Все о дизайне
Строительство Ящик с понижающим разделительным трансформатором 220 36вОписание ЯТПР-0,25 220/36В ЯТПР-0,25 220/36В IP31 ящик с безопасным разделительным трансформатором, используется для питания сетей местного освещения напряжением 36В с…
Строительство Ясколка подготовка к зимеЛюбое оформление приусадебного участка не обходится без цветов. Обычно для создания изысканного ландшафтного дизайна садоводы выбирают гортензии, лилии, пионы, астры…
Деревянные ящики для овощей и фруктов изготавливаются, как правило, из тонких реек, шпона или фанеры. Расстояние между рейками обычно незначительное,…
Строительство Ящик на колесах с крышкойНесмотря на всеобщую тенденцию использовать балкон или лоджию в качестве кабинета, лаундж-зоны или небольшого квартирного сада, многие их владельцы отказываются…
Доступно в виде 1 Цены отображаются для клиентов после входа в систему Только для коммерческих организаций Зарегистрируйтесь сейчас, чтобы получить…
точка питания электрической энергией — это… Что такое точка питания электрической энергией?
- точка питания электрической энергией
17 точка питания электрической энергией: Точка электрической сети, для которой установлены показатели качества поставляемой электрической энергии, или
точка передачи электрической энергии: Точка электрической сети, находящаяся на линии раздела объектов электроэнергетики между владельцами по признаку собственности или владения на ином предусмотренном федеральными законами основании, определенная в процессе технологического присоединения
de. Übergabestelle punckto
en. Supply point
fr. Point de livraison distribution de l’énergie électrique
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- Точка питания потребителя
- Точка плана
Смотреть что такое «точка питания электрической энергией» в других словарях:
точка — 4.8 точка (pixel): Минимальный элемент матрицы изображения, расположенный на пересечении п строки и т столбца, где п горизонтальная компонента (строка), т вертикальная компонента (столбец). Источник … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения — Терминология ГОСТ 24291 90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа: 4 (электрическая) подстанция; ПС Электроустановка, предназначенная для приема, преобразования и распределения… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 13109-87: Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения — Терминология ГОСТ 13109 87: Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения оригинал документа: Амплитуда импульса пряжения импульса Разность между импульсным напряжени Определения… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р МЭК 60050-826-2009: Установки электрические. Термины и определения — Терминология ГОСТ Р МЭК 60050 826 2009: Установки электрические. Термины и определения оригинал документа: ( длительный ) допустимый ток ((continuous) current carrying capacity ampacity (US)): Максимальное значение электрического тока, который… … Словарь-справочник терминов нормативно-технической документации
система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации
источник — 3.18 источник (source): Объект или деятельность с потенциальными последствиями. Примечание Применительно к безопасности источник представляет собой опасность (см. ИСО/МЭК Руководство 51). [ИСО/МЭК Руководство 73:2002, пункт 3.1.5] Источник … Словарь-справочник терминов нормативно-технической документации
Передача энергии* — (электрическая). П. при помощи электрического тока механической работы, производимой в одном месте, в другое, более или менее удаленное от первого, называется электрической П. энергии. П. энергии в несколько отдельных мест называется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Передача энергии — (электрическая). П. при помощи электрического тока механической работы, производимой в одном месте, в другое, более или менее удаленное от первого, называется электрической П. энергии. П. энергии в несколько отдельных мест называется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения
точка передачи электрической энергии — это… Что такое точка передачи электрической энергии?
- точка передачи электрической энергии
3.1.6 точка передачи электрической энергии: Точка электрической сети, находящаяся на линии раздела объектов электроэнергетики между владельцами по признаку собственности или владения на ином предусмотренном федеральными законами основании, определенная в процессе технологического присоединения.
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- Точка перегиба кривой «давление-время»
- точка пересечения по интермодуляции второго порядка
Смотреть что такое «точка передачи электрической энергии» в других словарях:
точка питания электрической энергией — 17 точка питания электрической энергией: Точка электрической сети, для которой установлены показатели качества поставляемой электрической энергии, или точка передачи электрической энергии: Точка электрической сети, находящаяся на линии раздела… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54149-2010: Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения
МИ 2808-2003: Рекомендация. Государственная система обеспечения единства измерений. Количество электрической энергии. Методика выполнения измерений при распределении небалансов на оптовом рынке электрической энергии — Терминология МИ 2808 2003: Рекомендация. Государственная система обеспечения единства измерений. Количество электрической энергии. Методика выполнения измерений при распределении небалансов на оптовом рынке электрической энергии: 4.1.1.… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54418.21-2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 21. Измерение и оценка характеристик, связанных с качеством электрической энергии, ветроэнергетических установок, подключенных к электрической сети — Терминология ГОСТ Р 54418.21 2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 21. Измерение и оценка характеристик, связанных с качеством электрической энергии, ветроэнергетических установок, подключенных к… … Словарь-справочник терминов нормативно-технической документации
точка — 4.8 точка (pixel): Минимальный элемент матрицы изображения, расположенный на пересечении п строки и т столбца, где п горизонтальная компонента (строка), т вертикальная компонента (столбец). Источник … Словарь-справочник терминов нормативно-технической документации
ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения — Терминология ГОСТ 24291 90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа: 4 (электрическая) подстанция; ПС Электроустановка, предназначенная для приема, преобразования и распределения… … Словарь-справочник терминов нормативно-технической документации
Передача энергии* — (электрическая). П. при помощи электрического тока механической работы, производимой в одном месте, в другое, более или менее удаленное от первого, называется электрической П. энергии. П. энергии в несколько отдельных мест называется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Передача энергии — (электрическая). П. при помощи электрического тока механической работы, производимой в одном месте, в другое, более или менее удаленное от первого, называется электрической П. энергии. П. энергии в несколько отдельных мест называется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ГОСТ Р 8.778-2011: Государственная система обеспечения единства измерений. Средства измерений тепловой энергии для водяных систем теплоснабжения. Метрологическое обеспечение. Основные положения — Терминология ГОСТ Р 8.778 2011: Государственная система обеспечения единства измерений. Средства измерений тепловой энергии для водяных систем теплоснабжения. Метрологическое обеспечение. Основные положения оригинал документа: 3.2… … Словарь-справочник терминов нормативно-технической документации
Точка присоединения к электрической сети
- Точка присоединения к электрической сети
«…»точка присоединения к электрической сети» — место физического соединения энергопринимающего устройства (энергетической установки) потребителя услуг по передаче электрической энергии (потребителя электрической энергии, в интересах которого заключается договор об оказании услуг по передаче электрической энергии) с электрической сетью сетевой организации…»
Источник:
Постановление Правительства РФ от 27.12.2004 N 861 (ред. от 22.11.2012) «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг, Правил недискриминационного доступа к услугам по оперативно-диспетчерскому управлению в электроэнергетике и оказания этих услуг, Правил недискриминационного доступа к услугам администратора торговой системы оптового рынка и оказания этих услуг и Правил технологического присоединения энергопринимающих устройств потребителей электрической энергии, объектов по производству электрической энергии, а также объектов электросетевого хозяйства, принадлежащих сетевым организациям и иным лицам, к электрическим сетям»
Официальная терминология. Академик.ру. 2012.
- Точка росы
- Точка росы стеклопакета
Смотреть что такое «Точка присоединения к электрической сети» в других словарях:
точка присоединения к электрической сети — 3.1.48 точка присоединения к электрической сети : Место физического соединения энергопринимающего устройства (энергетической установки) потребителя услуг по передаче электрической энергии с электрической сетью сетевой организации. [Правила… … Словарь-справочник терминов нормативно-технической документации
точка присоединения — 3.7 точка присоединения (attachment point): Основная точка присоединения устройства позиционирования на канатах согласно инструкции изготовителя. Источник … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 54418.21-2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 21. Измерение и оценка характеристик, связанных с качеством электрической энергии, ветроэнергетических установок, подключенных к электрической сети — Терминология ГОСТ Р 54418.21 2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 21. Измерение и оценка характеристик, связанных с качеством электрической энергии, ветроэнергетических установок, подключенных к… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения — Терминология ГОСТ 24291 90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа: 4 (электрическая) подстанция; ПС Электроустановка, предназначенная для приема, преобразования и распределения… … Словарь-справочник терминов нормативно-технической документации
точка — 4.8 точка (pixel): Минимальный элемент матрицы изображения, расположенный на пересечении п строки и т столбца, где п горизонтальная компонента (строка), т вертикальная компонента (столбец). Источник … Словарь-справочник терминов нормативно-технической документации
точка общего присоединения — 3.1.49 точка общего присоединения : Точка электрической сети общего назначения, электрически ближайшая к сетям рассматриваемого потребителя электрической энергии (входным устройствам рассматриваемого приемника электрической энергии), к которой… … Словарь-справочник терминов нормативно-технической документации
точка общего присоединения — Точка электрической сети общего назначения, электрически ближайшая к сетям рассматриваемого потребителя электрической энергии (входным устройствам рассматриваемого приемника электрической энергии), к которой присоединены или могут быть… … Справочник технического переводчика
Точка общего присоединения — – точка электрической сети общего назначения, электрически ближайшая к сетям рассматриваемого потребителя электрической энергии (входным устройствам рассматриваемого приемника электрической энергии), к которой присоединены электрические сети… … Коммерческая электроэнергетика. Словарь-справочник
точка общего присоединения, — 3.12 точка общего присоединения, ТОП: Электрически ближайшая к рассматриваемому потребителю электрической энергии точка электрической сети, к которой присоединены или могут быть присоединены другие потребители электрической энергии. Источник … Словарь-справочник терминов нормативно-технической документации
точка общего присоединения, ТОП — 3.10 точка общего присоединения, ТОП [point of common coupling, PCC]: Точка электрической сети, электрически ближайшая к конкретной нагрузке, к которой присоединены или могут присоединяться другие нагрузки. Примечания 1. Нагрузками могут быть… … Словарь-справочник терминов нормативно-технической документации
Что такое электрический ток: основные понятия и характеристики
Электрический ток – это движение заряженных частиц в определенном направлении. Происходит подобное явление под влиянием поля. Частицами являются электроны, которые двигаются по проводнику и ионы, передвигающиеся в электролитной среде. Ионы бывают анионами и катионами. Проявляется ток в следующем:
- нагрев проводника по которому он протекает, кроме сверхпроводников;
- меняется химический состав, например, такое явление как электролиз;
- появление магнитного поля. Ток считается направленным движением заряда с токопроводящей среде.
В статье будет рассказано все о таком явлении, как ток. Подробнее будет рассказано об этом в двух видеороликах.
Электрический ток в проводах
Классификация
Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток. Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают. Постоянный ток — ток, направление и величина которого слабо меняются во времени.
Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.
Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.
Электрические разряды
В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).
В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
Таблица электрический ток и его единицы измерения.
Квазистационарный ток
Это «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.
Пульсирующий ток
Ток, у которого изменяется только величина, а направление остаётся постоянным.
Вихревые токи (токи Фуко)
Замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.
Вихревой ток
Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.
Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.
П
ри очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.
Характеристики
Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц. Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.
Интересно почитать! Что такое варистор и где его применяют.
За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.
Разряд молнии – пример природного электричества
Основные типы проводников
В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).
Таблица электрический ток в различных средах.
- Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.
- Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.
- Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.
Передача тока по проводам
Что такое ток, напряжение и сопротивление
Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах. Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.
Материал по теме: Что такое реле контроля.
Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира. Условиями возникновения и существования электрического тока являются:
- Наличие свободных носителей заряда
- Наличие электрического поля, создающего и поддерживающего ток.
Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно. Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.
Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.
Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ. Здесь:
- E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
- Δφ=φ1-φ2 – разность потенциалов (рисунок 1).
Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.
Электролиз в домашних условиях
Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε. Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.
Напряжение ( U )
Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε. Это не совсем корректно, но на практике вполне достаточно. Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривается на отдельной странице этого раздела.
Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.
Источники электрической энергии
Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S. Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление. Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:
- Ток – Ампер (А)
- Напряжение – Вольт (В)
- Сопротивление – Ом (Ом).
Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.
Интересно по теме: Как проверить стабилитрон.
Терминология
Когда мы произносим словосочетание «электрический ток», то обычно имеем ввиду самые разные проявления электричества. Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток. Электролиз, электросварка, искры статического электричества на расческе, по спирали лампы накаливания течет ток, и даже в крохотном карманном фонарике через светодиод течет крохотный ток. Что и говорить о нашем сердце, которое также генерирует небольшой электрический ток, особенно это заметно во время прохождения процедуры ЭКГ.
Переменное магнитное поле
В физике электрическим током принято называть упорядоченное движение заряженных частиц и в принципе любых носителей электрического заряда. Движущийся вокруг атомного ядра электрон — это тоже ток. И заряженная эбонитовая палочка, если держать ее в руке и двигать из стороны в сторону — также станет источником тока: не равный нулю заряд есть и он движется.
Физические аналогии между течением воды в системе водоснабжения и электрическим током: Электропроводка и трубопровод. Ток течет по проводам бытовых электроприборов питающихся от розетки — электроны перемещаются туда-сюда 50 раз за секунду — это называется переменным током. Высокочастотные сигналы внутри электронных приборов — это тоже электрический ток, поскольку электроны и дырки (носители положительного заряда) перемещаются внутри схемы. Любой электрический ток порождает своим существованием магнитное поле. Вокруг проводника с током оно обязательно присутствует. Не существует магнитного поля без тока и тока без магнитного поля.
Даже если магнитного поля вокруг тока не наблюдается, это лишь значит что магнитные поля двух токов в момент наблюдения взаимно скомпенсированы, как в двужильном проводе любого электрического чайника — переменные токи в каждый момент направлены в противоположные стороны и текут параллельно друг другу — их магнитные поля друг друга нейтрализуют. Это называется принципом наложения (суперпозиции) магнитных полей.
Практически для существования электрического тока необходимо наличие электрического поля, потенциального или вихревого. Исключительно редко заряды перемещаются чисто механическим образом (как например в генераторе Ван Де Граафа — наэлектризованной резиновой лентой). В электрическом поле заряженная частица испытывает действие электрической силы, которая у источников тока называется ЭДС — электродвижущая сила. ЭДС измеряется в вольтах как и напряжение между двумя точками электрической цепи. Чем больше напряжение приложенное к потребителю — тем больший электрический ток это напряжение способно вызвать.
Магнитное поле от электрического разряда
Переменное напряжение порождает в проводнике, к которому оно приложено, переменный ток, поскольку электрическое поле, приложенное к носителям заряда, будет в этом случае также переменным. Постоянное напряжение — условие существования в проводнике тока постоянного. Высокочастотное напряжение (изменяющее свое направление сотни тысяч раз за секунду) также способствует переменному току в проводниках, но чем выше частота — тем меньше носителей заряда участвуют в создании тока в толще проводника, поскольку электрическое поле действующее на заряженные частицы вытесняется ближе к поверхности, и получается что ток течет не в проводнике, а по его поверхности. Это называется скин-эффект.
Электрический ток может существовать в вакууме, в проводниках, в электролитах, в полупроводниках и даже в диэлектриках (ток смещения). Правда в диэлектриках постоянного тока быть не может, поскольку в них заряды не имеют возможности к свободному перемещению, а способны лишь смещаться в пределах внутримолекулярного расстояния от своего первоначального положения под действием приложенного электрического поля.
Настоящий электрический ток всегда предполагает возможность свободного перемещения электрических зарядов под действием электрического поля. Смотрите – условия существования электрического тока. В металлических проводниках электрический ток представляет собой движение «свободных» электронов, причем электроны движутся в направлении, противоположном условному направлению тока (т. к. за направление тока условно принято направления движения зарядов).
Электрический ток в газах представляет собой движение положительных ионов в одном направлении, а электронов (и отрицательных ионов) в другом направлении. Наконец, электрический ток в электролитах представляет собой движение существующих в жидкости положительных и отрицательных ионов в противоположных направлениях. Сила электрического тока — количество электричества, прошедшее через все поперечное сечение тока за 1 сек., зависит, с одной стороны, от количества движущихся зарядов, а с другой — от средней скорости их регулярного движения. В металлических проводниках количество движущихся зарядов (свободных электронов) чрезвычайно велико (порядка 1023 в 1 см3), но зато средняя скорость регулярного движения очень мала (при самых сильных токах, которые может выдержать проводник, эта средняя скорость имеет величину порядка сантиметра в секунду). Обычно несколько меньше количество движущихся зарядов в жидкостях и соответственно их средние скорости несколько больше.
В газах же вследствие их гораздо меньшей плотности и вследствие того, что только небольшая доля всех молекул газа оказывается ионизированной, количество движущихся зарядов гораздо меньше, но зато средние скорости движения электронов и ионов гораздо больше, чем в металлических проводниках, и достигают сотен и даже тысяч километров в секунду. Понятие “электрический ток” ввел итальянский физик Алессандро Вольта. Электрический ток, или по его версии “электрический флюид” протекал в замкнутой цепи, соединяющей металлическим проводником крайние кружки вольтова столба.
“Вотльтов столб” (1800 г.) был первый источник электричества неэлектростатического типа (источник постоянного электрического тока), который состоял из чередующихся между собой медных и цинковых кружков, разделенных суконными прокладками, смоченными подкисленной водой или кислотой. Существование неизменного высокого потенциала на вольтовом столбе было явлением для того времени совершенно новым. Это был первый химический источник электричества, потенциал которого был постоянен во времени и не требовал каких-либо приемов электризации для его возобновления.
Вольтов столб, составленный из большого количества кружков, имел на концах достаточно высокий потенциал, который можно было обнаружить не только измерительными приборами (в частности электроскопом), но и прикоснувшись к крайним кружкам руками. При этом ощущался сильный электрический удар, как от лейденской банки. Открытие Вольты очень быстро распространилось в физике, стало предметом дальнейших исследований. В 1800 г. ученые-физики с помощью вольтова столба обнаружили электрохимическое действие тока, и в частности разложение под действием тока воды на кислород и водород. Опыты с гальваническими элементами позволили обнаружить, кроме химических, и другие новые свойства тока, в том числе его тепловое и магнитное действие.
Важное по теме. Как проверить конденсатор.
Французский физик А. М. Ампер посвятил ряд своих работ изучению связи электрического тока и магнетизма. Он обнаружил, что два проводника с током испытывают взаимное воздействие — притяжение или отталкивание в зависимости от направления в них токов. Своими работами он заложил основы электродинамики. Он предложил термин “электрический ток” и ввел понятие о его направлении, совпадающем с движением положительного электричества. В честь А. М. Ампера названа единица измерения электрического тока. Ампер является одной из семи основных единиц системы СИ.
Электрический ток обладает рядом свойств, которые могут быть эффективно использованы во многих практических случаях. К таким свойствам относятся трансформация простыми техническими средствами энергии электрического тока в энергию других видов (тепловую, световую, механическую, химическую) и возможность передачи ее на большие расстояния, быстрота распространения.
Заключение
Рейтинг автора
Автор статьи
Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.
Написано статей
Более подробно о том, что такое ток, рассказано в статье Что такое электрический ток. Если у вас остались вопросы, можно задать их в комментариях на сайте. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.
В завершение статьи хотелось бы выразить благодарность источникам информации для подготовки материала:
www.electricalschool.info
www.electrik.info
www.elektal.com.ua
www.allatra-science.org
www.eltechbook.ru
www.meanders.ru
ПредыдущаяТеорияЗаконы Кирхгофа простыми словами: определение для электрической цепи
СледующаяТеорияКак работает выпрямитель напряжения
Что такое электричество? — learn.sparkfun.com
Добавлено в избранное Любимый 61Электрический потенциал (энергия)
Когда мы используем электричество для питания наших цепей, устройств и устройств, мы действительно преобразуем энергию. Электронные схемы должны иметь возможность накапливать энергию и передавать ее другим формам, таким как тепло, свет или движение. Накопленная энергия цепи называется электрической потенциальной энергией.
Энергия? Потенциальная энергия?
Чтобы понять потенциальную энергию, нам нужно понять энергию в целом.Энергия определяется как способность объекта выполнять работу над другим объектом, что означает перемещение этого объекта на некоторое расстояние. Энергия имеет множество форм , некоторые из которых мы можем видеть (например, механическую), а другие — нет (например, химическую или электрическую). Независимо от того, в какой форме она находится, энергия существует в одном из двух состояний : кинетическом или потенциальном.
Объект имеет кинетическую энергию , когда он движется. Количество кинетической энергии объекта зависит от его массы и скорости. Потенциальная энергия , с другой стороны, представляет собой запасенную энергию , когда объект находится в состоянии покоя. Он описывает, сколько работы мог бы сделать объект, если бы он был приведен в движение. Это энергия, которую мы обычно можем контролировать. Когда объект приводится в движение, его потенциальная энергия превращается в кинетическую.
Давайте вернемся к использованию гравитации в качестве примера. Шар для боулинга, неподвижно сидящий на вершине башни Халифа, имеет много потенциальной (накопленной) энергии. После падения мяч, притягиваемый гравитационным полем, ускоряется по направлению к земле.Когда мяч ускоряется, потенциальная энергия преобразуется в кинетическую (энергию движения). В конце концов вся энергия мяча превращается из потенциальной в кинетическую, а затем передается всему, в что он попадает. Когда мяч находится на земле, у него очень низкая потенциальная энергия.
Электрическая потенциальная энергия
Подобно тому, как масса в гравитационном поле имеет потенциальную энергию гравитации, заряды в электрическом поле имеют электрическую потенциальную энергию . Электрическая потенциальная энергия заряда описывает, сколько у него накопленной энергии, когда она приводится в движение электростатической силой, эта энергия может стать кинетической, и заряд может работать.
Подобно шару для боулинга, сидящему на вершине башни, положительный заряд в непосредственной близости от другого положительного заряда имеет высокую потенциальную энергию; оставленный свободным для движения, заряд будет отталкиваться от аналогичного заряда. Положительный тестовый заряд, помещенный рядом с отрицательным зарядом, будет иметь низкую потенциальную энергию, как и шар для боулинга на земле.
Чтобы привить чему-либо потенциальную энергию, мы должны выполнить работу , перемещая это на расстояние. В случае шара для боулинга работа заключается в том, чтобы поднять его на 163 этажа против поля силы тяжести.Точно так же необходимо проделать работу, чтобы подтолкнуть положительный заряд к стрелкам электрического поля (либо к другому положительному заряду, либо от отрицательного заряда). Чем дальше идет заряд, тем больше работы вам предстоит сделать. Точно так же, если вы попытаетесь отвести отрицательный заряд от от положительного заряда — против электрического поля — вам придется выполнять работу.
Для любого заряда, находящегося в электрическом поле, его электрическая потенциальная энергия зависит от типа (положительный или отрицательный), количества заряда и его положения в поле.Электрическая потенциальная энергия измеряется в джоулях ( Дж, ).
Электрический потенциал
Электрический потенциал основан на электрическом потенциале energy , чтобы помочь определить, сколько энергии хранится в электрических полях . Это еще одна концепция, которая помогает нам моделировать поведение электрических полей. Электрический потенциал , а не , как электрическая потенциальная энергия!
В любой точке электрического поля электрический потенциал равен количеству электрической потенциальной энергии, деленному на количество заряда в этой точке.Он вынимает количество заряда из уравнения и оставляет нам представление о том, сколько потенциальной энергии могут обеспечить определенные области электрического поля. Электрический потенциал выражается в джоулях на кулон ( Дж / Кл ), который мы определяем как вольт (В).
В любом электрическом поле есть две точки электрического потенциала, которые представляют для нас значительный интерес. Есть точка с высоким потенциалом, где положительный заряд будет иметь максимально возможную потенциальную энергию, и есть точка с низким потенциалом, где заряд будет иметь минимально возможную потенциальную энергию.
Один из наиболее распространенных терминов, которые мы обсуждаем при оценке электричества, — это напряжение . Напряжение — это разность потенциалов между двумя точками электрического поля. Напряжение дает нам представление о том, сколько толкающей силы имеет электрическое поле.
Обладая потенциальной и потенциальной энергией, у нас есть все ингредиенты, необходимые для производства электричества. Давай сделаем это!
← Предыдущая страница
Электрополь .
электрических цепей? Все дело в узлах, ответвлениях и петлях
Узлы, ответвления и петли
Поскольку элементы электрической цепи могут быть соединены между собой несколькими способами, нам необходимо понять некоторые базовые концепции топологии сети. Чтобы различать схему и сеть, мы можем рассматривать сеть как взаимосвязь элементов или устройств, тогда как схема — это сеть, обеспечивающая один или несколько замкнутых путей.
Электрические схемы? Все дело в узлах, ответвлениях и петляхПо соглашению при описании топологии сети в используется слово «сеть», а не «цепь ».Мы делаем это, даже если слова «сеть» и «схема» означают одно и то же в данном контексте.
В топологии сети мы изучаем свойства, относящиеся к размещению элементов в сети и геометрической конфигурации сети. Это все об элементах схемы, таких как ветви, узлы и петли.
Ответвления //
Ветвь представляет собой отдельный элемент, такой как источник напряжения или резистор. Другими словами, ветвь представляет собой любой двухконтактный элемент.
Схема на рис. 1 имеет пять ветвей, а именно: источник напряжения 10 В, источник тока 2 А и три резистора.
Рисунок 1 — Узлы, ответвления и петлиУзлы //
Узел — это точка соединения между двумя или более ответвлениями .
Узел обычно обозначается точкой в схеме . Если короткое замыкание (соединительный провод) соединяет два узла, два узла составляют один узел. Схема на рисунке 1 имеет три узла a , b и c .
Обратите внимание, что три точки, образующие узел b , соединены идеально проводящими проводами и, следовательно, составляют единую точку. То же самое и с четырьмя точками, образующими узел c . Мы продемонстрируем, что схема на рис. 1 имеет только три узла, перерисовав схему на рис. 2. Две схемы на рис. 1 и 2 идентичны.
Тем не менее, для ясности, узлов b и c разнесены с идеальными проводниками, как на рис.1.
Рисунок 2 — Трехузловая схема на Рисунке 1 перерисованаПетли //
Петля — это любой замкнутый путь в схеме .
Цикл — это замкнутый путь , образованный путем начала в узле , прохождения через набор узлов и возврата к начальному узлу без прохождения через какой-либо узел более одного раза. Цикл называется независимым, если он содержит хотя бы одну ветвь, которая не является частью любого другого независимого цикла.Независимые петли или пути приводят к независимым системам уравнений.
Можно сформировать независимый набор циклов, в котором один из циклов не содержит такой ветви. На рис. 2, abca с резистором 2 Ом является независимым. Второй контур с резистором 3 Ом и источником тока независим. Третий контур может быть с резистором 2 Ом, подключенным параллельно резистору 3 Ом. Это формирует независимый набор петель.
Сеть с b ветвями , n узлов и l независимых петель будет удовлетворять фундаментальной теореме сетевой топологии //
b = l + n — 1
Как показывают следующие два определения, схема Топология имеет большое значение для исследования напряжений и токов в электрической цепи.
Два или более элемента включены в серию , если они используют только один узел и, следовательно, несут одинаковый ток.
Два или более элемента подключены параллельно , если они подключены к одним и тем же двум узлам и, следовательно, имеют одинаковое напряжение на них.
Элементы входят в серию , когда они соединены цепью или соединены последовательно, конец в конец. Например, два элемента включены последовательно, если они имеют один общий узел, и ни один другой элемент не подключен к этому общему узлу. Элементы, включенные параллельно , подключены к одной паре клемм.
Элементы также могут быть соединены способом, который не является ни последовательным, ни параллельным .
В схеме, показанной на рис. 1, источник напряжения и резистор 5 Ом включены последовательно, потому что через них протекает один и тот же ток. Резистор 2 Ом, резистор 3 Ом и источник тока подключены параллельно, потому что они подключены к одним и тем же двум узлам b и c и, следовательно, имеют одинаковое напряжение на них.Резисторы 5 Ом и 2 Ом не включены ни последовательно, ни параллельно друг другу.
Проблемы напряжения узла в анализе цепей (ВИДЕО)
Ссылка // «Основы электрических цепей» Чарльза К. Александера и Мэтью Н. О. Садику (приобретено у Amazon)
.