Site Loader

Содержание

Сопротивление конденсатора, теория и примеры

Сопротивление конденсатора постоянному току

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

   

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

Емкостное напряжение формула. Сопротивление конденсатора переменному току

Давайте-ка я вам напомню. Конденсатор, он же в народе «кондёр», состоит из двух изолированных обкладок. При кратковременной подаче на конденсатор постоянного напряжения, он заряжается и сохраняет в себе этот заряд. Емкость конденсатора зависит от того, на сколько «мест» рассчитаны обкладки, а также смотря, какое расстояние между ними. Давайте рассмотрим простейшую схему уже заряженного кондера:

Итак, мы здесь видим на одной обкладке восемь «плюсов», а на другой столько же и «минусов». Ну а как вы знаете, противоположности притягиваются) И чем меньше расстояние между обкладками, тем сильнее «любовь. Следовательно, плюс «любит» минус, а так как любовь взаимная, значит и минус тоже «любит» плюс)). Поэтому, это притяжение не дает разрядиться уже заряженному конденсатору.

Для того, чтобы разрядить конденсатор, достаточно проложить «мостик», чтобы «плюсы» и «минусы» встретились. То есть тупо замкнуть два вывода от прокладок хорошим проводником . Конденсаторы большой емкости лучше разряжать через сопротивление , то есть резистором.

С кондером вроде разобрались… А вот что такое «цепь» ?

Бывают велосипедные цепи, мотоциклетные, цепи для бензопилы, а бывают еще так называемые «электрические цепи». То есть это провода, лампочки, говорилки, радиодетали и тд соединенные в какой то последовательности и через которые идет или будет идти электрический ток от источника питания. Да хотя бы даже от батарейки или Блока питания .

Думаю, вы знаете, что электрический ток бывает переменным и постоянным. Давайте же узнаем, как ведет себя конденсатор, когда через него проходит постоянный и переменный ток?

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Ну не, если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора. Но это в расчет не берут.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:

Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой Резистор на 100 Ом. Также возьмем и конденсатор емкостью в 1 микроФарад:

Спаиваем как-то вот так и подаем сигнал с генератора частоты:

Далее за дело берется Цифровой осциллограф OWON SDS6062 . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала, ну то есть на одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.

Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:

Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F — это частота, Ma — амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал — желтым, для удобства восприятия.

Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида — это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 миллиВольт. Да еще и сигнал получился какой-то «лохматый». Это связано с так называемыми «шумами». Шум — это по идее сигнал с маленькой амплитудой и беспорядочным изменением напряжения, ловимый из окружающей среды. Также радиоэлементы тоже могут добавлять шум. Например очень хорошо «шумит» резистор. Значит «лохматость» сигнала — это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданый на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц

На резисторе уже получили 560 миллиВольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца

На выходе у нас уже 1 Вольт .

Ставим частоту 5 КилоГерц

Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 КилоГерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 КилоГерц:

Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:

По вертикали я отложил напряжение, по горизонтали — частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микроФарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:

Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналми конденсатора. Например, на частоте в 100 Герц и номиналом кондера в 1 мкФ амплитуда желтого сигнала равнялась 136 миллиВольт, а на этой же самой частоте амплитуда желтого сигнала, но с кондером в 0,1 мкФ уже была 101 миллиВольт(в реальности еще меньше из за помех). На частоте 500 Герц — 560 миллиВольт и 106 миллиВольт соответственно, на частоте в 1 КилоГерц — 1 Вольт и 136 миллиВольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц — это и есть постоянный ток. Что получится? 1/0=бесконечость или очень большое сопротивление. Короче говоря, обрыв цепи.

Забегая вперед, могу сказать, что в данном опыте мы получили Фильтр Высокой Частоты (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Details 08 May 2017

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две. Итак, сегодня мы поговорим про . Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

Рисунок 1 — Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t) , и через него течет некоторый ток I(t) . Зная одно, можно без проблем найти другое. Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока , там мы про все это довольно подробно говорили. Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом

Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик. Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная ? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы. Если говорить конкретно, то сейчас нам потребуется показательная запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

то его можно представить в показательной форме вот так

Почему это так, откуда взялось, что здесь какая буковка значит — обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас. Давайте представим, что t=0 . Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным. Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с амплитудой сигнала. Сейчас как раз такой момент. Поэтому полагаем t=0 и получаем комплексную амплитуду напряжения

Давайте раскроем скобки в экспоненте и воспользуемся правилами работы с показательными функциями.

Итак, у нас имеется три множителя. Будем разбираться со всеми по порядку. Объединим первые два и запишем выражение следующего вида

Что мы вообще такое записали? Правильно, комплексную амплитуду тока через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике , не зря ж я ее писал . Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома , у нас ток равнялся напряжению, деленному на сопротивление. Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение — переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор. Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное сопротивление конденсатора переменному току :

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное . Об этом свидетельствует буковка j в знаменателе дроби. А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фаз в 90 градусов между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье . Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент . Формула Эйлера у нас возникла из комплексного представления синусоиды. А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.

Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует , то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах . Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным . И другое оно в первую очередь из-за того самого пресловутого j в знаменателе, то есть из-за сдвига фазы. У «обычных» (которые называют активными ) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.

Рисунок 2 (кликабельно) — Зависимость сопротивления конденсатора от частоты

На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю (то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности. Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора. Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет. Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число. Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая — емкостью (реактивным сопротивлением). Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ . Требуется определить его сопротивление на частоте f 1 =50 Гц и на частоте f 2 =1 кГц . Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна U m =50 В . Ну и построить графики напряжения и тока.

Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f 1 =50 Гц сопротивление, равное

А для частоты f 2 =1 кГц сопротивление будет

По закону Ома находим величину амплитуды тока для частоты f 1 =50 Гц

Аналогично для второй частоты f 2 =1 кГц

Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f 1 =50 Гц следующим образом

А для второй частоты f 2 =1 кГц вот так

и для частоты f 2 =1 кГц

f 1 =50 Гц представлены на рисунке 3

Рисунок 3 (кликабельно) — Напряжение на конденсаторе и ток через конденсаторе, f 1 =50 Гц

Графики тока и напряжения для частоты f 2 =1 кГ ц представлены на рисунке 4

Рисунок 4 (кликабельно) — Напряжение на конденсаторе и ток через конденсаторе, f 2 =1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

Рассмотрим электрическую цепь, содержащую резистор с активным сопротивлением R и конденсатор емкости C , подключенную к источнику переменной ЭДС (рис. 653).

рис. 653
 Конденсатор, подключенный к источнику постоянной ЭДС, полностью препятствует прохождения тока − за некоторый промежуток времени конденсатор заряжается, напряжение между его обкладками становится равным ЭДС источника, после чего ток в цепи прекращается. Если же конденсатор включен в цепь переменного тока, то ток в цепи не прекращается − фактически конденсатор периодически перезаряжается, заряды на его обкладках периодически изменяются как по величине, так и по знаку. Конечно, никакие заряды не протекают между обкладками, электрического тока в строгом определении между ними нет. Но, часто не вдаваясь в детали и не слишком корректно, говорят о токе через конденсатор, подразумевая под этим ток в цепи, к которой подключен конденсатор. Такой же терминологией будем пользоваться и мы.
 По-прежнему, для мгновенных значений справедлив закон Ома для полной цепи: ЭДС источника равна сумме напряжений на всех участках цепи. Применение этого закона к рассматриваемой цепи приводит к уравнению

здесь U R = IR − напряжение на резисторе, U C = q/C − напряжение на конденсаторе, q − электрический заряд на его обкладках. Уравнение (1) содержит три изменяющихся во времени величины (известную ЭДС, и пока неизвестные силу тока и заряд конденсатора), учитывая, что сила тока равна производной по времени от заряда конденсатора I = q / , это уравнение может быть точно решено. Так как ЭДС источника изменяется по гармоническому закону, то и напряжение на конденсаторе и сила тока в цепи также будут изменяться по гармоническим законам с той же частотой − это утверждение непосредственно следует и уравнения (1).
 Сначала установим связь между силой тока в цепи напряжением на конденсаторе. Зависимость напряжения от времени представим в виде

 Подчеркнем, что в данном случае напряжение на конденсаторе отличается от ЭДС источника, как будет видно из дальнейшего изложения, между этими функциями существует также и разность фаз. Поэтому при записи выражения (2), мы выбираем произвольную начальную фазу нулевой, при таком определении фазы ЭДС, напряжения на резисторе и силы тока отсчитываются относительно фазы колебаний напряжения на резисторе.
 Используя связь между напряжением и зарядом конденсатора, запишем выражение для зависимости последнего от времени

которое позволяет найти временную зависимость силы тока 1

на последнем шаге использована тригонометрическая формула приведения, для того, чтобы в явном виде выделить сдвиг фаз между током и напряжением.
 Итак, мы получили, что амплитудное значение силы тока через конденсатор связано с напряжением на нем соотношением

а также между колебаниями силы тока и напряжения существует разность фаз, равна Δφ = π/2 . Эти результаты суммированы на рис. 654, где также представлена векторная диаграмма колебаний силы тока и напряжения.

рис. 654
 Для того, чтобы сохранить форму закона Ома для участка цепи, вводят понятие емкостного сопротивления , которое определяется по формуле

 В этом случае соотношение (5) становится традиционным для закона Ома

 При изучении закона Ома для цепей постоянного тока, мы указывали, что электрическое поле заставляет упорядоченно двигаться заряженные частицы внутри проводника, то есть создает электрический ток. Иными словами, «напряжение является причиной возникновения тока». В данном случае ситуация обратная − благодаря электрическому току на обкладках возникают электрические заряды, создающие электрическое поле, поэтому можно сказать, что в данном случае «сила тока является причиной возникновения напряжения». Хотя, к данным рассуждениям следует относиться несколько скептически, так движение зарядов (электрический ток) и электрическое поле «подстраиваются» друг к другу, пока между ними не устанавливается определенное соотношение, соответствующее установившемуся режиму. Так при постоянном токе условием стационарности является условие постоянства тока. В цепи переменного тока в установившемся режиме согласуются не только амплитудные значения токов и напряжений, но разность фаз между ними. Иными словами, обсуждаемый здесь причинно-следственный вопрос подобен вопросу о том, «что появилось раньше, курица или яйцо?»
 Так как между током и напряжением существует сдвиг фаз равный Δφ = π/2 , то средняя мощность тока через конденсатор равна нулю. Действительно,

 Иными словами, потерь энергии при протекании тока через конденсатор в среднем не происходит. Конечно, конденсатор влияет на протекание тока в цепи. В ходе зарядки конденсатора энергия электрического тока превращается в энергию электростатического поля между обкладками конденсатора, а при разрядке конденсатор отдает в цепь накопленную энергию, при этом, средняя энергия, потребляемая конденсатором, остается равной нулю. Поэтому емкостное сопротивление называют реактивным.
 Графики зависимости силы тока, напряжения и мгновенной мощности тока в рассматриваемой цепи показаны на рис. 655.


рис. 655
 Заливкой выделены промежутки времени, в течении которых конденсатор накапливает энергия − в этих промежутках сила тока и напряжение имеют один знак.
 Уменьшение емкостного сопротивления при возрастании частоты очевидна − чем выше частота тока, тем меньший заряд на конденсаторе успевает накопиться на обкладках конденсатора за половину периода (пока ток идет в одном направлении), тем меньше напряжение на нем, тем меньше он препятствует прохождению тока в цепи. Аналогичные рассуждения справедливы и для объяснения зависимости этого сопротивления от емкости конденсатора.
 Вернемся к рассмотрению цепи, показанной на рис. 653, которая описывается уравнением (1). Пренебрегая внутренним сопротивлением источника, запишем явное выражение для напряжения, создаваемого источником

Здесь U o − амплитудное значение напряжения, равное амплитудному значению ЭДС источника. Кроме того, теперь мы считаем начальную фазу ЭДС источника равной нулю (ранее за нуль мы принимали фазу колебаний напряжения на резисторе).
 Используя это уравнение и связь между силой тока и зарядом конденсатора, найдем явное выражение для зависимости силы тока в цепи от времени. Представим эту зависимость в виде

где I o и φ − подлежащие определению амплитудное значение силы тока и разности фаз между колебаниями тока и напряжения источника. Легко заметить, что в этом случае заряд конденсатора изменяется по закону

 Для проверки этого соотношения достаточно вычислить производную от приведенной функции и убедится, что она совпадает с функцией (9).
 Подставим эти выражения в уравнение (8)

и преобразуем тригонометрическую сумму


где через φ 1 обозначена величина, удовлетворяющая условию

 Теперь видно, что для того, чтобы функция (9) являлась решение уравнения (8), необходимо, чтобы ее параметры принимали значения:
 Амплитуда

искомая разность фаз связана с появившимся параметром φ 1 соотношением φ + φ 1 = 0 , то есть

 Таким образом, найдена явная зависимость силы тока от времени.
 В принципе таким методом, можно рассчитать любую цепь переменного тока. Но такой подход требует громоздких тригонометрических и алгебраических преобразований. К тем же результатам можно прийти гораздо проще, используя формализм векторных диаграмм. Покажем, как метод векторных диаграмм применяется к рассматриваемой цепи. Самое важное при использовании этого метода − построение векторной диаграммы, изображающей колебания токов и напряжений на различных участках цепи.
 Так как конденсатор и резистор соединены последовательно, то силы токов через них одинаковы в любой момент времени. Изобразим силу тока в виде произвольно направленного вектора (например, горизонтально 2 , как на рис. 656).

рис. 656
 Далее изобразим векторы колебаний напряжения на резисторе U R , который параллелен вектору колебаний тока (так как сдвиг фаз между этими колебаниями равен нулю) и напряжения на конденсаторе U C , который перпендикулярен вектору колебаний тока (так как сдвиг фаз меду ними равен π/2 − см. рис. 657).

рис. 657
 Сумма этих напряжений равна напряжению источника, поэтому вектор суммы векторов, изображающих колебания U R и U C , изображает колебания напряжения источника U(t) .
 Если же Вы настаиваете, что фаза суммарного напряжения равна нулю (то есть вектор, изображающий U должен быть расположен горизонтально), то поверните построенную диаграмму (рис. 657). Таким догматизмом далее мы заниматься не будем!
 Из построенной диаграммы следует, что амплитудные значения рассматриваемых напряжений связаны соотношением (следующим из теоремы Пифагора)

 Выражая амплитуды напряжений через амплитуду силы тока с помощью известных соотношений

и

получаем элементарное уравнение для определения амплитуды силы тока

из которого находим амплитуду силы тока в цепи

что, естественно, совпадает с выражением (11), полученным ранее громоздким алгебраическим методом. Векторная диаграмма также позволяет легко определить сдвиг фаз между колебаниями силы тока и напряжения источника

что также совпадает с полученным ранее.
 Как видно, метод векторных диаграмм позволяет полностью рассчитать характеристики цепей переменного тока, гораздо проще, чем рассмотренным выше методом аналитического решения соответствующего уравнения.
 Следует подчеркнуть, что физическая сущность обоих методов одна и та же, она выражается уравнением (10), различие только в математическом языке, на котором решается это уравнение.
 Рассчитаем, среднюю мощность, развиваемую источником. Мгновенное значение этой мощности равно произведению ЭДС на силу тока P = EI . Подставляя явные значения для этих величин и проводя усреднение, получим


 Обратите внимание, что полученное выражение для средней мощности является общим для переменного тока: средняя мощность переменного тока равна половине произведения амплитуд силы тока, напряжения и косинуса разности фаз между ними. Если использовать не амплитудные, а действующие значения силы тока и напряжения, то формула (16) приобретает вид

средняя мощность переменного электрического тока равна произведению действующих значений силы тока, напряжения и косинуса разности фаз между ними . Часто косинус сдвига фаз между силой тока и напряжением называют коэффициентом мощности .
 В тех случаях, когда по электрической линии требуется передать максимальную мощность, необходимо стремиться, чтобы сдвиг фаз между током и напряжением был минимальным (оптимально − нулевым), так как в этом случае передаваемая мощность будет максимальна.
 Применим полученную формулу для расчета мощности тока в рассматриваемой цепи, для чего выразим косинус сдвига фаз из выражения (12) и подставим в формулу (17), в результате чего получим


 При выводе этого соотношения использована формула (14) для амплитуды силы тока в цепи.  Полученный результат очевиден − средняя мощность, развиваемая источником, равна средней мощности теплоты, выделяющейся на резисторе. Этот вывод еще раз подтверждает, что на конденсаторе не происходит потерь энергии электрического тока.
 Расчет мощности тока также можно проводить с помощью построенной векторной диаграммы, из которой следует, что произведение амплитуды напряжения источника на косинус сдвига фаз равно амплитуде напряжения на резисторе

откуда сразу следует формула (18).
 Так как амплитудные и действующие значения сил токов и напряжений пропорциональны друг другу, то длины векторов векторных диаграмм можно считать пропорциональными действующим (а не амплитудным) значениям. При таком определении среднее произведение двух гармонических функций равно скалярному произведению векторов, изображающих эти функции.

1 Здесь мы используем математическую операцию вычисления производной функции. Если же вас она еще пугает − воспользуйтесь аналогией с механическими гармоническими колебаниями: аналогом заряда является координата, тогда аналогом силы тока служит мгновенная скорость.
2 Мы постоянно подчеркиваем, что начальная фаза отдельного колебания, ни в каких процессах не существенна, она может быть изменена простым переносом начала отсчета времени. Физический смысл имеют разности фаз между различными величинами, изменяющимися по гармоническим законам. Здесь мы как бы, очередной раз изменяем «точку отчета» фазы − при горизонтальном расположении вектора колебаний тока мы неявно принимаем начальную фазу колебаний силы тока равной нулю.

Емкость конденсаторов простой формы можно вычислить. Для этого предполагают, что на каждой из обкладок находиться некоторый заряд q, и вычисляют потенциал в электрическом поле рассматриваемого конденсатора U(x,y,z). Если удается решить эту задачу, то отсюда получается и значение напряжения между обкладками конденсатора U. После этого емкость можно найти по формуле .

Ёмкость плоского конденсатора.

Будем считать, что зазор между пластинами мал по сравнению с их размерами, так что краевыми эффектами можно пренебречь. Если на единице поверхности обкладок имеется заряд σ и диэлектриком является вакуум, то полное напряжение между обкладками можно определить из распределения потенциала в поле плоского конденсатора


, то

,

S – площадь каждой из пластин или меньшей из них, d – расстояние между пластинами. Полный заряд пластины

. Если диэлектриком является не вакуум, а вещество с диэлектрической проницаемостью ε, заполняющее все пространство, где имеется электрическое поле (пространство между обкладками), то емкость будет в ε раз больше:


.

Ёмкость плоского многопластинчатого конденсатора отличается от ёмкости плоского конденсатора заменой S на S (n-1), где n – число пластин (обкладок).


.

При уменьшении расстояния d между обкладками ёмкость увеличивается.

Ёмкость цилиндрического конденсатора и коаксиального кабеля :

Пусть конденсатор состоит из двух коаксиальных цилиндров с радиусами r 2 (внешний) и r 1 (внутренний). Длину цилиндра будем считать весьма большой по сравнению с зазором между ними. Напряжение между обкладками


,

где r 2 и r 1 – радиусы внешнего и внутреннего цилиндров, l – длина цилиндра, q – заряд внутреннего цилиндра на единицу его длины.

Поэтому ёмкость цилиндрического конденсатора в вакууме


,

Эта формула выражает, в частности, ёмкость кабеля, который состоит из металлического провода, окруженного слоем изолятора и металлической броней; данное выражение следует умножить еще на диэлектрическую проницаемость вещества изолятора


Ёмкость сферического конденсатора:

Если на обкладках конденсатора имеется заряд q, то напряжение между обкладками в вакууме



,

где r 2 и r 1 – радиусы внешней и внутренней сфер. Если диэлектриком является не вакуум, а вещество с диэлектрической проницаемостью ε, то


.

Если внешний радиус r 2 гораздо больше внутреннего r 1 , то эта формула упрощается


Емкость двухпроводной линии:

Рассмотрим два параллельных цилиндрических провода с радиусами r и расстоянием между осями d (рис.5). Будем считать, что все остальные тела, включая и землю, находятся на расстояниях, больших по сравнению с d, и поэтому будем рассматривать оба провода как простой конденсатор. Предположим, что d >> a. В этом случае оба цилиндра заряжены равномерно. Так как напряжение в электростатическом поле не зависит от формы пути, то для его вычисления выберем простейший путь в виде прямой линии, соединяющей оси проводов и перпендикулярной к их поверхности. Поэтому напряжение U между проводами


,

Ёмкость двух проводной линии в вакууме


,

в диэлектрике


d – расстояние между осями проводов, r – радиус проводов, l – длина линии.

Для всех типов конденсаторов существует пробивное напряжение – разность потенциалов между обкладками, при которой происходит электрический разряд через слой диэлектрика. Пробивное напряжение зависит от толщины диэлектрика, его свойств и формы обкладок. С уменьшением толщины диэлектрика падает пробивное напряжение и при толщине 1 мкм пробивное напряжение не превышает 10 В. Увеличение емкости, при уменьшении толщины диэлектрика, происходит за счет снижения рабочего напряжения.

Однофазные цепи переменного тока (страница 2)

Решение:
Полное сопротивление схемы

Полная мощность на входе схемы

Потери мощности в обмотке катушки

Активная мощность схемы

Коэффициент мощности схемы

Из таблиц тригонометрических величин .
Активное сопротивление схемы

сопротивление дуги

Индуктивное сопротивление цепи представлено индуктивным сопротивлением катушки:

Эту же величину можно определить из треугольника сопротивлении (рис. 25, масштаб )

Искомая индуктивность катушки

Если бы вместо катушки был включен реостат, то сопротивление схемы имело бы ту же величину 6 Ом, но было бы чисто активным:

откуда

Потери мощности в катушке

Потери мощности в реостате

Отсюда ясно, что к. п. д. схемы выше при «погашении» избытка напряжения индуктивной катушкой. Действительно, к. п. д. при наличии катушки

к. п. д. при наличии реостата

Не следует забывать, что «погашение» избытка напряжения катушкой (или конденсатором) ухудшает коэффициент мощности (в данном примере при наличии катушки и при наличии реостата).

22. Последовательно с катушкой, параметры которой и L=15,92 мГн, включен реостат сопротивлением, . Цепь включена на напряжение U=130 В при частоте f=50 Гц.
Определить ток в цепи; напряжение на катушке и реостате; коэффициент мощности цепи и катушки.

Решение:
Индуктивное сопротивление катушки

Полное сопротивление катушки

Активное сопротивление цепи, состоящей из последовательно соединенных катушки и реостата,

Полное сопротивление цепи

На основании закона Ома ток в цепи

Напряжение на катушке

Напряжение на реостате

Арифметическая сумма много больше приложенного напряжения U=130 В. Коэффициент мощности цепи

Коэффициент мощности катушки

Следовательно, реостат увеличивает коэффициент мощности и сопротивление цепи, но уменьшает ток, увеличивает потребление энергии схемой.
Действительно, активная мощность катушки

активная мощность реостата

Так как цепь неразветвленная и ток один, то с него целесообразно начать построение векторной диаграммы (рис. 26).
Напряжение на реостате, представляющем собой чисто активное сопротивление, совпадает по фазе с током; на диаграмме вектор этого напряжения совпадает по направлению с вектором тока. Из конца вектора в сторону опережения вектора тока I, под углом в сторону, противоположную вращению стрелки часов, откладываем вектор напряжения на катушке . Векторы построены так с целью сложения по правилу многоугольника.

23. Неразветвленная цепь составлена из двух катушек: у первой катушки индуктивность и сопротивление , у второй катушки индуктивность и сопротивление .
Определить ток в цепи и напряжения на каждой катушке, а также построить в масштабе векторную диаграмму, если частота f=50 Гц и приложенное напряжение U=12,6 В.

Решение:
Индуктивное сопротивление первой катушки

т. е. оно численно равно активному сопротивлению , что обусловливает отставание тока по фазе от напряжения на 1/8 периода (на 45°).
Действительно, тангенс угла сдвига фаз

Индуктивное сопротивление второй катушки

Так как ее активное сопротивление то тангенс угла сдвига фаз

Построим в масштабе треугольник сопротивлений для рассматриваемой цепи. Для этого зададимся масштабом сопротивлений . Тогда на диаграмме сопротивление 1,57 Ом будет изображено отрезком 15,7 мм, сопротивление 2,7 Ом — отрезком 27 мм и т. д. На рис. 27 отрезок, изображающий активное сопротивление , отложен в горизонтальном направлении, а отрезок, изображающий индуктивное сопротивление , — в вертикальном направлении под прямым углом к .

Полное сопротивление первой катушки является гипотенузой прямоугольного треугольника. Из вершины с этого треугольника в горизонтальном направлении отложен отрезок, изображающий сопротивление , и под прямым углом к нему вверх — отрезок, изображающий сопротивление . Гипотенуза се прямоугольного треугольника означает полное сопротивление второй катушки.
Из рис. 27 видно, что отрезок ае, изображающий полное сопротивление z неразветвленной цепи из двух катушек, не равен сумме отрезков ас и се, т. е. . Чтобы определить полное сопротивление z рассматриваемой цепи, следует сложить отдельно активные (, отрезок аf) и индуктивные (, отрезок ef) сопротивления катушек.
Гипотенуза ае, означающая полное сопротивление z цепи, определяется по теореме Пифагора:

Ток в цепи определяется по закону Ома:

Напряжение на первой катушке

Напряжение на второй катушке

Строим векторную диаграмму (рис. 28), приняв масштабы:
а) для тока ; тогда вектор тока изобразится отрезком длиной 25 мм;
б) для напряжения ; при этом вектор напряжения будет иметь длину 55,2 мм, вектор напряжения — длину 71 мм, а вектор приложенного напряжения — длину 126 мм.
Начало вектора совмещено с концом вектора для возможности сложения векторов напряжений но правилу многоугольника (напряжение, приложенное к неразветвленной цепи катушек, равно геометрической сумме напряжений отдельных катушек).

 

нахождение величины при помощи цепи

 

Рассмотрим следующую цепь.

рисунок

Видим, что конденсатор подключен к источнику переменного напряжения. Активное сопротивление, возникающее в соединительных проводах и на обкладках конденсатора, пренебрежимо мало. Поэтому считаем, его равным нулю и не будем учитывать.

Напряжение на обкладках конденсатора вычисляется по следующей формуле:

u = q/C, здесь q – заряд конденсатора, С – электроемкость конденсатора.

Напряжение в источнике изменяется согласно гармоническому закону:

u = Um*cos(ω*t), здесь Um – амплитуда колебаний напряжения.

Так как в цепи нет падения напряжения на активном сопротивлении, напряжение на обкладках конденсатора должно равняться напряжению в источнике. Следовательно, можем приравнять правые части записанных нами формул.

Имеем:

q/C = Um*cos(ω*t).

Теперь из этой формулы выразим заряд конденсатора:

q = C*Um*cos(ω*t).

Получается, что заряд тоже будет изменяться по гармоническому закону. Выражение для силы тока имеет следующий вид:

i = q/∆t.

Другими словами, сила тока — это скорость изменения заряда. Скорость изменения заряда мы можем получить дифференцируя полученное уравнение для q. Возьмем производную от заряда, получим выражение для силы тока.

I = q’ = Um*C*ω*cos(ω*t+pi/2).

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Im = Um*C*ω.

В окончательном виде уравнение примет вид:

I = Im*cos(ω*t+pi/2),

Колебания напряжения и колебания заряда в конденсаторе происходят в одной фазе. Если же сравнить формулу, полученную нами для силы тока с формулой колебания напряжения:

I = Im*cos(ω*t+pi/2),

u = Um*cos(ω*t),

Можно увидеть, что разность фаз между колебаниями силы тока и напряжения, получилась равной pi/2. Получается, что колебания силы тока опережают по фазе колебания напряжения на pi/2. Это представлено на следующем рисунке.

рисунок

Можно ввести следующее обозначение:

Xc = 1/(C*ω).

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

I = U/Xc.

Xc — величина называемая емкостным сопротивлением.

Емкостное сопротивление называется величина обратная произведению циклической частоты и электроемкости конденсатора. Эта величина будет играть роль активного сопротивления R в законе Ома.

Она характеризует сопротивление конденсатора переменному току. Если для постоянного тока конденсатор является бесконечно большим сопротивлением, то для переменного тока сопротивление конденсатора, конечно, и равняется Xc.

Нужна помощь в учебе?



Предыдущая тема: Плазма: общие сведения, свойства, нахождение в природе
Следующая тема:&nbsp&nbsp&nbspИндуктивное сопротивление: ЭДС самоиндукции и формулы

Калькулятор импеданса конденсатора • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения. Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума. Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг. 1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение. Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально). Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот). При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток. С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит. С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Емкостное сопротивление конденсатора формула. Реактивное сопротивление конденсатора

О заряде конденсатора.

Замкнем цепь. В цепи пойдет ток заряда конденсатора. Это значит что с левой обкладки конденсатора часть электронов уйдет в провод, а из провода на правую обкладку зайдет такое же количество электронов. Обе обкладки будут заряжены разноименными зарядами одинаковой величины.

Между обкладками в диэлектрике будет электрическое поле.

А теперь разомкнем цепь. Конденсатор останется заряженным. Закоротим куском провода его обкладки. Конденсатор мгновенно разрядится. Это значит что с правой обкладки уйдет в провод избыток электронов, а из провода на левую обкладку войдет недостаток электронов. На обоих обкладках электронов будет одинаково, конденсатор разрядится.

До какого напряжения заряжается конденсатор?

Он заряжается до такого напряжения, которое к нему приложено с источника питания.

Сопротивление конденсатора.


Замкнем цепь. Конденсатор начал заряжаться и сразу стал источником тока, напряжения, Э. Д. С.. На рисунке видно что Э. Д. С. конденсатора направлена против заряжающего его источника тока.

Противодействие электродвижущей силы заряжаемого конденсатора заряду этого конденсатора называется емкостным сопротивлением.

Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом емкостное сопротивление является реактивным, т.е. не вызывающим безвозвратных потерь энергии.

Почему постоянный ток не проходит через конденсатор, а переменный ток проходит?

Включим цепь постоянного тока. Лампа вспыхнет и погаснет, почему? Потому что в цепи прошел ток заряда конденсатора. Как только конденсатор зарядится до напряжения батареи ток в цепи прекратится.

А теперь замкнем цепь переменного тока. В I четверти периода напряжение на генераторе возрастает от 0 до максимума. В цепи идет ток заряда конденсатора. Во II четверти периода напряжение на генераторе убывает до нуля. Конденсатор разряжается через генератор. После этого конденсатор вновь заряжается и разряжается. Таким образом в цепи идут токи заряда и разряда конденсатора. Лампочка будет гореть постоянно.

В цепи с конденсатором ток проходит во всей замкнутой цепи, в том числе и в диэлектрике конденсатора. В заряжающемся конденсаторе образуется электрическое поле которое поляризует диэлектрик. Поляризация это вращение электронов в атомах на вытянутых орбитах.

Одновременная поляризация огромного количества атомов образует ток, называемый током смещения. Таким образом в проводах идет ток и в диэлектрике причем одинаковой величины.

Емкостное сопротивление конденсатора определяется по формуле

Рассматривая график делаем вывод: ток в цепи с чисто емкостным сопротивлением опережает напряжение на 90 0 .

Возникает вопрос каким образом ток в цепи может опережать напряжение на генераторе? В цепи идет ток от двух источников тока поочередно, от генератора и от конденсатора. Когда напряжение на генераторе равно нулю ток в цепи максимален. Это ток разряда конденсатора.

О реальном конденсаторе

Реальный конденсатор имеет одновременно два сопротивления: активное и емкостное. Их следует считать включенными последовательно.

Напряжение приложенное генератором к активному сопротивлению и ток идущий по активному сопротивлению совпадают по фазе.

Напряжение приложенное генератором к емкостному сопротивлению и ток идущий по емкостному сопротивлению сдвинуты по фазе на 90 0 . Результирующее напряжение приложенное генератором к конденсатору можно определить по правилу параллелограмма.

На активном сопротивлении напряжение U акт и ток I совпадают по фазе. На емкостном сопротивлении напряжение U c отстает от тока I на 90 0 . Результирующее напряжение приложенное генератором к конденсатору определяется по правилу параллелограмма. Это результирующее напряжение отстает от тока I на какой то угол φ всегда меньший 90 0 .

Определение результирующего сопротивления конденсатора

Результирующее сопротивление конденсатора нельзя находить суммируя величины его активного и емкостного сопротивлений. Это делается по формуле

При переменном напряжении на реальном конденсаторе кроме тока смещения имеются небольшие токи проводимости, через толщу диэлектрика (объемный ток) и по поверхности (поверхностный ток).Токи проводимости и поляризацию диэлектрика сопровождают потери энергии.

Таким образом, в реальном конденсаторе наряду с изменением энергии электрического поля (это характеризует реактивная мощность Q ) из-за несовершенства диэлектрика идет необратимый процесс преобразования электрической энергии в тепло, скорость которого выражается активной мощностью Р . Поэтому в схеме замещения реальный конденсатор должен быть представлен активным и реактивным элементами.

Деление реального конденсатора на два элемента — это расчетный прием, так как конструктивно их выделить нельзя. Однако такую же схему замещения имеет реальная цепь из двух элементов, один из которых характеризуется только активной мощностью Р (Q = 0), другой — реактивной (емкостной) мощностью Q(P = 0).

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активной G и емкостной B с проводимостей (рис. 13.15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/U c 2 , а емкость — конструкцией конденсатора. Предположим, что проводимости G и В с для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt .

Требуется определить токи в цепи и мощность. Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и В с, согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = i G + i c , (13.30)

Учитывая, что ток i G совпадает по фазе с напряжением, а ток i c опережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:


Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = I G + I C

Действующие величины составляющих тока:

I G = GU (13.31)

I C = B C U (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φ a =0). Вектор I G совпадает по направлению с вектором U, а вектор I C направлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ , величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы I G и I C:

При напряжении u = U m sinωt соответствии с векторной диаграммой уравнение тока

i = I m sin(ωt + φ )

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = I G /U и емкостная В с = I с /U проводимости, а гипотенузой — полная проводимость цепи Y = I/U . Из треугольника проводимостей

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

U = I/Y (13.35)

Из треугольников токов и проводимостей определяют величины

cos φ = I G /I = G/Y; sinφ = I c /I = B c /Y; tgφ = I C /I G = B c /G. (13.36)

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = U m sinωt * I m sin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17. Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U. В результате умножения получится подобный треугольник мощностей (рис. 13.16, в), катетами которого являются мощности; активная

P = UI G = UIcosφ

реактивная

Q = UI C = UIsinφ

полная

Схема замещения конденсатора с последовательным соединением элементов

Реальный конденсатор, так же как и , на расчетной схеме может быть представлен последовательным соединением двух участков: с активным R и емкостным Х с сопротивлениями. На рис. 13.18, а такая схема показана в сравнении со схемой параллельного соединения активной и емкостной проводимостей (рис.13. 18,6). Все выводы и формулы, полученные для катушки, остаются в силе и для конденсатора при условии замены индуктивного сопротивления емкостным. Конденсаторы, применяемые на практике, имеют относительно малые потери энергии. Поэтому в схемах замещения они представлены чаще всего только реактивной частью, т. е. емкостью С Участки цепи, где последовательно соединены отдельные элементы — резистор R и конденсатор С, имеют такую схему замещения, как показано на рис. 13.18, а. Если вам интересно прочитайте которые применяются в промышленности.

Положим теперь, что участок цепи содержит конденсатор емкости C , причем сопротивлением и индуктивностью участка можно пренебречь, и посмотрим, по какому закону будет изменяться напряжение на концах участка в этом случае. Обозначим напряжение между точками а и b через u и будем считать заряд конденсатора q и силу тока i положительными, если они соответствуют рис.4. Тогда

и, следовательно,

Если сила тока в цепи изменяется по закону

то заряд конденсатора равен

.

Постоянная интегрирования q 0 здесь обозначает произвольный постоянный заряд конденсатора, не связанный с колебаниями тока, и поэтому мы положим . Следовательно,

. (2)

Сравнивая (1) и (2), мы видим, что при синусоидальных колебаниях тока в цепи напряжение на конденсаторе изменяется также по закону косинуса. Однако колебания напряжения на конденсаторе отстают по фазе от колебаний тока на p/2. Изменения тока и напряжения во времени изображены графически на рис.5. Полученный результат имеет простой физический смысл. Напряжение на конденсаторе в какой-либо момент времени определяется существующим зарядом конденсатора. Но этот заряд был образован током, протекавшим предварительно в более ранней стадии колебаний. Поэтому и колебания напряжения запаздывают относительно колебаний тока.

Формула (2) показывает, что амплитуда напряжения на конденсаторе равна

Сравнивая это выражение с законом Ома для участка цепи с постоянным током (), мы видим, что величина

играет роль сопротивления участка цепи, она получила название емкостного сопротивления. Емкостное сопротивление зависит от частоты w, и при высоких частотах даже малые емкости могут представлять совсем небольшое сопротивление для переменного тока. Важно отметить, что емкостное сопротивление определяет связь между амплитудными, а не мгновенными значениями тока и напряжения.

Мгновенная мощность переменного тока

меняется со временем по синусоидальному закону с удвоенной частотой. В течение времени от 0 до T /4 мощность положительна, а в следующую четверть периода ток и напряжение имеют противоположные знаки и мощность становится отрицательной. Поскольку среднее значение за период колебаний величины равно нулю, то средняя мощность переменного тока на конденсаторе .

Ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС.
Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

где Xc — реактивное сопротивление конденсатора, f — частота, C — емкость.

Для расчета реактивного сопротивления конденсатора заполните предложенную форму:

Расчет ёмкости для реактивного сопротивления:

Расчёт ёмкости: C = 1 /(2πƒX C)
  • Похожие статьи
  • — Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно…
  • — Принципиальная электрическая схема цифрового широкодиапазонного измерителя емкости показана на рисунке. Принцип работы прибора – измерение длительности импульса автогенератора, в состав времязадающей цепи которого входит измеряемый конденсатор. Далее, формируется пачка импульсов образцовой частоты…
  • — Данная статья посвящена простому блоку со стабилизатором типа КРЕН. КРЕН это 3-х или 4-х выводные микросхемы, для примера взята 3-х выводная микросхема. Для стабилизированного напряжения (положительного) можно взять микросхему КРЕН5А, на +5В. Силовая часть (см. рис.1) примерно одинакова для…
  • — Габариты и масса высоковольтных трансформаторов из-за необходимости обеспечения электрической прочности становятся очень большими. Поэтому удобнее использовать в высоковольтных маломощных источниках питания умножители напряжения. Умножители напряжения создаются на базе схем выпрямления с емкостной…
  • — Приемник может быть перестроен в диапазоне 70…150 МГц без изменения номиналов подстроечных элементов. Реальная чувствительность приемника около 0,3 мкВ, напряжение питания 9 В. Следует заметить, что напряжение питания МС3362 — 2…7 В, а МС34119 2…12 В, поэтому МС3362 питается через…

Формула емкостного сопротивления конденсатора в цепи переменного тока

Электросопротивление — это параметр в электротехнике, характеризующий возможность вещества препятствовать прохождению электричества.

В зависимости от качеств материала, электросопротивляемость может уменьшаться до крайне маленьких величин (микромилиОмы — у проводников, металлов) или повышаться до огромных значений (ГигаОмы — изоляторов, диэлектриков). Величина противоположная сопротивлению — проводимость.

Что такое

Цепь, по которой протекает непостоянный ток, обладает полным сопротивлением. Вычисляется оно по сумме активного и реактивного сопротивлений, возведенных в квадрат.

Формула вычисления

Графическое изображение этой формулы представляет собой треугольник. Его катеты представлены активным и реактивным сопротивлениями, а гипотенуза полным электросопротивлением.

Графическое отображение формулы

Емкостное электросопротивление (Xc) является одним из видов реактивного сопротивления. Этот показатель характеризует противодействие электроемкости в цепи электротоку с переменными параметрами.

Преобразование электроэнергии в тепловую в момент протекания электричества сквозь емкость не возникает (свойство реактивного сопротивления). Вместо этого осуществляется передача энергии электрического тока электрическому полю и обратно.

Потерь энергии при таком обмене не происходит.

Емкостное сопротивление конденсатора можно сравнить с кастрюлей, наполняемой жидкостью, при полном заполнении ее объема она переворачивается, выливая содержимое, а затем наполняется заново. После достижения максимального заряда конденсатора происходит разрядка, затем он заряжается вновь.

Дополнительная информация: Конденсатор цепи способен накопить лишь ограниченную величину заряда до перемены полярности напряжения.

По данной причине непостоянный ток не падает до нуля, важное отличие от постоянного электричества.

Низкие значения частоты тока соответствуют низким показателям заряда, накопленного конденсатором, низким значениям противодействия электричеству, что придает реактивные свойства.

По сути, Xc — это противостояние электродвижущей силы конденсатора, уровню его заряда.

От чего зависит сопротивление конденсаторов цепей переменного тока

Показатели его, зависят не только от емкостных характеристик последнего, но и от частотной характеристики электротока, протекающего по цепи.

Когда речь идет о сопротивлении резистора, то говорится о параметрах самого резистора, например, материале, форме, но полностью отсутствует взаимосвязь сопротивления его и показателей частоты электричества цепи (речь идет об идеальном резисторе, паразитные параметры которому не характерны).

Когда речь идет об устройстве накопления энергии и заряда электрического поля — все иначе. Конденсатор одной и той же емкости при разных частотах тока обладает неодинаковым уровнем сопротивления. Амплитуда протекающего через него электричества при постоянной амплитуде напряжения обладает разной величиной.

Вычисление Xc

Рассматривая эту формулу сопротивления конденсатора в цепи переменного тока, к каким выводам можно прийти? При повышении частотных показателей сигнала, электросопротивляемость конденсатора снижается.

При повышении емкостных характеристик устройства для накопления заряда и энергии электрического поля Xc переменного электричества, проходящего сквозь него, будет стремиться вниз.

График, отображающий эту величину конденсатора при непостоянном токе цепи, имеет форму гиперболы

Момент приближения значений частоты к нулевым отметкам на оси (когда переменный электроток становится похож своими параметрами на постоянный), сопровождается возрастанием Xc конденсатора до беспредельных величин.

Это действительно так: известно, что конденсатор сети постоянного тока является фактически разрывом цепи. Реальная электросопротивляемость, естественно, не бесконечна, ее ограничивает уровень конденсаторной утечки.

Но величины его остаются на высоком уровне, который невозможно не учитывать.

При возрастании цифр частоты до уровня бесконечных значений, емкостное сопротивление электроконденсатора стремится к нулевым отметкам. Такое характеризует идеальные модели.

В реальных условиях конденсатор имеет неприятные характеристики (такие как индуктивность и сопротивления утечек), поэтому снижение емкостного сопротивления происходит до определенных значений, после которых оно возрастает.

Обратите внимание! При подключении конденсатора к цепочке электричества с переменными параметрами, его мощность не тратится, потому что фазовые характеристики напряжения и силы тока сдвинуты на 90° в отношении друг друга.

В одну четверть периода происходит зарядка электроконденсатора (энергия запасается в его электрополе), в следующее время происходит его разрядка, энергия поступает обратно в цепочку. Его электросопротивляемость является безваттной, реактивной.

Причины ёмкостного сопротивления

Причиной возникновения сопротивления емкостного считается уровень напряжения, возникающий на конденсаторе в процессе его заряда. Вектор его действия встречен вектору напряжения источника электричества, потому создает помеху воспроизведению электротока этим источником.

Как рассчитать Xc

Сила тока цепи с постоянными показателями напряжения в момент работы электроконденсатора равно 0. Ее значения в цепи с переменным напряжением после подключения конденсатора I ? 0. В итоге, цепочке с непостоянным напряжением конденсатор придает Xc меньшее, чем цепочке с неизменным показателем напряжения.

Формула вычисления показателя напряжения за одну секунду

Формула расчета величины силы электротока за мгновение

Получается, что изменения напряжения отличаются по фазе от изменений тока на π/2.

По закону, сформулированному Омом, показатели силы электротока находятся в прямой пропорциональной зависимости от величины напряжения цепи. Формула вычисления наибольших величин напряженности и силы тока:

Наибольшие величины напряженности и силы тока можно рассчитывать по формуле

Окончательная формула расчета емкостного сопротивления в цепи переменного тока

  • ω = 2πf.
  • f — показатель частоты непостоянного тока, измеряется в герцах;
  • ω — показатель угловой частоты тока;
  • С — размер конденсатора в фарадах.

Важно! Xc не выступает параметром проводника, оно находится в зависимости от такой характеристики электроцепи, как частота электротока.

Повышение значений данной величины вызывает рост пропускающей способности конденсатора (предел его сопротивления току непостоянному понижается).

Представим, к цепи подключен конденсатор, емкостью 1 мкФ. Необходимо вычислить, уровень емкостного сопротивления при величине частоты 50 Гц и как изменится емкостное сопротивление цепи переменного тока при частоте 1 кГц. Амплитуда напряжения, подведенного к конденсатору, составляет 50 В.

После введения данных в формулу, определяющую Xc, и получаются значения:

Результат для частоты 50 Гц

Результат для 1 кГц

Емкостное сопротивление приравнивается к соотношению отклонений колебаний напряжения зажимов электрической цепочки с емкостными параметрами (с небольшими индуктивным и активным сопротивлениями) к колебаниям электротока цепочки. Она равнозначна электроконденсатору.

В чем измеряется емкостное электросопротивление

R представлено отношением напряжения к силе тока замкнутой электрической цепи, по закону Ома. Единицы измерения — Ом. Xc, как его разновидность, тоже измеряется в Омах.

Конденсаторы применяются при изготовлении фильтров. При параллельном присоединении к цепи, он способен задерживать высокие частоты, при последовательном удаляет низкие.

Также они используются с целью отсечения переменной части от постоянной. Он незаменим в радиотехнике, при производстве датчиков приближения, для контроля процессов производства.

Технологии, обладающие выше описанными свойствами, используются во всех областях промышленности.

Источник: https://rusenergetics.ru/ustroistvo/yomkostnoe-soprotivlenie

Сопротивление конденсатора

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две.

Итак, сегодня мы поговорим про сопротивление конденсатора переменному току.

Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.

Сразу оговорюсь про одну важную вещь. Вообще говоря, реальный конденсатор обладает помимо емкостного сопротивления еще резистивным и индуктивным.

На практике все это надо обязательно учитывать, потому что возможны ситуации (обычно связанные с ростом частоты сигнала), когда конденсатор перестает быть конденсатором и превращается… в некое подобие катушки индуктивности . При проектировании схем этот момент обязательно надо иметь в виду. Согласитесь, господа, крайне неприятно поставить в схему конденсатор и потом столкнуться с тем, что из-за высокой частоты он ведет себя и не как конденсатор вовсе, а как самый настоящий дроссель. Это, безусловно, очень важная тема, но сегодня речь пойдет не о ней. В сегодняшней статье мы будем говорить непосредственно про емкостное сопротивление конденсатора. То есть мы будем считать его идеальным, без каких бы то ни было паразитных параметров вроде индуктивности или активного сопротивления.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

Рисунок 1 – Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t), и через него течет некоторый ток I(t). Зная одно, можно без проблем найти другое.

Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока, там мы про все это довольно подробно говорили.

Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

  • В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом

Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик.

Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная статья? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы.

Если говорить конкретно, то сейчас нам потребуется показательная запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

  1. то его можно представить в показательной форме вот так

Почему это так, откуда взялось, что здесь какая буковка значит – обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас.

Давайте представим, что t=0. Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным.

Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с амплитудой сигнала. Сейчас как раз такой момент.

Поэтому полагаем t=0 и получаем комплексную амплитуду напряжения

  • Давайте раскроем скобки в экспоненте и воспользуемся правилами работы с показательными функциями.

Итак, у нас имеется три множителя. Будем разбираться со всеми по порядку. Объединим первые два и запишем выражение следующего вида

Что мы вообще такое записали? Правильно, комплексную амплитуду тока через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике, не зря ж я ее писал . Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

  1. Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома, у нас ток равнялся напряжению, деленному на сопротивление.

Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение – переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор.

Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное сопротивление конденсатора переменному току:

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное. Об этом свидетельствует буковка j в знаменателе дроби.

А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фаз в 90 градусов между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье.

Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент . Формула Эйлера у нас возникла из комплексного представления синусоиды.

А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.

Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует, то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Согласитесь, жить стало чуточку легче. Это выражение позволяет рассчитать сопротивление конденсатора для конкретной емкость и частоты сигнала. Заметьте, господа, интересный факт. Сопротивление конденсатора, оказывается, зависит не только от самого конденсатора (а именно его емкости), но и от частоты протекающего тока.

Если вспомнить обычные резисторы, то в них у нас сопротивление зависело только от самого резистора, материала, формы и всего такого прочего, но не зависело от частоты (разумеется, мы говорим сейчас про идеальные резисторы, без всяких паразитных параметров). Здесь все по-другому.

Один и тот же конденсатор на разной частоте будет иметь разное сопротивление и через него будет течь ток разной амплитуды при одной и той же амплитуде напряжения.

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах. Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным. И другое оно в первую очередь из-за того самого пресловутого j в знаменателе, то есть из-за сдвига фазы.

У «обычных» (которые называют активными) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.

  • Рисунок 2 (кликабельно) – Зависимость сопротивления конденсатора от частоты
  • На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю (то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности.

Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора.

Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

При стремлении частоты к бесконечности, сопротивление конденсатора стремится к нулю. Это все в теории, конечно.

На практике реальный конденсатор обладает рядом паразитных параметров (в частности, паразитная индуктивности и сопротивление утечки), из-за чего сопротивление уменьшается только лишь до некоторой определенной частоты, а потом начинает наоборот расти. Но об этом более подробно в другой раз.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет.

Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число.

Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая – емкостью (реактивным сопротивлением).

Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ. Требуется определить его сопротивление на частоте f1=50 Гц и на частоте f2=1 кГц. Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна Um=50 В. Ну и построить графики напряжения и тока.

  1. Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f1=50 Гц сопротивление, равное
  2. А для частоты f2=1 кГц сопротивление будет
  3. По закону Ома находим величину амплитуды тока для частоты f1=50 Гц
  4. Аналогично для второй частоты f2=1 кГц
  5. Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f1=50 Гц следующим образом
  6. А для второй частоты f2=1 кГц вот так
  7. Дальше мы помним, что ток в конденсаторе опережает напряжение на . Поэтому с учетом этого можем записать закон изменения тока через конденсаторы для первой частоты f1=50 Гц
  8. и для частоты f2=1 кГц
  9. Графики тока и напряжения для частоты f1=50 Гц представлены на рисунке 3
  10. Рисунок 3 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f1=50 Гц
  11. Графики тока и напряжения для частоты f2=1 кГц представлены на рисунке 4
  12. Рисунок 4 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f2=1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

Источник: http://myelectronix.ru/peremennyy-tok/63-soprotivlenie-kondensatora

Емкостное сопротивление конденсатора формула расчёта и последовательность соединения в цепи

Емкостное сопротивление конденсатора – величина, измеряемая в омах, создается непосредственно самим конденсатором, который включен в любую цепь. Оно должно иметь большую величину, то есть быть большим.

Если на них происходит подача переменного тока, в устройстве происходят процессы заряда и последующего разряда. Последнее происходит по требованию цепи. При включении электрического тока, напряжение будет равно 0.

Само устройство при этом начнет заряжаться, следовательно его величина напряжения постепенно растет. В случае необходимости, при достижении максимального заряда, произойдет разряд конденсатора.

В статье, посвященной теме расчета сопротивления конденсатора, приведена вся информация о процессе, как происходит заряд-разряд. В качестве бонуса есть интересный материал по теме, который можно скачать, и видеоролик в конце статьи.

Формула сопротивления конденсаторов.

Формула сопротивления

Формула ёмкостного сопротивления выводится следующим образом:

  • Вначале следует вычислить угловую частоту. Для этого частоту протекающего по цепи тока (в герцах) необходимо умножить на удвоенное число «пи».
  • Затем полученное число следует перемножить на ёмкость конденсатора в фарадах.

Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость.

Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление. Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим.

Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.

Применение на практике

Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:

  • Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
  • Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.
  • Ещё одна область применения — отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.

В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию.

Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод.

Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.

Измерение сопротивления конденсаторов.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

Будет интересно➡  Конденсатор — простыми словами о сложном

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними. Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Таблицы максимальных значений емкости конденсаторов.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным.

Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f.

Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Материал в тему: все о переменном конденсаторе.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения.

Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток.

Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2 ) ½.

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

Стоит почитать: все об электролитических конденсаторах.

  • В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет
  • Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.
  • По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (50002+32002)½ = 5 936 Ом =5,9 кОм.

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей.

Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C. RC цепь Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов.

Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU.

Здесь U – напряжение источника питания. Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением. В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов. Сопротивление катушки вычисляется по формуле. Сопротивление конденсатора вычисляется по формуле:

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Будет интересно➡  Несколько фактов об электролитических конденсаторах

Z = R + i X , где Z – импеданс, R – величина активного сопротивления , X – величина реактивного сопротивления, i – мнимая единица . В зависимости от величины X какого-либо элемента электрической цепи, говорят о трёх случаях:

  • X > 0 – элемент проявляет свойства индуктивности .
  • X = 0 – элемент имеет чисто активное сопротивление .

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений.

Индуктивное сопротивление (X L ) обусловлено возникновением ЭДС самоиндукции . Электрический ток создает магнитное поле.

Изменение тока, и как следствие изменение магнитного поля, вызывает ЭДС самоиндукции, которая препятствует изменению тока. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока.

Ёмкостное сопротивление (X C ). Величина ёмкостного сопротивления зависит от ёмкости элемента С и также частоты протекающего тока.

Заключение

В данной статье были рассмотрены основные вопросы расчета сопротивления конденсаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике “Что такое конденсаторы”

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.amperof.ru

www.eduspb.com

www.beasthackerz.ru

www.electroandi.ru

www.websor.ru

Источник: https://ElectroInfo.net/kondensatory/formula-raschjota-soprotivlenija-kondensatora.html

Формула емкостного сопротивления

После замыкания электрической цепи начинается зарядка, после чего конденсатор сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила – ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления.

Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора.

При разрядке конденсатор вся энергия возвращается обратно в цепь, превращаясь в энергию электрического тока.

Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах.

Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин – электродов, разделенных слоем диэлектрика.

На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Совершенно по-другому на конденсатор воздействует переменный ток, вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика.

В разных типах устройств диэлектриком может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы.

В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Изменение магнитного потока

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах.

Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин.

Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится.

Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях.

Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка.

В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора.

После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t.

В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента.

В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону.

В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться.

Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C.

Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока.

Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

Режим короткого замыкания

Источник: https://electric-220.ru/news/formula_emkostnogo_soprotivlenija/2017-05-04-1255

Емкость конденсатора Formula

Емкость конденсатора — это способность конденсатора накапливать электрический заряд на единицу напряжения на своих пластинах конденсатора. Емкость определяется делением электрического заряда на напряжение по формуле C = Q / V. Его единица — Фарад.

Формула

Его формула выглядит так:

C = Q / V

Где C — емкость, Q — напряжение, а V — напряжение. Мы также можем найти заряд Q и напряжение V, переписав приведенную выше формулу как:

Q =

CV

В = Q / C

Фарад — единица измерения емкости.Один фарад — это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.

Большинство конденсаторов, которые используются в электронике, имеют значения емкости, указанные в микрофарадах (мкФ) и пикофарадах (пФ). Микрофарад — это одна миллионная фарада, а пикофарад — одна триллионная фарада.

Какие факторы влияют на емкость конденсатора?

Зависит от следующих факторов:

Площадь плит

Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластины A.Большая площадь пластины дает большую емкость и меньшую емкость. На рисунке (а) показано, что площадь пластины конденсатора с параллельными пластинами равна площади одной из пластин. Если пластины перемещаются относительно друг друга, как показано на рис. (B), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.

Тарелки разделительные

`Емкость обратно пропорциональна расстоянию между пластинами.Разделение пластин обозначено буквой d, как показано на рис. (А). Чем больше разделение пластин, тем меньше емкость, как показано на рис. (B). Как обсуждалось ранее, напряжение пробоя прямо пропорционально расстоянию между пластинами. Чем дальше разделены пластины, тем больше напряжение пробоя .

Диэлектрическая проницаемость материала

Как известно, изоляционный материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами при заданном заряде и, таким образом, увеличивать емкость.Если напряжение фиксировано, из-за наличия диэлектрика может храниться больше заряда, чем может храниться без диэлектрика. Мера способности материала создавать электрическое поле называется диэлектрической постоянной или относительной диэлектрической проницаемостью и обозначается как? r .

Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве эталона, а для всех других материалов значения ∈r указаны по сравнению с вакуумом или воздухом.Например, материал с εr = 8 может иметь емкость в восемь раз большую, чем у воздуха, при прочих равных условиях.

Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , которое выражается следующей формулой:

r = ∈ / ∈ 0

Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого из них.Значения могут варьироваться, потому что они зависят от конкретного состава материала.

Материал Типичные значения ∈r

  • Воздух 1.0
  • тефлон 2,0
  • Бумага 2.5
  • Масло 4.0
  • Слюда 5,0
  • Стекло 7,5
  • Керамика 1200

Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой.Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈0, которое выражается следующей формулой:

∈r = ∈ / ∈0

Значение ∈0 составляет 8,85 × 10-12 Ф / м.

Формула емкости по физическим параметрам

Вы видели, как емкость напрямую связана с площадью пластины, A, и диэлектрической проницаемостью, ∈r, и обратно пропорциональна расстоянию между пластинами, d. Точная формула для расчета емкости по этим трем величинам:

C = A ∈ r ∈ / d

где ∈ = ∈ r 0 = ∈r (8.85 × 10-12Ф / м)

Емкость параллельного вывода конденсатора

Рассмотрим конденсатор с параллельными пластинами. Размер пластины большой, а расстояние между пластинами очень маленькое, поэтому электрическое поле между пластинами однородно.

Электрическое поле «E» между конденсаторами с параллельными пластинами составляет:

Емкость цилиндрических конденсаторов физика

Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами радиусами «a» и «b».Предположим, что L >> b такое, что на концах цилиндров нет окаймляющего поля.

Пусть «q» — это заряд конденсатора, а «V» — это разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр — отрицательно. Мы хотим узнать выражение емкости для цилиндрического конденсатора. Для этого мы рассматриваем цилиндрическую гауссовскую поверхность радиуса «r», такую ​​что a << b.

Если «E» — напряженность электрического поля в любой точке цилиндрической гауссовой поверхности, то по закону Гаусса:

Если «V» — разность потенциалов между пластинами, тогда

Это соотношение для емкости цилиндрического конденсатора.

Емкость сферического конденсатора

Емкость изолированного сферического конденсатора

Внешний источник
https://en.wikipedia.org/wiki/Capacitance

Конденсаторы

и формулы для расчета емкости

Конденсаторы — это пассивные устройства. в электронных схемах для хранения энергии в виде электрического поля. Они комплимент индукторы, хранящие энергию в виде магнитного поля.Идеальный конденсатор является эквивалентом разомкнутой цепи (бесконечное сопротивление) для постоянного тока (DC) и представляет собой импеданс (реактивное сопротивление) для переменные токи (AC), зависящие от частоты тока (или напряжения). Реактивное сопротивление (сопротивление току расход) конденсатора обратно пропорционален частоте сигнала, воздействующего на него. Конденсаторы изначально были называемые «конденсаторами» по причине, восходящей к временам Лейденской банки, когда считалось, что электрические заряды накапливаться на пластинах в результате конденсации.

Свойство емкости, которая препятствует изменению напряжения, используется для передачи сигналов с компонент с более высокой частотой, предотвращая прохождение сигналов компонентов с более низкой частотой. Обычное применение конденсатор в РЧ (радиочастотной) цепи — это место, где есть напряжение смещения постоянного тока, которое необходимо заблокировать от присутствия в цепи, позволяя прохождению радиочастотного сигнала. Источники питания постоянного тока используют большие значения емкости параллельно с выходом. клеммы для сглаживания низкочастотных пульсаций из-за выпрямления и / или переключения форм сигналов.

При использовании последовательно (левый рисунок) или параллельно (правый рисунок) с его комплемент схемы, индуктор, комбинация индуктор-конденсатор образует контур, который резонирует на определенной частоте это зависит от значений каждого компонента. В последовательной цепи сопротивление протеканию тока на резонансной частоте равен нулю с идеальными компонентами. В параллельной цепи (справа) сопротивление протеканию тока бесконечно с идеальными компонентами.

Реальные конденсаторы, состоящие из физических компонентов, демонстрируют больше, чем просто емкость, когда присутствует в цепи переменного тока.Слева показана модель симулятора общей схемы. Он включает в себя собственно идеальный конденсатор с параллельным резистивным подключением. компонент («Утечка»), реагирующий на переменный ток. Эквивалентный резистивный компонент постоянного тока (‘ESR’) последовательно с идеальным конденсатором и эквивалентной последовательной индуктивной составляющей («ESL») присутствует из-за металлических выводов (если они есть) и характеристик поверхностей пластин. Эта индуктивность в сочетании с емкостью создает резонансную частоту, на которой конденсатор выглядит как чистое сопротивление.

Когда рабочая частота увеличивается за пределы резонанса (также известного как собственная резонансная частота или SRF), схема ведет себя как индуктивность, а не как емкость. Следовательно, требуется тщательное рассмотрение SRF, когда выбор конденсаторов. Симуляторы типа SPICE используют эту или даже более сложную модель для облегчения более точных расчетов. в широком диапазоне частот.

Уравнения для последовательного и параллельного объединения конденсаторов приведены ниже.Для конденсаторов приведены дополнительные уравнения. различной конфигурации. Как показывают эти цифры и формулы, емкость — это мера способности двух поверхностей. для хранения электрического заряда. Разделенный и изолированный диэлектриком (изолятором), чистый положительный заряд накапливается на одна поверхность и чистый отрицательный заряд хранится на другой поверхности. В идеальном конденсаторе заряд будет храниться бесконечно; однако реальные конденсаторы постепенно теряют свой заряд из-за токов утечки через неидеальный диэлектрик.


Суммарная емкость последовательно соединенных конденсаторов равна обратной величине сумма обратных величин индивидуальных емкостей. Держите единицы постоянными.

Емкость (C в фарадах) двух параллельных пластин равной площади равна произведению площади (A, в метрах) одной пластины, расстояние (d, в метрах), разделяющее пластины, и диэлектрическая проницаемость (ε, в Фарадах на метр) пространства разделение пластин.ε, полная диэлектрическая проницаемость, является произведением диэлектрической проницаемости свободного пространства, ε 0 , и относительная диэлектрическая проницаемость материала ε r . Обратите внимание, что единицы измерения длины и площади могут быть метрическими. или английский, если они согласованы.

Коэффициент рассеяния (DF), также известный как тангенс потерь (tan δ), взаимозаменяемо определяется как величина, обратная коэффициенту качества (QF) или отношению эквивалентного последовательного сопротивления (ESR) и емкостного реактивного сопротивления (X C ).Это показатель степени потери накопленного заряда. DF обычно используется в низкочастотных приложениях, в то время как tan δ чаще используется в высокочастотных приложениях.


Общая емкость параллельно соединенных конденсаторов равна сумме индивидуальных емкости. Держите единицы постоянными.

Следующие физические константы и механические размерные переменные применимы к уравнениям на этой странице.Единицы для уравнений показаны в скобках в конце уравнений; например, означает, что длина дана в дюймах, а индуктивность — в единицах Генри. Если единицы не указаны, то можно использовать любые, если они согласованы для всех объектов; т.е. все измерители, все мкФ, пр.

C = емкость
L = индуктивность
W = энергия
ε r = относительная диэлектрическая проницаемость (безразмерная)
ε 0 = 8,85 x 10 -12 Ф / м (диэлектрическая проницаемость свободного пространства)
µ r = Относительная проницаемость (безразмерная)
µ 0 = 4π x 10 -7 Гн / м (проницаемость свободного пространства)

1 метр = 3.2808 футов <—> 1 фут
= 0,3048 метра
1 мм = 0,03937 дюйма <—> 1 дюйм
= 25,4 мм

Кроме того, точки (не путать с десятичными точками) используются для обозначения умножения. во избежание двусмысленности.

Емкостное реактивное сопротивление (X C , в Ω) обратно пропорциональна частоте (ω, в радианах / сек, или f, в Гц) и емкости (C, в Фарадах).Чистая емкость имеет фазовый угол -90 ° (напряжение отстает от тока с фазовым углом 90 °).

Заряд (Q, в кулонах) конденсатора Пластины — это произведение емкости (C в фарадах) и напряжения (V в вольтах) на устройстве.

Энергия (Вт, в Джоулях) хранится в конденсаторе представляет собой половину произведения емкости (C в фарадах) на напряжение (V в вольтах) на устройстве.

Ток действительно течет «через» идеальный конденсатор. Напротив, заряд, накопленный на его пластинах, передается в подключенную цепь, тем самым облегчая ток. поток. И наоборот, сетевое напряжение, приложенное к пластинам, вызывает протекание тока в подключенной цепи по мере накопления заряда. на тарелках.

Добротность безразмерная. отношение реактивного сопротивления к сопротивлению в конденсаторе.

Связанные страницы RF Cafe
— Конденсаторы и Расчет емкости
— Конденсатор Цветовой код
— Преобразование емкости
— Конденсатор Диэлектрики
— Стандартные значения конденсаторов
— Продавцы конденсаторов
— Благородное искусство разъединения

Емкость

: единицы и формулы — стенограмма видео и урока

Уравнения емкости

Определение емкости дается следующим уравнением: емкость C , измеренная в фарадах, равна заряду Q , измеренному в кулонах, деленному на напряжение В , измеренное в вольтах.Так, например, если вы подключаете батарею 12 В к конденсатору, и эта батарея заряжает конденсатор 4 кулонами заряда, она должна иметь емкость 4/12, что составляет 0,33 фарада.

Уравнение, определяющее емкость

Если бы конденсатор имел большую емкость, он бы накапливал больше заряда при подключении к той же батарее. Из этого уравнения мы можем видеть, что емкость измеряется в кулонах на вольт.Таким образом, он представляет, сколько кулонов заряда будет храниться в конденсаторе на один вольт, который вы приложите к нему.

Хорошо, но что физически заставляет конкретный конденсатор иметь другую емкость? От чего зависит, сколько заряда в нем хранится? Это основано на реальных физических характеристиках конденсатора. Итак, у нас есть еще одно уравнение для емкости, которое выглядит так:

Уравнение, основанное на физических характеристиках конденсатора

Емкость конденсатора с параллельными пластинами, простого конденсатора, состоящего всего из двух параллельных пластин, разделенных расстоянием, d , равна относительной диэлектрической проницаемости материала между местами, K , умноженной на диэлектрическая проницаемость свободного пространства, эпсилон-ноль, которая всегда равна 8.-12, умноженное на площадь пластин, A , измеренное в квадратных метрах, разделенное на расстояние между местами, d , измеренное в метрах.

Большая часть этого довольно очевидна, но K , относительная диэлектрическая проницаемость так называемого «диэлектрического» материала между пластинами обычно равна 1 или больше. Если между пластинами ничего нет, K = 1; если между пластинами воздух, то K в значительной степени все равно равно 1; и если это другой материал, это будет число больше единицы, в зависимости от конкретного материала.

Итак, это наши два основных уравнения для емкости, и, как обычно, пришло время попробовать использовать их в примере задачи.

Пример расчета

Допустим, у вас есть конденсатор площадью 0,1 квадратный метр с пластинами на расстоянии 0,01 метра друг от друга, и между пластинами есть воздух. Если подключить к батарее 9В, сколько заряда останется на пластинах?

Ну, прежде всего, давайте запишем то, что мы знаем. Площадь равна 0,1 метра в квадрате, поэтому A = 0.1; пластины расположены на расстоянии 0,01 метра друг от друга, поэтому d = 0,01; и между пластинами находится воздух, поэтому K составляет примерно 1. У вас также есть напряжение, поэтому V = 9 вольт, и нас просят найти заряд, Q , поэтому Q равно знаку вопроса. . Мы пока не можем решить для Q , потому что у нас есть V , но у нас нет C . Итак, нам нужно использовать другое уравнение, чтобы сначала найти емкость C .

Подставляя числа в это уравнение, мы получаем, что емкость равна 1, умноженному на 8.-10 кулонов. Вот и все — вот наш ответ.

Краткое содержание урока

Конденсатор — это компонент, который накапливает заряд (накапливает электрическую энергию) до тех пор, пока он не заполнится, а затем высвобождает его всплесками. Есть много причин, по которым вы можете захотеть это сделать. Вы можете хранить заряд в конденсаторе на случай потери внешнего питания, чтобы устройство не умерло мгновенно, что позволило завершить процессы восстановления. Вы можете захотеть, чтобы схема получала регулярный «импульс» энергии каждые x промежутков времени.Вы найдете конденсаторы практически в любом электронном устройстве: компьютерах, телевизорах, автомобильных стартерах — что угодно.

Емкость — это мера способности конденсатора накапливать заряд, измеряемая в фарадах; конденсатор с большей емкостью будет накапливать больше заряда. Определение емкости дается следующим уравнением: емкость C , измеренная в фарадах, равна заряду Q , измеренному в кулонах, деленному на напряжение В , измеренное в вольтах. Емкость зависит от физических характеристик конденсатора.-12, умноженное на площадь пластин, A , измеренное в квадратных метрах, разделенное на расстояние между местами, d , измеренное в метрах. Значение K равно 1 для пустого пространства и довольно близко к 1 для воздуха. Эти два уравнения вместе позволяют решить множество простых задач, связанных с конденсаторами.

Результаты обучения

По завершении этого урока у вас будет возможность:

  • Вспомнить, что такое конденсатор, назначение конденсаторов и примеры конденсаторов
  • Определить емкость
  • Укажите уравнение, которое обеспечивает определение емкости, и уравнение для емкости конденсатора с параллельными пластинами.

8.1 Конденсаторы и емкость — University Physics Volume 2

Задачи обучения

К концу этого раздела вы сможете:

  • Объясните понятие конденсатора и его емкости
  • Опишите, как оценить емкость системы проводников

Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии. Конденсаторы обычно состоят из двух электрических проводников, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, это «обкладки конденсатора».Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор известен как «вакуумный конденсатор». Однако пространство обычно заполнено изолирующим материалом, известным как диэлектрик. (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.) Объем накопителя в конденсаторе определяется свойством, называемым емкостью , , о котором вы узнаете больше чуть позже в этом разделе.

Конденсаторы

имеют различные применения: от фильтрации статического электричества, от радиоприема до накопления энергии в дефибрилляторах сердца.Обычно в промышленных конденсаторах две токопроводящие части расположены близко друг к другу, но не соприкасаются, как показано на рисунке 8.2. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшой заряд величиной Q с положительной пластины на отрицательную. Конденсатор в целом остается нейтральным, но с зарядами + Q + Q и −Q − Q, расположенными на противоположных пластинах.

Рисунок 8.2 Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них на пластинах есть заряды + Q + Q и −Q − Q (соответственно). (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A , разделенных расстоянием d . (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).

Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (Рисунок 8.3). Величина электрического поля в пространстве между параллельными пластинами равна E = σ / ε0E = σ / ε0, где σσ обозначает поверхностную плотность заряда на одной пластине (напомним, что σσ — это заряд Q на площадь поверхности A ). Таким образом, величина поля прямо пропорциональна Q .

Рис. 8.3 Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности обкладок конденсатора. Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами.Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.

Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения В на своих пластинах. Емкость C конденсатора определяется как отношение максимального заряда Q , который может храниться в конденсаторе, к приложенному напряжению В на его пластинах.Другими словами, емкость — это наибольшее количество заряда на вольт, которое может храниться на устройстве:

Единица измерения емкости в системе СИ — фарад (Ф), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или

.

По определению, конденсатор емкостью 1,0 мкФ может сохранять заряд 1,0 К (очень большой заряд), когда разность потенциалов между его пластинами составляет всего 1,0 В. Следовательно, один фарад является очень большой емкостью.Типичные значения емкости варьируются от пикофарад (1пФ = 10−12Ф) (1пФ = 10−12Ф) до миллифарадов (1мФ = 10−3Ф) (1мФ = 10−3Ф), что также включает микрофарады (1мкФ = 10−6F1мкФ = 10− 6F). Конденсаторы могут быть разных форм и размеров (рис. 8.4).

Рисунок 8.4 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости. (кредит: Windell Oskay)

Расчет емкости

Мы можем рассчитать емкость пары проводов с помощью следующего стандартного подхода.

Стратегия решения проблем

Расчет емкости
  1. Предположим, что конденсатор заряжен Q .
  2. Определить электрическое поле E → E → между проводниками. Если в расположении проводников присутствует симметрия, вы можете использовать закон Гаусса для этого расчета.
  3. Найдите разность потенциалов между проводниками из VB − VA = −ABE → · dl →, VB − VA = −ABE → · dl →,

    8,2

    где путь интегрирования ведет от одного проводника к другому.Тогда величина разности потенциалов равна V = | VB-VA | V = | VB-VA |.
  4. Зная В , определите емкость непосредственно из уравнения 8.1.

Чтобы показать, как работает эта процедура, мы теперь вычисляем емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.

Конденсатор с параллельными пластинами

Конденсатор с параллельными пластинами (рисунок 8.5) имеет две идентичные токопроводящие пластины, каждая с площадью поверхности A , разделенными расстоянием d . Когда на конденсатор подается напряжение В , он сохраняет заряд Q , как показано. Мы можем увидеть, как его емкость может зависеть от A и d , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить.Таким образом, C должно быть больше для большего значения A . Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов. Следовательно, C должно быть больше для меньшего d .

Рис. 8.5 В конденсаторе с параллельными пластинами с пластинами, разнесенными на расстояние d , каждая пластина имеет одинаковую площадь поверхности A .

Определим плотность поверхностного заряда σσ на пластинах как

Из предыдущих глав мы знаем, что когда d мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина определяется как

.

где постоянная ε0ε0 — диэлектрическая проницаемость свободного пространства, ε0 = 8.85 × 10–12Ф / м. Ε0 = 8,85 × 10–12Ф / м. Единица СИ в Ф / м эквивалентна C2 / N · m2.C2 / N · m2. Поскольку электрическое поле E → E → между пластинами однородно, разность потенциалов между пластинами составляет

. V = Ed = σdε0 = Qdε0A.V = Ed = σdε0 = Qdε0A.

Следовательно, уравнение 8.1 дает емкость конденсатора с параллельными пластинами как

C = QV = QQd / ε0A = ε0Ad.C = QV = QQd / ε0A = ε0Ad.

8,3

Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора.Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от Q или В . Если заряд изменяется, соответственно изменяется и потенциал, так что Q / V остается постоянным.

Пример 8.1

Емкость и заряд в конденсаторе с параллельными пластинами
(a) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь 1,00 м 21.00м2, разделенных расстоянием 1,00 мм? (b) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение 3,00 × 103 В3,00 × 103 В?
Стратегия
Определение емкости C является прямым применением уравнения 8.3. Найдя C , мы сможем найти накопленный заряд, используя уравнение 8.1.
Решение
  1. Ввод заданных значений в уравнение 8.3 дает C = ε0Ad = (8.85 × 10−12Fm) 1.00m21.00 × 10−3m = 8.85 × 10−9F = 8.85nF.C = ε0Ad = (8.85 × 10−12Fm) 1.00m21.00 × 10−3m = 8 .85 × 10−9F = 8,85 нФ. Это небольшое значение емкости указывает на то, насколько сложно изготовить устройство с большой емкостью.
  2. Обращение уравнения 8.1 и ввод известных значений в это уравнение дает Q = CV = (8,85 × 10–9F) (3,00 × 103 В) = 26,6 мкКл. Q = CV = (8,85 × 10–9F) (3,00 × 103 В) = 26,6 мкКл.
Значение
Этот заряд лишь немного больше, чем в типичных приложениях статического электричества. Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около 3.0 МВ / м, на этом конденсаторе больше нельзя накапливать заряд при увеличении напряжения.

Пример 8.2

Конденсатор с параллельными пластинами, 1 Ф
Предположим, вы хотите сконструировать конденсатор с параллельными пластинами емкостью 1,0 F. Какую площадь вы должны использовать для каждой пластины, если пластины разделены на 1,0 мм?
Решение
Преобразуя уравнение 8.3, получаем A = Cdε0 = (1.0F) (1.0 × 10−3m) 8.85 × 10−12F / m = 1.1 × 108m2 A = Cdε0 = (1.0F) (1.0 × 10−3m) 8,85 × 10−12F / m = 1,1 × 108 м2.

Каждая квадратная пластина должна быть 10 км в поперечнике.Раньше было обычным розыгрышем — попросить студента пойти в склад лаборатории и попросить конденсатор с параллельными пластинами 1F, пока обслуживающий персонал не устанет от шуток.

Проверьте свое понимание 8.1

Емкость конденсатора с параллельными пластинами составляет 2,0 пФ. Если площадь каждой пластины составляет 2,4 см 22,4 см2, каково расстояние между пластинами?

Проверьте свое понимание 8.2

Убедитесь, что у σ / Vσ / V и ε0 / dε0 / d одинаковые физические единицы.

Сферический конденсатор

Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (Рисунок 8.dr) = Q4πε0∫R1R2drr2 = Q4πε0 (1R1−1R2).

В этом уравнении разность потенциалов между пластинами равна V = — (V2 − V1) = V1 − V2V = — (V2 − V1) = V1 − V2. Мы подставляем этот результат в уравнение 8.1, чтобы найти емкость сферического конденсатора:

C = QV = 4πε0R1R2R2 − R1.C = QV = 4πε0R1R2R2 − R1.

8,4

Рисунок 8.6 Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.

Пример 8.3

Емкость изолированной сферы
Вычислите емкость одиночной изолированной проводящей сферы радиуса R1R1 и сравните ее с уравнением 8.dr) = Q4πε0∫R1 + ∞drr2 = 14πε0QR1.

Таким образом, емкость изолированной сферы равна

. C = QV = Q4πε0R1Q = 4πε0R1.C = QV = Q4πε0R1Q = 4πε0R1.
Значение
Тот же результат можно получить, взяв предел уравнения 8.4 при R2 → ∞R2 → ∞. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.

Проверьте свое понимание 8.3

Радиус внешней сферы сферического конденсатора в пять раз превышает радиус его внутренней оболочки.Каковы размеры этого конденсатора, если его емкость 5,00 пФ?

Цилиндрический конденсатор

Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 8.7). Внутренний цилиндр радиуса R1R1 может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса R2R2. Мы предполагаем, что длина каждого цилиндра составляет l и что избыточные заряды + Q + Q и −Q − Q находятся на внутреннем и внешнем цилиндрах соответственно.dr) = Q2πε0l∫R1R2drr = Q2πε0llnr | R1R2 = Q2πε0llnR2R1.

Таким образом, емкость цилиндрического конденсатора

C = QV = 2πε0lln (R2 / R1). C = QV = 2πε0lln (R2 / R1).

8,6

Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 8.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов. Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом.(Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация экранирует электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен. Теперь из уравнения 8.6 емкость коаксиального кабеля на единицу длины равна

. Cl = 2πε0ln (R2 / R1).Cl = 2πε0ln (R2 / R1).

В практических приложениях важно выбирать конкретные значения C / l . Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.

Проверьте свое понимание 8.4

Когда цилиндрический конденсатор получает заряд 0,500 нКл, между цилиндрами измеряется разность потенциалов 20,0 В. а) Какова емкость этой системы? (b) Если цилиндры 1.Длина 0 м, каково соотношение их радиусов?

Несколько типов конденсаторов, которые можно использовать на практике, показаны на рис. 8.4. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 8.2 (b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.

Другой популярный тип конденсатора — электролитический конденсатор.Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость одного типа алюминиевого электролитического конденсатора может достигать 1,0 F. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста. Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку.Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).

Конденсатор переменного тока (рисунок 8.8) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»). Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение.Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.

Рисунок 8.8 В конденсаторе переменного тока емкость можно регулировать, изменяя эффективную площадь пластин. (кредит: модификация работы Робби Спроул)

Символы, показанные на рисунке 8.9, представляют собой схемные изображения различных типов конденсаторов. Обычно мы используем символ, показанный на рисунке 8.9 (а). Символ на Рисунке 8.9 (c) представляет конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 8.9 (b), где изогнутая пластина обозначает отрицательный вывод.

Рисунок 8.9 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.

Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 8.10). Клеточные мембраны отделяют клетки от их окружения, но позволяют некоторым отобранным ионам проходить внутрь или из клетки. Разность потенциалов на мембране составляет около 70 мВ. Клеточная мембрана может иметь толщину от 7 до 10 нм. Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на его « пластинах » дает значение E = Vd = 70 × 10−3V10 × 10−9m = 7 × 106V / m> 3MV / mE. = Vd = 70 × 10−3V10 × 10−9m = 7 × 106V / m> 3MV / m.

Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.

Рис. 8.10. Полупроницаемая мембрана биологической клетки имеет разные концентрации ионов на внутренней поверхности, чем на внешней. Диффузия перемещает ионы K + K + (калий) и Cl – Cl– (хлорид) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране.Мембрана обычно непроницаема для Na + (ионов натрия).

4.1 Конденсаторы и емкость — Введение в электричество, магнетизм и схемы

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:
  • Объясните понятие конденсатора и его емкости
  • Опишите, как оценить емкость системы проводников

Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии.Он состоит как минимум из двух электрических проводников, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, они «обкладки конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор будет известен как «Вакуумный конденсатор». Однако пространство обычно заполняется изолирующим материалом, известным как диэлектрик . (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.) Объем памяти в конденсаторе определяется свойством, называемым емкостью , , о котором вы узнаете больше чуть позже в этом разделе.

Конденсаторы

имеют различные применения: от фильтрации статического электричества, от радиоприема до накопления энергии в дефибрилляторах сердца. Обычно у промышленных конденсаторов две проводящие части расположены близко друг к другу, но не соприкасаются, как на рисунке 4.1.1. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшой заряд величины от положительной пластины к отрицательной.Конденсатор в целом остается нейтральным, но заряжается и находится на противоположных пластинах.

(рисунок 4.1.1)

Рисунок 4.1.1 Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них есть заряды и (соответственно) на своих тарелках. (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A, разделенной расстоянием d. (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).

Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (рисунок 4.1.2). Величина электрического поля в пространстве между параллельными пластинами равна, где обозначает поверхностную плотность заряда на одной пластине (напомним, что σσ — это заряд на площадь поверхности). Таким образом, величина поля прямо пропорциональна.

(рисунок 4.1.2)

Рисунок 4.1.2 Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности пластин конденсатора.Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.

Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения на своих пластинах. Емкость конденсатора определяется как отношение максимального заряда, который может храниться в конденсаторе, к приложенному напряжению на его пластинах.Другими словами, емкость — это наибольшее количество заряда на вольт, которое может храниться на устройстве:

(4.1.1)

Единица измерения емкости в системе СИ — фарад (), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или

.

По определению, конденсатор способен накапливать заряд (очень большое количество заряда), когда разность потенциалов между его пластинами равна всего.Следовательно, одна фарада — это очень большая емкость. Типичные значения емкости варьируются от пикофарад () до миллифарад (), включая микрофарады (). Конденсаторы могут изготавливаться различных форм и размеров (рисунок 4.1.3).

(рисунок 4.1.3)

Рисунок 4.1.3 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости.

Расчет емкости

Мы можем рассчитать емкость пары проводов с помощью следующего стандартного подхода.


Стратегия решения проблем: расчет емкости

Чтобы показать, как работает эта процедура, мы теперь вычисляем емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.

Конденсатор с параллельными пластинами

Конденсатор с параллельными пластинами (рисунок 4.1.4) имеет две идентичные проводящие пластины, каждая из которых имеет площадь поверхности, разделенную расстоянием.Когда на конденсатор подается напряжение, он сохраняет заряд, как показано. Мы можем увидеть, как его емкость может зависеть от и , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить. Таким образом, должно быть больше для большего значения. Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов.Следовательно, должно быть больше за меньшее.

(рисунок 4.1.4)

Рис. 4.1.4 В конденсаторе с параллельными пластинами, обкладки которых разнесены на расстояние, каждая пластина имеет одинаковую площадь поверхности.

Определим плотность поверхностного заряда σσ на пластинах как

Из предыдущих глав мы знаем, что когда оно мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина определяется как

.

где постоянная ε0ε0 — диэлектрическая проницаемость свободного пространства,.Единица СИ эквивалентна. Поскольку электрическое поле между пластинами однородно, разность потенциалов между пластинами составляет

.

Следовательно, уравнение 4.1.3 дает емкость конденсатора с параллельными пластинами как

(4.1.3)

Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора. Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от или.Если заряд изменяется, соответственно изменяется и потенциал, так что он остается постоянным.

ПРИМЕР 4.1.1


Емкость и заряд в конденсаторе с параллельными пластинами

(a) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь, разделенную на? (б) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение?

Стратегия

Определение емкости — это прямое приложение уравнения 4.1.3. Как только мы найдем, мы сможем найти накопленный заряд, используя уравнение 4.1.1.

Решение

а. Ввод данных значений в уравнение 4.1.3 дает

Это небольшое значение емкости указывает на то, насколько сложно сделать устройство с большой емкостью.

г. Обращение уравнения 4.1.1 и ввод известных значений в это уравнение дает

Значение

Этот заряд лишь немного больше, чем в типичных приложениях статического электричества.Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около, на этом конденсаторе больше не может храниться заряд при увеличении напряжения.

ПРОВЕРЬТЕ ПОНИМАНИЕ 4.1


Емкость конденсатора с параллельными пластинами составляет. Если площадь каждой пластины равна, каково расстояние между пластинами?

ПРОВЕРЬТЕ ПОНИМАНИЕ 4.2


Убедитесь, что у вас одинаковые физические единицы.

Сферический конденсатор

Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (Рисунок 4.1.5). Он состоит из двух концентрических проводящих сферических оболочек радиусов (внутренняя оболочка) и (внешняя оболочка). Снарядам придаются равные и противоположные заряды и соответственно. Из-за симметрии электрическое поле между оболочками направлено радиально наружу. Мы можем получить величину поля, применив закон Гаусса к сферической гауссовой поверхности радиусом r , концентричной оболочкам. Вложенная плата есть; следовательно, у нас есть

Таким образом, электрическое поле между проводниками равно

Мы подставляем это в уравнение 4.1.2 и интегрировать по радиальному пути между оболочками:

В этом уравнении разность потенциалов между пластинами равна. Мы подставляем этот результат в уравнение 4.1.1, чтобы найти емкость сферического конденсатора:

(4.1.4)

(рисунок 4.1.5)

Рисунок 4.1.5 Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.

ПРИМЕР 4.1,3


Емкость изолированной сферы

Рассчитайте емкость одиночной изолированной проводящей сферы радиуса и сравните ее с уравнением 4.1.4 в пределе как.

Стратегия

Мы предполагаем, что на сфере есть заряд, и поэтому выполняем четыре шага, описанные ранее. Мы также предполагаем, что другой проводник представляет собой концентрическую полую сферу бесконечного радиуса.

Решение

На внешней стороне изолированной проводящей сферы электрическое поле задается уравнением 4.1.2. Величина разности потенциалов между поверхностью изолированной сферы и бесконечностью составляет

.

Таким образом, емкость изолированной сферы равна

.

Значение

Тот же результат можно получить, взяв предел уравнения 4.1.4 в качестве. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.

ПРОВЕРЬТЕ ПОНИМАНИЕ 4.3

Радиус внешней сферы сферического конденсатора в пять раз превышает радиус его внутренней оболочки.Какие размеры у этого конденсатора, если его емкость?

Цилиндрический конденсатор

Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 4.1.6). Внутренний цилиндр радиуса может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса. Мы предполагаем, что длина каждого цилиндра равна и что избыточные заряды и находятся на внутреннем и внешнем цилиндрах соответственно.

(рисунок 4.1.6)

Рисунок 4.1.6 Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров. Здесь заряд на внешней поверхности внутреннего цилиндра положительный (обозначен), а заряд на внутренней поверхности внешнего цилиндра отрицательный (обозначен).

Без учета краевых эффектов электрическое поле между проводниками направлено радиально наружу от общей оси цилиндров. Используя гауссову поверхность, показанную на рисунке 4.1.6, мы имеем

Следовательно, электрическое поле между цилиндрами равно

(4.1,5)

Здесь \ hat {\ mathrm {r}} — единичный радиальный вектор по радиусу цилиндра. Мы можем подставить в уравнение 4.1.2 и найти разность потенциалов между цилиндрами:

Таким образом, емкость цилиндрического конденсатора

(4.1.6)

Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 4.1.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов.Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом. (Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация экранирует электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен.Теперь из уравнения 4.1.6 емкость коаксиального кабеля на единицу длины равна

.

В практических приложениях важно выбрать конкретные значения. Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.

ПРОВЕРЬТЕ ПОНИМАНИЕ 4.4


Когда цилиндрический конденсатор заряжается, между цилиндрами измеряется разность потенциалов.а) Какова емкость этой системы? б) Если цилиндры длинные, каково соотношение их радиусов?

Несколько типов практических конденсаторов показаны на рисунке 4.1.3. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 4.1.1 (b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.

Другой популярный тип конденсатора — электролитический конденсатор . Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость одного типа алюминиевого электролитического конденсатора может достигать. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста.Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку. Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).

Переменный воздушный конденсатор (рисунок 4.1.7) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»).Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение. Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.

(рисунок 4.1.7)

Рисунок 4.1.7. В конденсаторе переменного тока емкость можно регулировать, изменяя эффективную площадь пластин.(кредит: модификация работы Робби Спроула)

Символы, показанные на рисунке 4.1.8, представляют собой схемные изображения различных типов конденсаторов. Обычно мы используем символ, показанный на рис. 4.1.8 (а). Символ на Рисунке 4.1.8 (c) представляет конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 4.1.8 (b), где изогнутая пластина обозначает отрицательный вывод.

(рисунок 4.1.8)

Рисунок 4.1.8 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым. Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.

Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 4.1.9). Клеточные мембраны отделяют клетки от окружающей их среды, но позволяют некоторым отобранным ионам проходить внутрь или из клетки.Разность потенциалов на мембране составляет около. Клеточная мембрана может быть слишком толстой. Рассматривая клеточную мембрану как конденсатор наноразмеров, оценка наименьшей напряженности электрического поля на ее «пластинах» дает значение.

Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.

(рисунок 4.1.9)

Рисунок 4.1.9 Полупроницаемая мембрана биологической клетки имеет разные концентрации ионов на внутренней поверхности, чем на внешней.Диффузия перемещает ионы (калия) и (хлорида) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране. Мембрана обычно непроницаема для (ионов натрия).

Кандела Цитаты

Лицензионный контент CC, особая атрибуция

  • Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

Заряд, разделение пластин и напряжение

Dynamics Track
Наклонная плоскость
Импульс

Конденсатор
Пластина Sep
Пластина Sep / Volt
Диэлектрики

Цепи
Закон Ом
Последовательный / Параллельный

Wave Tank
Частота / длина волны
Two Pt Interf.

Оптическая скамья
Рефракция
Фокусное расстояние

Параллельный пластинчатый конденсатор

Заряд конденсаторов, разделение пластин и напряжение

Конденсатор используется для хранения электрического заряда. Чем большее напряжение (электрическое давление) вы прикладываете к конденсатору, тем больше заряда нагнетается в конденсатор. Кроме того, чем большей емкостью обладает конденсатор, тем больший заряд будет вызван данным напряжением.Это соотношение описывается формулой q = CV, где q — накопленный заряд, C — емкость, а V — приложенное напряжение.

Глядя на эту формулу, можно спросить, что бы произошло, если бы заряд оставался постоянным, а емкость изменялась. Ответ, разумеется, таков, что напряжение изменится! Именно этим вы и займетесь в этой лаборатории.

Лабораторный конденсатор

Конденсатор с параллельными пластинами — это устройство, используемое для изучения конденсаторов.Он сводит к минимуму функцию конденсатора. Конденсаторы в реальном мире обычно скручены по спирали в небольших корпусах, поэтому конденсатор с параллельными пластинами значительно упрощает привязку функции к устройству.

Этот конденсатор работает, накапливая противоположные заряды на параллельных пластинах, когда напряжение подается с одной пластины на другую. Количество заряда, который перемещается в пластины, зависит от емкости и приложенного напряжения в соответствии с формулой Q = CV, где Q — заряд в кулонах, C — емкость в фарадах, а V — разность потенциалов между пластинами в вольт.

