Site Loader

Элементы Пельтье или мой путь к криогенным температурам / Хабр

Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…


Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.


Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.

Элемент охлаждающий «Пельтье» для кулера воды

Элемент охлаждающий «Пельтье» для кулера воды
  • Валюта: рубль
    • Валюта: доллар
    • Валюта: евро
    • Валюта: рубль

Товар добавлен в корзину

Главная / Каталог / Кулеры для воды / Запчасти для кулеров / Охлаждающие элементы / Элемент охлаждающий «Пельтье» 40х40 мм.

Цена: 1250 р.

Есть в наличии

Купить

  • Описание
  • Характеристики
  • Отзывы
  • Инструкции
  • Гарантия и возврат товара

Описание товара:

Под действием электрического тока элемент Пельтье TEC1-12706 способен создавать разность температур на своих сторонах (эффект Пельтье). Этот эффект имеет и обратное действие (эффект Зеебека): при создании на сторонах элемента Пельтье разности температур, он способен вырабатывать электрический ток. При работе элемента Пельтье одна его сторона значительно нагревается, а вторая охлаждается. Чтобы получить на охлаждающей стороне элемента Пельтье температуры ниже температуры окружающего воздуха необходимо принудительно охлаждать нагревающуюся сторону элемента, например, с помощью радиатора и термопасты. С помощью элемент Пельтье можно соорудить небольшой холодильник, мобильный мини-кондиционер или портативный нагреватель. Кроме того, используя обратный эффект, создавая большой перепад температур по средствам нагрева одной стороны элемента Пельтье и охлаждения другой стороны, можно добиться выработки электричества, что позволит создать зарядное устройство.

Технические характеристики элемента Пельтье TEC1-12706:

Страна производства: Китай

Габариты: 40 х 40 х 4 мм
Рабочая температура: от — 30°C до +70°C
Максимальная потребляемая мощность: 70 Вт
Максимальная разница температур между сторонами: 60°C
При температуре горячей стороны 25°C:
Максимальная разность температур: 66°C
Максимальный ток потребления: 6,4 А
Максимальное напряжение: 14,4 В

Комплектация:

Термоэлектрический охладитель TEC1-12706 с проводами x1

Характеристики:

Срок гарантии:
Страна пр-ва:

Отзывы о товаре:

Пока отзывов об этом товаре нет, но они обязательно появятся!

Добавить отзыв:


Инструкции:

Гарантия и возврат товара:

Ваше имя

Ваш телефон

^
Вверх

HiTemp ETX Series — высокотемпературный охладитель Пельтье премиум-класса

Термоэлектрический охладитель премиум-класса

Новая серия HiTemp ETX представляет собой высокопроизводительный термоэлектрический охладитель, передовых термоэлектрических материалов и повышает охлаждающую способность до 10%. Серия HiTemp ETX отличается более высоким теплоизоляционный барьер по сравнению со стандартными материалами, создающими максимальный перепад температур (ΔT) 83°C. В этой серии продуктов используется усовершенствованная конструкция термоэлектрического модуля, которая предотвращает снижение производительности в условиях высокой температуры. Модуль идеально подходит для охлаждения в автономных системах, процессорах машинного зрения и цифровых световых процессорах. Серия HiTemp ETX доступна в нескольких конфигурациях, охватывающих широкий диапазон размеров, мощностей охлаждения и диапазонов напряжения.


Применение

  • Охлаждение Пельтье для машинного зрения
  • Термоэлектрическое охлаждение для датчиков CMOS
  • Решения по охлаждению для автономных систем
  • Охлаждение Пельтье для цифровых световых процессоров
  • Нагрев и охлаждение камер инкубатора
  • Нагрев и охлаждение систем жидкостной хроматографии
  • Термоэлектрическое охлаждение для камер слежения

Характеристики

  • Работа при высоких температурах
  • Надежный твердотельный
  • Нет звука и вибрации
  • Экологичный
  • Соответствует RoHS

Варианты отделки*

  • TA — притирка / притирка
  • ТБ — притертый / притертый
  • L — притертый / притертый
  • 10 — притертые/металлизированные
  • 11 — притертый / притертый

Варианты уплотнения*

  • RT — RTV
  • EP — Эпоксидная смола

* Если термоэлектрический охладитель с требуемыми вариантами отделки и герметизации отсутствует в списке ниже, воспользуйтесь кнопкой [Запросить цену] или кнопку [Связаться со службой технической поддержки] для вариантов заказа.



* Любая информация, предоставленная Laird Thermal Systems и ее агентами, считается точной и надежной. Все технические характеристики могут быть изменены без предварительного уведомления.


Центры продаж и поддержки


Азия/Тихоокеанский регион: +86 755 3698 8333 x218
Северная и Южная Америка: +1 919-597-7300
EMEA (DE): +49 8031 ​​6192887
EMEA (SE): +46 31 7046757
EMEA (CZ) +42 31 7046757
EMEA (CZ4) +42 50 04 111

Дополнительные контакты


Контакты по продажам
Авторизованные дистрибьюторы
Объекты

Центры продаж и поддержки


Азия/Тихоокеанский регион: +86 755 3698 8333 x218
Америка: +1 919-597-7300
EMEA (DE): +49 8031 ​​6192887
EMEA (SE): +46 31 7046757
EMEA (CZ) +420 488 575 111

Дополнительные контакты


Контакты по продажам
Авторизованные дистрибьюторы
Объекты

Авторизованные дистрибьюторы

Количество

 


Как работают термоэлектрические охладители (ТЭО)

Главная / Продукция / Термоэлектрика  / Ресурсы 

Как работают термоэлектрические охладители (ТЭО)?

Эффект Пельтье

Термоэлектрические охладители работают на эффекте Пельтье. Эффект создает разницу температур за счет передачи тепла между двумя электрическими соединениями. На соединенные проводники подается напряжение для создания электрического тока. Когда ток протекает через места соединения двух проводников, в одном соединении отводится тепло и происходит охлаждение. Тепло отводится в другом соединении.

 

Основное применение эффекта Пельтье — охлаждение. Однако эффект Пельтье также можно использовать для нагрева или регулирования температуры. В любом случае требуется постоянное напряжение.

Элементы термоэлектрического охладителя

Термоэлектрические охладители II-VI действуют как твердотельный тепловой насос. Каждый из них представляет собой массив чередующихся полупроводников n- и p-типа. Полупроводники разного типа имеют дополнительные коэффициенты Пельтье. Массив элементов впаян между двумя керамическими пластинами электрически последовательно и термически параллельно. Твердые растворы теллурида висмута, теллурида сурьмы и селенида висмута являются предпочтительными материалами для устройств на эффекте Пельтье, поскольку они обеспечивают наилучшие характеристики в диапазоне температур от 180 до 400 К и могут быть выполнены как n-типа, так и p-типа. Охлаждающий эффект любого устройства, использующего термоэлектрические охладители, пропорционален количеству используемых охладителей. Обычно несколько термоэлектрических охладителей соединяют рядом, а затем помещают между двумя металлическими пластинами. II-VI включает три различных типа термоэлектрических охладителей, в том числе: термоциклеры, одноступенчатые и многоступенчатые.

Теплопоглощение

Охлаждение происходит при прохождении тока через одну или несколько пар элементов от n- до p-типа; происходит понижение температуры на стыке («холодная сторона»), в результате чего происходит поглощение тепла из окружающей среды. Тепло переносится по элементам переносом электронов и высвобождается на противоположной («горячей») стороне по мере того, как электроны переходят из высокоэнергетического состояния в низкоэнергетическое.

 

Поглощение тепла Пельтье определяется выражением Q = P (коэффициент Пельтье) I (ток) t (время). Одноступенчатый термоэлектрический охладитель может создавать максимальную разницу температур около 70 градусов Цельсия. Тем не менее, термоэлектрический охладитель Triton ICE от II-VI будет охлаждать электронику на 2 градуса по Цельсию ниже текущих рыночных предложений.

Преимущества

Термоэлектрические охладители предлагают множество преимуществ, когда традиционные методы охлаждения не подходят. Кроме того, термоэлектрические охладители экологически безопаснее, чем другие охлаждающие устройства, представленные на рынке. Некоторые преимущества использования термоэлектрического охлаждения в электронных устройствах включают:

 

  • Отсутствие выбросов хлорфторуглеродов или хладагента
  • Низкие эксплуатационные расходы
  • Долгий срок службы
  • Управляемый
  • Подходит для экстремальных условий или удаленных мест
  • Возможность охлаждения намного ниже температуры окружающей среды
  • Производительность не зависит от ориентации

Кроме того, охладители могут значительно улучшить электронные системы заказчика в следующих проблемных областях:

 

  • Тепловые характеристики
  • Стоимость
  • Шум
  • Вес
  • Размер
  • Эффективность

Приложения

Применение 1: Термоциклеры

Термоциклеры применяются в аэрокосмических и оборонных технологиях. Поскольку технология термоциклеров II-VI может выдерживать экстремальные условия, эти модули идеально подходят для использования в космосе или в подобных сложных условиях.

 

Термоциклеры также широко используются в биомедицинских учреждениях для амплификации образцов ДНК и РНК с помощью полимеразной цепной реакции (ПЦР). Термоциклеры амплифицируют сегменты ДНК, систематически повышая и понижая температуру блока, содержащего реакционную смесь для ПЦР. Циклеры предлагают надежный вариант, рассчитанный на более чем 500 000 тепловых циклов. Серия XLT II-VI работает в основе модулей термоциклеров ПЦР, не имеющих себе равных по своей способности выполнять требования ПЦР, включая термическую однородность, повторяемость, точность и скорость.

 

Применение 2: Одноступенчатые термоэлектрические охладители

Одноступенчатые термоэлектрические охладители предназначены для средних и низких требований к тепловой насосной мощности. Типичные области применения включают: массивы лазерных диодов в волоконно-оптических системах и поддержание постоянной вязкости в струйных принтерах.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *