Site Loader

Содержание

Расчёт реактивного сопротивления конденсатора и индуктивности. Он-лайн калькулятор сопротивлений ёмкости Xc и индуктивности Xl переменному току.

Прежде, чем мы приступим к расчётам разнообразных пассивных и активных фильтров, не плохо было бы сориентироваться в пространстве и задуматься — а за счёт чего происходит процесс частотной фильтрации сигналов, какой неведомый зверь должен выбежать на свист царевича после преобразования частотно-зависимыми цепями, и что это за цепи такие — частотно-зависимые?

Большая Энциклопедия Нефти и Газа учит нас, что частотно-зависимыми цепями называются электрические цепи с использованием емкостных и резистивных элементов. Спасибо, господа нефтяники и газовики — будем знать. От себя добавлю, что индуктивные элементы в частотно-зависимом хозяйстве также иногда пригождаются.

Для постоянного тока ни конденсаторы, ни катушки индуктивности никакого интереса не представляют. Сопротивление идеального конденсатора — бесконечность, индуктивности — ноль. Другое дело — переменный ток, тут наши частотно-зависимые элементы, начинают приобретать определённые значения сопротивлений, называемые реактивными сопротивлениями. Ясен пень, значения этих сопротивлений зависят от частоты протекающего тока. Для особо продвинутых, вымучаю из себя умную фразу — «Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах».

Графики, фазовые сдвиги, интегралы и прочие атрибуты студенческих знаний, как правило, мало кого интересуют. Если я не прав, пусть первыми бросят в меня камень и с лёгкостью найдут необходимую информацию на других сайтах. А мы ребята весёлые, поэтому сразу перейдём к делу и напишем всего пару формул:

Xс = 1 / 2πƒС,   Xl = 2πƒL, где
Xc — сопротивление конденсатора переменному току, а Xl — сопротивление индуктивности переменному току.

РИСУЕМ ТАБЛИЧКУ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ КОНДЕНСАТОРА

ТО ЖЕ САМОЕ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ ИНДУКТИВНОСТИ

В реальной жизни конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлениями и индуктивностью, а катушки индуктивности — омическим сопротивлением провода обмотки и межвитковой паразитной ёмкостью.

Нужно Вам вооружаться этими знаниями, или нет, судить не возьмусь, а вот то, что электролитические конденсаторы имеют обыкновение иногда взрываться при превышении допустимых уровней напряжений, либо перегреве, вызванным утечками вследствие старения — знать надо обязательно.

Делают они это, ни кем не посоветовавшись, эффектно, громко, с выделение токсичных паров электролита в виде облака из дыма, и с лёкгостью могут выбить глаз пытливому радиолюбителю.
Так что, если не хотите превратиться в одноглазого шахматиста из Васюков, соблюдайте технику безопасности, покупайте электролиты приличных производителей.

 

Активное и реактивное сопротивление это

В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние. Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи.

В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным.

Основные различия между активным и реактивным сопротивлением

Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.

Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.

Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.

В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:

В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.

Индуктивное сопротивление

Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное.

При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока. В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении. Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки.

Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением.

В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток.

Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток. При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь. От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора.

Емкостное сопротивление

В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды. Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами. Чем выше емкость устройства, тем больше времени требуется на зарядку.

В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 90 0 .

Компенсация реактивной мощности

С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением. Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения. При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Сопротивлением в электротехнике называют такую величину, которая характеризует противодействие отдельность части электрической сети или ее элементов электрическому току. Это основано на том, что сопротивление изменяет электрическую энергию и конвертирует ее в другие типы. Например, в сетях с переменных электротоком происходят необратимые изменения энергии и ее передача между участниками этой электроцепи.

Сопротивление как физическую величину трудно переоценить, так как она является одной из ключевых характеристик электричества в сети и прямо или пропорционально определяет силу тока и напряжение. Этот материал познакомит с такими понятиями как: активное сопротивление и реактивное сопротивление в цепи переменного тока, как проявляется зависимость активного сопротивления от частоты.

Какое сопротивление называется реактивным, какое активным

Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.

Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.

Какие отличия

Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.

Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть.

Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.

В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.

От чего зависит активное сопротивление

Активное электросопротивление зависит от сечения проводника. Это значит, что полезным сечением при электротоке с высокой частотой будет только тонкий наружный слой проводника. Из этого исходит также то, что активностное электросопротивление только возрастает с увеличением частоты электротока переменного типа.

Для того чтобы уменьшить поверхностный эффект проводника, по которому течет электроток высокой частоты, его изготавливают трубчатым и покрывают напылением металла, хорошо проводящего электрический ток, например, серебром.

В чем измеряется реактивное сопротивление

Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах. В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения. Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.

Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2.

Как правильно измерять сопротивление

При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

Области проявления

Реактанс электросопротивления проявляется в емкости и индукции. Первое обуславливается наличием емкости проводниках и обмотках или включением в электрическую цепь переменного тока различных конденсаторов. Чем выше емкость потребителя и угловой частоты сигнала электротока, тем меньше емкостная характеристика.

Сопротивляемость, которую оказывает проводник переменному току и электродвижущей силе самоиндукции, называется индуктивным. Оно зависит от индуктивности потребителя. Чем выше его индуктивность и выше частота переменного электротока, тем выше индуктивное электросопротивление. Выражается оно формулой: xl = ωL, где xl — это электросопротивление индукции, L — индуктивность, а ω — угловая частота тока.

Емкостный реактанс электросопротивление проявляется, например, в конденсаторе, который накапливает электроэнергию в виде электромагнитного поля между своими обкладками. Индуктивное электросопротивление можно наблюдать в дросселе, который накапливает энергию в виде магнитного поля внутри своей обмотки.

Активностным же электросопротивлением может обладать любой резистор, линии электропередач, обмотки трансформатора или электрического двигателя.

Таким образом, активный резист и реактанс во многом отличаются друг от друга не только разницей по названию, но и по физическим свойствам. Первый вид превращает электроэнергию в другой вид и отдает ее в окружающую среду. Второй же — возвращает ее обратно в электросеть.

Емкостное сопротивление конденсатора формула. Реактивное сопротивление конденсатора

О заряде конденсатора.

Замкнем цепь. В цепи пойдет ток заряда конденсатора. Это значит что с левой обкладки конденсатора часть электронов уйдет в провод, а из провода на правую обкладку зайдет такое же количество электронов. Обе обкладки будут заряжены разноименными зарядами одинаковой величины.

Между обкладками в диэлектрике будет электрическое поле.

А теперь разомкнем цепь. Конденсатор останется заряженным. Закоротим куском провода его обкладки. Конденсатор мгновенно разрядится. Это значит что с правой обкладки уйдет в провод избыток электронов, а из провода на левую обкладку войдет недостаток электронов. На обоих обкладках электронов будет одинаково, конденсатор разрядится.

До какого напряжения заряжается конденсатор?

Он заряжается до такого напряжения, которое к нему приложено с источника питания.

Сопротивление конденсатора.


Замкнем цепь. Конденсатор начал заряжаться и сразу стал источником тока, напряжения, Э. Д. С.. На рисунке видно что Э. Д. С. конденсатора направлена против заряжающего его источника тока.

Противодействие электродвижущей силы заряжаемого конденсатора заряду этого конденсатора называется емкостным сопротивлением.

Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом емкостное сопротивление является реактивным, т.е. не вызывающим безвозвратных потерь энергии.

Почему постоянный ток не проходит через конденсатор, а переменный ток проходит?

Включим цепь постоянного тока. Лампа вспыхнет и погаснет, почему? Потому что в цепи прошел ток заряда конденсатора. Как только конденсатор зарядится до напряжения батареи ток в цепи прекратится.

А теперь замкнем цепь переменного тока. В I четверти периода напряжение на генераторе возрастает от 0 до максимума. В цепи идет ток заряда конденсатора. Во II четверти периода напряжение на генераторе убывает до нуля. Конденсатор разряжается через генератор. После этого конденсатор вновь заряжается и разряжается. Таким образом в цепи идут токи заряда и разряда конденсатора. Лампочка будет гореть постоянно.

В цепи с конденсатором ток проходит во всей замкнутой цепи, в том числе и в диэлектрике конденсатора. В заряжающемся конденсаторе образуется электрическое поле которое поляризует диэлектрик. Поляризация это вращение электронов в атомах на вытянутых орбитах.

Одновременная поляризация огромного количества атомов образует ток, называемый током смещения. Таким образом в проводах идет ток и в диэлектрике причем одинаковой величины.

Емкостное сопротивление конденсатора определяется по формуле

Рассматривая график делаем вывод: ток в цепи с чисто емкостным сопротивлением опережает напряжение на 90 0 .

Возникает вопрос каким образом ток в цепи может опережать напряжение на генераторе? В цепи идет ток от двух источников тока поочередно, от генератора и от конденсатора. Когда напряжение на генераторе равно нулю ток в цепи максимален. Это ток разряда конденсатора.

О реальном конденсаторе

Реальный конденсатор имеет одновременно два сопротивления: активное и емкостное. Их следует считать включенными последовательно.

Напряжение приложенное генератором к активному сопротивлению и ток идущий по активному сопротивлению совпадают по фазе.

Напряжение приложенное генератором к емкостному сопротивлению и ток идущий по емкостному сопротивлению сдвинуты по фазе на 90 0 . Результирующее напряжение приложенное генератором к конденсатору можно определить по правилу параллелограмма.

На активном сопротивлении напряжение U акт и ток I совпадают по фазе. На емкостном сопротивлении напряжение U c отстает от тока I на 90 0 . Результирующее напряжение приложенное генератором к конденсатору определяется по правилу параллелограмма. Это результирующее напряжение отстает от тока I на какой то угол φ всегда меньший 90 0 .

Определение результирующего сопротивления конденсатора

Результирующее сопротивление конденсатора нельзя находить суммируя величины его активного и емкостного сопротивлений. Это делается по формуле

При переменном напряжении на реальном конденсаторе кроме тока смещения имеются небольшие токи проводимости, через толщу диэлектрика (объемный ток) и по поверхности (поверхностный ток).Токи проводимости и поляризацию диэлектрика сопровождают потери энергии.

Таким образом, в реальном конденсаторе наряду с изменением энергии электрического поля (это характеризует реактивная мощность Q ) из-за несовершенства диэлектрика идет необратимый процесс преобразования электрической энергии в тепло, скорость которого выражается активной мощностью Р . Поэтому в схеме замещения реальный конденсатор должен быть представлен активным и реактивным элементами.

Деление реального конденсатора на два элемента — это расчетный прием, так как конструктивно их выделить нельзя. Однако такую же схему замещения имеет реальная цепь из двух элементов, один из которых характеризуется только активной мощностью Р (Q = 0), другой — реактивной (емкостной) мощностью Q(P = 0).

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активной G и емкостной B с проводимостей (рис. 13.15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/U c 2 , а емкость — конструкцией конденсатора. Предположим, что проводимости G и В с для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt .

Требуется определить токи в цепи и мощность. Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и В с, согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = i G + i c , (13.30)

Учитывая, что ток i G совпадает по фазе с напряжением, а ток i c опережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:


Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = I G + I C

Действующие величины составляющих тока:

I G = GU (13.31)

I C = B C U (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φ a =0). Вектор I G совпадает по направлению с вектором U, а вектор I C направлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ , величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы I G и I C:

При напряжении u = U m sinωt соответствии с векторной диаграммой уравнение тока

i = I m sin(ωt + φ )

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = I G /U и емкостная В с = I с /U проводимости, а гипотенузой — полная проводимость цепи Y = I/U . Из треугольника проводимостей

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

U = I/Y (13.35)

Из треугольников токов и проводимостей определяют величины

cos φ = I G /I = G/Y; sinφ = I c /I = B c /Y; tgφ = I C /I G = B c /G. (13.36)

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = U m sinωt * I m sin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17. Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U. В результате умножения получится подобный треугольник мощностей (рис. 13.16, в), катетами которого являются мощности; активная

P = UI G = UIcosφ

реактивная

Q = UI C = UIsinφ

полная

Схема замещения конденсатора с последовательным соединением элементов

Реальный конденсатор, так же как и , на расчетной схеме может быть представлен последовательным соединением двух участков: с активным R и емкостным Х с сопротивлениями. На рис. 13.18, а такая схема показана в сравнении со схемой параллельного соединения активной и емкостной проводимостей (рис.13. 18,6). Все выводы и формулы, полученные для катушки, остаются в силе и для конденсатора при условии замены индуктивного сопротивления емкостным. Конденсаторы, применяемые на практике, имеют относительно малые потери энергии. Поэтому в схемах замещения они представлены чаще всего только реактивной частью, т. е. емкостью С Участки цепи, где последовательно соединены отдельные элементы — резистор R и конденсатор С, имеют такую схему замещения, как показано на рис. 13.18, а. Если вам интересно прочитайте которые применяются в промышленности.

Положим теперь, что участок цепи содержит конденсатор емкости C , причем сопротивлением и индуктивностью участка можно пренебречь, и посмотрим, по какому закону будет изменяться напряжение на концах участка в этом случае. Обозначим напряжение между точками а и b через u и будем считать заряд конденсатора q и силу тока i положительными, если они соответствуют рис.4. Тогда

и, следовательно,

Если сила тока в цепи изменяется по закону

то заряд конденсатора равен

.

Постоянная интегрирования q 0 здесь обозначает произвольный постоянный заряд конденсатора, не связанный с колебаниями тока, и поэтому мы положим . Следовательно,

. (2)

Сравнивая (1) и (2), мы видим, что при синусоидальных колебаниях тока в цепи напряжение на конденсаторе изменяется также по закону косинуса. Однако колебания напряжения на конденсаторе отстают по фазе от колебаний тока на p/2. Изменения тока и напряжения во времени изображены графически на рис.5. Полученный результат имеет простой физический смысл. Напряжение на конденсаторе в какой-либо момент времени определяется существующим зарядом конденсатора. Но этот заряд был образован током, протекавшим предварительно в более ранней стадии колебаний. Поэтому и колебания напряжения запаздывают относительно колебаний тока.

Формула (2) показывает, что амплитуда напряжения на конденсаторе равна

Сравнивая это выражение с законом Ома для участка цепи с постоянным током (), мы видим, что величина

играет роль сопротивления участка цепи, она получила название емкостного сопротивления. Емкостное сопротивление зависит от частоты w, и при высоких частотах даже малые емкости могут представлять совсем небольшое сопротивление для переменного тока. Важно отметить, что емкостное сопротивление определяет связь между амплитудными, а не мгновенными значениями тока и напряжения.

Мгновенная мощность переменного тока

меняется со временем по синусоидальному закону с удвоенной частотой. В течение времени от 0 до T /4 мощность положительна, а в следующую четверть периода ток и напряжение имеют противоположные знаки и мощность становится отрицательной. Поскольку среднее значение за период колебаний величины равно нулю, то средняя мощность переменного тока на конденсаторе .

Ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС.
Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

где Xc — реактивное сопротивление конденсатора, f — частота, C — емкость.

Для расчета реактивного сопротивления конденсатора заполните предложенную форму:

Расчет ёмкости для реактивного сопротивления:

Расчёт ёмкости: C = 1 /(2πƒX C)
  • Похожие статьи
  • — Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В. В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно…
  • — Принципиальная электрическая схема цифрового широкодиапазонного измерителя емкости показана на рисунке. Принцип работы прибора – измерение длительности импульса автогенератора, в состав времязадающей цепи которого входит измеряемый конденсатор. Далее, формируется пачка импульсов образцовой частоты…
  • — Данная статья посвящена простому блоку со стабилизатором типа КРЕН. КРЕН это 3-х или 4-х выводные микросхемы, для примера взята 3-х выводная микросхема. Для стабилизированного напряжения (положительного) можно взять микросхему КРЕН5А, на +5В. Силовая часть (см. рис.1) примерно одинакова для…
  • — Габариты и масса высоковольтных трансформаторов из-за необходимости обеспечения электрической прочности становятся очень большими. Поэтому удобнее использовать в высоковольтных маломощных источниках питания умножители напряжения. Умножители напряжения создаются на базе схем выпрямления с емкостной…
  • — Приемник может быть перестроен в диапазоне 70…150 МГц без изменения номиналов подстроечных элементов. Реальная чувствительность приемника около 0,3 мкВ, напряжение питания 9 В. Следует заметить, что напряжение питания МС3362 — 2…7 В, а МС34119 2…12 В, поэтому МС3362 питается через…

Активное, индуктивное и емкостное сопротивления в цепи переменного тока

Сформировать знания учащихся о различных видах сопротивлениях в цепи переменного тока:

а) цепь переменного тока с активным сопротивлением; б) цепь переменного тока с индуктивным сопротивлением; в) цепь, переменного тока с емкостью.  

Просмотр содержимого документа
«Активное, индуктивное и емкостное сопротивления в цепи переменного тока»

АКТИВНОЕ, ИНДУКТИВНОЕ И ЕМКОСТНОЕ СОПРОТИВЛЕНИЯ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

Активное Реактивное

индуктивное ёмкостное

АКТИВНОЕ СОПРОТИВЛЕНИЕ

Активным сопротивлением называется такое сопротивление, в котором электрическая энергия превращается в другие виды энергии. Им обладают реостаты и электронагревательные приборы) лампы накаливания, электропечи, электроплиты и др.).

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ

Индуктивное сопротивление   Х L обусловлено возникновением  ЭДС самоиндукции  в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующую изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности L и  угловой частоты  ω протекающего тока:

Трансформаторы, электродвигатели, дроссели, кроме активного, обладают также и индуктивным сопротивлением .

ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ

Ёмкостное сопротивление Х С — это сопротивление переменному току, которое оказывает проводник, включенный в цепь переменного тока и не имеющий заметного сопротивления и индуктивности, но имеющий заметную емкость С. Элементы, связанные с наличием электрического поля, называются емкостями. Емкостью обладают конденсаторы. Ток в цепи с емкостью опережает напряжение по фазе на 90 градусов. Емкостное сопротивление является реактивным, то есть потерь энергии в нем не происходит как, например, в активном сопротивлении. Емкостное сопротивление обратно пропорционально частоте переменного тока. Измеряется в Омах.

Дополнить утверждение……

  • Индуктивное сопротивление вызвано тем, что …
  • Сопротивление конденсатора в цепи переменного тока определяется по формуле …
  • Сопротивление, в котором электрическая энергия превращается в другие виды энергии, называется …
  • Противодействие ЭДС самоиндукции периодическим изменениям переменного тока называется …

Векторные диаграммы

Контрольные вопросы

  • Какое сопротивление называется активным? Приведите примеры активного сопротивления.
  • Чему равен сдвиг фаз между током и напряжением в цепи переменного тока с активным сопротивлением?
  • Начертите график и векторную диаграмму тока и напряжения для цепи с активным сопротивлением.
  • Запишите формулу закона Ома для цепи переменного тока с индуктивным сопротивлением.
  • Какое сопротивление называется индуктивным, емкостным? Приведите примеры индуктивного и емкостного сопротивления.
  • Чему равен сдвиг фаз между током и напряжением в цепи переменного тока с индуктивным сопротивлением?

СПАСИБО ЗА ВНИМАНИЕ!

Глава 17. Резонансные цепи . Введение в электронику

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Написать формулы для определения емкостного и индуктивного сопротивления.

• Описать, как реагируют на переменный ток и напряжение конденсаторы и катушки индуктивности.

• Дать определение реактивного сопротивления последовательной цепи и уметь определить характер цепи (индуктивный или емкостный).

• Дать определение термина импеданс.

• Уметь вычислять импеданс, который содержит как резистивную, так и емкостную или индуктивную составляющие.

• Объяснить, как должен быть модифицирован закон Ома перед использованием его для цепей переменного тока.

• Уметь вычислять Хс, XL, X, Z и Iт в последовательных RLC цепях.

• Уметь вычислять Ic, IL, Ix, IR и Iz в параллельных RLC цепях.

В предыдущих главах сопротивление, емкость и индуктивность в цепях переменного тока рассматривались по отдельности. В этой главе исследуется комбинация сопротивления, емкости и индуктивности в цепи переменного тока. Рассматриваемые вопросы не являются новым материалом, но применяют все изложенные ранее принципы.

Когда реактивное сопротивление катушки индуктивности равно реактивному сопротивлению конденсатора в цепи, возникает резонанс. Резонансные цепи широко используются в электронике.

17-1. РЕАКТИВНОЕ СОПРОТИВЛЕНИЕ

Емкостное реактивное сопротивление — это противодействие, которое конденсатор оказывает переменному току. Оно измеряется в омах и обозначается символом Хс. Емкостное реактивное сопротивление вычисляется по формуле:

Хс = 1/2πfC

Заметим, что при использовании этой формулы емкость должна быть выражена в фарадах (а не в долях фарады).

Индуктивное реактивное сопротивление — это противодействие, которое катушка индуктивности оказывает переменному току. Оно измеряется в омах и обозначается символом XL. Индуктивное реактивное сопротивление вычисляется по формуле:

XL = 2πfL.

Заметим, что при использовании этой формулы индуктивность должна быть выражена в генри (а не в долях генри).

Емкостное реактивное сопротивление служит причиной того, что ток опережает по фазе напряжение. Индуктивное реактивное сопротивление служит причиной того, что ток отстает по фазе от напряжения. Емкостное и индуктивное реактивные сопротивления прямо противоположны по создаваемым эффектам и, следовательно, когда в цепи присутствуют и индуктивность и емкость, общий эффект определяется разностью их значений. Эта разность называется реактивным сопротивлением и обозначается символом X. Реактивное сопротивление может быть выражено следующими формулами:

X = ХсXL или X = XLХс.

ПРИМЕР: Чему равно реактивное сопротивление цепи, содержащей конденсатор емкостью 1 мкФ, соединенный последовательно с индуктивностью 10 генри (рис. 17-1), работающей на частоте 60 герц?

Рис. 17-1

Дано:

f = 60 Гц; L = 10 Гн; С = 1 мкФ

Х =?

Решение: 

Хс = 1/2πfC 

Хс =1/(6,28)(60)(0,000001)

Хс =2654 Ом

XL = 2πfL

XL = (6,28)(60)(10)

XL = 3768 Ом

X = XL- XC = 3768–2654

X = 1114 Ом (индуктивное).

ПРИМЕР: Чему равно реактивное сопротивление цепи, содержащей конденсатор емкостью 1 мкФ, соединенный последовательно с индуктивностью 1 генри (рис. 17-2), работающей на частоте 60 герц?

Рис. 17-2 

 Дано:

f = 60 Гц; L = 1 Гн; С = 1 мкФ

Х =?

Решение: 

Хс = 1/2πfC 

Хс = 1/(6,28)(60)(0,000001)

Хс =2654 Ом

XL = 2πfL

XL = (6,28)(60)(1)

XL = 376,8 Ом

X = XC — XL = 2654 — 376,8

X = 2277,2 Ом (емкостное).

Эти примеры иллюстрируют важный момент. Когда емкостное и индуктивное реактивные сопротивления соединены последовательно, меньшее значение всегда вычитается из большего. Получающееся в результате реактивное сопротивление характеризуется большим значением.

17-1. Вопросы

1. Каково фазовое соотношение между током и напряжением на конденсаторе?

2. Каково фазовое соотношение между током и напряжением на катушке индуктивности?

3. По какой формуле определяется полное реактивное сопротивление последовательной цепи, когда известны значения Хс и XL?

4. Какова величина полного реактивного сопротивления (X) последовательной цепи, содержащей Хс = 50 ом и XL = 20 ом? Укажите, является X емкостным или индуктивным.

17-2. ИМПЕДАНС

Реактивное сопротивление, как емкостное, так и индуктивное, противодействует протеканию тока в цепях переменного тока. Активное сопротивление также препятствует протеканию тока в цепи. Комбинированное противодействие реактивного и активного сопротивлений называется импедансом и обозначается символом Z.

И активное, и реактивное сопротивления измеряются в омах. Следовательно, кажется логичным сложить эти сопротивления для того, чтобы получить импеданс. Однако этого делать нельзя, поскольку активное и реактивное сопротивления — величины векторные. В цепях переменного тока, содержащих только активное сопротивление, ток и напряжение находятся в фазе. И ток, и напряжение достигают своих максимальных значений одновременно.

Как упоминалось ранее, в цепях переменного тока, содержащих только реактивные сопротивления, ток будет либо опережать, либо отставать от напряжения на 90 градусов. Следовательно, напряжение в чисто реактивной цепи будет отличаться по фазе на 90 градусов от напряжения в чисто резистивной цепи.

Когда цепь содержит и активное, и реактивное сопротивление, импеданс будет больше любого их них. Кроме того, ток в такой цепи будет не в фазе с напряжением. Сдвиг по фазе будет в пределах от нуля до 90 градусов.

Для того чтобы найти импеданс, используется векторная диаграмма — прямоугольный треугольник сопротивлений. Это может быть сделано потому, что ток через резистор находится в фазе с напряжением на нем, а ток через реактивную нагрузку сдвинут по фазе на 90 градусов относительно напряжения на ней. Они находятся под прямым углом друг к другу.

ПРИМЕР: Чему равен импеданс последовательно соединенных резистора сопротивлением 150 ом и индуктивного реактивного сопротивления 100 ом?

В качестве первого шага нарисуем основание треугольника, представляющее резистор 150 ом. Далее нарисуем линию под углом 90 градусов к основанию, представляющую индуктивное сопротивление 100 ом. После этого соединим концы линий, образуя гипотенузу треугольника. Гипотенуза представляет импеданс цепи (рис. 17-3).

Рис. 17-3. Векторная диаграмма.

Теорема Пифагора утверждает:

с2 = а2 + Ь2,

где с — гипотенуза, а и b — катеты.

Графически это представлено на рис. 17-4.

Рис. 17-4. Векторная диаграмма, показывающая связь активного сопротивления, реактивного индуктивного сопротивления и импеданса в последовательной цепи.

Если импеданс, активное и реактивное сопротивления заменить соответствующими символами, то формула будет выглядеть следующим образом:

Z2 = R2 + X2.

Вернемся к определению импеданса последовательной комбинации резистора 150 ом и индуктивного сопротивления 100 ом.

Дано:

R = 150 Ом; XL = 100 Ом.

Решение:

Z2 = R2 + X2

Z2 =(150)2 + (100)2 = 32500

Z = √(32500) = 180,28 Ом.

Если вместо индуктивного в цепи находится емкостное сопротивление, то линию, представляющую емкостное сопротивление, обычно рисуют направленной вниз. Это показывает, что оно действует в направлении противоположном индуктивному сопротивлению, которое рисуют направленным вверх.

В последовательной цепи с емкостным реактивным сопротивлением формула для вычисления импеданса будет выглядеть следующим образом:

Z2 = R2 + Х2С.

ПРИМЕР: Чему равен импеданс цепи, содержащей резистор сопротивлением 220 ом, соединенный последовательно с конденсатором, имеющим емкостное реактивное сопротивление 270 ом?

Дано:

R = 220 Ом; Xc = 270 Ом.

Решение:

Z2 = R2 + X2c

Z2 = (220)2 + (270)2 = 121300

Z = √(121300) = 348,28 Oм.

Z = 348,28 Ом.

Если последовательная цепь содержит индуктивное и емкостное реактивные сопротивления, а также активное сопротивление, необходимо найти полное реактивное сопротивление (X). Реактивное сопротивление может быть либо индуктивным, либо емкостным. Следовательно, может быть использована одна из следующих формул: 

Z2 = R2 + X2L;

Z2 = R2 + Х2с.

17-2. Вопросы

1. Как называется полное противодействие в цепи переменного тока?

2. Какая формула используется для вычисления величины полного противодействия в последовательной цепи?

3. Чему равно значение Z в последовательной цепи переменного тока, где Хс = 3 Ом, XL = 6 Ом, a R = 4 Ом?

17-3 ЗАКОН ОМА

Закон Ома не может быть применен в цепях переменного тока потому, что он не учитывает реактивное сопротивление. Модифицируя закон Ома путем учета импеданса, можно получить общий закон, который применим к цепям переменного тока.

I = E/R преобразуется в I = E/Z

Эта формула применима к переменному току, текущему в любой цепи.

ПРИМЕР: Последовательная цепь содержит резистор сопротивлением 510 ом, индуктивное сопротивление 250 ом и емкостное сопротивление 150 ом. Какой ток течет по цепи, если к ней приложено напряжение 120 вольт?

Дано:

R = 510 Ом; XL = 250 Ом; Xc = 150 Ом; E = 120 В

Решение:

X = ХL + Хc = 250–150

X = 100 Ом (индуктивное)

Z2 = R2 + X2

Z2 =(510)2 +(100)2

Z = √(270100)

Z = 519,71 Ом

I = E/Z = 120/519,71

I = 0,23 А или 230 мА.

17-3. Вопросы

1. Каким образом модифицируется закон Ома, чтобы его можно было применить к цепям переменного тока для определения напряжения и тока?

2. Последовательная цепь содержит резистор сопротивлением 510 ом, индуктивное сопротивление 300 ом и емкостное сопротивление 375 ом. Какой ток течет по цепи, если к ней приложено напряжение 120 вольт?

17-4. ЦЕПИ RLC

Материал, изложенный до сих пор, применим ко всем цепям переменного тока. В приведенных примерах рассматривались последовательные цепи. Понятия, рассмотренные в этом параграфе, не содержат нового материала, но используют все принципы, изложенные ранее.

ПРИМЕР: На рис. 17-5 показана последовательная RLC цепь. Необходимо вычислить Хс, XL, X, Z и IT.

Рис. 17-5. Последовательная цепь RLC.

Сначала вычислим Хс, XL и X.

 Дано:

f = 60 Гц; С = 470 мкФ; L = 27 мГн.

Решение:

Xc = 1/2πfC

Xc = 1/(6,28)(60)(0,000470)

XC = 5,65 Ом

XL = 2πfL

XL = (6,28)(60)(0,027)

XL = 10,17 Ом

X XL — Xc = 10,17 — 5,65

X = 4,52 Ом (индуктивное).

Используем значение X для вычисления Z.

 Дано:

X = 4,52 Ом; R = 10 Ом.

Решение:

Z2 = R2 + X2

Z2 = (10)2 + (4,52)2 = 120,43

Z = √(120,43) = 10,97 Ом.

Это значение Z может быть использовано для вычисления полного тока (IT).

Дано:

Z = 10,97 Ом; E = 120 В.

Решение:

IT = E/Z = 120/10,97

IT = 10,94 A. 

Помните, что во всех частях последовательной цепи течет один и тот же ток.

Если элементы в цепях соединены параллельно, то следует учесть одно главное различие между последовательными и параллельными цепями. При последовательном соединении по всей цепи течет один и тот же ток, а в параллельной цепи к каждой ветви приложено одинаковое напряжение. Вследствие этой разницы полный импеданс параллельной цепи должен вычисляться на основе тока в цепи.

В последовательной цепи RLC для вычисления реактивного сопротивления и импеданса используются следующие формулы:

X = ХсXL или X = XLХс, Z2 = R2 + X2.

В случае параллельных цепей должны использоваться следующие формулы:

IX = IсIL или IX = ILIX; I2Z = (IR)2 + (IX)2

Импеданс параллельной цепи находится с помощью формулы:

IZ = E/Z

Замечание: Если неизвестно напряжение (Е), приложенное к цепи, то для вычисления Ic, IL, Ix, IR и IZ можно использовать любое значение Е. То же значение напряжения должно использоваться для вычисления импеданса.

ПРИМЕР: Найти значение Z для цепи, показанной на рис. 17-6.

Рис. 17-6. Параллельная цепь RLC.

Дано:

Е = 120 В; R = 60 Ом; Хс = 75 Ом; XL = 50 Ом.

Решение:

Первым шагом в вычислении Z является вычисление токов отдельных ветвей.

IR = E/R = 120/60 = 2 A 

Ix = E/Xc = 120/75 = 1,6 A

IL = E/XL = 120/50 = 2,4 A

Используя значения IR, Ic, IL, вычислим Ix и Iz

IX = IL — Ic = 2,4 – 1,6

Ix = 0,8 А (индуктивный)

I2z = (IR)2 + (Ix)2

I2z = (2)2 + (0,8)2 = 4,64

Iz = √(4,64) = 2,15 A.

Используя значение Iz, вычислим Z.

Iz = E/Z

2,15 = 120/Z 

Z = 120/2,15 = 55,8 Ом

В завершение этой главы отметим, что мы рассмотрели все блоки, из которых строятся электрические цепи. При изложении материала использовались ранее изученные понятия и соотношения.

17-4. Вопрос

1. Чем отличаются вычисления импеданса для последовательной цепи переменного тока и для параллельной цепи?

РЕЗЮМЕ

• Конденсатор в цепи переменного тока оказывает противодействие любому изменению напряжения, так же как он это делает в цепи постоянного тока.

• Ток опережает по фазе напряжение на конденсаторе на 90 градусов.

• Противодействие, оказываемое конденсатором переменному току, называется емкостным реактивным сопротивлением. Оно обозначается Хс и вычисляется по формуле:

XC = 1/2πfC

• Катушка индуктивности в цепи переменного тока противодействует любому изменению тока, так же как она это делает в цепи постоянного тока.

• На катушке индуктивности ток отстает по фазе от напряжения на 90 градусов.

• Противодействие, оказываемое катушкой индуктивности переменному току, называется индуктивным реактивным сопротивлением. Оно обозначается XL и вычисляется по формуле

XL = 2πfL.

• Полное реактивное сопротивление последовательной цепи переменного тока определяется формулами X = XCXL или X = XLXC.

• Полное реактивное сопротивление последовательной цепи переменного тока является либо емкостным, либо индуктивным, в зависимости от того, какая величина больше, ХC или XL.

• В параллельной цепи реактивное сопротивление определяется с помощью формул

IZ = E/Z

где Iz определяется формулой Iz2 = (IR)2 + (IX)2, а Iх вычисляется по формуле IX = ICIL или IX = ILIC.

• Реактивное сопротивление параллельной цепи также может быть емкостным или индуктивным, в зависимости то того, какая величина больше IC или IL.

• Полное сопротивление цепи переменного тока называется импедансом. Он обозначается символом Z. В последовательной цепи Z2 = R2 + X2. В параллельной цепи I2Z = (IR)2 + (IX)2 и

IZ = E/Z

• Получена формула для закона Ома, который можно применять для пеней переменного тока:

I = E/Z

Глава 17. САМОПРОВЕРКА

1. Чему равны значения ХС, XL, X, Z и IT для цепи, изображенной на рис. 17-7?

Рис. 17-7. Последовательная цепь RLC.

2. Чему равны значения IC, IL, IX, IR и IZ для цепи, изображенной на рис. 17-8?

Рис. 17-8. Параллельная цепь RLC.

Емкостное сопротивление конденсатора формула

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = U ampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Расчитать ёмкость или индуктивность для реактивного сопротивления:

Похожие страницы с расчётами:

Замечания и предложения принимаются и приветствуются!

Одним из основных устройств в электронике и электротехнике является конденсатор. После замыкания электрической цепи начинается зарядка, после чего он сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила – ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления. Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора.

При разрядке устройства вся эта энергия возвращается обратно в цепь, превращаясь в энергию электрического тока. Поэтому емкостное сопротивление можно отнести к реактивному, не вызывающему безвозвратных энергетических потерь. Зарядка конденсатора происходит до того уровня напряжения, которое отдается источником питания.

Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах. Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин – электродов, разделенных слоем диэлектрика. На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Существуют качества, присущие только конденсаторам. Например, они совершенно не пропускают через себя постоянный ток, хотя и заряжаются от него. После полной зарядки емкости, течение тока полностью прекращается, а внутреннее сопротивление устройства принимает бесконечно высокое значение.

Совершенно по-другому на конденсатор воздействует переменный ток, вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика. В разных типах устройств диэлектриком может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы. В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах. Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин. Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

Электросопротивление — это параметр в электротехнике, характеризующий возможность вещества препятствовать прохождению электричества. В зависимости от качеств материала, электросопротивляемость может уменьшаться до крайне маленьких величин (микромилиОмы — у проводников, металлов) или повышаться до огромных значений (ГигаОмы — изоляторов, диэлектриков). Величина противоположная сопротивлению — проводимость.

Что такое

Цепь, по которой протекает непостоянный ток, обладает полным сопротивлением. Вычисляется оно по сумме активного и реактивного сопротивлений, возведенных в квадрат.

Графическое изображение этой формулы представляет собой треугольник. Его катеты представлены активным и реактивным сопротивлениями, а гипотенуза полным электросопротивлением.

Емкостное электросопротивление (Xc) является одним из видов реактивного сопротивления. Этот показатель характеризует противодействие электроемкости в цепи электротоку с переменными параметрами. Преобразование электроэнергии в тепловую в момент протекания электричества сквозь емкость не возникает (свойство реактивного сопротивления). Вместо этого осуществляется передача энергии электрического тока электрическому полю и обратно. Потерь энергии при таком обмене не происходит.

Емкостное сопротивление конденсатора можно сравнить с кастрюлей, наполняемой жидкостью, при полном заполнении ее объема она переворачивается, выливая содержимое, а затем наполняется заново. После достижения максимального заряда конденсатора происходит разрядка, затем он заряжается вновь.

Дополнительная информация: Конденсатор цепи способен накопить лишь ограниченную величину заряда до перемены полярности напряжения. По данной причине непостоянный ток не падает до нуля, важное отличие от постоянного электричества. Низкие значения частоты тока соответствуют низким показателям заряда, накопленного конденсатором, низким значениям противодействия электричеству, что придает реактивные свойства.

По сути, Xc — это противостояние электродвижущей силы конденсатора, уровню его заряда.

От чего зависит сопротивление конденсаторов цепей переменного тока

Показатели его, зависят не только от емкостных характеристик последнего, но и от частотной характеристики электротока, протекающего по цепи. Когда речь идет о сопротивлении резистора, то говорится о параметрах самого резистора, например, материале, форме, но полностью отсутствует взаимосвязь сопротивления его и показателей частоты электричества цепи (речь идет об идеальном резисторе, паразитные параметры которому не характерны). Когда речь идет об устройстве накопления энергии и заряда электрического поля — все иначе. Конденсатор одной и той же емкости при разных частотах тока обладает неодинаковым уровнем сопротивления. Амплитуда протекающего через него электричества при постоянной амплитуде напряжения обладает разной величиной.

Рассматривая эту формулу сопротивления конденсатора в цепи переменного тока, к каким выводам можно прийти? При повышении частотных показателей сигнала, электросопротивляемость конденсатора снижается.

При повышении емкостных характеристик устройства для накопления заряда и энергии электрического поля Xc переменного электричества, проходящего сквозь него, будет стремиться вниз.

Момент приближения значений частоты к нулевым отметкам на оси (когда переменный электроток становится похож своими параметрами на постоянный), сопровождается возрастанием Xc конденсатора до беспредельных величин. Это действительно так: известно, что конденсатор сети постоянного тока является фактически разрывом цепи. Реальная электросопротивляемость, естественно, не бесконечна, ее ограничивает уровень конденсаторной утечки. Но величины его остаются на высоком уровне, который невозможно не учитывать.

При возрастании цифр частоты до уровня бесконечных значений, емкостное сопротивление электроконденсатора стремится к нулевым отметкам. Такое характеризует идеальные модели. В реальных условиях конденсатор имеет неприятные характеристики (такие как индуктивность и сопротивления утечек), поэтому снижение емкостного сопротивления происходит до определенных значений, после которых оно возрастает.

Обратите внимание! При подключении конденсатора к цепочке электричества с переменными параметрами, его мощность не тратится, потому что фазовые характеристики напряжения и силы тока сдвинуты на 90° в отношении друг друга. В одну четверть периода происходит зарядка электроконденсатора (энергия запасается в его электрополе), в следующее время происходит его разрядка, энергия поступает обратно в цепочку. Его электросопротивляемость является безваттной, реактивной.

Причины ёмкостного сопротивления

Причиной возникновения сопротивления емкостного считается уровень напряжения, возникающий на конденсаторе в процессе его заряда. Вектор его действия встречен вектору напряжения источника электричества, потому создает помеху воспроизведению электротока этим источником.

Как рассчитать Xc

Сила тока цепи с постоянными показателями напряжения в момент работы электроконденсатора равно 0. Ее значения в цепи с переменным напряжением после подключения конденсатора I ? 0. В итоге, цепочке с непостоянным напряжением конденсатор придает Xc меньшее, чем цепочке с неизменным показателем напряжения.

Получается, что изменения напряжения отличаются по фазе от изменений тока на π/2.

По закону, сформулированному Омом, показатели силы электротока находятся в прямой пропорциональной зависимости от величины напряжения цепи. Формула вычисления наибольших величин напряженности и силы тока:

f — показатель частоты непостоянного тока, измеряется в герцах;

ω — показатель угловой частоты тока;

С — размер конденсатора в фарадах.

Важно! Xc не выступает параметром проводника, оно находится в зависимости от такой характеристики электроцепи, как частота электротока.

Повышение значений данной величины вызывает рост пропускающей способности конденсатора (предел его сопротивления току непостоянному понижается).

Представим, к цепи подключен конденсатор, емкостью 1 мкФ. Необходимо вычислить, уровень емкостного сопротивления при величине частоты 50 Гц и как изменится емкостное сопротивление цепи переменного тока при частоте 1 кГц. Амплитуда напряжения, подведенного к конденсатору, составляет 50 В.

После введения данных в формулу, определяющую Xc, и получаются значения:

Емкостное сопротивление приравнивается к соотношению отклонений колебаний напряжения зажимов электрической цепочки с емкостными параметрами (с небольшими индуктивным и активным сопротивлениями) к колебаниям электротока цепочки. Она равнозначна электроконденсатору.

В чем измеряется емкостное электросопротивление

R представлено отношением напряжения к силе тока замкнутой электрической цепи, по закону Ома. Единицы измерения — Ом. Xc, как его разновидность, тоже измеряется в Омах.

Конденсаторы применяются при изготовлении фильтров. При параллельном присоединении к цепи, он способен задерживать высокие частоты, при последовательном удаляет низкие. Также они используются с целью отсечения переменной части от постоянной. Он незаменим в радиотехнике, при производстве датчиков приближения, для контроля процессов производства. Технологии, обладающие выше описанными свойствами, используются во всех областях промышленности.

Активное реактивное и полное сопротивление. Треугольники сопротивлений

Активное сопротивление

, где — импеданс, — величина активного сопротивления, — величина реактивного сопротивления, — мнимая единица.

Активное сопротивление — сопротивление электрической цепи или её участка, обусловленное необратимыми превращениями электрической энергии в другие виды энергии (в тепловую).

Реактивное сопротивление

Реактивное сопротивление — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому илимагнитному полю (и обратно).

Реактивное сопротивление определяет мнимую часть импеданса:

, где — импеданс, — величина активного сопротивления, — величина реактивного сопротивления, — мнимая единица.

В зависимости от знака величины какого-либо элемента электрической цепи говорят о трёх случаях:

— элемент проявляет свойства индуктивности.

— элемент имеет чисто активное сопротивление.

— элемент проявляет ёмкостные свойства.

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений:

Индуктивное сопротивление ( ) обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующее изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока:


Ёмкостное сопротивление ( ). Величина ёмкостного сопротивления зависит от ёмкости элемента и также частоты протекающего тока :

Здесь — циклическая частота, равная .

Прямая и обратная зависимость этих сопротивлений от частоты тока приводит к тому, что с увеличением частоты всё бо?льшую роль начинает играть индуктивное сопротивление и всё меньшую ёмкостное.

Полное сопротивление

Полное сопротивление (z) — это векторная сумма всех сопротивлений: активного, емкостного и индуктивного.

Треугольники сопротивлений

Если стороны треугольника напряжений (155, а) разделить на ток I (.155, б), то углы треугольника от этого не изменятся, и мы получим новый треугольник, подобный первому — треугольник сопротивлений (155, в).

В треугольнике сопротивления, показанном на рис, все стороны обозначают сопротивления, причем гипотенуза его является полным или кажущимся сопротивлением цепи.

Из треугольника сопротивлений видно, что полное или кажущееся сопротивление Z равно геометрической сумме активного R и индуктивного Xl сопротивлений.

Применяя теорему Пифагора к треугольнику сопротивлений, получаем:

Емкостное реактивное сопротивление

— Как найти последовательные и параллельные конденсаторы

Найдите емкостное реактивное сопротивление цепи с последовательными или параллельными конденсаторами, используя этот простой двухэтапный процесс.

Шаг 1: Найдите общую емкость цепи

Предположим, у нас есть три конденсатора, 12 Ф, 20 Ф и 30 Ф, подключенных к источнику с частотой 60 Гц. Каково полное емкостное реактивное сопротивление (X C ) при последовательном или параллельном подключении?

1А.Для конденсаторов серии

Когда конденсаторы соединены последовательно, общая емкость меньше, чем любая из отдельных емкостей последовательных конденсаторов. Если два или более конденсатора соединены последовательно, общий эффект будет таким, как у одного (эквивалентного) конденсатора, имеющего суммарное расстояние между пластинами отдельных конденсаторов.

Конденсаторы серии Пример:

1/12 = 0,083, 1/20 = 0,050, 1/30 = 0,033

0.083 + 0,050 + 0,033 = 0,166

1 / 0,163 = 6,02 мкФ

Примечание: математика упрощена для целей иллюстрации. Для более точных чисел воспользуйтесь калькулятором.

1Б. Для параллельных конденсаторов

При параллельном подключении конденсаторов общая емкость складывается из емкостей отдельных конденсаторов. Если два или более конденсатора соединены параллельно, общий эффект будет таким, как у одного эквивалентного конденсатора, имеющего сумму площадей пластин отдельных конденсаторов.

Параллельные конденсаторы Пример:

12 + 20 + 30 = 62 мкФ


Шаг 2: Найдите емкостное реактивное сопротивление

Как и сопротивление, реактивное сопротивление измеряется в Ом, но ему присваивается символ X, чтобы отличить его от чисто резистивного значения R, и, поскольку рассматриваемый компонент является конденсатором, реактивное сопротивление конденсатора называется емкостным реактивным сопротивлением (X C ) который измеряется в Ом.

Поскольку конденсаторы заряжаются и разряжаются пропорционально скорости изменения напряжения на них, чем быстрее изменяется напряжение, тем больше тока протекает.Точно так же, чем медленнее изменяется напряжение, тем меньше будет протекать ток. Это означает, что реактивное сопротивление конденсатора переменного тока «обратно пропорционально» частоте источника питания.

X C — емкостное реактивное сопротивление в омах, f — частота в герцах, а C — емкость переменного тока в фарадах. Очень важно преобразовать наш пример из микрофарад в фарады, чтобы получить правильный результат!

1 мкФ = 0.000001 Ф.

Серия 60 Гц Пример:

6,02 мкФ = 0,000006 Ф (упрощенно)
2 х 3,14 х 60 х 0,000006 = 0,0022608
1 / 0,0022608 = 442,32 Ом

60 Гц Параллельный Пример:

62 мкФ = 0,000062 F
2 х 3,14 х 60 х 0,000062 = 0,0233616
1 / 0,0233616 = 42,805 Ом

Теперь посмотрим, что произойдет при изменении частоты на 400 Гц :

Серия 400 Гц Пример:

2 х 3.14 х 400 х 0,000006 = 0,015072
1 / 0,015072 = 66,34 Ом

Параллельный 400 Гц Пример:

2 х 3,14 х 400 х 0,000062 = 0,155744
1 / 0,155744 = 6,42 Ом


Полезные ссылки

Емкостное реактивное сопротивление

Ваш браузер не поддерживает Java-апплеты.

ЕМКОСТЬ И ИНДУКТИВНАЯ РЕАКТИВНОСТЬ

Отношение напряжения конденсатора к току называется емкостным реактивным сопротивлением.и сопротивление в омах, обеспечиваемое конденсатором.

Реактивное сопротивление обратно пропорционально как частоте, так и емкость. Для постоянного тока конденсатор открыт. Он блокирует постоянный ток и пропускает переменный ток.

Индуктивное реактивное сопротивление определяется как частотой, так и индуктивностью. В реактивное сопротивление прямо пропорционально этим членам. Из-за индуктивного реактивное сопротивление катушка имеет большую оппозицию к переменному току, чем к постоянный ток.

AC И КОНДЕНСАТОР

В чисто емкостной схеме соотношение фаз 90 градусов. между напряжением и током. Ток начинается с максимума, а напряжение начинается с нуля. Когда напряжение достигает максимума, ток равен нулю.

Ток всегда на 90 градусов опережает напряжение.

Конденсатор вроде пропускает и переменный ток. Поскольку ток течет легко для конденсатора, который находится рядом с разряженным состоянием, увеличивая емкость снижает сопротивление току.Увеличение частоты также уменьшает сопротивление, предлагаемое конденсатором.

Реактивное сопротивление отличается от сопротивления, потому что реактивное сопротивление противоположно. что проявляется только при переменном токе.

Сопротивление равно сопротивлению протеканию тока, будь то переменный или постоянный ток.

ЕМКОСТЬ РЕАКТИВНОСТЬ (X C )

Расчет емкости по XC

C = 1 / (2 пи f X C )

Расчет частоты по XC

f = 1 / (2 пи C X C )

СЕРИЯ

— ИЛИ ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ X C

Поскольку емкостное реактивное сопротивление выражено в омах, последовательно или параллельно подключенные реактивные сопротивления складываются так же, как и резисторы.

XC с последовательным подключением

X CT = X C1 + X C2 + … + X CN

XC с параллельным подключением

X CEQ = 1 / (1 / X C1 + 1 / X C2 + … + 1 / X CN )

Формула обратного выражения используется так же, как и для сопротивлений.

AC И ИНДУКТОР

Цепь переменного тока с чистым сопротивлением пропускает через нее переменный ток и напряжение на нем растет и падает вместе.

Сдвиг фазы индуктора на 90

Цепь с чистой индуктивностью имеет разность фаз 90 градусов между напряжение и ток. Поскольку индуктивность противодействует изменениям тока, нет ток течет в течение первого квартала цикла.

Ток начинает течь, когда напряжение достигает максимума. Когда ток достигает максимальное напряжение возвращается к нулю.

ELI ICEman

Конденсаторы и катушки индуктивности действуют как противоположности.

Помощник по запоминанию ELI the ICEman очень полезен.

Напряжение выводит ток в индуктивной (L) цепи.

Напряжение на токоподводах в емкостной (C) цепи.

ИНДУКТИВНАЯ РЕАКТИВНОСТЬ (X L )

Чем больше индуктивность, тем больше сопротивление переменному току. Также больше частота больше оппозиция.

Индуктивное реактивное сопротивление измеряется в омах, обозначается символом XL.

Расчет индуктивности по X L

L = X L /2 пи

Расчет частоты от X L

f = X L /2 pi L

СЕРИЯ

— ИЛИ ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ X L

Последовательное соединение X L

X LT = X L1 + X L2 +… + X LN

Индуктивные реактивные сопротивления суммируются так же, как и сопротивления.

Параллельное соединение X L

X LEQ = 1 / (1 / X L1 + 1 / X L2 + … + 1 / X LN )

Параллельные реактивные сопротивления складываются по обратной формуле, как и в случае сопротивление.

ПОКАЗАТЕЛЬ КАЧЕСТВА, Q

Добротность катушки и показатель способности катушек хранить энергия (а затем высвобождает ее), а не рассеивает ее в виде тепла.

Q = X L / R i

Эффективное сопротивление

На низких частотах Ri — это просто сопротивление постоянному току проводника в катушка. На более высоких частотах потери из-за вихревых токов, гистерезиса и др. потери становятся очевидными. Это известно как сопротивление переменному току, чтобы отличить его от Потери в проводниках постоянного тока.

Q = X L / R e

Уменьшение эффективного сопротивления

Воздушные сердечники используются для высокочастотных катушек.Многожильный провод с изолированным пряди можно использовать для уменьшения скин-эффекта.

Емкостное реактивное сопротивление

Емкостное реактивное сопротивление

Переменный ток

был нормальным сопротивлением цепи, присутствующим в любом проводнике. Однако сами конденсаторы представляют собой реальную оппозицию току. Это противодействие возникает из-за того факта, что при заданном напряжении и частоте количество электронов, которые переходят от пластины к пластине, ограничивается накопительной способностью, то есть емкостью, конденсатора.»>

Пользовательский поиск


ЕМКОСТНАЯ РЕАКТИВНОСТЬ

До сих пор вы имели дело с конденсатором как с устройством, которое пропускает переменный ток и единственной оппозицией переменному току была нормальная цепь сопротивление присутствует в любом проводнике.Однако сами конденсаторы предлагают вполне реальное противодействие текущему потоку. Это противодействие возникает из-за того, что при заданном напряжении и частота, количество электронов, которые переходят от пластины к пластине, равно ограничено емкостью конденсатора. Как емкость увеличивается, большее количество электронов меняет пластины каждый цикл, и (поскольку ток — это мера количества электронов, проходящих через заданную точку в заданном время) ток увеличивается.

Увеличение частоты также уменьшит сопротивление конденсатора. Этот возникает из-за того, что количество электронов, которые конденсатор способен обрабатывать при данное напряжение будет чаще менять пластины. В результате большее количество электронов пройдет заданный точка в данный момент времени (больший ток). Противодействие, которое конденсатор предлагает Следовательно, переменный ток обратно пропорционален частоте и емкости. Эта оппозиция называется ЕМКОСТНОЙ РЕАКТИВНОСТЬЮ.Можно сказать, что емкостное реактивное сопротивление уменьшается с увеличением увеличивая частоту или, для данной частоты, емкостное реактивное сопротивление уменьшается с увеличение емкости. Обозначение емкостного реактивного сопротивления: X C .

Теперь вы можете понять, почему говорят, что X C изменяется обратно пропорционально произведение частоты и емкости. Формула:

Где: X C — емкостное сопротивление в омах f — частота в герцах C — емкость в фарадах p равна 6.28 (2 X 3.1416) Следующие Пример задачи иллюстрирует вычисление X C .

Q.9 Каков термин для обозначения сопротивления, которое конденсатор представляет переменному току?
Q.10 Какая формула используется для вычисления этого противостояния?
В.11 Что происходит со значением X C при уменьшении частоты?
В.12 Что происходит со значением X C при увеличении емкости?


Заявление о конфиденциальности — Информация об авторских правах.- Свяжитесь с нами

Integrated Publishing, Inc. — A (SDVOSB) Малый бизнес, ветеран с отключенными услугами
Электрическое реактивное сопротивление

: что это такое? (Индуктивный и емкостной)

Что такое реактивное сопротивление?

Реактивное сопротивление (также известное как электрическое реактивное сопротивление ) определяется как сопротивление потоку тока от элемента схемы из-за его индуктивности и емкости.Большее реактивное сопротивление приводит к меньшим токам при одинаковом приложенном напряжении. Реактивное сопротивление аналогично электрическому сопротивлению, хотя и отличается по нескольким параметрам.

Когда переменный ток проходит через электрическую цепь или элемент, фаза и амплитуда тока изменяются. Реактивное сопротивление используется для вычисления этого изменения фазы и амплитуды сигналов тока и напряжения.

Когда через элемент проходит переменный ток, энергия накапливается в элементе, который содержит реактивное сопротивление.Энергия выделяется в виде электрического или магнитного поля. В магнитном поле реактивное сопротивление сопротивляется изменению тока, а в электрическом поле — изменению напряжения.

Реактивное сопротивление является индуктивным, если оно выделяет энергию в виде магнитного поля. И реактивное сопротивление является емкостным, если оно выделяет энергию в виде электрического поля. С увеличением частоты емкостное реактивное сопротивление уменьшается, а индуктивное реактивное сопротивление увеличивается.

Идеальный резистор имеет нулевое реактивное сопротивление, тогда как идеальные катушки индуктивности и конденсаторы имеют нулевое сопротивление.

Формула реактивного сопротивления

Реактивное сопротивление обозначается как «X». Общее реактивное сопротивление — это сумма индуктивного реактивного сопротивления (X L ) и емкостного реактивного сопротивления (X C ).

Когда элемент схемы содержит только индуктивное реактивное сопротивление, емкостное реактивное сопротивление равно нулю и полное реактивное сопротивление;

Когда элемент схемы содержит только емкостное реактивное сопротивление, индуктивное реактивное сопротивление равно нулю и полное реактивное сопротивление;

Единица реактивного сопротивления аналогична единицам сопротивления и импеданса.Реактивное сопротивление измеряется в O гм (Ом).

Что такое индуктивное сопротивление?

Индуктивное реактивное сопротивление определяется как реактивное сопротивление, создаваемое индуктивным элементом (индуктором). Обозначается как X L . Индуктивные элементы используются для временного хранения электрической энергии в виде магнитного поля.

Когда через цепь проходит переменный ток, вокруг нее создается магнитное поле. Магнитное поле изменяется под действием тока.

Изменение магнитного поля индуцирует другой электрический ток в той же цепи. По закону Ленца направление этого тока противоположно основному.

Следовательно, индуктивное реактивное сопротивление препятствует изменению тока через элемент.

Из-за индуктивного сопротивления протекание тока приводит к задержке и создает разность фаз между сигналами тока и напряжения. В индуктивной цепи ток отстает от напряжения.

Для идеальной индуктивной цепи ток отстает от напряжения на 90˚.Из-за индуктивного сопротивления коэффициент мощности отстает. Векторная диаграмма идеальной индуктивной цепи показана на рисунке ниже.

Фазорная диаграмма идеальной индуктивной цепи

Формула индуктивного реактивного сопротивления

Индуктивное реактивное сопротивление прямо пропорционально частоте. Следовательно, если частота увеличивается, увеличивается индуктивное реактивное сопротивление.

Индуктивное реактивное сопротивление зависит от частоты питания и индуктивности этого элемента. Формула индуктивного сопротивления:

Единица индуктивного реактивного сопротивления

Единица индуктивного реактивного сопротивления аналогична единице реактивного сопротивления и составляет Ом (Ом).

Что такое емкостное реактивное сопротивление?

Емкостное реактивное сопротивление определяется как реактивное сопротивление, создаваемое емкостными элементами (конденсатором). Обозначается как X C . Это противостояние напряжения на емкостном элементе.

Емкостные элементы используются для временного хранения электрической энергии в виде электрического поля.

Из-за емкостного реактивного сопротивления создайте разность фаз между током и напряжением. В емкостной цепи ток опережает напряжение.В идеальной емкостной цепи ток опережает напряжение на 90 °. Из-за емкостного реактивного сопротивления коэффициент мощности системы или цепи является опережающим. Векторная диаграмма идеальной емкостной цепи показана на рисунке ниже.

Фазорная диаграмма идеальной емкостной цепи

Формула емкостного реактивного сопротивления

Емкостное реактивное сопротивление обратно пропорционально частоте питания и емкости этого элемента. Следовательно, если частота питания увеличивается, емкость уменьшается.Формула емкости показана в уравнении ниже.

Единица емкостного реактивного сопротивления

Единица емкостного реактивного сопротивления — Ом (Ом).

Реактивное сопротивление в зависимости от импеданса

Реактивное сопротивление (X) является частью импеданса (Z). В таблице ниже показано сравнение обоих идентичных терминов.

Старший № Реактивное сопротивление Импеданс
1 Общее реактивное сопротивление представляет собой сумму индуктивного и емкостного сопротивлений. Полный импеданс — это сумма общего сопротивления и полного реактивного сопротивления.
2 Значение реактивного сопротивления всегда является комплексным числом. Значение импеданса — это комплексное число для индуктивной и емкостной цепи. Но в случае резистивной цепи импеданс — это единственное действительное число.
3 Обозначается как X. Обозначается как Z.
4

5 Сопротивление компонента.Или это мнимая часть импеданса. Импеданс представляет собой комбинацию компонентов переменного и постоянного тока.
6 Реактивное сопротивление равно нулю для идеальной резистивной цепи. Импеданс — это только сопротивление для идеальной резистивной цепи.

Реактивность против сопротивления

В таблице ниже показано сравнение реактивного сопротивления и сопротивления.

Старший № Реактивное сопротивление Сопротивление
1 Реактивное сопротивление — это переменная составляющая импеданса. Сопротивление является постоянной составляющей сопротивления.
2 Значение реактивного сопротивления — это комплексное число. Значение сопротивления — действительное число.
3 В чисто индуктивной или емкостной цепи сопротивление равно нулю. В чисто резистивной цепи реактивное сопротивление равно нулю.
4 Из-за реактивного сопротивления амплитуда и фаза тока изменятся. Из-за сопротивления ток и напряжение остаются в фазе.
5 Значение реактивного сопротивления зависит от частоты питающей сети. Величина сопротивления не зависит от частоты питающей сети.
6 Для источника постоянного тока индуктивное реактивное сопротивление равно нулю, а емкостное реактивное сопротивление бесконечно. Для источника постоянного тока сопротивление остается прежним.
7 Обозначается как X (X L и X C ). Обозначается как R.
8 Коэффициент мощности опережающий или запаздывающий из-за реактивного сопротивления. Мощность равна единице, когда реактивное сопротивление равно нулю.

Реактивное сопротивление линии передачи

В системе электроснабжения линия передачи является лучшим примером для определения реактивного сопротивления. Потому что он имеет как реактивное сопротивление; индуктивное реактивное сопротивление, а также емкостное реактивное сопротивление.

Линия передачи также считается LC-цепью, имеющей индуктивность и емкость. Из-за реактивного сопротивления линии передачи напряжение и ток не совпадают по фазе.Есть разность фаз. Эта различная фаза вызывает потерю мощности в виде реактивной мощности.

В сети энергосистемы большая часть нагрузки индуктивного характера. Следовательно, чтобы уменьшить фазовый угол между формами сигналов тока и напряжения, конденсатор или другие методы компенсации используются, чтобы поддерживать разность фаз на минимально возможном уровне.

Из-за индуктивного характера коэффициент мощности передачи отстает в большинстве условий. При небольшой нагрузке на линию передачи в этом состоянии коэффициент мощности близок к единице.

Почему ток увеличивается при увеличении емкости или уменьшении емкостного реактивного сопротивления?

В емкостной цепи, почему ток в цепи (I) увеличивается, когда увеличивается емкость (C) или уменьшается индуктивное реактивное сопротивление (X C )?

Следующий вопрос из серии вопросов и ответов интервью по электротехнике и электронике.

Объясните утверждение, что « В емкостной цепи, когда емкость (C) увеличивается или емкостное реактивное сопротивление (X C ) уменьшается, ток цепи (I) уменьшается на ».

Связанный вопрос: почему ток уменьшается при увеличении индуктивности или индуктивного реактивного сопротивления?

Объяснение:

Мы знаем, что в цепях постоянного тока:

I = V / R,

Но в случае цепей переменного тока:

I = V / Z

Где «общее сопротивление цепей переменного тока. = Импеданс = Z = √ (R 2 + (X L — XC 2 ) ”

В случае емкостной цепи:

  • Z = √ (R 2 + X C 2 )
  • I = V / X C или I = V / Z

Это показывает, что в емкостной цепи ток обратно пропорционален емкостному реактивному сопротивлению, а также прямо пропорционален емкости «C», как емкости и Емкостные сопротивления «X C » обратно пропорциональны друг другу.

Давайте проверим на примере, как ток уменьшается за счет емкостного реактивного сопротивления и увеличивается за счет увеличения емкости конденсатора.

При емкости = 10 мкФ

Предположим, что емкостная цепь:

  • Емкость = C = 10 мкФ

Найти емкостное реактивное сопротивление;

X C = 1 / 2π f C

X C = 1 / (2 x 3.1415 x 50 x 10 x 10 -6 )

X C = 318,3 Ом

Наконец, ток в емкостной цепи:

I = V / X C

I = 230 В / 318,3 Ом

I = 0,72 A

Вопросы по теме:

При емкости = 60 µ F

Теперь мы увеличили значение емкости (C) конденсатора с 10 мкФ до 60 мкФ.

В = 220 В, C = 60 мкФ, f = 50 Гц.

X C = 1 / 2π f C = 2 x 3,1415 x 50 x 60 мкФ = 53 Ом

I = V / X C = 230 В / 53 Ом

I = 4.34 A

Связанные вопросы:

Вывод:

Мы видим, что, когда емкость (C) была 10 мкФ , тогда ток цепи был 0,72 A ,

Но когда емкость цепи увеличилась с 10 мкФ С до 60 мкФ , затем ток увеличился с 0.72 A 4,34 A .

Следовательно, доказано,

В емкостной цепи, когда емкость увеличивается, емкостное реактивное сопротивление X C уменьшается, что приводит к увеличению тока цепи и наоборот.

Устно или устно:

  • Емкостное реактивное сопротивление — это своего рода сопротивление. Когда сопротивление увеличивается, ток в цепи уменьшается, и наоборот.
  • Емкость обратно пропорциональна емкостному реактивному сопротивлению.

C 1 / X C

  • Ток прямо пропорционален емкости и обратно пропорционален емкостному реактивному сопротивлению.

I C и I 1 / X C

Связанные вопросы / ответы:

Как рассчитать емкостное реактивное сопротивление?

Как рассчитать емкостное реактивное сопротивление? — Стандекс Электроника Свяжитесь с нами

Емкостное реактивное сопротивление рассчитывается по следующей формуле: XC = 1 / (2∏fC), где XC — емкостное реактивное сопротивление в омах, f — частота в Гц, а C — емкость.

Опубликовано в

® Copyright 2021 Standex Electronics, Inc. ® Все права защищены. Компания «Стандекс Интернэшнл Корпорейшн».

Мы используем файлы cookie, чтобы вам было удобнее пользоваться нашим сайтом.Вы можете узнать больше о том, как мы используем файлы cookie, в нашей Политике конфиденциальности.

Принимать

Закройте настройки файлов cookie GDPR Обзор конфиденциальности

Этот веб-сайт использует файлы cookie, чтобы мы могли предоставить вам наилучшие возможности для пользователей. Информация о файлах cookie хранится в вашем браузере и выполняет такие функции, как распознавание вас, когда вы возвращаетесь на наш веб-сайт, и помогает нашей команде понять, какие разделы веб-сайта вы находите наиболее интересными и полезными.

Строго необходимые файлы cookie

Строго необходимые файлы cookie должны быть включены постоянно, чтобы мы могли сохранить ваши предпочтения в настройках файлов cookie.

Если вы отключите этот файл cookie, мы не сможем сохранить ваши настройки. Это означает, что каждый раз, когда вы посещаете этот веб-сайт, вам нужно будет снова включать или отключать файлы cookie.

Благодарим вас за терпение в поиске вашего чека

.

ac — Почему у провода нет большого емкостного реактивного сопротивления?

Формула содержит \ $ C \ $ в обратной конфигурации \ $ 1 / C \ $, потому что фактически полное сопротивление конденсатора относительно потока переменного тока уменьшается с увеличением емкости.

Например, конденсатор 1 \ $ nF \ $ не очень хорошо пропускает переменный ток частотой 60 Гц; похоже, что цепь на этой частоте почти разомкнута. Конденсатор 100 \ mu F \ $, намного большего размера, намного лучше пропускает 60 Гц переменного тока.

Теперь проводит отрезок медной проволоки; он очень хорошо передает не только очень низкие частоты, но даже постоянный ток. Значит ли это, что, как это ни парадоксально, провод — это очень большой конденсатор? Нет, это не так. Кусок провода почти не имеет емкости; поскольку он проводит, он не может спонтанно поддерживать разделение зарядов.Провод очень хорошо проводит, потому что он имеет низкое сопротивление .

Мы можем смоделировать провод и конденсатор вот так:

смоделировать эту схему — Схема создана с помощью CircuitLab

Иными словами, провод или конденсатор можно моделировать как сопротивление, параллельное емкости. (Если бы мы сейчас позаботились об индуктивности, мы бы добавили и ее, а для полноты мы включили бы модель катушки индуктивности.)

Провод имеет очень низкую емкость, что означает, что ветвь C цепи имеет очень высокий \ $ X_C \ $ и, следовательно, очень высокий импеданс.Следовательно, весь ток течет из-за низкого сопротивления; эффективно, крошечная емкость закорочена низким сопротивлением.

Конденсатор — это в основном обрыв цепи; он блокирует поток постоянного тока, за исключением небольшой утечки. Эту утечку можно смоделировать как большой резистор, шунтирующий идеальную емкость.

Параллельные импедансы суммируются по формуле \ $ {1 / Z _ {\ text total} = 1 / Z_1 + 1 / Z_2 + … + 1 / Z_n} \ $. Провод имеет очень низкое сопротивление Z, что значительно преобладает над его огромным емкостным Z.Конденсатор имеет относительно низкую емкость Z, которая преобладает над его огромным резистивным Z.

Итак, на диаграмме слева общая Z соответствует ветви R, а на диаграмме справа общая Z соответствует ветви C.

Другими словами, мы можем объяснить все, используя принцип «электричество проходит путь наименьшего сопротивления сопротивления импеданса».

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *