Большой и четкий дисплей
  • Широкое применение может использоваться как ESR, диод, резистор, конденсатор, SCR, индуктор, полевой транзистор и т. Д.тестер
  • Автоопределение и идентификация
  • Автоматическое отключение при простое
  • Питание от аккумулятора

03. Синий тестер СОЭ — полностью собран

Blue ESR meter — популярный измеритель с 2007 года. Это удобный и доступный измеритель ESR для точных измерений.

Вес измерителя составляет 10 унций, его легко носить с собой в любом месте в сумке для переноски.

Он имеет четкий светодиодный дисплей, конструкция измерителя ESR очень проста.

Имеет автоматическое отключение системы при простое в течение 3 минут. Это экономит заряд батареи при автоматическом отключении. Цена на измеритель СОЭ доступная благодаря его качеству. Это измеритель СОЭ, произведенный в США.

Вам потребуются данные о необходимых параметрах СОЭ на корпусе счетчика в виде таблицы.

Основные характеристики:
  • Светодиодный экран
  • Таблица параметров включения в таблицу СОЭ на корпусе
  • Автоматическое отключение через 3 минуты
  • Легкий вес
  • Высокая точность
  • Доступный
  • Сделано в США

04.Портативный измеритель LCR / ESR DE-5000 с принадлежностями

Портативный измеритель СОЭ / LCR

DE-5000 поставляется со всеми необходимыми принадлежностями.

DE 5000 — портативный измеритель, который можно использовать для различных целей ESR или LCR. Нам нравится дисплей этого измерителя. Имеет двойной дисплей. Чистый и яркий большой дисплей.

Если говорить о точности этого счетчика, отличная точность, высокая надежность, это один из самых надежных счетчиков на рынке.

В комплект поставки входят руководство пользователя, аккумулятор DC9V, футляр для измерительных проводов, пинцет для поверхностного монтажа с измерителем.

DE 5000 — самый популярный и надежный счетчик благодаря своему исключительному качеству.

Основные характеристики:
  • Двойной дисплей
  • Автоматический диапазон
  • Большой кристально чистый дисплей
  • Высокая точность
  • Высокая прочность
  • Вес: 15,9 унций

05. KEYSIGHT U1733C Портативный измеритель LCR / ESR, 100 Гц / 120 Гц / 1 кГц / 10 кГц / 100 кГц

Keysight — это измеритель с автоматическим выбором диапазона. Его можно использовать для ESR / LCR для обеих целей.

Конструкция счетчика — красивая отделка оранжево-черного цвета. Дисплей этого измерителя представляет собой большой и яркий экран с разрешением 20000 отсчетов, что невероятно.

Он может автоматически определить компонент, который вы хотите измерить. У Keysight есть три выбираемых тестовых частоты.

Keysight разработан и предназначен для профессионального использования.

Основные характеристики:
  • Цвет желто-черный дизайн
  • 20000 отсчетов
  • Точность: 0.2%
  • Предназначен для профессионального использования

06. Внутрисхемный тестер ESR и сопротивления постоянному току B&K Precision 881

B&K Precision — самая известная компания по производству электронной продукции, которая уже давно работает отлично.

Люди доверяют своей продукции превосходного качества. Аналоговый измеритель ESR B&K Precision 881 для измерения сопротивления и емкости постоянного тока.

Вы получите таблицу данных ESR на корпусе этого измерителя ESR.Диапазон измерения измерителя от 0,1 до 30 Ом. Он может автоматически калибровать внутренний сигнал. Диапазон сопротивления постоянному току также составляет 0,1-30 Ом.

Основные характеристики:
  • Диапазон измерения 1-30 Ом
  • График на передней панели: хорошее, удовлетворительное, плохое показание ESR
  • Питание от аккумулятора: 9В
  • Вес: 13,6 унций

07. Atlas ESR70

Atlas ESR70 — отличный измеритель СОЭ; Он имеет функцию автоматического разряда с низким сопротивлением.Чистый и яркий дисплей для чтения данных, качество данных надежное.

На корпусе есть две кнопки для включения и выключения. Звуковое оповещение сообщит вам информацию о данных. Atlas ESR70 — это очень легкий измеритель СОЭ, удобный портативный, который можно носить с собой куда угодно.

Основные характеристики:
  • Звуковой сигнал
  • Внутренний сигнал автоматической калибровки
  • Функция автоматической разрядки
  • Легкий вес всего 3,39 унции
  • Четкий ЖК-дисплей
  • Портативный

08.Yosoo GMC328 ЖК-дисплей тестер транзисторов измеритель СОЭ цимометр генератор прямоугольной волны

Yosoo GM328 — самый дешевый измеритель СОЭ из нашего обзора. Но не совсем не собран. Вы получите точные данные, которые вам нужны.

Вам необходимо произвести сборку этого счетчика. Дисплей этого измерителя больше, чем у других измерителей ESR; Единственная проблема — конструкция этого счетчика.

Если вы хотите получить по низкой цене, то вам придется пойти на компромисс: стабильный рабочий ток 20 мА и рабочее напряжение 9 В.

Основные характеристики:
  • Большой ЖК-экран
  • Не в сборе
  • Питание 9В

09. Мультиметр BSIDE ESR02 PRO ESR Meter

BSIDE ESR02 — один из самых дешевых многофункциональных измерителей, который можно использовать в качестве измерителя ESR на рынке. Великолепный внешний вид и надежное чтение — самые привлекательные. Вы получите руководство пользователя с многофункциональным измерителем.

Этот счетчик питается от источника постоянного напряжения для адаптера с использованием 9В-12В, рекомендованного во время работы.

Для питания от батареи требуется батарея 6LR61 9 В, когда уровень напряжения батареи ниже 6 В рекомендуется заменить или заменить батарею.

Основные характеристики:
  • Многофункциональный тестер
  • Рабочее напряжение 9В-12В на адаптере, аккумулятор 9В
  • Точное показание
  • Четкий дисплей

10. Многофункциональный тестер для диодного триода, конденсатора, резистора, транзистора LCR ESR NPN PNP MOSFET LW21

Longruner имеет продуманный вид, и универсальный измеритель может использоваться для измерения LCR, ESR и других измерений.Это недорогой универсальный счетчик на рынке. Дисплей светодиодный, красивый, чистый, с гладкой визуализацией.

Многофункциональный, но одна важная операция — автоматическое отключение питания, когда он не используется, что экономит энергию аккумулятора для увеличения срока службы.

Основные характеристики:
  • Светодиодный экран
  • Управление одной кнопкой
  • Автоотключение
  • Универсальный счетчик для различных измерений

Что следует учитывать при выборе лучшего измерителя СОЭ при покупке

Перед покупкой измерителя СОЭ ищите некоторые необходимые компоненты, которые есть в измерителе.

01.Дисплей

Если экран LED или LCD, это было бы идеально. Рекомендуется большой и чистый просмотр, чтобы на дисплее было достаточно данных для отображения того, что вам нужно.

02. Автоматический или ручной

Измеритель с автоматическим выбором диапазона может определять автоматически и устанавливать значение автоматически. Если измеритель ручной необходимо изменить значение вручную, иногда возникает паника.

03. Строительство

Измеритель должен быть портативным, удобным и легким, чтобы его можно было легко носить с собой.

04. Безопасность

Сделайте счетчик с защитой от короткого замыкания, чтобы уберечь его от неожиданной ситуации.

05. Таблица данных

Если у вашего глюкометра есть данные ESR на передней или задней стороне измерителя, это очень полезно.

06. Автоотключение

Для продления срока службы батареи важна функция автоматического отключения питания, она продлит срок службы батареи и позволит избежать непредвиденных расходов, а также продлит срок службы измерителя ESR.

07.Режим и функция

Убедитесь, что счетчик имеет достаточно функций, которые вам нужны. Некоторые измерители имеют управление с помощью одной кнопки, что также хорошо, если они выполняют требуемые операции.

Если измеритель не имеет требуемого диапазона режимов, то он совершенно бесполезен. Максимально качественный измеритель СОЭ имеет общие кнопки питания, нуля и режима.

08. Зажимы

Проверить зажимы счетчика красивы или нет.

Что такое измеритель СОЭ?

ESR означает эквивалентное последовательное сопротивление.Измеритель ESR используется для измерения эквивалентного последовательного сопротивления реальных конденсаторов.

Обычно другой измеритель или мультиметр не может измерить значение ESR конденсаторов на подключенной плате, а этот измеритель ESR может измерить, почему он так спроектирован.

Чтобы узнать больше о работе измерителя СОЭ.

Бестселлер №2 LCR-T4 Mega328 Цифровой Тестер Транзисторов Сопротивление Емкости Диодного Триода Сопротивление Емкости…
  • Испытательные диапазоны: катушки индуктивности, конденсаторы, диоды, двойной диод, МОП, транзистор, SCR, регулятор, светодиодная трубка, ESR, сопротивление, регулируемый потенциометр
  • Может обнаруживать транзистор, коэффициент усиления защитного диода MOSFET и базу для определения напряжение прямого смещения эмиттерного транзистора.
  • Высокая скорость тестирования, допустимый тест компонентов: 2 секунды (за исключением большего конденсатора большой емкости измерения также занимает много времени, измеренное время…
  • 128 * 64 большой ЖК-дисплей с подсветкой, только 2 мА в режиме ожидания.
  • Функция автоматического отключения питания для предотвращения ненужных отходов, экономии заряда аккумулятора, увеличения срока службы аккумулятора
Бестселлер № 3 Портативный измеритель LCR DE-5000
  • Этот измеритель LCR представляет собой высокоточный измеритель LCR с двойным дисплеем на 19999/9999 отсчетов, который может измерять индуктивность / емкость / сопротивление с дополнительными параметрами…
  • Этот измеритель LCR работает в полностью автоматическом режиме для измерения импеданса переменного тока и сопротивления постоянному току. Пользователь может измерять компоненты L / C / R непосредственно в «AUTO-LCR …
  • ». Компоненты могут быть измерены в последовательном или параллельном режиме в соответствии с импедансом DUT (тестируемого устройства) автоматически. Пользователь может выбрать желаемый тест. ..
  • Режим «Сортировка» может помочь пользователю быстро отсортировать группу компонентов.
  • Стандартные аксессуары: руководство в формате PDF на английском языке, батарея постоянного тока 9 В, футляр для измерительных проводов типа «аллигатор» (TL-21), футляр для пинцета SMD (TL-22), линия защиты (TL-23) ,,,,, Опция: кабель от ИК-порта до USB…
Бестселлер №4 Тестер транзисторов, Тестер конденсаторов транзисторов DROK Mosfet, Транзисторный диод Mega328 NPN PNP …
  • ✔ ШИРОКОЕ ПРИМЕНЕНИЕ: Этот многофункциональный измеритель емкости может использоваться для проверки триода, полевой трубки (FET), диода, резистора, конденсатора, индуктора, MOS, SCR, …
  • ✔ БОЛЬШОЙ И ЧЕТКИЙ ЦИФРОВОЙ ЖК-ДИСПЛЕЙ: Этот удивительный детектор использует 1.8-дюймовый цветной ЖК-экран TFT с высоким разрешением. Кроме того, различные параметры отображаются с помощью …
  • ✔ АВТОМАТИЧЕСКАЯ ИДЕНТИФИКАЦИЯ: интеллектуальная программа проверки транзисторов DROK способна обнаруживать транзисторы NPN и PNP, N-канальные и P-канальные MOSFET, диоды , …
  • ✔ ПИТАНИЕ ОТ АККУМУЛЯТОРА: Этот монитор питается от батареи постоянного тока 9 В (не входит в комплект).
  • ✔ ФУНКЦИЯ АВТО ВЫКЛЮЧЕНИЯ: Наш передовой электронный тестер транзисторов имеет функцию автоматического выключения. монитор и…
Бестселлер №5 Seeed Studio DT71 Мини цифровой пинцет Мультиметр Мультиметры LCR / ESR Meter SMD Tester
  • 【Уникальная тройная структура】 Пинцет DT71 может быть разделен на контроллер, испытательные рычаги и наконечники пинцета, которые можно легко заменять, и …
  • 【Ручной и автоматический режимы идентификации】 Пинцет DT71 может автоматически идентифицировать SMD, включая резистор , конденсатор, катушка индуктивности и диод, показывая и то, и другое…
  • 【Вращающийся на 360 ° контроллер】 Пинцет DT71 имеет OLED-экран на поворотном на 360 ° контроллере. Интеллектуальное распознавание жестов автоматически идентифицирует …
  • 【Простое управление с помощью легкого прикосновения】 В отличие от других тестеров LCR, мини-цифровой пинцет DT71 не имеет физических кнопок, а имеет скрытую …
  • 【Карманный- размер и длительный срок службы батареи】 Вы можете использовать его в лабораториях, на верстаках, складах и в полевых условиях. Он также имеет двойной встроенный литиевый аккумулятор…

Digital ESR Meter — простой в сборке измеритель ESR для проверки исправности электролитических конденсаторов

Нажмите, чтобы загрузить статью полностью

Гай Фернандо (M0OOX) представляет в этой статье инструкции по созданию измерителя ESR (эквивалентного последовательного сопротивления) для проверки работоспособности электролитические конденсаторы. Прибор отображает емкость и СОЭ на цифровом ЖК-дисплее с дополнительным звуковым сигналом, указывающим состояние тестируемого конденсатора.В основе измерителя лежит 14-контактный микроконтроллер PIC, использующий лишь несколько других дешевых Компоненты многофункционального измерителя ESR легко построить.


  • Цифровой ЖК-дисплей
  • Диапазон ESR от 0,01 Ом до 50 Ом
  • Частота тестирования 100 кГц
  • Низкое испытательное напряжение для внутрисхемных испытаний
  • Звуковые сигналы результатов тестирования
  • Автоматическое отключение питания
  • Автоматическая проверка конденсатора
  • Компенсация сопротивления щупа
  • Компенсация напряжения питания аккумуляторной батареи
  • Конденсатор с защитой от накопления заряда
  • Предупреждение о низком и высоком заряде батареи
  • Обнаружение датчика обрыва / короткого замыкания

Простая электрическая схема

Простота сборки

Купить предварительно запрограммированный микроконтроллер PIC.

В основе конструкции измерителя ESR лежит микроконтроллер PIC16F1705 PIC. Если вы хотите попробовать построить этот проект самостоятельно, PIC можно приобрести ниже полностью запрограммированным и готовым к использованию. Цена включает почтовые расходы и упаковку Королевской почтой, подписанной для обслуживания, либо на материковую часть Великобритании, либо по всему миру.


Удачного тестирования!

Мы используем файлы cookie чтобы предоставить вам наилучшие возможности просмотра.Принимать

Как справиться с ESR с помощью пары самодельных счетчиков

В вашем мусорном ведре лежит куча сомнительных электролитических крышек? Хотите вспомнить старинное радио-шасси? Затем вам может потребоваться измерить эквивалентное последовательное сопротивление конденсаторов, и в этом случае вам может пригодиться этот простой пятитранзисторный измеритель ESR.

Даже если вам не нужен измеритель СОЭ, видео [W2AEW] ниже является хорошим введением в то, как определяется СОЭ.Сама схема создана пользователем форума EEVBlog [Jay-Diddy_B] и настолько проста, насколько может быть такая схема. Два транзистора образуют генератор, который генерирует прямоугольную волну, которая управляет цепью резистивного моста. Две ножки мостового питания соответствуют усилителям с общим эмиттером, одна ножка проходит через тестируемое устройство. Разница в напряжении между двумя ножками считывается на счетчике, и у вас есть быстрый и простой способ отсортировать крышки в мусорной корзине. Схема [Jay-Diddy_B] представлена ​​только в виде макета; не было предпринято никаких попыток выставить практический инструмент.Действительно, [W2AEW] уже построил самодельный измеритель ESR с использованием шестнадцатеричных инверторов и операционных усилителей, с которыми он сравнивает результаты пятитранзисторной схемы. Его намерение здесь, кажется, состоит в том, чтобы прояснить методику измерения ESR и оценить даже более простую схему, чем его. Мы думаем, что он хорошо поработал по обоим пунктам.

Мы уже публиковали множество работ [WA2AEW] и раньше, например, этот передатчик Michigan Mity-Mite или его учебник по осциллографам. Нам очень нравится его непринужденный стиль и то, как он делает сложные темы легкими для понимания.Проверь их.

Создание измерителя СОЭ

Детали
Категория: электроника и электроника своими рукамиanddiy
Опубликовано: 15 марта 2013 г. 15 марта 2013 г.

Создание простого измерителя ESR для поиска и устранения неисправностей электролитических конденсаторов.

Что такое ESR

«Никогда в истории человечества так много плат не было испорчено таким малым количеством компонентов»

Уинстон Черчилль (или кто-то в его роде) — об электролитических конденсаторах

Электролитические конденсаторы — очень частая причина выхода из строя электронного оборудования. Со временем электролитические конденсаторы имеют тенденцию высыхать и выходить из строя.Часто неисправность можно обнаружить при простом визуальном осмотре (взорванный или деформированный конденсатор сложно не заметить). Однако в других случаях неисправность менее заметна и проявляется в увеличении эквивалентного последовательного сопротивления конденсатора (ESR). Конечно, идеальный конденсатор имеет нулевое эквивалентное последовательное сопротивление. В действительности множество неидеальных характеристик можно смоделировать как простой последовательный резистор. Производители часто указывают ESR на довольно высокой частоте 100 кГц, и это, как правило, очень низкое значение, конечно, в зависимости от значения емкости и номинального напряжения.Как правило, чем выше емкость, тем ниже ESR. Конденсаторы большой емкости, как правило, используются для фильтрации источника питания, где даже небольшие значения ESR приводят к увеличению внутреннего рассеивания мощности и преждевременному выходу конденсатора из строя. Если вы ремонтируете электронное оборудование, измеритель СОЭ — незаменимый предмет в вашем ящике для инструментов. Конечно, вы можете купить уже изготовленные единицы (см., Например, это на Amazon.com), но собрать их самостоятельно относительно просто и полезно. В этой статье я покажу вам, как я построил его, используя общие компоненты в моей лаборатории электроники, увлеченной своим увлечением.

Измерение СОЭ

Измеритель ESR — это, по сути, измеритель сопротивления переменного тока, предназначенный для обнаружения резисторов очень низкого сопротивления. Этого можно достичь, подав на конденсатор сигнал переменного тока довольно высокой частоты (100 кГц в этой конструкции) и измерив влияние падения сопротивления на конденсаторе. На частоте 100 кГц реактивная составляющая конденсатора (Xc = 1 / (2 * pi * f * C)) пренебрежимо мала для большинства обычных электролитических конденсаторов. Схема, показанная на рисунке 1, использует этот принцип работы.Простой таймер 555 генерирует прямоугольный сигнал с частотой около 100 кГц. Понижающий трансформатор 2: 1 снижает эффективное сопротивление источника выходного драйвера 555 и передает сигнал на тестируемый конденсатор и два резистора на 12 Ом. Диоды 1N4007 защищают от конденсаторов, которые все еще могут быть заряжены (в этом случае диоды эффективно «разряжают» их примерно до 0,6 В). Результирующий сигнал в точке (1) составляет около 200 мВ пик-пик. Это напряжение достаточно мало, чтобы тестер иногда можно было использовать в цепи без прямого смещения каких-либо PN-переходов.Обратите внимание, однако, что в реальных конструкциях часто несколько конденсаторов подключаются параллельно, поэтому результаты измерений могут вводить в заблуждение. Транзистор 2N3904 усиливает сигнал, пропущенный через конденсатор, с коэффициентом усиления около 10. Этот сигнал выпрямляется, фильтруется и подается на простой аналоговый вольтметр. Обратите внимание, что из-за способа подключения конденсатора напряжение будет максимальным для конденсатора с 0 ESR и минимальным для конденсатора с большим ESR. Поэтому для регулировки измерителя сначала закорачивают измерительные провода и проверяют, что измеритель отклоняется до конца.Это делается путем регулировки последовательного потенциометра 10 кОм. Шкала очень нелинейная, поэтому вы можете протестировать с известными значениями резисторов и отметить соответствующие числа на шкале. Я не делал этого в своем дизайне, а вместо этого сохранил отдельную таблицу, которую позже приклеил к коробке ESR.

Рисунок 1 — Схема измерителя СОЭ

ОБНОВЛЕНИЕ: Читатель и участник форума eevblog «Radio Tech» любезно перерисовали в программном обеспечении мою оригинальную нарисованную от руки схему. Вот его версия:

ОБНОВЛЕНИЕ 1: в более ранних версиях C5 и C6 были помечены как 100 мкФ.Правильное значение — 100 нФ (как на исходном рисунке выше).

Схема питается от одной батареи 9 В. Чтобы продлить срок службы батареи при падении напряжения со временем, я решил использовать недорогой LDO вместо более распространенного регулятора 78L05. LM2936 относительно недорогой и обеспечит работу даже при напряжении батареи около 5,5 В. Хотя это не показано на рисунке 1, позже я также добавил светодиодный индикатор ВКЛ / ВЫКЛ после переключателя.

Операция

Чтобы лучше проиллюстрировать, как работает схема, давайте взглянем на формы сигналов в точках (1), (2) и (3), отмеченных на рисунке 1, с закороченным проводом (ESR = 0) и с относительно высоким ESR = 5. .6 Ом. Осциллограммы (1), (2) и (3) на рисунке 1 соответствуют каналам 1, 2 и 3 на снимке осциллографа на рисунке 2. На рисунке 2 показано, что сигнал на выходе делителя конденсатора / резистора составляет всего около 232 мВ пик-пик, и что транзистор эффективно умножает это значение более чем на 10 раз. Канал 3 — это уже выпрямленный и отфильтрованный сигнал, в данном случае корпус около 1,35 В.

Рисунок 2 — Формы сигналов с закороченными измерительными проводами (СОЭ = 0)

На рис. 3 показан измеритель, который я использовал в этой ситуации в полностью разряженном состоянии (после регулировки потенциометра 10K).

Рисунок 3 — Полное истощение (СОЭ = 0)

Когда конденсатор с высоким ESR (в данном случае 5,6 Ом) подключается к измерительным проводам, выходное напряжение в точке (2) уменьшается, как и результирующий уровень постоянного тока в точке (3), как показано на рисунках 4 (осциллограф) и Цифра 5 (метр).

Рисунок 4 — Формы сигналов при ESR = 5,6 Ом

Рисунок 5 — Истощение при ESR = 5,6 Ом

Создание схемы

Схема настолько проста, что я решил использовать для сборки перфокарту.На рисунке 6 показан результат. У меня уже был подходящий сигнальный трансформатор в моем контейнере для запчастей, хотя его не совсем легко найти (он используется для линий передачи T1 / E1). Более распространенной альтернативой является использование трансформаторов, используемых в импульсных источниках питания, таких как блоки питания PC ATX. Также можно использовать более высокое отношение витков, хотя для этого потребуется настроить резистор серии 150 Ом на более высокое значение.

Рисунок 6 — Печатная плата

На рисунках 7 и 8 показана окончательная сборка внутри металлической коробки.Заметил, что я использовал аудиоразъем (и экранированный аудиокабель) для подключения к тестовым пробникам. Экран (земля) подключается к металлическому корпусу.

Рисунок 7 — Коробка и внутренности

Рисунок 8 — Окончательный результат

Выводы

Создание измерителя ESR — простой и увлекательный проект. Используя только часто встречающиеся детали в лаборатории электроники, вы должны быть готовы в кратчайшие сроки найти эти неприятные конденсаторы с высоким ESR!

Комментарии, вопросы, предложения? Вы можете связаться со мной по адресу: contact (at sign) paulorenato (dot) com

Комплект измерителя СОЭ Anatek Blue — Alltronics LLC

Наш синий измеритель СОЭ пользуется большой популярностью с 2007 года.Это последняя разработка Боба Паркера и преемник знаменитого измерителя ESR и низкого сопротивления Dick Smith MKII. Этот удобный и доступный по цене комплект измерителя измеряет эквивалентное последовательное сопротивление конденсатора (ESR) в цепи. ESR — очень важная качественная и рабочая характеристика конденсаторов емкостью более 1 мкФ. Этот измеритель выполняет качественные измерения, которые часто невозможно проверить с помощью измерителей емкости. Узнайте, почему важно низкое СОЭ, для получения дополнительной информации о СОЭ. Его также можно использовать для оценки работоспособности щелочных / перезаряжаемых низковольтных батарей, обнаружения коротких замыканий на печатных платах, замыканий индуктивной катушки и для оценки качества входящих компонентов.

Поставляется здесь в виде КОМПЛЕКТА со всеми компонентами, оборудованием, печатной платой и корпусом, но батарея 9 В в комплект не входит. Сборка займет 1-2 часа при средних навыках пайки. Устройство имеет встроенную систему диагностики, которая обнаруживает многие ошибки сборки.

Blue ESR Характеристики:

  • Поставляется в виде комплекта с полной сборкой и калибровкой Инструкции и руководство онлайн
  • Двухфутовые испытательные провода, изготовленные из сверхгибкого измерительного провода с банановыми вилками 4 мм и основными зажимами типа «крокодил»
  • Компенсация сопротивления измерительных проводов, обеспечивает более высокую точность
  • Широкие измерения сопротивления от 0.От 01 Ом до 99 Ом
  • Автоматическое отключение питания при отсутствии изменений в течение 3 минут, увеличивает время работы от батареи
  • Управляемое микропроцессором предупреждение о низком напряжении батареи, на дисплее мигает буква «b»
  • Легко читаемый, высокая яркость 0,5-дюймовый (13 мм) пронзительный синий светодиодный дисплей
  • Легко читаемая диаграмма ESR хороших / плохих конденсаторов на передней панели
  • Измеритель может тестировать конденсаторы в цепи и автономно от 1 мкФ до 10 000 мкФ и от 10 В до 450 В
  • Проверка ESR на поляризованных и неполяризованных конденсаторах емкостью> 1 мкФ
  • Измеряет ESR конденсаторов в цепи, идеально подходит для устранения ошибок уровня печатной платы
  • Обнаружение короткого замыкания на печатной плате и короткого замыкания катушек в трансформаторах
  • Может также использоваться для проверки низкоомного заземления ANSI / ESD S20.20, ANSI / ESD S6.1, ESD TR20.20 и проверка соответствия для систем заземления
  • Оценка работоспособности щелочных и аккумуляторных батарей низкого напряжения
  • Работает при напряжении батареи до 5,5 В, увеличивает срок службы батареи
  • Наборы, произведенные в Силиконовой долине, Калифорния, США
  • Один год гарантии на все детали от Anatek Instruments

Счетчик поставляется в виде комплекта, готового для сборки.Все, что вам нужно, это некоторые базовые навыки пайки, и вы можете получить рабочий счетчик за 1-2 часа. Устройство включает в себя сверхгибкие тестовые провода с банановыми вилками и простыми зажимами из крокодиловой кожи. Устройство также имеет легкий доступ к батарейному отсеку для стандартной 9-вольтовой батареи. Вы можете добавить дополнительные зажимы для крокодилов большего размера или игольчатые зонды (см. Наши синие аксессуары для определения СОЭ). Все компоненты находятся на печатной плате, покрытой пайкой. Поскольку это устройство использует микроконтроллер и имеет встроенную диагностику для обнаружения ошибок сборки. Он использует прошивку MkII, последнюю версию Боба.Устройство может работать при напряжении до 5,5 В, а также имеет функцию автоматического отключения питания, что продлевает срок службы батареи.

См. Здесь сравнение некоторых измерителей СОЭ, представленных на рынке сегодня, наш дискуссионный форум для советов по работе и устранению ошибок, а также советы Боба Паркера по использованию измерителя СОЭ.

См. Нашу страницу в Pinterest для получения информации о выводах для тестирования конденсаторов и обзоров тестеров ESR.

Для получения дополнительной информации см. Техническое описание Anatek BESR и видео с отзывами клиентов.Просмотрите отличную информационную страницу, созданную довольным клиентом, и несколько независимых обзоров Blue ESR / Low Ohms Meter от Capacitor Lab. Также несколько отличных видеороликов о ремонте на странице Дейва о ремонте телевизора. Наш малазийский дистрибьютор также опубликовал отличное руководство о том, как максимально эффективно использовать ваш измеритель СОЭ.

От наших постоянных клиентов в Интернете:

«Я ценю отличный сервис, комплект очень хорошо сочетается. Я очень впечатлен качеством печатной платы и тем, как хорошо работает счетчик».Петр

«Большое спасибо за наборы Blue ESR и Blue RT. Они сработали очень хорошо, и я честно могу рекомендовать ваши наборы. Я очень впечатлен качеством ваших наборов и деталями, которые вы предоставили для создания сборка абсолютно безболезненна ». Георгий

«Я расскажу вам, почему я ДЕЙСТВИТЕЛЬНО чувствую себя удачливым, и это то, что я купил у кого-то, кто все еще понимает значение обслуживания клиентов! Это имеет большое значение в моей книге (ну, если бы у меня была книга.) «Тодд

«Недавно я купил новый комплект Blue ESR от Anatek. Набор был получен очень быстро, и сборка прошла легко. Комплект аккуратно упакован, печатная плата высокого качества и четко обозначена для правильного размещения компонентов» — Wild Счет

«Я использую« Blue ESR Meter », который отлично подходит для проверки СОЭ в цепи, а также состояния батарей, таких как щелочные АА и аккумуляторы. Я обнаружил, что его точность близка к точности анализатора Sencore с 5 Ценник цифра, так что за цену я в восторге.Поставляется в виде комплекта »- ThatOneGuy

Увидел, что дядя Дуг использовал это на YouTube, и подумал, что мне нужно его достать, так как у меня был старый усилитель Fender, который я восстанавливал. Это инструмент для проверки старых электролитических конденсаторов. Джеймс К.

Очень полезно для выявления неисправных конденсаторов, которые иначе не были бы обнаружены. Если вы ремонтируете или работаете с винтажной электроникой, вам это понадобится. Марка М.

Работает хорошо. Я заказал пинцет, чтобы упростить тестирование компонентов на плате.Этот измеритель esr прост в использовании даже без пинцета с легко читаемой таблицей на передней панели. Майк Филлипс

Я купил свой измеритель esr около года назад, время от времени использовал его, но батарею еще не заменил. Я предполагаю, что использование батареи будет таким же, как у обычного омметра. Покупкой я безумно доволен. Он быстро определяет хороший или плохой статус бейсболок и порекомендует их покупку. Это будет стоить вашей цены в первый раз, когда вы диагностируете чистый на вид колпачок, который на самом деле имеет внутренние повреждения.Дэн А. Петерсон.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *