Индикатор электростатического поля
Схемы для измерений
Описываемые в статье конструкции индикаторов электрического поля могут быть использованы для определения наличия электростатических потенциалов. Эти потенциалы опасны для многих полупроводниковых приборов (микросхем, полевых транзисторов), их наличие может вызвать взрыв пылевого или аэрозольного облака. Индикаторы также могут быть использованы для дистанционного определения наличия электрических полей высокой напряженности (от высоковольтных и высокочастотных установок, электросилового высоковольтного оборудования).
В качестве чувствительного элемента всех конструкций использованы полевые транзисторы, электрическое сопротивление которых зависит от напряжения на их управляющем электроде — затворе. При наведении электрического сигнала на управляющий электрод полевого транзистора электрическое сопротивление сток-исток последнего заметно изменяется. Соответственно, изменяется и величина электрического тока, протекающего через полевой транзистор. Для индикации изменения тока использованы светодиоды. Индикатор (рис.1) содержит три детали: полевой транзистор VT1 — датчик электрического поля, HL1 — индикатор тока, стабилитрон VD1 — элемент защиты полевого транзистора. В качестве антенны использован отрезок толстого изолированного провода длиной 10…15 см. Чем больше длина антенны — тем выше чувствительность устройства.
Индикатор на рис.2 отличается от предыдущего наличием регулируемого источника смещения на управляющем электроде полевого транзистора. Такая добавка объясняется тем, что ток через полевой транзистор зависит от начального смещения на его затворе. Для транзисторов даже одной партии изготовления, а тем более, для транзисторов разных типов, величина начального смещения для обеспечения равного тока через нагрузку заметно отличается. Следовательно, регулируя начальное смещение на затворе транзистора, можно задавать как начальный ток через сопротивление нагрузки (светодиод), так и управлять чувствительностью устройства.
Начальный ток через светодиод рассмотренных схем составляет 2…3 мА. Следующий индикатор (рис.3) использует для индикации три светодиода. В исходном состоянии (при отсутствии электрического поля) сопротивление канала исток-сток полевого транзистора невелико. Ток протекает преимущественно через индикатор включенного состояния устройства — светодиод HL1 зеленого цвета.
Этот светодиод шунтирует цепочку последовательно соединенных светодиодов HL2 и HL3. При наличии внешнего надпорогового электрического поля сопротивление канала исток-сток полевого транзистора возрастает. Происходит плавное или мгновенное отключение светодиода HL1. Ток от источника питания через ограничивающий резистор R1 начинает протекать через последовательно включенные светодиоды HL2 и HL3 красного свечения. Эти светодиоды могут быть установлены слева и справа относительно HL1. Индикаторы электрического поля повышенной чувствительности с использованием составных транзисторов показаны на рис.4 и 5. Принцип их работы соответствует ранее описанным конструкциям. Максимальный ток через светодиоды не должен превышать 20 мА.
Вместо указанных на схемах полевых транзисторов могут быть использованы другие полевые транзисторы (особенно в схемах с регулировкой начального смещения на затворе). Стабилитрон защиты можно использовать другого типа с максимальным напряжением стабилизации 10 В, желательно симметричный. В ряде схем (рис.1, 3, 4) стабилитрон, в ущерб надежности, может быть исключен из схемы. В этом случае во избежание повреждения полевого транзистора не допускается касания антенной заряженного предмета, сама антенна должна быть хорошо изолирована. При этом чувствительность индикатора заметно возрастает. Стабилитрон во всех схемах можно также заменить сопротивлением 10…30 МОм.
Шустов М.
Читайте также: Электронный электроскоп своими руками
ИНДИКАТОРЫ ЭЛЕКТРИЧЕСКОГО ПОЛЯ
Все радиолюбители знают, что газоразрядные лампы, наполненные инертным газом под низком давлением, могут светиться в сильном электрическом поле, даже если выводы лампы ним к чему не подключены [1]. При этом свечение газового разряда представляет собой весьма красочное зрелище, особенно в условиях низкой освещенности. В продаже имеются специальные декоративные неоновые лампы в которых реализован подобный эффект. С использованием источника высокого напряжения от такой лампы и самодельной колбы можно сконструировать весьма оригинальные сувениры [2].
Вблизи от таких ламп можно наблюдать свечение люминесцентных ламп дневного света и светодиодов.
Данное свойство газоразрядных ламп позволяет использовать их как индикаторы электрического поля, что бывает важно при изготовлении высоковольтных и (или) высокочастотных устройств. В простейшем случае в качестве такого индикатора выступает отдельная неоновая лампочка, например МН-3. Для защиты от механических повреждений ее можно поместить в подходящий отрезок прозрачной пластиковой трубки.
Такая лампа служит независимым индикатором работы самодельного ионизатора воздуха.
Аналогично, можно закрепить подобный индикатор на конце пластиковой палочки или трубки (подойдет корпус от шариковой ручки), для того чтобы пальцы не попадали в зону с наибольшей напряженностью электрического поля.
Можно просто поместить несколько миниатюрных неоновых ламп в прозрачный корпус авторучки.
Для визуализации распределения электромагнитного поля в пространстве можно изготовить планшетку с несколькими десятками неоновых ламп. Основой для нее послужила коробка от CD диска из которой удалена часть для закрепления диска и на ее место помещен прямоугольник из прозрачной пластиковой пленки, в которой проколоты отверстия для выводов неоновых ламп.
Подобно декоративным неоновым лампам тлеющий разряд может возникнуть в обычной лампе накаливания. Дело в том, что большинство современных ламп накаливания заполнены инертным газом, который замедляет испарение вольфрамовой нити, по этому в работающей лампе накаливания на самом деле довольно высокое давление нагретого газа [3], следует отметить, что в неработающей лампе с холодной спиралью давление гораздо меньше атмосферного. Обычно лампы заполнены аргоном [4], либо криптоном [5].
Для этого нужно присоединить контакты лампы к одному полюсу источника высокого напряжения. В качестве другого электрода выступает рука экспериментатора, которая удерживает колбу лампы. Правда, свечение довольно слабое, по этому наблюдать его следует в темноте. Опыт лучше удается с лампами, имеющими колбу уменьшенного размера.
При этом следует иметь в виду, что часть миниатюрных ламп накаливания, например низковольтные лампы от карманного фонаря, вообще не демонстрируют электрического разряда, по всей видимости, такие лампы просто вакуумированны. Опыт хорошо удается с индикаторными и декоративными неоновыми лампами, которые имеют колбу достаточно большого объема и предназначены для включения в обычную бытовую электросеть напряжением 220 В [6-7].
Перемещая такую лампу возле источника электрического поля можно увидеть, как меняется характер свечения газа в колбе.
Очевидно, для таких опытов можно использовать ультрафиолетовую лампу (также ее называют лампа Вуда или лампа черного света) [8], которая отличается от обычной люминесцентной лампы только тем, что не имеет на внутренней поверхности люминофора для преобразования ультрафиолетового излучения в видимый свет. Колба ультрафиолетовой лампы, изготовлена из материала, хорошо пропускающего ультрафиолетовое излучение.
Литература
- http://teslacoil.ru/lamp-devices/nemnogo-gazorazryadnostey/
- https://tabun.everypony.ru/blog/electro/162279.html
- http://chemistry-chemists.com/N8_2013/ChemistryAndChemists_8_2013-P9-1.html
- Юный исследователь. Подводный мир. Электричество. Медицина. – М.: Росмэн, 1994
- Поляков Ю. Н. Справочник электрика. Ростов на Дону: Феникс, 2009.
- http://chemistry-chemists.com/N3_2012/U3/Ne.html
- http://chemistry-chemists.com/N4_2013/ChemistryAndChemists_4_2013-P1-1.html
- http://chemistry-chemists.com/N1_2012/U8/ChemistryAndChemists_1_2012-U8-1.html
Всем спасибо за внимание, автор проекта — Denev.
Двухполярный детектор напряженности электрического поля
Здравствуйте, уважаемые читатели и самоделкины!В данной статье, автор YouTube канала «Thomas Kim» расскажет Вам о простом детекторе напряженности электрического поля. При помощи этого устройства можно даже обнаруживать грозовые разряды, не говоря уже об обычном статическом электричестве.
Устройство изготовлено из минимума деталей, которые найти не составит труда.
Материалы.
— Небольшая пластиковая бутылка
— Держатель батареек
— Две 1,5 В батарейки ААА
— Красный и синий светодиоды
— Две тактовые кнопки
— Транзисторная сборка FDS8958A
— Два резистора 100 Ом
— Пластиковая и стеклянная трубки
— Провода.
Инструменты, использованные автором.
— Клеевой пистолет
— Паяльник
— Шуруповерт
— Кусачки
— Генератор Ван де Граафа.
Процесс изготовления.
Итак, для начала мастер подготавливает корпус для устройства. Высверливает в центре крышки отверстие, и вставляет в него пластиковую трубочку.
Обрезав ее до нужной длины, фиксирует ее термоклеем с обратной стороны крышки.
Затем обрезает трубку немного короче, чем стеклянная.
Надев стеклянную трубку на пластиковую, фиксирует клеем у основания и на конце. Должно быть максимально герметично.
С нижней стороны крышки делает из обрезков трубки раму для электроники.
Далее устройство будет собираться по следующей схеме.
Разогнув ножки кнопкам, приклеивает их к раме. Они нужны только для припаивания микросборки. Никакой другой функции они не выполняют. Их можно заменить обрезками ножек от резисторов.
Затем автор делает отверстие в центральной трубке.
Укорачивает две ближние ножки кнопок, а дальние подгибает так, чтобы было удобно припаять четыре ножки транзисторной сборки.
Теперь залуживает контакты, и припаивает транзисторную сборку. А именно выводы 1-4.
К контактам 5-6 припаивает плюс синего, а к контактам 7-8 минус красного светодиодов.
Затем к оставшимся выводам светодиодов припаивает резисторы номиналом 100 Ом.
Резистор от красного светодиода припаивается к контакту кнопки, соответствующая 3-му контакту чипа.
Заизолировав вывод резистора от синего светодиода, припаивает к 1-му контакту.
Итак, основная часть устройства собрана.
Из двух проводков делает две антенны в виде петель, и припаивает на оставшиеся контакты кнопок. Или 2, 4 контакты чипа.
Остается заправить антенны в трубочку.
Последним припаиваются контакты батарейного отсека прямо к выводам резисторов.
Батарейный отсек остается закрепить на раме термоклеем, и закрыть крышку.
Включив генератор Ван де Граафа, автор проверяет работу устройства. Если держаться за корпус — видно, что вокруг положительный заряд. Для проверки работы обратного ключа — достаточно взяться за антенну.
Теперь проверка двумя разными генераторами, один дает положительный разряд, а второй — отрицательный.
Устройство еще долго помнит накопленный заряд, достаточно прикоснуться к антенне для его сброса.
Спасибо автору за простое, но полезное устройство!
Всем хорошего настроения, удачи, и интересных идей!
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Схемы индикатори электрических полей (13 схем)
Индикаторы электрических полей могут быть использованы для индивидуальной защиты электромонтеров, при поиске мест повреждений электрических сетей. С их помощью определяется наличие электростатических зарядов в полупроводниковом, текстильном производствах, хранилищах легковоспламеняющихся жидкостей. При поиске источников магнитных полей, определении их конфигурации и исследовании полей рассеяния трансформаторов, дросселей и электродвигателей не обойтись без индикаторов полей.
Схема индикатора высокочастотных излучений показана на рис. 20.1. Сигнал с антенны попадает на детектор, выполненный на германиевом диоде. Далее через Г-образный LC-фильтр сигнал поступает на базу транзистора, в коллекторную цепь которого включен микроамперметр. По нему и определяется мощность высокочастотных излучений.
Рис. 20.1
Для индикации низкочастотных электрических полей используют индикаторы с входным каскадом на полевом транзисторе (рис. 20.2 — 20.7). Первый из них (рис. 20.2) выполнен на основе мультивибратора [ВРЯ 80-28, Р 8/91-76]. Канал полевого транзистора является управляемым элементом, сопротивление которого зависит от величины контролируемого электрического поля. К затвору транзистора подключена антенна. При внесении индикатора в электрическое поле, сопротивление исток — сток полевого транзистора возрастает, и мультивибратор включается.
В телефонном капсюле раздается звуковой сигнал, частота которого зависит от напряженности электрического поля.
Рис. 20.2
Рис. 20.3
Следующие две конструкции по схемам Д. Болотника и Д. Приймака (рис. 20.3 и 20.4) предназначены для поиска неисправностей в новогодних электрических гирляндах [Р 11/88-56]. Индикатор (рис. 20.3) в целом представляет собой резистор с управляемым сопротивлением. Роль такого сопротивления опять же играет канал сток — исток полевого транзистора, дополненного двухкаскадным усилителем постоянного тока. Индикатор (рис. 20.4) выполнен по схеме управляемого низкочастотного генератора. Он содержит пороговое устройство, усилитель и детектор сигнала, наведенного в антенне переменным электрическим полем. Все эти функции выполняет один транзистор — VT1. На транзисторах VT2 и VT3 собран генератор низкой частоты, работающий в ждущем режиме. Как только антенну устройства приближают к источнику электрического поля, транзистор VT1 включает звуковой генератор.
Рис. 20.4
Рис. 20.5
Индикатор электрического поля (рис. 20.5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].
В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3). При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует. Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы. Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.
Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.
Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.
Рис. 20.6
Индикатор электрических и магнитных полей (рис. 20.6) содержит релаксационный генератор импульсов. Он выполнен на биполярном лавинном транзисторе (транзистор микросхемы К101КТ1А, управляемый электронным ключом на полевом транзисторе типа КП103Г), к затвору которого подключена антенна. Для задания рабочей точки генератора (срыв генерации в отсутствии индицируемых электрических полей) используют резисторы R1 и R2. Генератор импульсов через конденсатор С1 нагружен на высокоомные головные телефоны. При наличии переменного электрического поля (или перемещении предметов, несущих электростатические заряды) на антенне и, соответственно, затворе полевого транзистора появляется сигнал переменного тока, что приводит к изменению электрического сопротивления перехода сток — исток с частотой модуляции. В соответствии с этим релаксационный генератор начинает генерировать пачки модулированных импульсов, а в головных телефонах будет прослушиваться звуковой сигнал.
Чувствительность прибора (дальность обнаружения токонесущего провода сети 220 В 50 Гц) составляет 15…20 см. В качестве антенны использован стальной штырь 300×3 мм. При напряжении питания 9 В ток, потребляемый индикатором в режиме молчания, составляет 100 мкА, в рабочем режиме — 20 мкА.
Индикатор магнитных полей (рис. 20.6) выполнен на втором транзисторе микросхемы. Нагрузкой второго генератора является высокоомный головной телефон. Сигнал переменного тока, снимаемый с индуктивного датчика магнитного поля L1, через переходной конденсатор С1 подается на базу лавинного транзистора, не связанную по постоянному току с другими элементами схемы («плавающая» рабочая точка). В режиме индикации переменного магнитного поля напряжение на управляющем электроде (базе) лавинного транзистора периодически изменяется, изменяется также и напряжение лавинного пробоя коллекторного перехода и, в связи с этим, частота и продолжительность генерации.
Рис. 20.7
Индикатор (рис. 20.7) изготовлен на основе делителя напряжения, одним из элементов которого является полевой транзистор VT1, сопротивление перехода сток — исток которого определяется потенциалом управляющего электрода (затвора) с подключенной к нему антенной [Рк 6/00-19]. К резистивному делителю напряжения подключен релаксационный генератор импульсов на лавинном транзисторе VT2, работающий в ждущем режиме. Уровень начального напряжения (порог срабатывания), подаваемого на релаксационный генератор импульсов, устанавливается потенциометром R1.
Для предотвращения пробоя управляющего перехода полевого транзистора в схему введена защита (при отключении источника питания цепь затвор — исток закорочена). Повышение уровня громкости звукового сигнала достигается введением усилителя на биполярном транзисторе VT3. В качестве нагрузки выходного транзистора VT3 можно использовать низкоомный телефонный капсюль.
Для упрощения схемы высокоомный телефонный капсюль, например, ТОН-1, ТОН-2 (либо «среднеомный» — ТК-67, ТМ-2) может быть включен вместо резистора R3. В этом случае надобность в использовании элементов VT3, R4, С2 отпадает. Разъем, в который включается телефон, для снижения габаритов устройства, может одновременно служить выключателем питания.
При отсутствии входного сигнала сопротивление перехода сток — исток полевого транзистора составляет несколько сотен Ом, и напряжение, снимаемое с движка потенциометра на питание релаксационного генератора импульсов, мало. При появлении сигнала на управляющем электроде полевого транзистора сопротивление перехода сток — исток последнего возрастает пропорционально уровню входного сигнала до единиц, сотен кОм. Это приводит к увеличению напряжения, подаваемого на релаксационный генератор импульсов до величины, достаточной для возникновения колебаний, частота которых определяется произведением R4C1. Потребляемый устройством ток при отсутствии сигнала — 0,6 мА, в режиме индикации — 0,2…0,3 мА. Дальность обнаружения токонесущего провода сети 220 В 50 Гц при длине штыревой антенны 10 см составляет 10…100 см.
Рис. 20.8
Индикатор высокочастотного электрического поля (рис. 20.8) [МК 2/86-13] отличается от аналога (рис. 20.1) тем, что его выходная часть выполнена по мостовой схеме, имеющей повышенную чувствительность. Резистор R1 предназначен для балансировки схемы (установки стрелки прибора на ноль).
Ждущий мультивибратор (рис. 20.9) использован для индикации сетевого напряжения [МК 7/88-12]. Индикатор работает при приближении его антенны к сетевому проводу (220 В) на расстояние 2…3 см. Частота генерации для приведенных на схеме номиналов близка к 1 Гц.
Рис. 20.9
Рис. 20.10
Индикаторы магнитных полей по схемам, представленным на рис. 20.10 — 20.13, имеют индуктивные датчики, в качестве которых может быть использован телефонный капсюль без мембраны, либо многовитковая катушка индуктивности с железным сердечником.
Индикатор (рис. 20.10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.
Индикаторы (рис. 20.11, 20.12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].
Рис. 20.11
Рис. 20.12
Рис. 20.13
Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 20.13. Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1. Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ. Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Схемы индикаторов электрических и магнитных полей
Индикаторы электрических полей могут быть использованы для индивидуальной защиты электромонтеров, при поиске мест повреждений электрических сетей. С их помощью определяется наличие электростатических зарядов в полупроводниковом, текстильном производствах, хранилищах легковоспламеняющихся жидкостей. При поиске источников магнитных полей, определении их конфигурации и исследовании полей рассеяния трансформаторов, дросселей и электродвигателей не обойтись без индикаторов магнитных полей.
Схема индикатора высокочастотных излучений показана на рис. 20.1. Сигнал с антенны попадает на детектор, выполненный на германиевом диоде. Далее через Г-образный LC-фильтр сигнал поступает на базу транзистора, в коллекторную цепь которого включен микроамперметр. По нему и определяется мощность высокочастотных излучений.
Рис. 20.1
Для индикации низкочастотных электрических полей используют индикаторы с входным каскадом на полевом транзисторе (рис. 20.2 — 20.7). Первый из них (рис. 20.2) выполнен на основе мультивибратора [ВРЯ 80-28, Р 8/91-76]. Канал полевого транзистора является управляемым элементом, сопротивление которого зависит от величины контролируемого электрического поля. К затвору транзистора подключена антенна. При внесении индикатора в электрическое поле, сопротивление исток — сток полевого транзистора возрастает, и мультивибратор включается.
В телефонном капсюле раздается звуковой сигнал, частота которого зависит от напряженности электрического поля.
Рис. 20.2
Рис. 20.3
Следующие две конструкции по схемам Д. Болотника и Д. Приймака (рис. 20.3 и 20.4) предназначены для поиска неисправностей в новогодних электрических гирляндах [Р 11/88-56]. Индикатор (рис. 20.3) в целом представляет собой резистор с управляемым сопротивлением. Роль такого сопротивления опять же играет канал сток — исток полевого транзистора, дополненного двухкаскадным усилителем постоянного тока. Индикатор (рис. 20.4) выполнен по схеме управляемого низкочастотного генератора. Он содержит пороговое устройство, усилитель и детектор сигнала, наведенного в антенне переменным электрическим полем. Все эти функции выполняет один транзистор — VT1. На транзисторах VT2 и VT3 собран генератор низкой частоты, работающий в ждущем режиме. Как только антенну устройства приближают к источнику электрического поля, транзистор VT1 включает звуковой генератор.
Рис. 20.4
Рис. 20.5
Индикатор электрического поля (рис. 20.5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].
В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3). При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует. Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы. Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.
Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.
Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.
Рис. 20.6
Индикатор электрических и магнитных полей (рис. 20.6) содержит релаксационный генератор импульсов. Он выполнен на биполярном лавинном транзисторе (транзистор микросхемы К101КТ1А, управляемый электронным ключом на полевом транзисторе типа КП103Г), к затвору которого подключена антенна. Для задания рабочей точки генератора (срыв генерации в отсутствии индицируемых электрических полей) используют резисторы R1 и R2. Генератор импульсов через конденсатор С1 нагружен на высокоомные головные телефоны. При наличии переменного электрического поля (или перемещении предметов, несущих электростатические заряды) на антенне и, соответственно, затворе полевого транзистора появляется сигнал переменного тока, что приводит к изменению электрического сопротивления перехода сток — исток с частотой модуляции. В соответствии с этим релаксационный генератор начинает генерировать пачки модулированных импульсов, а в головных телефонах будет прослушиваться звуковой сигнал.
Чувствительность прибора (дальность обнаружения токонесущего провода сети 220 В 50 Гц) составляет 15…20 см. В качестве антенны использован стальной штырь 300×3 мм. При напряжении питания 9 В ток, потребляемый индикатором в режиме молчания, составляет 100 мкА, в рабочем режиме — 20 мкА.
Индикатор магнитных полей (рис. 20.6) выполнен на втором транзисторе микросхемы. Нагрузкой второго генератора является высокоомный головной телефон. Сигнал переменного тока, снимаемый с индуктивного датчика магнитного поля L1, через переходной конденсатор С1 подается на базу лавинного транзистора, не связанную по постоянному току с другими элементами схемы («плавающая» рабочая точка). В режиме индикации переменного магнитного поля напряжение на управляющем электроде (базе) лавинного транзистора периодически изменяется, изменяется также и напряжение лавинного пробоя коллекторного перехода и, в связи с этим, частота и продолжительность генерации.
Рис. 20.7
Индикатор (рис. 20.7) изготовлен на основе делителя напряжения, одним из элементов которого является полевой транзистор VT1, сопротивление перехода сток — исток которого определяется потенциалом управляющего электрода (затвора) с подключенной к нему антенной [Рк 6/00-19]. К резистивному делителю напряжения подключен релаксационный генератор импульсов на лавинном транзисторе VT2, работающий в ждущем режиме. Уровень начального напряжения (порог срабатывания), подаваемого на релаксационный генератор импульсов, устанавливается потенциометром R1.
Для предотвращения пробоя управляющего перехода полевого транзистора в схему введена защита (при отключении источника питания цепь затвор — исток закорочена). Повышение уровня громкости звукового сигнала достигается введением усилителя на биполярном транзисторе VT3. В качестве нагрузки выходного транзистора VT3 можно использовать низкоомный телефонный капсюль.
Для упрощения схемы высокоомный телефонный капсюль, например, ТОН-1, ТОН-2 (либо «среднеомный» — ТК-67, ТМ-2) может быть включен вместо резистора R3. В этом случае надобность в использовании элементов VT3, R4, С2 отпадает. Разъем, в который включается телефон, для снижения габаритов устройства, может одновременно служить выключателем питания.
При отсутствии входного сигнала сопротивление перехода сток — исток полевого транзистора составляет несколько сотен Ом, и напряжение, снимаемое с движка потенциометра на питание релаксационного генератора импульсов, мало. При появлении сигнала на управляющем электроде полевого транзистора сопротивление перехода сток — исток последнего возрастает пропорционально уровню входного сигнала до единиц, сотен кОм. Это приводит к увеличению напряжения, подаваемого на релаксационный генератор импульсов до величины, достаточной для возникновения колебаний, частота которых определяется произведением R4C1. Потребляемый устройством ток при отсутствии сигнала — 0,6 мА, в режиме индикации — 0,2…0,3 мА. Дальность обнаружения токонесущего провода сети 220 В 50 Гц при длине штыревой антенны 10 см составляет 10…100 см.
Рис. 20.8
Индикатор высокочастотного электрического поля (рис. 20.8) [МК 2/86-13] отличается от аналога (рис. 20.1) тем, что его выходная часть выполнена по мостовой схеме, имеющей повышенную чувствительность. Резистор R1 предназначен для балансировки схемы (установки стрелки прибора на ноль).
Ждущий мультивибратор (рис. 20.9) использован для индикации сетевого напряжения [МК 7/88-12]. Индикатор работает при приближении его антенны к сетевому проводу (220 В) на расстояние 2…3 см. Частота генерации для приведенных на схеме номиналов близка к 1 Гц.
Рис. 20.9
Рис. 20.10
Индикаторы магнитных полей по схемам, представленным на рис. 20.10 — 20.13, имеют индуктивные датчики, в качестве которых может быть использован телефонный капсюль без мембраны, либо многовитковая катушка индуктивности с железным сердечником.
Индикатор (рис. 20.10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.
Индикаторы (рис. 20.11, 20.12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].
Рис. 20.11
Рис. 20.12
Рис. 20.13
Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 20.13. Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1. Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ. Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Индикаторы поля | Кое-что из радиотехники
Индикатор высокочастотного радиоизлучения (индикатор поля) является нужным и полезным прибором, с помощью которого удобно контролировать состояние электронного изделия, а также обнаруживать источники радиоизлучения в помещениях ( например жучки, радиомикрофоны и т.д. ) и в других местах. Из доступных для самостоятельного изготовления в этом случае будет пассивный индикатор электромагнитного высокочастотного поля. При минимуме деталей и отсутствии активных компонентов он показывает действительно уровень поля, а не возможные неполадки своей электронной схемы.
Главным элементом для изготовления индикатора высокочастотного излучения является сверхвысокочастотный детекторный диод. В качестве такого диода могут быть применены старые (скорее всего точечные) СВЧ диоды типа Д405, Д602 или подобные, СВЧ детекторные диоды Шотки КА202 – КА207, импортные детекторные СВЧ диоды. В крайнем случае, для пробы можно взять германиевый диод вроде Д311, но его рабочая частота не превысит 100 МГц.
Главным отличием детекторного диода является то, что прямая ветвь его вольтамперной характеристики начинает подниматься сразу от 0 В. Ни в коем случае не следует измерять СВЧ диоды тестером. В случае отсутствия характериографа можно снять характеристику вручную с использованием вольтамперметра, подавая на вход прямое напряжение с шагом 0,05 В и ограничивая постоянный ток через него величиной не более 0,5 мА.
Когда диод найден, можно приступить к изготовлению индикатора (Рис.1). Собственно, самим индикатором выступает стрелочный микроамперметр РА1 с пределом измерения тока 30 – 50 мкА. Кремниевые диоды VD1, VD2 защищают детектор и индикатор от перегрузки. Антенной WA1 могут служить “усы” из медного провода диаметром 1-2 мм длинной 200-300 мм или две телескопические антенны. Для большей чувствительности индикатора длинна антенны должна быть близка к полуволне измеряемого излучения.
С помощью пассивного индикатора поля удобно исследовать поведение передатчиков, оценивать диаграммы направленности антенн, но для обследования помещений пассивный индикатор неудобен. Он имеет невысокую чувствительность, размахивая таким индикатором затруднительно увидеть изменение положения стрелки прибора, да и сам высокочувствительный стрелочный микроамперметр очень не любит сотрясений и ударов.
Для удобства применения приходится окружить СВЧ детектор электронной схемой (Рис.2). Схема осуществляет световую и звуковую индикацию уровня напряжённости поля. Изменение напряжённости поля можно оценивать по частоте следования звуковых сигналов длительностью 0,2 мс и частотой около 1 кГц или вспышек светодиода VD4.
Количество сигналов меняется от одного за десятки секунд до непрерывного тона при большом уровне сигнала. Звуковая индикация позволяющая оценивать текущий уровень ВЧ излучения и регулятор чувствительности позволяют быстро и эффективно локализовать источник радиоизлучения.
Первый ОУ DA1.1 является неинвертирующим усилителем постоянного тока, величина усиления которого регулируется резистором R3, совмещённым с выключателем. Следующие два каскада на DA1.2, DA1.3 построены по однотипной схеме управляемого мультивибратора на ОУ. Повторитель на DA1.4 служит формирователем уровня “земли”. На DA1.3 собран мультивибратор, управляемый напряжением высокого уровня, его частота около 1000 Гц. Звуковой мультивибратор запускается от генератора управляемого напряжением, выполненного на DA1.2.
Положительные импульсы генератора не зависят от уровня входного сигнала, их длительность около 0,2 с задаёт цепочка R8, C3. Длительность пауз между импульсами зависит от скорости разряда С3 через транзистор VT1 и резистор R6. А проводимость транзистора VT1 в свою очередь зависит от входного ВЧ напряжения выпрямленного детектором VD1 и увеличенного усилителем постоянного тока на DA1.1. В качестве DA1 используется счетверённый операционный усилитель с диапазоном входных сигналов, включающим нулевое входное напряжение.
Если чувствительность индикатора покажется недостаточной, то перед VD1 можно включить широкополосный высокочастотный усилитель выполненный по схеме на Рис.3 или Рис. 4. Чтобы широкополосный УВЧ не возбуждался и имел равномерную частотную характеристику, он должен быть выполнен с соблюдением требований конструирования высокочастотных устройств. Транзисторы для УВЧ желательно брать с граничной частотой не менее 4 ГГ.
Прибор снабжён телескопической антенной WA1 и питается от девятивольтовой батареи. Переменным резистором R3, совмещённым с выключателем питания SA1, регулируют чувствительность прибора. Его выставляют таким образом, чтобы увеличение уровня напряжённости поля вызывало наиболее резкое изменение частоты следования импульсов индикации.
В. Г. Белолапотков, А. П. Семьян “ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО, 500 схем для радиолюбителей”, Наука и техника, Санкт-Петербург, 2007г, стр. 148-151
Похожее
Индикатор ВЧ поля своими руками
Добавил: STR2013,Дата: 01 мая 2018В этой статье рассмотрены схемы простых индикаторов ВЧ поля. Простейший индикатор ВЧ излучения можно собрать всего из нескольких деталей и ему не нужен источник питания. Вторая схема собрана на нескольких транзисторах.
Данные схемы можно использовать для контроля ВЧ поля, например передатчика, сотового телефона, при ремонте СВЧ печи и т.д.
Принципиальная схема простейшего индикатора поля
На рисунке, выше показана схема простого индикатора напряженности поля.
Данный индикатор высокочастотного поля можно использовать как индикатор напряженности поля при согласовании выхода передатчика с сопротивлением излучения антенны, для обнаружения и измерения излучения передатчика, а также измерения частоты его колебаний, проградуировав ручку переменного конденсатора.
Индикатор представляет собой детекторный приемник, нагрузкой которого служит микроамперметр. Ток полного отклонения прибора 100 мкА.
Основное достоинство этой схемы индикатора — это отсутствие питания. Стрелка индикаторной головки отклоняется от наводящего в антенне ВЧ поля, поэтому излучение должно быть достаточной величины.
Прибор собирают на изоляционной плате. Антенна — тонкий металлический штырь длиной 20 — 30 см. Для диапазона 25 — 31 МГц контурную катушку L1 заматывают на каркасе диаметром 12 мм. Она содержит 12 — 14 витков провода ПЭВ-1, Конденсатор С1 — подстроечный с воздушным диэлектриком. Ось ротора выводят на переднюю панель и снабжают лимбом с нанесенной шкалой, проградуированной в Мегагерцах.
Широкополосный индикатор ВЧ поля на транзисторах
Если его расположить не далеко от сотового телефона (до 1м), то в момент звонков (при включении передатчика телефона) будет загораться светодиод.
Если на выходе поставить реле — то данную схему можно использовать, например для удалённого полива цветов, включения света или включения какого нибудь другого потребителя.
Электрические характеристики индикатора
1. напряжение питания: от 3 до 12 В;
2. расстояние срабатывания: около 1 м;
3. печатная плата: 2,2 см х 2,8 см;
4. частоты срабатывания — мобильный телефон сигнал GSM.
Описание схемы
Сигнал с антенны усиливается транзисторным усилителем на трех S8050. Последний управляет светодиодом. Если сигнал не обнаружен (никаких звонков нет или нет GSM телефона рядом) — светодиод не светит.
Индуктивность (катушка). Проволока ф 0,25 — 0,5 мм эмалированная (ПЭЛ, ПЭВ) около 5-10 витков.
Если у Вас нет необходимых деталей, то данный набор можно купить: magazinchik-mastera.ru
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Неисправности и ремонт электродвигателей
- Металлоискатель повышенной чувствительности своими руками
- Вторая жизнь кеги HEINEKEN. Часть 2 — корпус
В настоящее время электродвигатели используются довольно часто. Их можно встретить и в пылесосах, и мясорубках, и стиральных машинах, и не только в бытовой технике, но и в производственном оборудовании. Неисправности электродвигателей тоже встречаются часто, которые могут привести к перерывам в работе оборудования. Для того чтобы такие перерывы вероятно меньше сказывались на реализации поставленных задач, нужно оперативно обнаружить источник неисправности и устранить её.
Подробнее…
Схема металлоискателя обладает очень высокой чувствительностью, так как здесь контролируется расхождение частот — образцового генератора, работающего на частоте 0,5…1 МГц, и 5…10 гармоники поискового генератора. Расстройка последнего, например, лишь на 10 Гц ведет к изменению частоты разностных колебаний на 50… 100 Гц. Металлоискатель «ловит» монету 2 см на глубине до 9 см. Подробнее…
Применение второе – корпус нагнетательного аппарата
Порывшись в интернете, нашёл несколько вариантов использования кеги в качестве корпуса – барабан, звуковая колонка с усилителем, миниатюрная печка, мангал, светильник.
Я предложу ещё свои варианты – корпус для зарядного устройства и корпус для небольшого компрессора, точнее нагнетательного аппарата.
Правда, зарядное устройство разместить можно, подобрав более удобный корпус. А вот небольшой нагнетательный аппарат – ну, просто удобнее нету!
Подробнее…
Популярность: 3 274 просм.