Конденсаторы накапливают энергию

Если напряжение подается на конденсатор, а затем отключается, заряд, накопленный в конденсаторе, сохраняется до тех пор, пока конденсатор каким-либо образом не разрядится. Между пластинами возникает электрическое поле, которое позволяет конденсатору накапливать энергию. Это один из полезных аспектов конденсаторов, способность накапливать энергию в электрическом поле, чтобы ее можно было использовать позже.

От чего зависит емкость?

Количество заряда, которое может храниться на один приложенный вольт, определяется площадью поверхности пластин и расстоянием между ними.Чем больше пластины и чем ближе они расположены, тем больше заряда может храниться на каждый вольт разности потенциалов между пластинами. Заряд, накопленный на приложенный вольт, представляет собой емкость, измеряемую в фарадах.

Может ли изменение емкости заряженного конденсатора изменить его напряжение?

Лабораторный конденсатор можно регулировать, поэтому мы можем провести интересный эксперимент с емкостью и напряжением. Если конденсатор имеет постоянный заряд, изменение емкости должно вызвать изменение напряжения.Раздвигание пластин приведет к уменьшению емкости, поэтому напряжение должно увеличиться.

Как можно математически определить емкость нашего конденсатора?
Для конденсатора с параллельными пластинами емкость определяется по следующей формуле:

C = ε 0 А / сут

Где C — емкость в Фарадах, ε 0 — постоянная диэлектрической проницаемости свободного пространства (8,85×10 -12), A — площадь пластин в квадратных метрах, а d — расстояние между пластинами в метрах.

Фарада — это очень большая величина емкости, поэтому мы будем использовать метрические префиксы для получения более удобных чисел. Емкость обычно измеряется в микрофарадах (мкФ), что составляет 1,0×10 -6F или пикофарадах (пФ), что составляет 1,0×10 -12F. 1.0F = 1,000,000 мкФ = 1,000,000,000,000 пФ! Будьте очень внимательны с расчетами!

Этот расчет даст вам приблизительное значение емкости лабораторного конденсатора. Однако есть и другие факторы, которые вносят ошибки в реальные измерения емкости и напряжения.Вам нужно внимательно учитывать эти факторы.

Лабораторное оборудование:

Для получения хороших результатов эта лабораторная деятельность требует специального оборудования. Вам нужен хороший стабилизированный источник питания, чтобы напряжение, подаваемое на конденсатор, было одинаковым при каждом испытании.

Вам также понадобится очень точный способ измерения напряжения между пластинами без резистивной нагрузки на конденсатор. Количество накопленного заряда очень мало, поэтому обычный вольтметр не подойдет.Мельчайший заряд, накопленный в конденсаторе, просто разрядится через измеритель, делая любые измерения бесполезными. Вы будете использовать специальный прибор для измерения напряжения, называемый электрометром, который измеряет напряжение без разряда конденсатора.

Одна из проблем электрометра заключается в том, что он имеет некоторую собственную емкость. Поскольку эта емкость параллельна емкости конденсатора, встроенная емкость выводов должна быть добавлена ​​к емкости конденсатора.

Назначение:

Целью данной лабораторной работы является исследование взаимосвязи между разделением пластин и напряжением в конденсаторе с параллельными пластинами, который поддерживается постоянным зарядом.

Оснащение:

  • Конденсатор переменной емкости
  • Электрометр
  • Регулируемый блок питания
  • Поводки для перемычек
  • Провода для электрометра

Осторожно:

Это хрупкое оборудование. Все должно сочетаться с легчайшими прикосновениями. Ничего не заставляйте!

Ваша первая задача — предсказать, что произойдет с напряжением конденсатора, когда вы зарядите его источником 10 В, а затем раздвинете пластины (что уменьшит емкость). Вы сделаете это в следующем разделе.

Теоретические расчеты:

Сначала необходимо рассчитать теоретическую емкость для каждого расстояния между пластинами. Мы сделаем первое, а потом вы сможете сделать все остальное! Самая сложная часть этого — правильно настроить юниты. Проще всего поставить все в метрах для расчетов:

  1. Измерьте диаметр пластин конденсатора в сантиметрах. Ваше измерение должно быть около 17,8 см
  2. Разделите диаметр на 100, чтобы получить размер в метрах.Результат — 0,178 м. Разделите это на два, чтобы получить радиус: 0,089 м
  3. Площадь пластины определяется по общей формуле A = πr 2. Подставьте числа, чтобы получить A = π (0,089) 2 = 0,0249 м 2
  4. Преобразуйте расстояние между пластинами (1 мм) в метры, разделив на 1000. 1/1000 = 0,001 м.
  5. Используйте это число в формуле C = ε 0A / d, чтобы определить расчетную емкость, таким образом: C = 8,85×10 -12 (0,0249) / 0,001 = 2,20×10 -10. Это равно 220×10 -12F или 220pF
  6. Добавьте встроенную емкость электрометра (50 пФ) к теоретической емкости, чтобы получить 270 пФ.
  7. Запишите этот результат (270 пФ) в столбец «Расчетная емкость» и строку 1 мм.
  8. Повторите этот процесс для других расстояний между пластинами. Обратите внимание, что площадь пластины одинакова для всех, поэтому все, что вам нужно сделать, это повторить шаги 5, 6 и 7, вставляя правильные значения для интервала в каждом случае.
  9. Теперь вы рассчитаете теоретическое напряжение для каждого интервала. Предположим, что для шага 1,0 мм напряжение составляет 10 В, поэтому вы можете просто указать это значение в таблице.Во-первых, вы определяете количество заряда в конденсаторе при таком расстоянии и напряжении. Используйте формулу Q = CV, чтобы определить заряд, таким образом: Q = 270×10 -12F (10V) = 2700×10 -12C. Этот заряд остается неизменным на всех расстояниях между пластинами, поэтому вы можете ввести одно и то же значение во весь столбец Расчетный заряд! Теперь используйте это значение заряда, чтобы определить рассчитанное напряжение на всех других расстояниях. Например, при расстоянии 5 мм используйте формулу V = Q / C, таким образом: V = 2700×10 -12C / 94,0×10 -12F = 28,7V. Введите это значение в столбец «Расчетное напряжение» в строке 5 мм.
  10. Повторите тот же расчет напряжения для оставшихся расстояний между пластинами. Используйте рассчитанную емкость и постоянный заряд для каждого промежутка и введите значение напряжения в столбец «Расчетное напряжение» таблицы.
  11. Поздравляю! Вы закончили предварительные расчеты! Все, что вам нужно сделать сейчас, это провести фактические измерения!

В следующих разделах вы проведете реальный эксперимент для проверки (или, возможно, не проверки!) Ваших теоретических расчетов.

Процедура настройки переменного конденсатора (если лаборатория уже настроена, переходите к следующему разделу!)

  1. Поместите переменный конденсатор в середину лабораторного стола так, чтобы отметка 0 см находилась слева от вас. Не ставьте конденсатор слишком близко к краю стола!
  2. Разместите блок питания за конденсатором переменной емкости. Подключите блок питания, но не включайте его.
  3. Подключите красный и черный перемычки к красной и черной клеммам источника питания. Просто прикрепите зажим «крокодил» к отверстию и оставьте другой конец проводов свободным.
  4. Поместите электрометр слева от конденсатора.
  5. Присоедините плоские клеммы проводов электрометра к зажимным контактам на задней стороне каждой пластины конденсатора. Красный провод идет к правой пластине, черный провод идет к левой пластине.
  6. Вставьте разъем BNC в электрометр.
  7. Установите пластины на расстоянии не менее 1 мм.Белые бамперы предотвращают сближение пластин. Если пластины не параллельны друг другу, используйте регулировочные ручки в центре правой опоры, чтобы выровнять пластины. Левый край пластикового язычка, выступающий в сторону шкалы, должен быть совмещен с отметкой 1 мм.

Сбор экспериментальных данных

  1. Убедитесь, что оборудование настроено правильно и полностью.
  2. Поверните все четыре регулятора на блоке питания против часовой стрелки до упора.
  3. Поверните крайнюю левую ручку (Fine Current) в положение на 12 часов (прямо вверх!)
  4. Включите источник питания. Дисплеи должны загореться.
  5. Используйте ручки Fine и Coarse Voltage (две крайние правые ручки), чтобы установить напряжение на 10,0 В.
  6. Установите пластины на минимальное значение
  7. Установите электрометр на шкалу 30 В.
  8. Нажмите кнопку питания на электрометре. Должен загореться светодиод 30 В.
  9. Нажмите кнопку нуля на электрометре. Это обнуляет счетчик и обеспечивает нулевое напряжение на пластинах относительно друг друга.
  10. На мгновение прикоснитесь к проводам от источника питания к пластинам, черный к левой пластине и красный к правой пластине.
  11. Электрометр должен показывать 12 В в этой точке (12 В — это первая маленькая отметка над «1» на нижней шкале. Если он не проверяет вашу настройку, попробуйте еще раз.Иногда вам нужно прикоснуться проводами к пластинам несколько раз, чтобы получить правильные показания 12 В.
  12. С этого момента вы должны быть осторожны, чтобы не прикасаться к пластинам. Прикоснувшись к ним, вы измените заряд в пластинах и испортите данные!
  13. Следите за электрометром, чтобы убедиться, что заряд сохраняется. Если вы видите падение напряжения более чем на вольт за 30 секунд, остановитесь и выясните, что не так, прежде чем продолжить.
  14. Переключите электрометр на настройку 100 В. Счетчик должен по-прежнему показывать 12 В, но по шкале 100 В.
  15. Осторожно раздвиньте пластины на расстояние 5 мм.
  16. Снимите показание электрометра и запишите его в таблицу под столбцом «Измеренное напряжение».
  17. Повторите два предыдущих шага для других расстояний между пластинами и запишите соответствующие данные.

Разделение пластин

(мм)

Расчетная емкость
(пФ)

Расчетный сбор

(пКл)

Расчетное напряжение

(В)

Измеренное напряжение

(В)

1

5

10

15

20

25

30

35

40

Анализ данных:

  1. На миллиметровой бумаге постройте расчетную емкость по оси x (горизонтальная) в зависимости от напряжения на оси y (вертикальная).Нанесите на график рассчитанное и измеренное значение напряжения, используя разные цвета или стили линий, чтобы различать две кривые. Убедитесь, что вы выбрали подходящие масштабы и четко обозначили оси и масштабы. Лучше всего ориентировать бумагу длинной осью в горизонтальном направлении («альбомный режим»).
  2. Изучите свой график и ответьте на следующие вопросы:

  1. Подтверждают ли ваши измеренные данные измеренные значения?
  1. Две кривые имеют одинаковую форму? Если да, то на что это указывает?

  2. Что бы вы сделали, чтобы повысить точность собираемых данных?
  3. Формула для энергии, запасенной в конденсаторе, U e = ½CV 2.Сохраняется ли энергия, запасенная в конденсаторе, постоянной при изменении расстояния между пластинами? Он идет вверх или вниз? Обсудите, откуда пришла или ушла энергия.

Формулы и калькуляторы емкости

На этой странице представлены формулы и калькуляторы емкостей конденсаторы различной формы или типа. Это также полезно, если вы собираетесь использовать свой конденсатор в Танк LC резонансный схема.

Емкость конденсаторов с параллельными пластинами

Конденсатор с параллельными пластинами состоит из двух плоских параллельных пластин, которые электроды, разделенные диэлектрик или изолятор. Для формулы и калькулятора здесь пластины могут быть любой формы, если они плоские, параллельные и вы знаете площадь тарелки или что-то еще, что нужно, чтобы найти этот район.

Конденсатор с параллельными пластинами — пластины прямоугольной формы.
Конденсатор с параллельными пластинами — круглые пластины.

Формула емкости конденсатора с параллельными пластинами:

Где:

  • ε r = относительная диэлектрическая проницаемость диэлектрика (реже К, диэлектрическая проницаемость)
  • ε 0 = 8.854×10 -12 Ф / м (фарад / метр) = диэлектрическая проницаемость вакуума или диэлектрическая проницаемость свободного пространства

На схемах показаны конденсаторы с параллельными пластинами разной формы. пластины, одна прямоугольная и одна круглая. Формула для расчета площадь прямоугольника:

а формула для вычисления площади круга:

Где π — это число пи, равное 3,14159.

Емкость цилиндрических конденсаторов

Цилиндрический конденсатор состоит из двух цилиндров, также называемых пластины, которые являются электродами, разделены диэлектрик или изолятор.

Цилиндровый конденсатор.

Формула емкости цилиндрического конденсатора:

Где:

  • ε r = относительная диэлектрическая проницаемость диэлектрика (реже К, диэлектрическая проницаемость)
  • ε 0 = 8,854×10 -12 Ф / м (фарад / метр) = диэлектрическая проницаемость вакуума или диэлектрическая проницаемость свободного пространства

Видео — Как сделать конденсаторы — Низкое напряжение

В этом видео не только показано, как делать конденсаторы, но и формула емкости в более динамичном формате, чем указано выше.После всего, если вы делаете конденсатор, вам сначала нужно знать, как спроектировать конденсатор.

Видео — Как сделать конденсаторы — Высокое напряжение

В этом видео показано, как разработать конденсаторы для высокого напряжения, объясняя, измерения и построения для напряжения пробоя / диэлектрической прочности, чтобы что конденсатор может выдерживать желаемое высокое напряжение.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *