Site Loader

Содержание

Принцип работы электромагнитного клапана | ValveSale

Соленоидный клапан

Запорный элемент электромеханического действия, выполняющий функцию дистанционного автоматического контроля направлений движения жидкой и газообразной рабочей среды внутри трубопровода. С помощью электромагнитной катушки происходит дозированная подача необходимых объемов потока в определенный момент времени.

Широко применяется на бытовом уровне и в крупных промышленных конструкциях в широком диапазоне рабочих температур. В трубопроводах жилищно-коммунального хозяйства клапан выполняет регулирование среды внутри водопроводной или канализационных систем, центрального отопления. Используется на технологических линиях химических и нефтеперерабатывающих предприятиях, фильтрационных гидропроводах. Применим в сельском хозяйстве: поливочных конструкциях, системах дозирования и смешения.

Принцип работы электромагнитного клапана

Для производства электромагнитных клапанов используются материалы, соответствующие требованиям ГОСТ и международным стандартам.

Электромагнитный клапан состоит из нескольких основных элементов:

  • Корпус. Может изготавливаться из нержавеющей стали, чугуна, коррозионностойкой латуни, химических полимеров.

  • Индукционная катушка с сердечником (соленоид). Располагается в герметичном корпусе, обмотка выполнена из высокопрочной технической меди.

  • Уплотнитель. Для обеспечения максимальной герметичности используется полимер политетрафторэтилен (тефлон), термостойкая резина, силикон, каучук, фторопласт.

  • Функциональные элементы: плунжер, пружина, шток из нержавеющей маркированной стали.  

Как работает электромагнитный клапан

Принцип работы электромагнитного клапана основан на работе элемента управления — электромагнитной катушки. При отсутствии постоянного или переменного тока под механическим давлением пружины, мембрана (поршень) клапана расположены в седле устройства.

При подаче электрического напряжения различной мощности к клеммам соленоида, сердечник вовлекается внутрь катушки, обеспечивая открытие или закрытие протокового отверстия. Обесточивание соленоида приводит к закрытию створок. Конструктивные особенности устройства соленоидного клапана могут меняться, в зависимости от его типа.

Типы электромагнитных клапанов

Электромагнитные клапаны распределены на несколько категорий.

По типу рабочего положения выделяют:

  • Нормально-открытые клапаны. По умолчанию, затворный элемент находится в открытом положении и не создает препятствий движению потоков.




  • Нормально-закрытые клапаны. Отсутствие напряжения на катушке характеризуется закрытой позицией затвора.

  • Клапан непрямого действия. Воздействие энергии рабочей среды приводит к открытию и закрытию условного прохода. Управляется дистанционно, под действием пилотного клапана, срабатывающего при подаче электрического тока к катушке.



По типу присоединения к трубопроводу:

  • Муфтовые. Монтаж производится при помощи внутренней трубной резьбы цилиндрической формы, с различным диаметром условного прохода и резьбовым шагом. Условное обозначение диаметра соленоидного клапана указывается в техническом паспорте изделия.
  • Фланцевые. Присоединение к трубопроводу с помощью парных фланцев с отверстиями для болтов и шпилек. Применяется в трубопроводах крупного диаметра. При монтаже используется уплотнительное кольцо или прокладка из паронита.

По типу уплотнительной мембраны:

  • Мембрана FKM (фтористый каучук). Стандартное уплотнение, применяется для большинства неагрессивных рабочих сред.

  • Мембрана NBR (бутадиен-нитрильный каучук). Используется в средах продуктов нефтепереработки: бензин, масла, керосин, диз.топливо.

  • Мембрана EPDM (этилен-пропиленовый каучук). Характеризуется повышенной устойчивостью к температурам, работает в среде химических растворов и соединений: щелочей, спиртов, гликолей, кетона, воды и др.

Правила монтажа и эксплуатации

Любые монтажные работы с клапаном проводятся при отсутствии рабочей среды в системе и обесточивании электрической цепи.

Перед началом работ следует очистить трубопровод от механических частиц и взвесей.

Как подключить электромагнитный клапан соленоидный. Подключение электромагнитных клапанов в системе производится в горизонтальном положении, катушкой вверх.

  • Для правильной работы устройства направление движения среды должно соответствовать указательной стрелке на корпусе.

  • Установка электромагнитного клапана производится в месте, доступном для последующего ремонта или обслуживания.

  • Запрещена установка клапана в местах с высокими показателями конденсации или вибрации, участках с возможным обледенением трубы, вблизи течей и порывов.

  • Установка дополнительных сетчатых фильтров подходящего типоразмера защитит клапан от попадания загрязнений, и, как следствие, снижения его гидравлических характеристик.

Преимущества электромагнитных клапанов
  • Автоматический тип работы

  • Высокое быстродействие

  • Возможность удаленного управления

  • Компактность (малые габаритные и весовые показатели)

  • Длительный срок эксплуатации

  • Простота монтажа и обслуживания

Причины поломок и методы устранения

Правильная эксплуатация и соблюдение технических параметров, указанных в паспорте изделия обеспечат надежную и длительную работу устройства. В некоторых случаях преждевременные неисправности электромагнитного клапана возможны по нескольким причинам.

  • Снижение герметичности изделия может быть вызвано попаданием механических частиц на седло устройства. Рекомендуется демонтаж и чистка устройства с последующей установкой в системе сетчатого фильтра до клапана.

  • Выход из строя индукционной катушки может быть обусловлен неправильной мощностью напряжения, подаваемого к клеммам или превышением граничных параметров температуры и давления внутри трубопровода. Следует провести демонтаж устройства и заменить катушку. Попадание влаги на катушку может вызвать короткое замыкание и поломку устройства.

  • Неполное открытие/закрытие клапана может стать следствием загрязнения управляющего отверстия, дефектами мембраны или прокладки, остаточным напряжением на соленоиде и др.

Ремонт электромагнитного клапана должен производиться квалифицированным специалистом, имеющим допуск к работе с электрическими сетями.


Производство соленоидных клапанов осуществляется на специализированных заводах трубной арматуры, расположенные практически в каждой стране Европы. Одни из ведущим мировым производителем электромагнитных клапанов являются SMART HYDRODYNAMIC SYSTEMS. Стоимость электромагнитного клапана зависит от его функций, конструктивного типа, диаметра резьбы и фирмы- производителя электромагнитных (соленоидных) клапанов. Для определения необходимого вида устройства можно проконсультироваться со специалистами или посмотреть видео электромагнитного клапана.


В нашем магазины вы можете купить электромагнитный клапан по выгодной цене оптом и в розницу со склада в Москве с доставкой по России. Быстрые отгрузки в города: Санкт-Петербург, Екатеринбург, Казань, Краснодар, Самара, Воронеж, Нижний Новгород, Волгоград, Ростов-на-Дону, Челябинск, Новосибирск, Омск, Уфа, Красноярск, Пермь.

какой выбрать? Особенности, отличия, эксплуатационные ограничения

Введение

При управлении потоками жидких и газообразных сред на современных промышленных предприятиях наиболее часто используются два типа клапанов: соленоидные клапаны и клапаны с пневмоприводом. Огромное количество различных моделей клапанов обоих типов, предназначенных для самых разнообразных задач, привело к тому, что выбор между соленоидным (электромагнитным) клапаном и клапаном с пневмоприводом перестал быть очевидным.

В данной статье рассмотрены конструктивные особенности клапанов обоих типов и то, как эти особенности влияют на выбор клапанов и их эксплуатацию. Описываемые явления и полученные выводы справедливы практически для всех клапанов, независимо от модели или производителя, поскольку причины этих явлений сосредоточены в самом принципе действия клапанов рассматриваемых типов.

1. Виды, принцип работы и особенности эксплуатации электромагнитных клапанов

1.1. Конструкция соленоидных клапанов прямого действия

Устройство наиболее простого соленоидного клапана представлено на рисунке 1.

Рисунок 1 – Конструкция соленоидного клапана прямого действия

Катушка (1) установлена на трубке сердечника (2), внутри которой расположен сердечник (3), прижимаемый к седлу клапана (5) пружиной (4). При подаче напряжения на катушку, внутри неё и, соответственно, внутри трубки сердечника создаётся электромагнитное поле, в результате воздействия которого сердечник поднимается, открывая проход жидкости через седло клапана.

Таким образом, клапаны данного типа работают за счет электромагнитного поля, создаваемого катушкой. Саму же катушку часто называют соленоидом, отсюда и название клапана — «соленоидный» или «электромагнитный». Поскольку электромагнитное поле катушки воздействует напрямую на сердечник, перекрывающий проходное отверстие клапана, такие электромагнитные клапаны называют клапанами прямого действия.

Сложность при создании электромагнитных клапанов прямого действия проявляется по мере увеличения их размера для обеспечения большего расхода жидкости. Это связано с резким увеличением силы втягивания катушки, необходимой для подъёма сердечника и открытия клапана.

Пример расчёта усилия, необходимого для втягивания сердечника

В общем случае, для любой однородной жидкой или газообразной среды, давление связано с силой следующим образом:

P=FS,P= {F} over {S}, (1)

где:
Р – давление среды;
F — усилие, оказываемое средой на поверхность;
S — площадь поверхности. 2} times {{A} over {2 times %mu_0}, (6)

где:
I – ток, потребляемый катушкой;
N — число витков провода внутри катушки;
µr — магнитная проницаемость сердечника;
µ0 — магнитная постоянная, равная 4π·10-7 Гн/м;
L — длина намотки провода внутри катушки;
A — площадь поперечного сечения сердечника.

Мощность W, потребляемая катушкой из электрической сети, равна:

где:
R – сопротивление катушки.

Выражая квадрат тока из формулы (7) и подставляя его значение в формулу (6), получим:

F=W×(N×μr×μ0)2×A2×L2×μ0×RF= W times (8)

Обозначим совокупность всех коэффициентов, определяемых конструкцией узла клапана «катушка-сердечник» как Kcc

Kcc=(N×μr×μ0)2×A2×L2×μ0×RK_cc= { ( N times %mu_r times %mu_0 )}^2 times A over { 2 times L^2 times %mu_0 times R } (9)

Тогда формула, втягивающего усилия катушки примет следующий вид

F=W×KccF=W times K_cc (10)

Формула (10), показывает что втягивающее усилие катушки зависит от конструкции узла клапана «катушка-сердечник» и пропорционально электрической мощности, потребляемой катушкой.

Рассмотрим два электромагнитных клапана с катушками разной мощности, но имеющих одинаковую конструкцию катушки и сердечника. Тогда втягивающее усилие F1 и F2 и потребляемые мощности W1 и W2 будут соотносится следующим образом:

F1W1=F2W2{F_1} over {W_1} = {F_2} over {W_2} (11)

Выражая из данного равенства W2 получим:

W2=W1F2F1{ {W_2} = W_1 {F_2} over {F_1} (12)

Подставив в формулу (12) значения необходимых минимальных усилий втягивания F1, рассчитанного по формуле (4), F2, рассчитанного по формуле (5) и паспортного значения мощности катушки AMISCO EVI 5P/13 W1 = 17 Вт, получим:

W2=W1F2F1=17Вт1962,5Н11,8Н=2827Вт≈3кВт{ {W_2} = W_1 {F_2} over {F_1} =17Вт {1962,5Н} over {11,8Н} =2827Вт approx 3 кВт (13)

Таким образом, мы рассчитали мощность катушки, необходимую для обеспечения работы электромагнитного клапана прямого действия с диаметром седла 50 мм и рабочим давлением 10 бар. Разумеется, эти расчеты носят приблизительный характер, однако, порядок полученных значений верный. Очевидно, что применение катушек такой мощности неоправданно.

Тем не менее, существуют электромагнитные клапаны, удовлетворяющие условиям задачи, но с катушками мощность которых не превышает 10 – 20 Вт. Дело в том, что эти клапаны имеют другую конструкцию, описанную ниже.

1.2 Устройство соленоидных клапанов непрямого действия

Для уменьшения энергопотребления соленоидных клапанов больших диаметров и для работы с большими давлениями была разработана конструкция электромагнитного клапана непрямого действия, представленная на рисунке 2а.

Рисунок 2 – Конструкция и принцип действия соленоидных клапанов с плавающей мембраной

В таких электромагнитных клапанах основное проходное сечение перекрывается мембраной, которая прижата к седлу. Открытие клапана осуществляется за счет подъема мембраны, вызванного перераспределением величины давления рабочей среды в зонах над мембраной и под мембраной.

В исходном состоянии (см. рисунок 2а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход электромагнитного клапана, через небольшое перепускное отверстие в мембране, проникает в область над мембраной. Площадь поверхности мембраны, с которой взаимодействует жидкость, в зоне над мембраной больше, чем в зоне под мембраной. При равенстве давлений над и под мембраной, это приводит к возникновению силы, прижимающей мембрану к седлу клапана. Одним из ключевых элементов конструкции, оказывающих влияние на работу электромагнитного клапана, является перепускное отверстие. Его расположение на схеме и фотография показаны на рисунке 2б.

Подача напряжения на катушку (см. рисунок 2в) вызывает подъём сердечника. В результате этого жидкость из области над мембраной через пилотное отверстие начинает поступать на выход электромагнитного клапана. Диаметр пилотного отверстия больше диаметра перепускного отверстия, поэтому давление над мембраной уменьшается, а сама мембрана поднимается, открывая основной проход клапана.

Подъём мембраны осуществляется за счет давления жидкости, поступающей на вход клапана, поэтому клапаны такой конструкции не могут работать при низком давлении среды. Разница давлений между входом и выходом, как правило, должна составлять не менее 0.3 – 0.5 бар. Этот параметр указывается в технических характеристиках электромагнитного клапана.

До тех пор, пока катушка находится под напряжением (см. рисунок 2г), сердечник поднят и пилотное отверстие открыто. Это приводит к тому, что давление над мембраной и сила упругости сжатой пружины становится меньше давления жидкости под мембраной. В результате чего мембрана остается поднятой, а клапан открытым.

При снятии напряжения с катушки (см. рисунок 2д), сердечник под действием пружины опускается и перекрывает пилотное отверстие электромагнитного клапана. Жидкость перестает выходить из области над мембраной, в результате чего давление в этой зоне растет и становится равным давлению жидкости под мембраной (на входе клапана). Под действием силы упругости сжатой пружины мембрана начинает опускаться, перекрывая проход жидкости через клапан.

После закрытия клапана (см. рисунок 2е) мембрана плотно прижимается к седлу за счет силы, вызванной давлением жидкости и разной площадью смоченной поверхности мембраны.

В вышеописанном процессе при открытии электромагнитного клапана мембрана поднимается под действием жидкости – «всплывает», поэтому клапаны такой конструкции часто называют соленоидными клапанами с плавающей мембраной.

Примеры клапанов с плавающей мембраной

Описанный принцип действия справедлив для нормально закрытых (НЗ) электромагнитных клапанов. Нормально открытые (НО) электромагнитные клапаны устроены аналогичным образом, но пилотное отверстие открыто в нормальном состоянии и закрывается при подаче напряжения на катушку. Мембрана этих клапанов также поднимается в результате воздействия на неё давления жидкости. Таким образом, если перепад давления ΔP меньше минимально допустимого ΔPмин, то мембрана будет закрывать основной проход клапана, но пилотное отверстие будет открыто. Поэтому при ΔP мин НО клапан будет открыт, но расход через него будет значительно меньше, чем в рабочем режиме, когда ΔP > ΔPмин.

Электромагнитные клапаны с плавающей мембраной корректно работают при ΔPмин макс. При ΔP мин клапаны работают, но расход рабочей среды через них намного меньше номинального.

Существует ещё одна распространённая конструкция электромагнитных клапанов непрямого действия – клапаны с мембраной принудительного подъёма. Она изображена на рисунке 3. Принцип действия этих клапанов аналогичен ранее рассмотренным.

Рисунок 3 – Конструкция и принцип действия электромагнитных клапанов с мембраной принудительного подъем

В исходном состоянии (см. рисунок 3а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход клапана через небольшое перепускное отверстие, проникает в область над мембраной и прижимает мембрану к седлу клапана.

Подача напряжения на катушку (см. рисунок 3б) вызывает подъем сердечника. Через пилотное отверстие жидкость начинает поступать на выход клапана и давление над мембраной падает.

Мембрана поднимается за счет разности давлений над и под ней, открывая основное проходное сечение соленоидного клапана (см. рисунок 3в).

В отличии от ранее рассмотренных клапанов, электромагнитные клапаны с мембраной принудительного подъёма могут работать без перепада давления (ΔP = 0 бар). В такой ситуации подъем мембраны осуществляется за счет усилия электромагнитной катушки, втягивающей сердечник. Он поднимает мембрану, связанную с сердечником пружиной.

Способность этих клапанов работать без перепада давления привела к тому, что их часто ошибочно называют клапанами прямого действия. Более правильное название – соленоидные клапаны с мембраной принудительного подъема – обусловлено тем что при отсутствии давления, мембрана поднимается принудительно (не зависимо от рабочей среды) за счет усилия, создаваемого электромагнитным полем катушки.

Примеры клапанов с плавающей мембраной

Выше были рассмотрены три наиболее распространенные конструкции клапанов с электромагнитным приводом. Однако, все они имеют следующие общие особенности:

  • рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана, внутри трубки сердечника;
  • внутри имеется не менее одного небольшого отверстия, критически важного для работы клапана;
  • большая часть электромагнитных клапанов непрямого действия, имеют мембрану из гибкого материала. Как правило, это одна из разновидностей резины: NBR – нитрилбутадиеновая, EPDM – этилен-пропиленовая или FPM – фтористая.

1.3. Факторы, ограничивающие использование соленоидных клапанов

1.3.1 Рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана и внутри трубки сердечника

Если через клапан проходит чистая и однородная среда без каких-либо примесей, она практически не влияет на работу самого соленоидного клапана. Однако, если среда загрязнена и содержит в себе мелкодисперсные элементы (например, вода с примесями ржавчины), эти частицы со временем оседают на сердечнике и стенках трубки сердечника. Загрязнение трубки сердечника может привезти к заклиниванию сердечника внутри неё, что вызывает залипание клапана (см. рисунок 4). При этом электромагнитный клапан может остаться как в открытом, так и в закрытом состоянии.

Рисунок 4 – Заклинивание сердечника клапана вследствие загрязнения

Также прямой контакт рабочей жидкости с трубкой сердечника обеспечивает хороший теплообмен между ними. Поэтому если через электромагнитный клапан проходит горячая среда (пар или горячая вода), то сердечник будет нагреваться, вызывая нагрев катушки и ускоренное старение межвитковой изоляции. Как правило, катушки соленоидных клапанов, рассчитанных на работу с паром, имеют высокий класс нагревостойкости изоляции (F или H). Несмотря на это, перегрев и дальнейшее перегорание катушки парового клапана не яв- ляется чем-то необычным и встречается достаточно часто.

В случаях, когда через соленоидный клапан проходит холодная среда (например, охлажденный раствор пропиленгликоля), трубка сердечника охлаждается до температуры ниже температуры окружающей среды. Это приводит к выпадению конденсата, под действием которого ржавеют металлические части катушки и нарушается целостность изоляционной оболочки (см. рисунок 5). В итоге, влага проникает внутрь катушки, вызывает повышенное токопотребление, а со временем, и пробой изоляции.

Рисунок 5 – Повреждение катушки под воздействием агрессивной окружающей среды

Для защиты от этого явления следует исключить выпадение конденсата на клапанах (например, уменьшением влагосодержания цехового воздуха). Если полностью исключить конденсат не удаётся, то можно добиться существенного уменьшения его негативного влияния, воспользовавшись клапанами, катушка которых имеет влагозащиту, например, электромагнитными клапанами GEVAX серии 1901R-KBN. Если же и это невозможно, то следует вручную герметизировать уязвимые узлы катушки, защитив их от попадания конденсата.

1.3.2 Внутри клапана имеется не менее одного небольшого отверстия, критически важного для работы всего клапана

Для соленоидных клапанов прямого действия – основное проходное сечение, имеющее малый диаметр; для соленоидных клапанов непрямого действия – перепускное и пилотное отверстия. Дело в том что засорение перепускного или пилотного отверстия приводит к нарушению нормальной работы соленоидного клапана. Как правило, это не вызывает необратимых разрушений конструкции, и подобные неисправности могут быть легко устранены путем чистки клапана. Однако, очистка внутренних частей клапана требует его разборки и, как следствие, невозможна во время его работы.

Таким образом, чистота рабочей среды является одним из наиболее важных факторов, позволяющих обеспечить длительную и безотказную работу соленоидных клапанов.

1.3.3 Большая часть электромагнитных клапанов непрямого действия имеют мембрану из гибкого материала

Ранее было отмечено, что соленоидные клапаны рассчитаны на работу с чистыми средами. Наличие в среде крупных загрязнений может привести не только к засорам клапана, но и к разрыву мембраны, после чего потребуется её замена.

При возникновении в системе гидроударов также возможно повреждение мембраны из-за кратковременного превышения допустимого давления.

Энергия среды, проходящей через клапан, является одним из основных факторов, обеспечивающих как открытие клапана, так и его герметичность в закрытом состоянии. Поэтому соленоидные клапаны непрямого действия являются однонаправленными – корректная работа обеспечивается только при протекании среды от входа к выходу. Верное направление подачи среды показано на рисунке 6. Если при монтаже клапана вход и выход будут перепутаны, то рабочая среда будет поступать только в зону под мембраной, в результате чего «передавит» пружину и откроет клапан (см. рисунок 7).

Рисунок 6 – Верное направление подачи жидкости в клапан Рисунок 7 – Не верное направление подачи жидкости в клапан

Определить правильное положение при монтаже можно по стрелке на корпусе клапана (см. рисунок 8).

Рисунок 8 – Стрелка на корпусе клапана для определения направления подачи среды

Однако, даже при правильном направлении потока жидкости, мембранная конструкция может вызывать проблемы при эксплуатации. Они проявляются в момент подачи жидкости на вход клапана или при резких изменениях давления газообразных сред.

Дело в том, что перепускное отверстие в мембране имеет небольшой размер. Жидкость, проходящая через него, не может сразу заполнить всю полость над мембраной клапана (см. рисунок 9а). В этот момент времени давление жидкости под мембраной больше, чем давление жидкости над ней. Это вызывает подъем мембраны и самопроизвольное открытие электромагнитного клапана. Клапан будет находиться в открытом состоянии до тех пор, пока жидкость не заполнит область над мембраной через перепускное отверстие (см. рисунок 9б). После завершения этого процесса давление над и под мембраной клапана уравновешивается и клапан закрывается (см. рисунок 9в).

Рисунок 9 – Последовательность возникновения эффекта самопроизвольного открытия соленоидного клапана с плавающей мембраной при подаче жидкости

Время открытия клапана в описанном переходном процессе зависит от многих факторов, но даже для больших клапанов оно не превышает 1. ..2 с. Однако, за это время через клапан может пройти несколько литров жидкости.

Несмотря на то, что давление среды, как правило, не выходит за пределы рабочего диапазона, клапан подвергается повышенным ударным нагрузкам. Частое повторение данного явления при эксплуатации приводит к повышенному износу мембраны и пружины клапана, а со временем и к их поломке.

1.4. Ключевые особенности эксплуатации соленоидных клапанов

  • Соленоидные клапаны предназначены для работы с чистыми, гомогенными средами. Загрязненная среда вызывает нарушение работы клапана, а иногда и его поломку.
  • Использование соленоидных клапанов для управления потоком среды, температура которой сильно отличается от температуры окружающей среды, имеет свои особенности и требует особой внимательности при выборе клапана и его эксплуатации.
  • Направление подачи среды в электромагнитный клапан является критически важным. Соленоидный клапан следует считать однонаправленным, если иное не указано в технической документации.

Несмотря на то, что были рассмотрены лишь наиболее часто встречающиеся факторы, ограничивающие использование соленоидных клапанов, может сложиться впечатление, что соленоидный клапан является источником проблем и частых неполадок. На самом деле это не так. Электромагнитные клапаны являются надежным устройством управления потоком жидкости или газа при соблюдении условий эксплуатации.

2. Принцип работы и особенности эксплуатации клапанов с пневмоприводом

2.1. Устройство угловых седельных клапанов с пневмоприводом

Конструкция седельного клапана с пневматическим приводом показана на рисунке 10.

Рисунок 10 – Конструкция седельного клапана с пневмоприводом

Внутри корпуса пневмопривода (1) находится поршень (2), герметично прилегающий к стенкам пневмопривода за счет уплотнения (3). Под действием пружины (4) поршень занимает положение, соответствующее начальному состоянию пневмоклапана (закрытому для НЗ клапанов и открытому для НО клапанов). На поршне жестко закреплён шток (5) с диском (6). В закрытом состоянии диск надежно прижимается к седлу (7) и обеспечивает герметичность клапана. Большая часть клапанов с пневмоприводом имеет визуальный индикатор (8), механически связанный с поршнем клапана.

Для открытия клапана (см. рисунок 11) необходимо подать сжатый воздух в пневмопривод. Пневмоклапан открывается под действием сжатого воздуха, перемещающего поршень вместе со штоком вверх, что также приводит к сжатию пружины.

Рисунок 11 – Клапан с пневмоприводом в открытом состоянии

Для закрытия клапана достаточно сбросить воздух из пневмопривода. Поршень под действием пружины опускается вниз, прижимая диск к седлу.

Открытие клапана с пневмоприводом осуществляется только за счет давления сжатого воздуха, а закрытие – за счет мощной пружины. Таким образом, работа клапанов с пневмоприводом существенно меньше зависит от параметров среды, проходящей через него, в отличии от соленоидных клапанов.

Примеры угловых клапанов с пневмоприводом

2.2.

Схема управления клапанами с пневмоприводом

Для управления пневмоклапанами используются специальные электромагнитные клапаны, называемые пилотными или распределительными клапанами. Эти клапаны называются так, потому что они не просто перекрывают подачу рабочей среды, но и перераспределяют её между различными входными и выходными портами.

Для управления клапанами с пневмоприводом используются распределительные клапаны типа 3/2, схема работы которых показана на рисунке 12.

Рисунок 12 – Пневматическая схема распределителя 3/2

Порт 1 соединяется со входным портом пневмопривода, к порту 2 подключается подвод сжатого воздуха, а порт 3 остается открытым и используется для выхлопа – выпуска воздуха из пневмопривода в атмосферу при закрытии клапана с пневмоприводом.

До тех пор, пока катушка распределительного клапана обесточена, порт 1 соединен с портом 3, а порт 2 перекрыт. Таким образом, сжатый воздух в пневмопривод не поступает, а сам пневмопривод соединен с атмосферой – клапан с пневмоприводом закрыт.

При подаче напряжения на катушку порт 1 соединяется с портом 2, а порт 3 перекрывается. Сжатый воздух поступает в пневмопривод, за счет чего пневмоклапан открывается.

На рисунке 13 показаны распределительные электромагнитные клапаны 3/2 различной конструкции.

Рисунок 13 – Распределительные клапаны 3/2 различных конструкций

У клапана, изображенного слева, выхлоп в атмосферу проходит сквозь трубку сердечника. У клапана, изображенного справа, порты подачи воздуха и выхлопа находятся сверху и снизу клапана.

На рисунке 14 показана обобщенная схема управления клапаном с пневмоприводом.

Рисунок 14 – Обобщенная схема управления клапаном с пневмоприводом

Электрический сигнал из системы управления поступает на распределительный клапан (2), который осуществляет управление потоком сжатого воздуха, подавая его в пневмоклапан (1). Требуемая степень очистки воздуха и стабилизация давления обеспечивается фильтром-регулятором (3).

Распределительные клапаны могут быть установлены непосредственно на клапане с пневмоприводом (см. рисунок 15) или отдельно в шкафу управления (см. рисунок 16).

Рисунок 15 – Монтаж пилотного клапана на клапан с пневмоприводомРисунок 16 – Монтаж распределительных клапанов в шкафу управления

Каждый из этих способов монтажа имеет свои преимущества и недостатки.

Установка распределителей на клапанах с пневмоприводом

Преимущества

  1. +  Меньше время срабатывания клапанов (так как воздух поступает сразу в пневмопривод).
  2. +  Выше энергоэффективность за счет экономии сжатого воздуха (при каждом срабатывании клапана с пневмоприводом весь воздух после распределительного клапана сбрасывается в атмосферу; при монтаже распределителя непосредственно на привод клапана между ними отсутствует пневмотрубка, следовательно расходуемый объем сжатого воздуха ниже).

Недостатки

  1.   Необходимость прокладки двух линий до клапана: пневматической и электрической.
  2.   Распределитель находится возле клапана с пневмоприводом, где может подвергаться негативному воздействию окружающей среды.

Установка распределителей в шкафу управления

Преимущества

  1. +  Упрощение разводки электрических цепей (все распределители в одном шкафу, до клапана с пневмоприводом прокладывается только одна линия – пневматическая).
  2. +  Все распределители легко доступны для обслуживания, так как находятся в шкафу управления.
  3. +  Все распределители надежно защищены от воздействия окружающей среды (повышенная температура, запыленность, мойка оборудования химическими реагентами и так далее).

Недостатки

  1.   Больше время срабатывания клапанов с пневмоприводом.
  2.   Повышенный расход воздуха.

3. Сравнение клапанов с пневмоприводом с соленоидными клапанами

Основным преимуществом клапанов с пневмоприводом перед электромагнитными клапанами является их повышенная устойчивость к воздействию негативных факторов окружающей среды и среды, проходящей через клапан. Это обусловлено тем, что клапаны с пневмоприводом:

  • приводятся в действие сжатым воздухом, а не средой, проходящей через клапан;
  • не имеют дополнительных перепускных отверстий, которые легко забиваются малейшими загрязнениями;
  • менее подвержены влиянию окружающей среды, так как имеется возможность вынести распределительный клапан в шкаф управления, где он будет защищен от вредных воздействий.

Каким же образом система, построенная на клапане с пневмоприводом, может оказаться надежнее системы, основанной на соленоидных клапанах? Ведь любой клапан с пневмоприводом требует своего распределителя, что увеличивает количество последовательно соединенных элементов системы. Это должно приводить к уменьшению общей надежности системы. Данное замечание справедливо при эксплуатации клапанов в идеальных условиях.

Однако, при неблагоприятных условиях запаса устойчивости соленоидного клапана может оказаться недостаточно. Это вытекает из особенностей его конструкции, описанных выше.

Следующим фактором, говорящим в пользу клапанов с пневмоприводом, является их меньшее гидравлическое сопротивление и, как следствие, больший расход среды при том же давлении на входе. Это достигается благодаря угловой (наклонной) конструкции клапана. Проходящий через него поток существенно меньше отклоняется от прямолинейного движения, следовательно расходует меньше энергии на преодоление сопротивления клапана. Для примера в таблице 1 приведены данные коэффициента расхода Kv для электромагнитных клапанов GEVAX серии 1901R-KBN и клапанов с пневмоприводом VALMA серии ASV.

Таблица 1 – Сравнение коэффициента расхода Kv клапанов разных конструкций
Тип клапана Электромагнитный клапан Клапан с пневмоприводом
Схема движения потока жидкости
Размер клапана Коэффициент расхода Kv, л/мин
DN 15 65 70 (+ 8%)
DN 20 110 150 (+ 36%)
DN 25 180 308 (+ 71%)
DN 32 250 608 (+ 143%)
DN 40 390 700 (+ 79%)
DN 50 575 910 (+ 58%)

В отличии от соленоидных клапанов, клапаны с пневматическим приводом преимущественно являются двунаправленными, то есть могут пропускать среду как в прямом, так и в обратном направлении (см. рисунок 17). Направление, показанное на изображении слева, называют «вход под диском», на изображении справа – «вход над диском».

Рисунок 17 – Допустимые направления движения жидкости для клапанов с пневмоприводом

Очевидно, что при подаче рабочей среды «над диском», её давление препятствует открытию клапана. Этот эффект приводит к снижению рабочего давления клапана, однако в некоторой мере он может быть скомпенсирован увеличением управляющего давления воздуха.

Пример изменения рабочего давления при подаче среды над и под диском

На рисунке 18 изображен шильдик клапана с пневмоприводом VALMA ASV-T-040-AL063.

Рисунок 18 – Шильдик клапана с пневмоприводом VALMA ASV-T-040-AL080-U

Рабочее давление пневмоклапана при подаче среды «под диском» составляет 6 бар, при подаче среды «над диском» – 5 бар. Эти данные указаны для давления управляющего воздуха 6 бар. Однако, изменением давления управления возможно увеличить рабочее давление клапана при подаче среды «над диском». Данная зависимость показана на рисуноке 19.

Рисунок 19 – График зависимости давлений рабочей и управляющей среды

По графику видно, что увеличение управляющего давления до 8 бар позволяет увеличить давление рабочей среды (при входе «над диском») до 10 бар, а увеличение управляющего давления до 9 бар позволяет увеличить давление рабочей среды до 12 бар.

Однако, соленоидные клапаны тоже имеют преимущества перед клапанами с пневмоприводом. Системы, построенные на основе соленоидных клапанов, как правило, проще и дешевле систем, построенных на основе клапанов с пневмоприводом, поскольку состоят из меньшего числа компонентов.

Электромагнитные клапаны могут применяться на объектах, в составе которых отсутствует пневмосистема. Установка оборудования для сжатия воздуха и его очистки на таких объектах приводит к сильному удорожанию и усложнению системы в целом.

Заключение

В данной статье описана конструкция электромагнитных клапанов и седельных клапанов с пневмоприводом, рассмотрены их преимущества и недостатки. Вся информация, изложенная в статье, основана на конструктивных особенностях клапанов обоих типов и может быть применима к клапанам указанных конструкций независимо от конкретных моделей или изготовителей клапанов.

Обобщенные преимущества и недостатки электромагнитных клапанов и клапанов с пневмоприводом приведены ниже.

Электромагнитные клапаны

  • +  Подключаются напрямую к электрической системе управления
  • +  Не требуют подвода сжатого воздуха
  • +  Системы на основе данных клапанов, как правило, проще и дешевле
  •   Имеют особые требования к чистоте рабочей среды
  •   Однонаправленные

Клапаны с пневмоприводом

  • +  Устойчивы к загрязнениям рабочей среды
  • +  Давление, вязкость, скорость потока и другие параметры рабочей среды не влияют на работу клапана
  • +  Как правило, двунаправленные
  •   Для подключения к системе управления, требуют установки распределительных (пилотных) электромагнитных клапанов
  •   Для работы требуют подключение сжатого воздуха

Инженер ООО «КИП-Сервис»
Быков А. Ю.

Читайте также:

Электромагнитный клапан

В промышленности и в быту постоянно происходит усовершенствование различных элементов, способствующих бесперебойной подаче разного рода жидкостей и газообразных веществ. Одним из таких элементов является электромагнитный клапан. Он очень эффективен в своей работе и предназначается для корректного регулирования прохождения разных типов жидкостей.

 

Устройство имеет электромеханический принцип действия и включает в себя следующие элементы – корпус, соленоид (электромагнит), оснащённый сердечником, на котором в свою очередь устанавливается поршень или же диск, который и предназначен для регуляции потока проходящим по нему жидкостям. Благодаря одному из основных элементов, а именно соленоиду, электромагнитный клапан также может называться и соленоидным.

 

Принцип действия электромагнитного клапана


Принцип действия электромагнитного клапана таков. Электричество поступает к устройству и передаётся на электромагнитную катушку. После этого, сердечник путём примагничивания затягивается в соленоид. Этот процесс приводит к тому, что канал либо закрывается, либо наоборот открывается. Магнитный сердечник намеренно располагается внутри специальной герметичной трубки в катушке соленоида. Его герметичность – это одно из самых важных условий.


Электромагнитный клапан по своему устройству напоминает привычный запорный клапан. Но у клапана с использованием соленоида закрытие и открытие может происходить без непосредственного на него воздействия. И открытие, и закрытие магнитного клапана происходит благодаря тому, что на его электромагнитную катушку подаётся электрический ток.

 

 

Область применения клапанов

 

Области применения электромагнитных клапанов достаточно широки. Их используют, как в бытовых нуждах, так и на крупных предприятиях для трудоёмких и сложных по своей сути процессах
Благодаря его работе можно на расстоянии осуществлять подачу практически любых типов жидкости, а также газа или же пара. Это действие также можно произвести практически в любой момент времени, когда потребуется. Самыми простыми и понятными примерами работы клапана может стать подача или слив воды, управление процессами отопления по заданным параметрам или обеспечение водой различные поливальные системы, которые тоже должны работать по времени.

 

 

 

Данными типами устройств пользуются в промышленных масштабах и крупные компании такие как «Газпром», «Норильский Никель», «Сургутнефтегаз», ЛУКойл и другие.


Далее более подробно рассмотрим способы применения электромагнитного клапана. Один из самых распространённых видов устройств, где используется клапан, является газовый фильтр, применяемый на автомобилях. В целом эта конструкция представляет собой единый узел, оснащённый предохранителем, которым и служит электромагнитный запорный клапан. Когда зажигание в автомобиле выключено этот запорный клапан перекрывает подачу газа в редуктор. Перекрывается газ дистанционно. Это обеспечивает переключатель видов топлива, осуществляющий переход с бензина на газ. Обычно он располагается непосредственно в салонах автомобилей, прямо у приборной панели. В этом варианте использования электромагнитного клапана он играет роль аварийного  выключателя, который прекращает подачу газа, если неожиданно  происходит аварийная ситуация.

 

Преимущества электромагнитных клапанов


Преимущество использования соленоидного клапана также заключается  при его использовании можно достаточно быстро управлять любыми системами водоснабжения. Времени для того чтобы клапан сработал, требуется совсем немного – порядком две-три секунды. И за счёт этого такое устройство становиться особенно востребованным в управлении горячим водоснабжением в небольшой замкнутой системе, какой может быть квартира либо же частный дом. Устанавливая клапан, можно с максимальной точностью придерживаться необходимой температуры, благодаря реагированию на любые перемены в нагрузке, что обеспечит защиту от возникновения так называемых «холодных пробок».


За счёт установки электромагнитного клапана, таким образом, продляется срок службы всей отопительной системы в целом, поскольку обеспечивает равномерное распределение тепла на пластины и вместе с этим снижает их загрязнение. Помимо этого, значительно сокращаются расходы на обслуживание отопительной системы. И поскольку в магнитном приводе клапана отсутствуют механические части, это намного продляет срок его службы. Эксплуатировать электромагнитный клапан можно в системе с различным давлением, поскольку его работа от давления не зависит.

 

Позволяет ли электромагнитный клапан непрерывно работать в течение очень длительного времени?

Это похоже на ту же часть, что и на серию электромагнитных клапанов CDK 4F0 / 1/2/3 .

Для катушек, указанных в техническом описании, нет предела рабочего цикла. Было бы очень необычно, если бы их не оценивали постоянно. Обратите внимание, что они работают на соленоиде с пилотным управлением, а не на прямом соленоиде, поэтому они будут иметь довольно низкую мощность — 1,8 Вт согласно паспорту. Вы должны быть в состоянии держать руку на катушке, когда они были включены в течение часа.

Пусковой ток и ток удержания

Обратите внимание, что модели переменного тока имеют более высокий пусковой ток, чем ток удержания. Это связано с тем, что индуктивность катушки увеличивается при втягивании соленоида в катушку. Более высокая индуктивность означает более высокое сопротивление и меньший ток. Поскольку постоянный ток не зависит от индуктивности после начального времени нарастания включения, пусковой ток и ток удержания определяются только сопротивлением катушки.

В результате вышеупомянутые соленоиды (и реле / ​​контакторы) с питанием от переменного тока имеют встроенное преимущество в энергосбережении по сравнению с постоянным током. Тем не менее, очень широкое применение напряжения 24 В в качестве стандартного напряжения питания промышленных систем управления означает, что мы живем с понижением энергопотребления.


Трюк снижения мощности соленоида постоянного тока

Просто потому, что это всплыло в комментариях . ..

смоделировать эту схему — схема, созданная с использованием CircuitLab

Рис. 1. Цепь энергосбережения для реле постоянного тока или соленоида. Полное напряжение сначала подается на катушку через ее собственный нормально замкнутый (NC) контакт, но когда он включается, прямое соединение разрывается, и подача напряжения на резистор падения напряжения вступает в действие.


Пилотная операция

У меня есть еще один вопрос, который может быть немного не по теме. Я попытался удалить соединительную часть соленоида, которая удерживалась двумя винтами. Все, что я мог видеть кроме двух отверстий для винтов, было маленькими 3 отверстиями. Я думал, что эти электромагнитные клапаны на самом деле имеют некоторые «клапаны», которые открываются в магнитном поле при активации. Я был довольно удивлен, когда заметил, что внутри с соленоидом просто есть 3 отверстия и как он управляет. Когда я попытался подключиться к 24 В постоянного тока, я не увидел никаких видимых движений, кроме щелчка. У вас есть идеи, как это может работать?

Рисунок 2. Анимация электромагнитного клапана 5/2. Источник: ZDSPB.com .

объяснение

Рисунок 3. Аннотированный для справки с текстом ниже.

Этот клапан имеет пять портов (1) — (5) и два положения (слева и справа). Отсюда 5/2 клапана.

  • Давление подается в (1) и выходит в (2), когда соленоид выключен, и (3), когда включено.
  • (4) и (5) — выпускные отверстия. Наличие двух делает конструкцию катушки (11) очень простой.
  • (6) это соленоид. Это перемещает привод (7). Обратите внимание, что он небольшой и требует малой мощности для его перемещения по сравнению с соленоидом прямого действия, который будет непосредственно перемещать катушку (11) и должен преодолевать сопротивление уплотнения и т. Д.
  • Когда пилот отключен от сети, воздух из (1) через (8) подается в (10) для перемещения катушки вправо — нормальное положение. Выход (3) будет под напряжением, а выход (2) вентилируется в (5).
  • Когда на соленоид подается питание, управляющий исполнительный механизм (7) перемещается вправо, чтобы отключить воздух к (10) и выпустить воздух с левой стороны золотника (11) в точке (13) в выпускной канал (4). После этого сетевое давление в (12) перемещает золотник (11) влево, порт (2) запитывается, а порт (3) истощается в (4).
  • Обратите внимание, что хотя давление воздуха подается на оба конца катушки, но площадь поверхности в (10) больше, чем в (12), поэтому катушка движется вправо.

Все это ответит на ваш вопрос: разделение между основным блоком и пилотной секцией в вашем клапане может немного отличаться от анимации. Скорее всего, три отверстия:

  • Подача питающего воздуха пилоту (8).
  • Сам пилот, чтобы толкать катушку (10).
  • Пилот выхлопа (13).

Обратите внимание, что есть много оригинальных вариаций этих клапанов. Некоторые могут просто использовать пружину в (12) и не иметь вспомогательной воздушной помощи. В некоторых случаях соленоид перемещает крошечную мягкую резиновую мембрану, чтобы впустить воздух (10).


Рисунок 4. Нижняя сторона пилотного клапана.

(1) и (2) будет подачей давления управляющего клапана и приводом к золотнику. Откуда нам знать? Поскольку (3) не имеет прокладки уплотнения, и единственное место, где утечки не имеют значения, находится на выхлопе, поэтому (3) должно быть выпускное отверстие (13) на рисунке 3.

Соленоидные клапаны АСТА

Соленоидные клапаны (другое название «электромагнитные клапаны») — предназначены для дистанционного и/или автоматического открывания или закрывания потока среды в трубопроводах. Конструкция состоит из корпуса с запирающим элементом и электромагнитной катушки, которая в процессе работы клапана оказывает воздействие на шток/запорный орган клапана, перемещая его в требуемое положение.

 

В зависимости от направления действия катушки на запорный орган соленоидные клапаны могут быть нормально открытыми НО (NO-англ.) или нормально закрытыми НЗ (NC-англ.) Нормально закрытые электромагнитные клапаны в случае отсутствия электрического тока находятся в закрытом состоянии, а после замыкания цепи открываются. Нормально открытые наоборот, без питания открыты и запираются при подаче напряжения.

 

По конструкции соленоидные клапаны можно разделить на клапаны прямого или пилотного (непрямого) действия. У соленоидных клапанов прямого действия катушка непосредственно связана с запорным органом и клапан может работать во всех диапазонах рабочего давления от нуля до максимально допустимого для данной модели. У электромагнитных клапанов пилотного действия, клапан при помощи катушки переключает канал соединяющий рабочую среду с пространством над мембраной, тем самым управляя клапаном не напрямую, а выполняя пилотную функцию. 

 

 

 

 

 

 

К недостаткам такого клапан можно отнести необходимость наличия подпора — минимально требуемого давления рабочей среды, без которого нормально-закрытый клапан не сможет открыться, а нормально-открытый закрыться при подаче напряжения. Поэтому такие клапаны, как правило, имеют нижний предел 0,35 или 0,5 бар в зависимости от типоразмера.

 

Ограничение по минимальному давлению не всегда позволяет использовать пилотный соленоидный клапан, в то же время заменить пилотный клапан на модель прямого действия не всегда представляется возможным, так как клапаны прямого действия редко когда выпускаются типоразмером выше DN25 (1”). Именно для таких случаев в линейке соленоидных клапанов существуют специальные модели, несмотря на пилотную конструкцию которых, позволяющие работать во всем диапазоне давлений, начиная от полного отсутствия давления. Такая серия носит название с ΔР=0 – с нулевым перепадом давления.

 

Помимо стандартных электромагнитных пилотных клапанов содержащих мембрану, существует линейка поршневых соленоидных клапанов. Такая конструкция, благодаря отсутствию эластичных уплотнений, позволяет выдерживать более высокую, по сравнению с мембранными конструкциями, температуру рабочей среды. Клапаны АСТА серии ЭСК 103 позволяют использовать их на рабочих средах с температурой 180°С, что соответствует, к примеру, насыщенному пару при давлении 9 бар.

 

Широкое распространение получили пилотные соленоидные клапаны мембранной конструкции больших диаметров выполненные с корпусом из чугуна с эпоксидным порошковым покрытием. Такие клапаны обычно имеют ограничение по температуре до 70-80°С. Типоразмеры таких клапанов, как правило, начинаются от DN50 и до DN1000 или выше. Конструктивно такие клапаны могут иметь мембранную или мембранно-плунжерную конструкцию. Такие клапаны могут сочетать в себе одновременно несколько функций, например, иметь функционал соленоидного клапана включающегося по таймеру и редукционного. Подробнее об этих моделях вы можете узнать на нашем сайте. 

Виды соленоидных клапанов, прямого и непрямого действия

Под соленоидным или электромагнитным клапаном понимается устройство, которое служит для регулирования направления движения потоков газа или жидкости в различных технологических системах. Соленоидный клапан работает автоматически и управляется с помощью электрического тока, который подается на индукционную катушку, входящую в состав соленоидного клапана.

В зависимости от положения соленоида при отсутствии подачи электрического тока, выделяется два вида соленоидных клапанов – нормально открытые и нормально закрытые

Кроме этого электромагнитные клапаны могут быть как прямого, так и непрямого действия. Их отличие в том, что прямой соленоидный клапан при подаче напряжения напрямую изменяет положение диафрагмы, и открывает или закрывает клапан. Непрямые соленоидные клапаны при подаче напряжения на него вызывают срабатывание другого (неэлектромагнитного) клапана. Прямые соленоидные клапаны являются более предпочтительными, так как они позволяют обеспечить более оперативное срабатывание. Они обычно используются когда расход воздуха или жидкости невелик, так как в противном случае необходимо значительно увеличить мощность соленоида, что ведет к большому удорожанию продукции. Соответственно, непрямые соленоидные клапаны более предпочтительны при больших расходах рабочей среды.

Компания «Полтраф СНГ» занимается поставкой потребителям в России и других странах СНГ соленоидных клапанов производства компаний ODE (Италия) и Asco Joucomatic (Голландия). Продукция этих компаний может использовать в различных условиях, в том числе на взрыво- и пожароопасных предприятиях (нефтяная и пищевая промышленности, АЗС и так далее), а также в случае при работе в агрессивной среде (в том числе в морской воде).

Вы можете перейти в раздел электромагнитных клапанов и произвести поиск, выбрав необходимые параметры >>

Как проверить электромагнитный клапан мультиметром

Соленоиды можно проверить с помощью омметра отдельно или прямо на автомобиле с разьемов ТСМ.

Смотреть страницу — подготовка. Используем снятый АКБ и провода с «крокодильчиками».

При подаче напряжения на соленоид возникает электромагнитное поле, которое притягивает микрочастицы металла, находящиеся в масле. Они накапливаются в корпусе соленоида, что приводит к заклиниванию плунжера или неправильной работе шарикового клапана. Кроме того, наличие в масле металлических микрочастиц способствуют возникновения пробок в каналах.

Некоторые соленоиды можно разобрать, промыть. Это соленоид » NEUTRAL IDLE/TCC ON — OFF SOLE-

NOID VALVE «. Внутри катушки находится сердечник с «носиком», который соединен с шариковым клапаном.

«Носик» должен быть длиной 3,8 мм и диаметром 1,9 мм. Если он не соответствует длине или расплющен, то

его надо заменить на более твердый металл. Имею ввиду только «носик», обратиться к токарю.

Проверку каналов остальных двух соленоидов и шариковых клапанов можно осуществить с помощью сжатого воздуха. При этом следует помнить соленоиды могут быть нормально открытыми и нормально закрытыми. Соленоид » NEUTRAL IDLE/TCC CLUTCH CONTROL SOLENOID VALVE » при подаче напряжения на обмотку закрыт. Воздух не должен проходить через выходной канал соленоида. При отсутствии напряжения на обмотке шариковый клапан открыт. Воздух должен проходить. У этого соленоида корпус гидравлического клапана прикручивается к основному корпусу. По этому здесь есть регулировка обьема слива шарикового клапана, путем откручивания и закручивания корпуса гидравлического клапана. Т.е. шариковый клапан должен создать давление (путем закрытия слива масла) для сжатия фрикционов, но также быстро сбросить давление чтобы разьединить фрикционы. Иначе они мгновенно сгорят.

В корпусе гидравлического клапана есть маленькое отверстие — это жиклер. Жиклер создает сопротивление потоку масла, что позволяет снизить скорость заполнения маслом масляных каналов. Плавное сжатие фрикционов.

Соленоид » LINE PRESSURE CONTROL SOLENOID VALVE » при подаче напряжения на обмотку открыт.

Воздух должен проходить через выходной канал соленоида. При отсутствии напряжения на обмотке шариковый клапан закрыт. Воздух не должен проходить. Здесь тоже есть регулировка обьема слива шарикового клапана. На торце соленоида есть винт с шестигранником, при повороте винта по часовой стрелке обьем слива уменьшается (давление будет увеличиваться), при повороте против часовой обьем слива будет увеличиваться (давление будет уменьшаться).

На снимке: блок соленоидов и блок клапанов.

1 — соленоид » LINE PRESSURE CONTROL SOLENOID VALVE » ,

2 — винт для регулировки давления в основной магистрали,

3 — шаговый двигатель » RATIO CONTROL MOTOR «,

4 — рычаг, соединяющий шаговый двигатель с подвижным конусом ведущего вала,

5 — клапан » VARIABLE RATIO CONTROL «,

6 — соленоид » NEUTRAL IDLE/TCC ON — OFF SOLENOID VALVE «,

7 — соленоид » NEUTRAL IDLE/TCC CLUTCH CONTROL SOLENOID VALVE «,

8 — блок соленоидов,

9 — блок клапанов,

10 — пробки с уплотнителями, фиксирующие клапана,

11 — прокладка между блоками соленоидов и клапанов.

Когда окончательно закончите сборку вариатора и установите, может получиться авто не поедет или не сможет преодолеть даже легкий подьем. Согласитесь, что износ в соленоидах тоже присутствует: шарик «разбивает» посадочное седло, якорь (сердечник) соленоида расплющивается и потоки масла делают свое дело. Крышку блока соленоидов под капотом сразу не прикручивайте, закрепите его только на два болта по диагонали. Колеса авто должны твердо стоять на земле. При подвешенных колесах, видимо датчики вращения валов вводят в «заблуждение» компьютер (ТСМ).

Подключите манометр и проверьте давление. Если давление низкое, поднимите его регулировочным

винтом на корпусе соленоида » LINE PRESSURE CONTROL SOLENOID VALVE «, поверните его по часовой

стрелке. Опять закройте крышку на два болта и проверьте авто на ходу. Не беспокойтесь масло через крышку течь не будет.

Если авто не может преодолеть даже легкий подьем, то возможно вы лишнего открутили корпус гидравлического клапана соленоида » NEUTRAL IDLE/TCC CLUTCH CONTROL SOLENOID VALVE » — закрутите на пол оборота. Снова закрываем крышку на два болта и проверяем еще раз на ходу. Авто должен преодолеть уверенно сложный подьем. Для этой операции соленоид надо снимать.

Соленоид » NEUTRAL IDLE/TCC ON — OFF SOLENOID VALVE » должен быть исправен, иначе бесполезно

крутить корпус гидравлического клапана. Помните ко всем трем соленоидам масло подводиться от одной магистрали. Кольцевые уплотнители на двух последних соленоидах заменить.

ВОЗМОЖНО ЭТУ РЕГУЛИРОВКУ ПРИДЕТСЯ СДЕЛАТЬ В НЕСКОЛЬКО ПРИЕМОВ.

Почему так получается? В ТСМ есть программа (прошивка), управляющая вариатором, всей гидравлической системой. Поэтому работу соленоидов необходимо подогнать под заводскую калибровку (настройку). Кто работает с импульсной техникой знает, что в работе ШИМ есть рабочий цикл, т.е. определенная максимальная ширина импульса (в процентах) от периода, заданная программой. Которую мы не можем изменить, поэтому нам надо максимально правильно отрегулировать работу соленоида так, чтобы шариковый клапан в соленоиде при этой ширине импульса полностью успел закрыться. А в отсутствие импульса — открыться и слить масло, или наоборот. Поэтому нам необходимо хотя бы приблизиться к заводской настройке (калибровке). Грубо говоря, нам надо попасть в этот рабочий цикл. Если нам это удастся сделать, то мы получим:

— своевременную блокировку гидротрансформатора,

— в следствии этого экономию расхода топлива,

— отсутствие перегрева масла в вариаторе (если не будет блокировки ГТ, он будет работать как жидкое

сцепление, т.е насосное колесо постоянно будет «гонять» масло на турбинное колесо — это минус десять

— включение высшей передачи,

— необходимое давление в основной магистрали,

— правильную работу блока клапанов.

Это вы будете наблюдать при регулировке давления на соленоиде » LINE PRESSURE CONTROL SOLENOID VALVE «. Подкрутили винт по часовой стрелке на 90 — 180 градусов, давление в системе поднялось. Хотя мы обороты двигателя не увеличивали, ширину импульса в сигнале ШИМ не меняли, программу не трогали. А мы просто уменьшили обьем слива в шариковом клапане.

И подобную «настройку» соленоидов через какое-то время необходимо повторить.

Клапан с электромагнитным приводом — это современный вид запорной арматуры. Они позволяют на расстоянии управлять потоками жидкости или газа в трубопроводных системах. Такие затворы хорошо встраиваются в автоматизированные системы управления технологическими процессами, позволяют экономить дефицитные человеческие ресурсы и делают работу предприятий более безопасной. Существует большое количество различных видов клапанов для разных сред, различаются они и по своему устройству и назначению.

Назначение и применение электромагнитных клапанов

Электромагнитный клапан предназначен для управления потоками жидких и газообразных продуктов на расстоянии. Он может быть запорным и регулирующим. Управление при этом может осуществляться как вручную, так и с помощью систем автоматики. По своей конструкции и назначению электромагнитный затвор весьма похож на обычный, с той разницей, что в движение запорный элемент приводится в движение не мускульной силой, а соленоидом, электромагнитом с подвижным сердечником. При подаче напряжения на катушку индуктивности соленоида, она, в зависимости от полярности, втягивает или выталкивает сердечник, соединенный со штоком клапана.

Такие запорные и регулирующие устройства используются как в сложных промышленных установках, так и в домашних системах отопления, водоснабжения, в бытовой технике. Применяются они и в транспортных средствах, работающих на жидком топливе.

Устройство клапана

Соленоидный клапан по составу основных деталей и узлов во многом совпадает с обычным устройством с ручным управлением:

  • Корпус с подводящим и отводящим патрубком.
  • Рабочая камера с седлом.
  • Тарельчатый, шаровой или лепестковый запорный элемент.
  • Возвратная пружина.
  • Шток, соединенный с запорным элементом и сердечником соленоида
  • Соленоид.

Корпус магнитного клапана изготавливается из металлических немагнитных сплавов или прочных пластиков. Высокая герметичность корпуса позволяет применять клапан в различных средах, в том числе и активных. Соленоидные клапана для воды в качестве уплотняющих прокладок используют резину, для более активных сред выбирают фторопласт. Открывать и закрывать клапан соленоид за время службы должен тысячи или даже десятки тысяч раз, поэтому для обмоток берут самые высококачественные медные провода, покрытые изолирующей эмалью.

Управление электромагнитным клапаном осуществляется по проводам, для их присоединения на корпусе снаружи предусмотрены контактные группы.

Устройство должно быть устойчивым к воздействию внешних электромагнитных полей, шумов и вибраций.

Существуют и другие типы электромеханических приводов, такие, как электродвигатель с редуктором, пневматические или гидравлические.

Принцип работы электромагнитных систем

Принцип работы электромагнитного запорного клапана основан на физическом явлении электромагнитной индукции. При протекании тока по катушке индуктивности внутри нее возникает магнитное поле, воздействующее на сердечник из магнитных материалов силой, приложенной в продольном направлении. Эта сила, в зависимости от полярности приложенного напряжения, пытается втянуть сердечник внутрь катушки либо вытолкнуть его. При этом происходит открытие либо закрытие затворного элемента.

Катушки соленоидных клапанов могут работать как на постоянном токе напряжением от 5 до 36 вольт, так и на переменном токе напряжением 220 В.

Устройства с низким управляющим напряжением обладают небольшой мощностью и ограниченным усилием, передаваемым на запорный элемент. Это позволяет использовать для управления ими низковольтные полупроводниковые схемы. Применяются такие устройства в системах низкого напора рабочей среды, на трубопроводах малых диаметров.

Приводы, работающие на переменном токе, развивают гораздо большие усилия и могут применяться на магистральных трубопроводах высокого давления и больших диаметров.

О разновидностях изделий

Классификация изделий проводится по нескольким параметрам.

Исходя из положения запорного элемента в отсутствие напряжения на катушке различают:

  • Нормально открытые, или НО. Проход для жидкости или газа открыт, а при подаче напряжения- он закрывается.
  • Нормально закрытые, или НЗ. Проход для среды перекрыт, а при подаче напряжения он открывается.

Некоторые модели выпускаются универсальными, а нормально положение запорного элемента настраивается при установке и подключению к управляющей сети. Такие переключаемые устройства называют бистабильными.

В зависимости от рабочей среды запорную арматуру выпускают для:

  • Воздуха.
  • Воды.
  • Пара.
  • Активных сред.
  • Горюче-смазочных материалов.

Приборы для работы в радиоактивных средах отличаются специальным подбором материалов с повышенной радиационной стойкостью. Вакуумный электромагнитный клапан должен обеспечивать особо высокую герметичность

Исходя из характеристик внешней среды, исполнение прибора может быть:

  • Обычное
  • Для влажных помещений.
  • Термостойкие (для высоких температур).
  • Морозостойкие (для экстремально низких температур).
  • Взрывозащищенное. Такие устройства не должны искрить при включении либо выключении. Для этого в них применяются специальные конструктивные решения и материалы.

По типу питающего напряжения катушки делятся на

  • Переменного тока, высокого напряжения. Развивают большие усилия, используются на магистральных трубопроводах высокого давления и больших диаметров.
  • Постоянного тока, низкого напряжения. Применяются на трубах небольшого сечения и низкого напора.

Есть отдельный класс электромагнитных отсечных клапанов высокого давления. Их называют отсечными. Они предназначены для моментального перекрытия трубопроводов или герметизации емкостей в случае возникновения нештатных или аварийных ситуаций.

И, наконец, по типу функционирования клапаны делятся на

  • Одноходовые. Такой затвор имеет только входящий патрубок. Обычно они нормально закрытые и открывают путь водяному или воздушному потоку во внешнюю среду. Используются в качестве предохранительных.
  • Двухходовые. Самый распространенный вид, имеют входящий и выходящий патрубки и монтируется в разрыве трубопровода. Применяются для управления потоком в одном из контуров трубопроводной системы.
  • Трехходовые. Могут иметь один входной и два выходных патрубка либо два входных и один выходной.

Трехходовые клапаны первого типа применяются для перенаправления потоков из одного контура в другой (например, в системе отопления). Это позволяет поддерживать температуру рабочей среды постоянной без изменения параметров работы источника тепла. Устройства второго типа используются для смешения двух потоков, имеющих разную температуру. Характерным примером служит однорычажный шаровой смеситель на кухне или в ванной.

Область использования

Применение электромагнитных клапанов осуществляется в самых разных областях человеческой деятельности, везде, где возникает необходимость управлять потоками жидкостей и газов дистанционно. Сюда входит:

  • Бытовые системы отопления.
  • Системы водоснабжения и водоподготовки.
  • Технологические установки.
  • Трубопроводный транспорт.
  • Генерация и распределение тепла.
  • Бытовые приборы.
  • Канализация.
  • Орошение.
  • Транспортные средства.

Использование электромагнитных клапанов на транспорте понемногу снижается, поскольку все больше видов транспортных средств переходят на электрические источники энергии и отказываются от жидкого топлива и гидравлики, заменяя их на более надежные электрические приводы. Сходные перспективы просматриваются и в системах отопления. Но в водоснабжении, канализации и других отраслях роль электромагнитных затворов будет только возрастать.

Преимущества электромагнитных клапанов для воды

Главным преимуществом устройства является возможность удаленного и быстрого регулирования потоков рабочей среды. Без электромагнитных затворов становится невозможной работа сложных технологических установок и простых бытовых приборов, таких, как кофеварка и стиральная машина.

Кроме того, электропривод позволяет:

  • Подключать соленоидный клапан к централизованной и автоматизированной системе управления. Это многократно повышает точность и оперативность регулировок параметров по сравнению с ручным управлением.
  • Снижать трудозатраты на управление технологическими процессами.
  • Повышать безопасность производства и исключать воздействие на оператора вредных факторов производственной среды.
  • Повышать эффективность работы бытовых приборов и производственных установок за счет точного и быстрого управления потоками рабочих сред и их параметров.

Важным достоинством соленоидного привода по сравнению с электромотором и редуктором является отсутствие зубчатых и червячных передач, исключительная простота устройства и минимум подвижных частей.

Это обеспечивает высокую надежность оборудования, минимальный износ и долгий срок его службы.

Недостатком данного типа устройств являет невозможность плавной регулировки степени открытия затвора. Обеспечивается только два положения: «открыто» и «закрыто».

Установка электромагнитного клапана для воды своими руками

Прежде чем приступать к установке, необходимо определить тип подключения. Наиболее часто применяемыми являются:

  • Резьбовое. Входной и выходной патрубки снабжены внешней либо внутренней резьбой, через соответствующие фитинги арматура встраивается в разрыв трубопровода. Наиболее удобное для самостоятельной установки, лучше выбрать подключение такого типа.
  • Фланцевое. Патрубки оборудованы фланцами, на концах труб также должны быть фланцы соответствующего типоразмера, они стягиваются между собой болтами. Обеспечивают высокое давление и интенсивность потока, чаще применяются на магистралях высокого и среднего давления.

До начала монтажа устройства следует выполнить ряд подготовительных операций. Трубы должны быть размечены, обрезаны под размер и зачищены. Место для установки электромагнитного устройства должно давать свободный доступ к устройству для его монтажа, обслуживания и ремонта. Опытные мастера сформулировали также несколько рекомендаций:

  • Все работы по установке или снятию прибора можно проводить только в отключенном от сети виде.
  • Трубопроводную систему необходимо дополнить фильтром механической очистки. Это предотвратит загрязнение и повреждение деталей посторонними включениями, такими ка песок, чешуйки ржавчины и известковые отложения.
  • Корпус устройства не должен принимать на себя вес участка трубопровода.
  • Следует подключать устройство в соответствии с нанесенными на корпусе стрелками. Они указывают направление потока.
  • При уличной установке следует защитить клапан от воздействия природных явлений. Обычно бывает достаточно водонепроницаемого кожуха. При работе в условиях низких температур нужно обеспечить подогрев кожуха.
  • Резьбовые соединения нужно обязательно уплотнять лентой ФУМ или сантехнической нитью.
  • Кабель для подключения к управляющей системе следует выбирать медный. Он должен иметь достаточное поперечное сечение не менее 2 мм 2 .

Подбор конкретной модели осуществляется на основе расчетов параметров трубопроводной системы.

Следует учитывать напор, сечение труб, необходимую скорость срабатывания и характеристики управляемой среды.

Признаки неисправности электромагнитного клапана карбюратора

В карбюраторах последних моделей применяется соленоидный привод управления подачей топлива. Как проверить электромагнитный клапан на исправность?

Его поломку определяют по следующим признакам:

  • Двигатель неустойчиво работает на низких оборотах.
  • Мотор глохнет при использовании наката.
  • После выключения двигателя наблюдается детонация рабочей смеси.

Косвенными признаками неисправности также является снижение оборотов при подключении мощных потребителей электроэнергии, таких, как магнитола, ближний или дальний свет, подогрев стекол.

Проверка клапана

Проверять клапан карбюратора следует на следующих режимах:

  • На холостом ходу. После запуска доводят обороты до 2100 и вслушиваются в работу карбюратора. Должен быть слышен резкий характерный звук, означающий закрытие затвора. Далее плавно снижают обороты до значения в 1900, должен быть слышен щелчок открывания.
  • Торможение двигателем. Нужно сбросить газ, не выключая передачу. Исправный клапан в этом случае не сработает, даже если обороты снизились до 1900. Если слышен щелчок – устройство неисправно.
  • После остановки двигателя. Если при выключенном зажигании в цилиндрах продолжаются самопроизвольные вспышки детонирующей рабочей смеси, двигатель дергается и вибрирует – значит, клапан не перекрывает подачу горючего в камеры и далее в цилиндры.
  • Если при работающем моторе вытащить из разъема провод питания электроклапана- двигатель должен заглохнуть. Если он продолжает работать- значит, клапан неисправен.

Кроме способов проверки электромагнитного клапана «на ходу», можно вывинтить клапан из корпуса карбюратора и попробовать подать на него напряжение с аккумулятора. Один провод от батареи присоединяют к контактной колодке, другой- к корпусу прибора. При подключении напряжения клапан должен щелкнуть и втянуть иглу внутрь себя. После размыкания цепи слышен еще один щелчок, и возвратная пружина втянет иглу. Заодно можно проверить, не загрязнены ли детали устройства смолистыми отложениями. Их нужно отмочить в бензине и удалить мягкой ветошью.

Нужно проверить также, подается ли на контакты управляющее напряжение. Его нормальное значение — 10,5-14,4 в. Если на блоке управление напряжение есть, а на контакте –нет, значит, неисправен провод. Его надо отремонтировать или заменить.

Если на разъеме блока управления напряжения нет, то, скорее всего, неисправен сам блок. Его проверяют, подключив клапан к батарее еще одним временным проводом. К выводу блока управления, управляющему клапаном, подключают вольтметр или контрольную лампочку. Далее следует запустить двигатель. По достижении оборотов в 900 об/мин лампочка должна вспыхнуть, при 2100 об/мин- погаснуть. Если снизить обороны до 1900 об/мин-опять вспыхнуть. Такое поведение лампочки означает исправность блока управления. Если же лампочка вообще не загорается и не гаснет, а также включается и выключается при других оборотах- блок управления подлежит углубленной проверке и, возможно, замене.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Тема: что делать если оборвалась обмотка катушки, как проверить на обрыв.

Когда обрывается электрическая обмотка, по которой протекает ток, то или иное устройство обычно выходит из строя (так как любые обмотки как правило играют важную функциональную роль в работе электрических приборов). Давайте с Вами рассмотрим данную проблему более тщательно, выяснив для себя важные моменты. Итак, в большинстве случаев обмотка из медного провода используется в трансформаторах, электродвигателях и электрогенераторах, клапанах, электромагнитах, реле, контакторах, катушках индуктивности и т.д.

Наиболее значимым физическим эффектом, которым обладают электрические катушки является индукция электромагнитных полей. Именно когда электрический ток протекает через обмотку провода вокруг неё образуется достаточно интенсивное электромагнитное поле, что даёт возможность влиять, как на механическое движение, так и на генерацию электродвижущей силы (наводимой на другой обмотке, находящаяся рядом). Следовательно при обрыве обмотки обрывается контакт и движение электрического тока прекращается, в результате чего прекращаются процессы взаимодействия с электромагнитными полями.

Как можно вычислить обрыв обмотки? Проверив её на целостность, предварительно прозвонив её тестером. Но не всё так просто. Одно дело, когда электрическая обмотка просто оборвалась в результате отгарания или механического повреждения. И другое дело случаи, когда устройство, содержащее обмотку, подвергается периодическому перегреву. В результате чего нарушается качество изоляционного покрова обмотки (происходит постепенное разрушение изоляционного лака). Это ведёт к появлению короткозамкнутых витков, что способствует ещё большему нагреву катушки с последующим выходом её из строя. То есть, происходит отгарание провода (или вовсе выгорание всей обмотки) и обрыв катушки.

Если электрическая катушка с обмоткой находится на устройстве, для проверки её необходимо выпаять (что бы исключить прозвонку через другие электрические цепи прибора). И только когда обмотка электрически не связана с другими цепями её можно прозванивать тестером на внутреннее сопротивление. Если оно есть (при отсутствии короткозамкнутых витков), значит с Вашей обмоткой всё нормально, она рабочая. Если же тестер, прозвонка не показывает сопротивление, величина которого зависит от длины провода обмотки, её сечения, материала (хотя в основном используется медь) значит Ваша обмотка имеет обрыв.

Исходя из практики достаточно большое количество обрывов обмоток связано со следующими причинами — это плохая пайка концов обмотки к клеммным выводам устройства, перегорание провода в наиболее уязвимых местах (места частого перегиба, ранее механически повреждённого), случайное механическое повреждение при неправильной эксплуатации, профилактических работах, перегрев устройства с обмоткой при коротких замыканиях и токовых перегрузках.

Чаще всего обрыв обмотки находиться в месте самих выводов этой самой обмотки, месте их спая с проводом, удлиняющих эти самые выводы. Такие обрывы легко находить и устранять, они видны не вооружённым взглядом. Их просто обратно спаивают и изолируют при необходимости. Гораздо хуже дело обстоит, когда этот самый обрыв обмотки произошёл внутри самой обмотки. Тут уж нужно будет подумать, что будет проще, либо размотать катушку до места обрыва, его устранить и намотать провод обратно, либо просто заменить обмотку на новую (перемотав её), либо же вовсе заменить всё устройство, содержащее эту самую обмотку.

Как работает электромагнитный клапан

Что такое электромагнитный клапан?

Определение электромагнитного клапана — это электромеханический клапан, который обычно используется для управления потоком жидкости или газа. Существуют различные типы электромагнитных клапанов, но основные варианты — с пилотным или прямым действием. Клапаны с пилотным управлением, наиболее широко используемые, используют давление в трубопроводе системы для открытия и закрытия главного отверстия в корпусе клапана.

В то время как соленоидные клапаны прямого действия напрямую открывают или закрывают отверстие главного клапана, которое является единственным каналом потока в клапане. Они используются в системах, требующих низкой пропускной способности, или в приложениях с низким перепадом давления на отверстии клапана.

Принцип действия электромагнитных клапанов

Принцип действия электромагнитного клапана заключается в управлении потоком жидкостей или газов в положительном, полностью закрытом или полностью открытом режиме. Их часто используют для замены ручных клапанов или для дистанционного управления.Функция электромагнитного клапана включает открытие или закрытие отверстия в корпусе клапана, что позволяет или предотвращает прохождение потока через клапан. Плунжер открывает или закрывает отверстие, поднимаясь или опускаясь внутри гильзы за счет подачи питания на катушку.

Электромагнитные клапаны состоят из змеевика, плунжера и втулки в сборе. В нормально закрытых клапанах возвратная пружина плунжера прижимает плунжер к отверстию и препятствует потоку. Когда на катушку соленоида подано напряжение, результирующее магнитное поле поднимает плунжер, обеспечивая поток.Когда катушка соленоида находится под напряжением в нормально открытом клапане, плунжер закрывает отверстие, что, в свою очередь, предотвращает поток.

Почему используется электромагнитный клапан?

В большинстве приложений управления потоком необходимо запускать или останавливать поток в контуре, чтобы контролировать жидкости в системе. Для этого обычно используется электромагнитный клапан с электронным управлением. Электромагнитные клапаны, приводимые в действие соленоидом, могут быть расположены в удаленных местах и ​​могут управляться с помощью простых электрических переключателей.

Электромагнитные клапаны — наиболее часто используемые элементы управления в жидкостной технике. Они обычно используются для отключения, выпуска, дозирования, распределения или смешивания жидкостей. По этой причине они используются во многих областях. Соленоиды обычно обеспечивают быстрое и безопасное переключение, длительный срок службы, высокую надежность, низкую мощность управления и компактную конструкцию.

Где используется электромагнитный клапан?

Электромагнитные клапаны применяются в широком диапазоне промышленных настроек, включая общее двухпозиционное управление, контуры управления заводом, системы управления технологическим процессом и различные приложения производителей оригинального оборудования, и это лишь некоторые из них.

Электромагнитные клапаны можно найти во многих различных секторах, в том числе:

  • Водоснабжение
  • Очистка питьевой воды
  • Очистка сточных вод
  • Очистка / очистка серой и черной воды
  • Машиностроение
  • Охлаждение, смазка и дозирование
  • Строительные услуги
  • Крупные системы отопления, климат-контроль
  • Техника безопасности
  • Системы защиты водопроводов и пожаротушения
  • Компрессоры
  • Сброс давления и дренаж
  • Подача топлива
  • Транспортные и резервуарные помещения
  • Пожары системы
  • Управление мазутным и газовым горелками
  • Газовая хроматография
  • Регулировка газовой смеси
  • Приборы для анализа крови
  • Контроль процессов очистки

Как заменить электромагнитные клапаны

Для правильного и точного контроля функционирования, электромагнитные клапаны должны быть настроены и выбраны в соответствии с конкретным приложением.Наиболее важными параметрами для выбора электромагнитного регулирующего клапана являются значение Kv (выраженное в кубических метрах в час) и диапазон давления в приложении.

Чем ниже отверстие клапана или чем прочнее змеевик, тем выше давление, при котором клапан может закрыться. На основании рассчитанного значения Kv и диапазона давления для планируемого применения можно определить соответствующий тип клапана и его требуемое отверстие.

Что такое электромагнитный клапан NAMUR?

NAMUR — это аббревиатура от User Association of Automation Technology in Process Industries, которая служит стандартом для технологии автоматизированных клапанов.Стандартные интерфейсы полезны для монтажа приводов, поскольку они помогают снизить затраты на изготовление и установку соленоидов. Bürkert предлагает для покупки широкий выбор электромагнитных клапанов NAMUR. Посетите наш веб-сайт сегодня, чтобы просмотреть полный ассортимент электромагнитных клапанов.

Где купить электромагнитный клапан

Клапаны Bürkert можно найти практически во всех отраслях промышленности. От сварочных роботов до гидротехнических сооружений, от пылеудаления при добыче полезных ископаемых до контроля давления в кабине самолета — все возможно с нашими клапанами в качестве надежного компонента вашей системы.Если вам нужен отдельный клапан, клапанные блоки или индивидуальные решения, вся наша линейка продуктов ориентирована на обеспечение контролируемого обращения с жидкостями и газами.

Наша продукция предназначена для доставки:

  • Высокая гибкость благодаря модульной конструкции
  • Разнообразный выбор материалов
  • Высокая надежность и длительный срок службы
  • Низкое воздействие на окружающую среду

Приобретите высококачественные электромагнитные клапаны в интернет-магазине Burkert сегодня . Или, чтобы получить дополнительную информацию, позвоните нам по телефону +44 1285 648 720, по электронной почте[email protected] или заполните нашу контактную форму.

Содержание Самые популярные электромагнитные клапаны BürkertСамые популярные электромагнитные клапаны Bürkert

Не все электромагнитные клапаны одинаковы. Да, здесь, в Bürkert, мы регулярно разрабатываем невероятно инновационные соленоиды — это то, чем мы занимаемся! Однако часто требуется прочная, надежная рабочая лошадка соленоида, которая, как вы можете быть уверены, многократно выполнит свою работу в течение длительного и выдающегося жизненного цикла. Следующие три электромагнитных клапана Bürkert являются воплощением надежности.

Что такое электромагнитный клапан и как он работает?

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

ОБЩЕЕ

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости.Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

СТРОИТЕЛЬСТВО

Электромагнитные клапаны — это блоки управления, которые при подаче электроэнергии или обесточивании либо перекрывают, либо пропускают поток жидкости. Привод выполнен в виде электромагнита. При подаче напряжения создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины.В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

РАБОТА КЛАПАНА

По режиму срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная особенность — это количество подключений к портам или количество потоковых трактов («путей»).

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

В соленоидном клапане прямого действия уплотнение седла прикреплено к сердечнику соленоида.В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 2-ХОДОВЫЕ

Двухходовые клапаны — это запорные клапаны с одним входным и одним выходным отверстиями (рис. 1). В обесточенном состоянии пружина сердечника с помощью давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток. При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.

фигура 1

3-ХОДОВЫЕ КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

Трехходовые клапаны имеют три штуцера и два седла клапана. Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный. Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут выполняться в зависимости от того, как текучая среда соединена с рабочими портами на рис. 2. Давление текучей среды нарастает под седлом клапана.Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости. Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, седло клапана в Порте R закрывается подпружиненным верхним уплотнением сердечника. Текучая среда теперь течет от P к A.

фигура 2 В отличие от версий с сердечником плунжерного типа, клапаны с поворотным якорем имеют все портовые соединения в корпусе клапана. Изолирующая диафрагма предотвращает контакт текучей среды с камерой змеевика.Клапаны с поворотным якорем могут использоваться для управления любым трехходовым клапаном. Базовый принцип конструкции показан на рис. 3. Клапаны с поворотным якорем стандартно оснащены ручным дублером.

фигура 3

ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше.Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.

КЛАПАНЫ 2-ХОДОВЫЕ С ВНУТРЕННИМ ПИЛОТОМ

Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на рис.4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы. Когда пилотный клапан открыт, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия.Omega также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой, которые работают при нулевом перепаде давления (рис. 5).

фигура 4

МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия. Эти клапаны имеют четыре патрубка: впуск давления P, два патрубка A и B цилиндра и один патрубок выпуска R.4/2-ходовой тарельчатый клапан с внутренним управлением показан на рис. 6. В обесточенном состоянии пилотный клапан открывается на соединении между входом давления и пилотным каналом. Обе тарелки главного клапана теперь находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выходить через второй ограничитель через R.

цифра 5

КЛАПАНЫ С НАРУЖНЫМ УПРАВЛЕНИЕМ

В этих типах для приведения в действие клапана используется независимая управляющая среда.На рис. 7 показан поршневой клапан с угловым седлом и закрывающей пружиной. В безнапорном состоянии седло клапана закрыто. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда электромагнитный клапан находится под напряжением, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина расположена на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.

фигура 6

МАТЕРИАЛЫ

Все материалы, из которых изготовлены клапаны, тщательно отбираются в соответствии с различными типами применения. Материал корпуса, материала уплотнения и материала соленоида выбирается для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.

КУЗОВ

Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионно-стойкая сталь. Кроме того, полиамидный материал используется по экономическим причинам в различных пластиковых клапанах.

СОЛЕНОИДНЫЕ МАТЕРИАЛЫ

Все части электромагнитного привода, контактирующие с жидкостью, изготовлены из аустенитной коррозионно-стойкой стали. Таким образом обеспечивается устойчивость к коррозионному воздействию нейтральных или умеренно агрессивных сред.

МАТЕРИАЛЫ УПЛОТНЕНИЯ

Конкретные механические, термические и химические условия в приложении влияют на выбор материала уплотнения.Стандартным материалом для нейтральных жидкостей при температурах до 194 ° F обычно является FKM. Для более высоких температур используются EPDM и PTFE. Материал PTFE универсально устойчив практически ко всем техническим жидкостям.

НОМИНАЛЬНОЕ ДАВЛЕНИЕ — ДИАПАЗОН ДАВЛЕНИЯ

Все значения давления, приведенные в этом разделе, представляют собой манометрическое давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры действительны для диапазона пониженного напряжения от 15% до перенапряжения 10%.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.

В случае работы в вакууме необходимо следить за тем, чтобы вакуум был на стороне выхода (A или B), в то время как более высокое давление, то есть атмосферное давление, подключено к входному отверстию P.

ЗНАЧЕНИЯ РАСХОДА

Скорость потока через клапан определяется конструкцией и типом потока.Размер клапана, необходимый для конкретного применения, обычно определяется номиналом Cv. Этот показатель разработан для стандартных единиц и условий, то есть расхода в галлонах в минуту и ​​использования воды с температурой от 40 ° F до 86 ° F при перепаде давления 1 фунт / кв. Дюйм. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае воздушный поток в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68 ° F.

СОЛЕНОИДНЫЙ ПРИВОД

Общей особенностью всех электромагнитных клапанов Omega является система соленоидов с эпоксидной изоляцией.В этой системе вся магнитная цепь — катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к тому, что высокая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также внешних коррозионных воздействий.

КАТУШКИ

Катушки Omega доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно в случае соленоидных систем меньшего размера, означает, что возможно управление через полупроводниковую схему.

рисунок 7 Доступная магнитная сила увеличивается по мере того, как воздушный зазор между сердечником и гайкой заглушки уменьшается, независимо от того, используется ли переменный или постоянный ток. Электромагнитная система переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая соленоидная система постоянного тока. Графики характеристического хода в зависимости от силы, показанные на рис. 8, иллюстрируют эту взаимосвязь.

Ток, потребляемый соленоидом переменного тока, определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребления тока.Это означает, что в момент обесточивания ток достигает максимального значения. Противоположная ситуация применима к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, то есть когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью заполнен. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны могут управлять только более низким давлением, чем клапаны переменного тока, при тех же размерах отверстий. Более высокие давления могут быть получены только за счет уменьшения размера отверстия и, следовательно, пропускной способности.

ТЕПЛОВЫЕ ЭФФЕКТЫ

Когда на катушку соленоида подано напряжение, всегда выделяется определенное количество тепла.Стандартная версия электромагнитных клапанов имеет относительно небольшой подъем температуры. Они предназначены для достижения максимального повышения температуры 144 ° F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130 ° F. Максимально допустимые температуры жидкости зависят от конкретных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА

Небольшие объемы и относительно высокие магнитные силы, связанные с электромагнитными клапанами, позволяют получить быстрое время отклика.Для специальных применений доступны клапаны с разным временем отклика. Время реакции определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.

ПО ПЕРИОДУ

Период включения определяется как время между включением и выключением тока соленоида.

ПЕРИОД ЦИКЛА

Общее время включенного и выключенного периодов — это период цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ

Относительный рабочий цикл (%) — это процентное отношение периода под напряжением к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до достижения установившейся температуры.

РАБОТА КЛАПАНА

Кодировка клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана и указывает соответствующие стандартные символы цепи.

ВЯЗКОСТЬ

Технические данные действительны для вязкости до указанного значения.Допускается более высокая вязкость, но в этих случаях диапазон допуска напряжения уменьшается, а время отклика увеличивается.

ДИАПАЗОН ТЕМПЕРАТУР

Температурные пределы для текучей среды всегда подробно описаны. Различные факторы, например однако условия окружающей среды, цикличность, скорость, допуск напряжения, детали установки и т. д. могут влиять на температурные характеристики. Поэтому приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет о работе при экстремальных температурах, вам следует обратиться за советом в технический отдел Omega.

Пример использования Техническое обучение

Что такое электромагнитные клапаны?

Джош Косфорд, ответственный редактор

Электромагнитные клапаны — это клапаны с электрическим приводом, обычно используемые для управления потоком или направлением воздуха или жидкости в гидравлических системах.Золотниковая или тарельчатая конструкция большинства электромагнитных клапанов, используемых как в пневматических, так и в гидравлических функциях привода, делает их идеальными для различных функций и применений.

Золотник или тарелка клапана соединяется с плунжером из черного металла, который обычно центрируется или смещается пружиной, но вместо этого может фиксироваться. Плунжер скользит по трубке с сердечником из цветного металла, окруженной катушкой электрических обмоток. Катушка существует с любым диапазоном напряжения от 12-48 В постоянного тока до 110-220 В переменного тока.Когда мощность передается через катушку, создается магнитное поле, которое толкает или тянет плунжер, сдвигая клапан.

Самые простые электромагнитные клапаны — это двухходовые двухпозиционные тарельчатые клапаны, которые просто открываются и закрываются, изменяя свой путь потока, когда их катушка находится под напряжением. Они доступны в версиях «нормально открытые» и «нормально закрытые», что означает нормально проточные и нормально закрытые, соответственно. Нормально разомкнутый в гидравлической энергии противоречит нормально разомкнутому в электронике, что означает размыкание переключателя или контакта и отсутствие протекания электронов.

Трехходовые, двухпозиционные тарельчатые клапаны также распространены, перенаправляя поток из одного канала в другой. Два параллельных 3/2 клапана могут использоваться для двунаправленного управления цилиндром. Хотя конструкция различается в зависимости от использования, этот тип клапана может использоваться как для пневматики, так и для гидравлики, но чаще встречается в пневматических системах.

Золотниковые электромагнитные клапаны состоят из обработанного золотника, который скользит внутри обработанного корпуса клапана. На один или оба конца катушки воздействует плунжер, и когда он приводится в действие любой катушкой, толкает катушку в одну или другую сторону, обеспечивая три позиционных конверта.Гидравлический соленоидный клапан 4/3 — один из самых популярных, позволяющий осуществлять двунаправленное управление цилиндром или двигателем с одного корпуса клапана. «Пути» соленоидного клапана относятся к тому, сколько портов он содержит, а «положения» соленоидного клапана относятся к количеству дискретных состояний, в которых он работает. Трехпозиционный клапан использует нейтральное состояние с пружинным центрированием и два положения срабатывания.

Для двунаправленного управления двигателем или цилиндром пневматические клапаны имеют пять отверстий и обычно называются клапанами 5/3.«Пути» пневматического клапана также включают его выпускные отверстия, которых обычно два. Иногда эти же клапаны описываются как 4-ходовые 3-позиционные клапаны, хотя при внимательном осмотре обнаруживаются два выпускных отверстия, разделяющих напорное отверстие пополам.

Электромагнитные клапаны для гидравлического или пневматического применения доступны как модульные блоки, смонтированные на коллекторе, такие как пневматические или гидравлические клапаны ISO. Эти клапаны имеют стандартные схемы установки и подключения, что позволяет устанавливать клапаны любого производителя на один и тот же манифольд.Чаще всего эти клапаны также довольно экономичны и легко доступны в готовом виде.

Электрические катушки электромагнитного клапана могут быть оснащены разъемами DIN, подводящими проводами, разъемами Deutsch, центральным соединением или любыми другими популярными формами электрического подключения, используемыми в гидроэнергетике и автоматизации. Большинство катушек электромагнитных клапанов заменяются на месте, что упрощает ремонт и техническое обслуживание для технических специалистов. Катушки также имеют широкий спектр применения и назначения. Некоторые из них предназначены для промышленной среды с постоянными атмосферными условиями.Мобильные среды гораздо более требовательны, и управляющие катушки могут работать как в экстремальных диапазонах температур, так и, например, под воздействием дорожной пленки и соли.


В рубрике: Клапаны


Как работает электромагнитный регулирующий клапан?

Соленоиды полезны в широком спектре механических функций. Как работает соленоид? Электромагнитная катушка из проволоки преобразует электрическую энергию в механическую. Положительный и отрицательный полюса совершают линейное движение в электромагнитном поле, перемещая поршень вперед или назад.

Мы находим соленоиды, используемые в таких автоматизированных приложениях, как спринклерные системы, выключатели питания, автомобильные стартеры и многое другое.

Что такое электромагнитный регулирующий клапан?

Электромагнитный регулирующий клапан используется инженерами для автономного и удаленного управления потоком жидкости в системе, что устраняет необходимость в ручном закрытии и открытии клапанов. Текущей средой может быть вода, воздух, газ, масло, пар или хладагент.

Электромагнитный регулирующий клапан состоит из двух основных компонентов: соленоида вверху и системы клапанов внизу.Электромагнетизм, вызванный токами, перемещает плунжер вверх или вниз, чтобы сжимать и контролировать поток. Электромагнитный регулирующий клапан бывает либо «нормально закрытым», либо «нормально открытым».

Как работает электромагнитный клапан?

Электромагнитный клапан состоит из двух частей: соленоида и корпуса клапана. Сам соленоид содержит катушку электромагнитной индукции, окружающую железный центр (плунжер).

Для «нормально открытого» соленоидного клапана клапан закрывается при обесточивании.Чтобы «открыть» клапан, ток активирует магнитное поле и перемещает врезку. Но когда клапан «нормально закрыт», ток возбуждения поднимает плунжер, открывая отверстие и позволяя среде течь через клапан.

Типы электромагнитных клапанов

Поскольку соленоидные клапаны используются во многих приложениях, различные конструкции выполняют разные функции. Ниже описаны пять распространенных типов электромагнитных клапанов.

1. Клапаны прямого действия

Электромагнитный клапан прямого действия (или прямого действия) прост и обычно используется для приложений с относительно небольшим расходом.По своей функции он не зависит от внешнего давления. Клапан открывается прямым действием, когда электромагнитная активность в катушке подтягивает плунжер вверх, чтобы позволить среде пройти (или наоборот для обычно открытых клапанов).

Клапаны прямого действия не имеют минимального рабочего давления или перепада давления. Диаметр отверстия (вместе с магнитной силой, приложенной к электромагнитному клапану) определяет скорость потока и максимальное рабочее давление.

2. Клапаны с пилотным управлением

Клапаны с пилотным управлением (также называемые «сервоуправляемыми» или «пилотными») представляют собой клапаны непрямого действия.Открытие и закрытие этих клапанов происходит при разнице давлений среды, поэтому давление 0,5 бар является минимальным. Клапаны с пилотным управлением требуют меньше электроэнергии, работают с меньшей скоростью и нуждаются в полной мощности, чтобы оставаться открытыми. Эти электромагнитные клапаны лучше всего подходят для приложений с высоким расходом и достаточным перепадом давления.

Процесс потока клапана непрямого действия является односторонним. Между впускным и выпускным портами находится резиновая мембрана, в которой есть небольшое отверстие для потока среды из впускного отверстия в верхний отсек.Усиление из дополнительной камеры давления позволяет меньшим соленоидам управлять большим расходом.

Когда клапан обычно закрыт, давление на входе над мембраной и поддерживающая пружина над ней удерживают его закрытым. Управляющее отверстие открывается, когда на соленоид подается питание, и давление над диафрагмой уменьшается. Это создает перепад давления с обеих сторон мембраны, заставляя ее подниматься, так что среда может течь к выходному отверстию из входа. Для «нормально открытого» клапана этот процесс работает с теми же деталями, но наоборот.

3. Двухходовые клапаны

Двухходовые клапаны являются наиболее распространенным типом электромагнитных регулирующих клапанов. Есть два порта: порт полости и порт отверстия корпуса. Каждый порт используется поочередно как для запуска, так и для остановки медиапотока.

Двухходовой клапан настроен на «нормально открытый» или «нормально закрытый». Обычно закрытые двухходовые клапаны более распространены и остаются закрытыми до тех пор, пока электрическая энергия не заставит клапан открыться.

Обычно закрытый электромагнитный клапан остается закрытым до тех пор, пока источник питания не откроет его.Нормально открытый клапан по умолчанию открыт до тех пор, пока источник питания не закроет клапан. Когда электроэнергия прекращается, клапан снова открывается в состояние по умолчанию.

4. Трехходовые клапаны

Трехходовой электромагнитный клапан имеет три порта. Трехходовой клапан хорошо подходит для операций, требующих переменного и полного давления. Одновременно можно подключить только два порта. Ниже представлены различные варианты установки трехходового клапана.

Установка для смешивания (два входа и один выход): Когда плунжер блокирует режим отсутствия питания нижнего отверстия, среда течет от верхнего входа к выходу.При включении плунжер подтягивается вверх, чтобы закрыть верхний выпуск, поэтому среда направляется от другого впускного отверстия к выпускному.

Отводная установка (одно входное и два выходных): Когда плунжер блокирует нижнее отверстие в режиме отсутствия питания, среда перемещается от входа к верхнему выходу. В режиме с питанием поршень перемещается вверх, чтобы закрыть верхнее выпускное отверстие, поэтому среда направляется от впускного отверстия к другому выпускному отверстию.

Универсальная установка: Эта конструкция позволяет среде течь в любом направлении, но, как и в вышеупомянутых двухходовых клапанах, одновременно подключаются только два порта.

5. Четырехходовые клапаны

Четырехходовые клапаны обычно используются с цилиндром или приводом двойного действия и включают четыре или более соединений порта. Два из четырех портов обеспечивают давление, а два других используются для давления выхлопных газов. Настройки четырехходового клапана: нормально открытый, нормально закрытый или универсальный.

Применение электромагнитного клапана

Электромагнитные клапаны помогают во многих процессах, будь то высокое или низкое давление или малый или большой расход.Ниже приведены некоторые примеры использования электромагнитных регулирующих клапанов для управления давлением, направлением и потоком среды в процессах.

● Пневматические приводы

● Производство продуктов питания и напитков

● Торговые холодильные установки

● Системы полива

● Посудомоечные и стиральные машины прочие

● Медицинское и стоматологическое оборудование

Контактные дисковые затворы и элементы управления сегодня Электромагнитные управляющие клапаны

используются во многих приложениях для облегчения процессов, требующих автоматического или дистанционного управления клапанами.

Butterfly Valves & Controls предлагает соленоиды Namur и Inline. Эти клапаны обеспечивают превосходную работу с высокими расходами, широким диапазоном температур и устойчивостью к коррозии при длительном использовании. Этот электромагнитный регулирующий клапан идеально подходит для приложений, требующих простой установки, монтажа на линии и ручного дублирования. Свяжитесь с нами по телефону (817)421-5343 или напишите нам по адресу [адрес электронной почты защищен] для получения информации о наших клапанах или помощи в поиске правильного клапана для ваших операций.

типов электромагнитных клапанов — The Hope Group, A SunSource Company

Работа: нормально закрытый и нормально открытый

Нормально закрытый

Клапан остается в положении «Закрыто» при обесточивании и является наиболее распространенным методом работы. Как правило, вы обнаружите, что нормально закрытые клапаны используются для включения / выключения или вентиляции, здесь вы хотите, чтобы процесс останавливался при отключении питания. В случае потери мощности клапан закрывается, и жидкость не выходит.

Нормально открытый

Клапан остается в положении «открыто» при обесточивании. Чаще всего нормально открытые клапаны используются для обеспечения безопасности, когда процесс прекращается при потере мощности.

Универсальные клапаны

Клапан может быть либо нормально закрытым, либо нормально открытым в зависимости от того, как клапан подключен к трубопроводу. Обычно это наблюдается в 3- и 4-ходовых клапанах, где вы можете оказывать давление на любой порт клапана. Например, трехходовой клапан будет иметь порт подачи, порт выхлопа и порт нагнетания.Это обеспечивает гибкость приложения и позволяет подключать его так, как вы считаете нужным.

Медиа

Часто проблемы с электромагнитным клапаном возникают из-за того, что среда или температура мешают правильному функционированию клапана. Он зависит от области применения, поэтому, если вы не уверены, обратитесь к каталогу производителя.

Давление электромагнитного клапана

Максимальное давление в зависимости от перепада давления

Дифференциальное давление — это разница между давлением на входе (жидкость, когда она входит в клапан) и давлением на выходе (жидкость, когда она выходит из клапана).Важно определить перепад давления, чтобы вы знали, следует ли выбрать электромагнитный клапан с пилотным управлением или электромагнитный клапан прямого действия.

Например, давление на входе (P1) 90 фунтов на квадратный дюйм и давление на выходе (P2) 80 фунтов на квадратный дюйм представляют собой перепад давления в 10 фунтов на квадратный дюйм.

В другом примере ниже давление на входе составляет 90 фунтов на квадратный дюйм, а на выходе — 0 фунтов на квадратный дюйм, поскольку он выходит в атмосферу. В этом случае перепад давления равен 90.

Клапан с максимальным давлением 100 фунтов на квадратный дюйм будет работать для приложения с перепадом давления 10.Тем не менее, тот же клапан будет бороться в приложении с перепадом давления 90. Клапан с расширенными возможностями будет гораздо лучшим выбором.

Тип уплотнения в электромагнитных клапанах

Важно выбрать уплотнительный материал, который соответствует требованиям среды, протекающей через клапан. Доступные типы уплотнений различаются, хотя наиболее распространенными являются NBR (нитрильный каучук) и FKM, (фторуглерод / витон), каучук EPDM, и PTFE, .

О электромагнитных клапанах

Изображение предоставлено: emel82 / Shutterstock.com

Электромагнитные клапаны — это клапаны с электрическим управлением, в которых используется привод в виде электромагнита для изменения состояния клапана с закрытого на открытое. Катушка в приводе создает магнитное поле, которое тянет или толкает плунжер, который управляет прохождением жидкости через корпус клапана. Электромагнитные клапаны преобразуют электрическую энергию в механическое движение, которое приводит в движение клапанный механизм и предоставляет средства, с помощью которых конструкторы могут автоматизировать работу клапанов.Эта возможность снижает потребность персонала в ручном закрытии или открытии клапанов в рамках производственного процесса. Использование автоматического управления клапанами является ключом к конструкции многих машин, где требуются высокоскоростные операции переключения, выходящие за рамки возможностей ручного управления.

В этом руководстве будет представлен обзор информации, относящейся к электромагнитным клапанам, включая их основные функции, доступные типы, важные спецификации, которые их определяют, и соображения при выборе электромагнитного клапана.Дополнительная информация о других типах клапанов, таких как шаровые краны и задвижки, доступна в нашем соответствующем руководстве «Общие сведения о клапанах».

Основы электромагнитного клапана

Электромагнитные клапаны

находят применение в приложениях, где существует потребность в дистанционном управлении или автоматизации потока жидкости через систему. При обращении к текучей среде этот термин может применяться к любой жидкости или газу и обычно представляет вещества, которые проходят через трубопроводы или трубки, примерами которых являются воздух, вода, пар, хладагент, масло и природный газ.По большей части соленоидные клапаны функционируют как бинарные (двухпозиционные) устройства и реже используются для измерения или точного регулирования расхода, как некоторые другие типы клапанов, такие как игольчатые клапаны.

Электромагнитные клапаны

состоят из нескольких стандартных компонентов, некоторые из которых имеют сходство с клапанами других типов. Первичный корпус или корпус клапана — это основная часть клапана. Корпус клапана содержит входной порт, через который поступает жидкость или газ из системы, в которой установлен клапан.Корпуса клапанов изготавливаются из нескольких различных типов материалов, выбор которых основан на его пригодности для обработки среды, протекающей через клапан, и на его характеристиках, таких как коррозионная активность. Специальные материалы для корпусов электромагнитных клапанов включают бронзу, нержавеющую сталь и пластик.

В составе корпуса клапана также есть одно или несколько выпускных отверстий, количество которых будет зависеть от конкретной конфигурации электромагнитного клапана.Среда в клапане может быть направлена ​​в одно или несколько из этих выпускных отверстий под действием клапана. В корпусе клапана также находится соленоид, который является электрическим механизмом управления клапаном. Соленоид представляет собой катушку из проволоки, которая создает магнитное поле, когда через него проходит электрический ток. Этот ток подается на соленоид через набор электрических управляющих проводов или электрический разъем, который подает питание на клапан от схемы управления и источника питания. Многие конструкции соленоидных клапанов также имеют пружинный механизм, который прижимает плунжер клапана.Эта пружина служит механическим возвратом, который удерживает клапан в открытом или закрытом положении при отсутствии подачи энергии, в зависимости от конструкции клапана. Плунжер перемещается, чтобы уплотнить отверстие, когда клапан закрывается. Отверстие — это отверстие, которое соединяет впускной порт с выпускным портом клапана. В дополнение к этим компонентам, дополнительные уплотнения клапана и седла в корпусе клапана предотвращают утечку жидкости между впускным и выпускным портами, когда клапан находится в закрытом положении.

Электромагнитные клапаны

дополнительно идентифицируются с учетом их состояния по умолчанию, то есть того, как клапан настроен на работу в случае, когда на устройство не подается питание (т.е. клапан не запитан). Состояние по умолчанию также упоминается как остальное состояние. Два возможных состояния по умолчанию называются нормально разомкнутым (NO) и нормально замкнутым (NC). Для соленоидных клапанов, которые обозначены как нормально открытые, плунжер клапана или диафрагма втягиваются, когда на соленоид не подается электрическое питание — это состояние означает, что клапан может пропускать среду между портами.Для нормально открытых клапанов подача энергии на соленоид закроет клапан и заблокирует поток жидкости.

Для нормально закрытых электромагнитных клапанов существует обратная ситуация. Когда к устройству не подается питание, клапан блокирует движение жидкости, и приложение энергии, которое приводит в действие соленоид, затем открывает клапан и позволяет среде течь. Решение о том, нужен ли электромагнитный клапан нормально открытый или нормально закрытый, будет зависеть от области применения.В то же время проектировщикам необходимо учитывать влияние потери мощности на процесс, если клапан вернется в состояние по умолчанию. Во многих приложениях желательным выбором являются нормально закрытые (NC) клапаны, так как они потенциально перекрывают поток жидкости при отсутствии питания. Однако не все ситуации диктуют этот подход, и поэтому понимание динамики системы требуется для планирования наилучших возможных условий для каждого состояния по умолчанию для каждого электромагнитного клапана в случае потери мощности.

Электромагнитные клапаны работают на принципах электромагнетизма. Внутри клапана находится подвижный плунжер, который изготовлен из ферромагнитного материала. (Ферромагнитные материалы — это материалы, которые реагируют на присутствие магнитного поля.) Когда на соленоид клапана подается напряжение, пропуская через него электрический ток, создается магнитное поле. Затем поршень взаимодействует с магнитным полем, в результате чего он притягивается к катушке или от нее. Когда плунжер перемещается, движение приводит к открытию или закрытию клапана, как если бы он был физически открыт или закрыт оператором, перемещающим рычаг или маховик на клапане.

Типы электромагнитных клапанов

Электромагнитные клапаны можно охарактеризовать несколькими способами. Один из них — это сделать это на основе основных средств, с помощью которых они работают. Такой подход приводит к этим трем распространенным типам электромагнитных клапанов:

  • Электромагнитные клапаны прямого действия (или прямого действия)
  • Электромагнитные клапаны непрямого действия (или с пилотным управлением)
  • Электромагнитные клапаны прямого действия

Электромагнитные клапаны прямого действия (или прямого действия)

Электромагнитные клапаны прямого или прямого действия — один из самых простых и распространенных типов электромагнитных клапанов.В соленоидных клапанах прямого действия движение плунжера непосредственно закрывает или распечатывает отверстие внутри клапана, тем самым блокируя или пропуская среду через клапан прямым действием. Эти клапаны полагаются на мощность соленоида исключительно для управления потоком жидкости и, как следствие, не требуют наличия какого-либо минимального рабочего давления для работы клапанов. Электромагнитные клапаны прямого действия могут управлять жидкостями с давлением от 0 бар до максимального номинального значения устройства.

На Рисунке 1 ниже показано поперечное сечение нормально закрытого электромагнитного клапана прямого действия.

Рисунок 1. Нормально закрытый (NC) электромагнитный клапан прямого действия.

Изображение предоставлено: https://tameson.com/solenoid-valve-types.html

Электромагнитные клапаны непрямого действия (или с пилотным управлением)

Электромагнитные клапаны второго типа, известные как соленоидные клапаны непрямого действия (также называемые соленоидными клапанами с пилотным или сервоприводом), работают за счет использования перепада давления жидкости для открытия и закрытия клапана.Из-за этой конструкции электромагнитные клапаны непрямого действия требуют, чтобы регулируемая жидкость имела минимальное значение давления выше 0 бар. В соленоидных клапанах непрямого действия мембрана или диафрагма отделяют входные и выходные порты друг от друга. Наличие этой диафрагмы приводит к разделению корпуса клапана на верхнюю и нижнюю камеры. В мембране есть небольшое отверстие, функция которого состоит в том, чтобы позволить верхней камере заполняться жидкостью из нижней камеры, а также выравнивать давление между камерами.Когда клапан находится в закрытом состоянии, давление текучей среды, которая присутствует в верхней камере, а также сила, оказываемая пружиной, нажимающей на диафрагму, удерживает клапан в закрытом положении и уплотняет мембрану относительно седла клапана. изоляция впускного и выпускного отверстий клапана. Небольшой канал соединяет верхнюю камеру клапана с портом низкого давления. Этот порт управляет открытием и закрытием канала и управляется мощностью, подаваемой на соленоид.В закрытом положении порт низкого давления остается закрытым соленоидом, который удерживает жидкость в верхней камере клапана. Когда требуется открыть клапан, на соленоид подается ток. Включение соленоида приводит к открытию управляющего порта, что приводит к падению давления в верхней камере. Это разность давлений верхней камеры по сравнению с нижней камерой, которая приводит к отрыву мембраны от отверстия клапана, в то время как пружина, удерживающая мембрану напротив седла клапана, сжимается за счет разницы давлений.Такая конструкция позволяет управлять потоком с более высоким давлением с помощью небольшого соленоида и пилотного порта низкого давления. Электромагнитные клапаны непрямого действия используются в приложениях, где требуется регулирование высокого расхода, при условии, что в системе имеется достаточный перепад давления для поддержки этой методологии работы. По характеру этой конструкции регулирование потока может осуществляться только в одном направлении только с этим типом клапана.

На Рисунке 2 ниже показано поперечное сечение нормально закрытых соленоидных клапанов непрямого действия.

Рисунок 2 — нормально закрытый (NC) электромагнитный клапан непрямого действия.

Изображение предоставлено: https://tameson.com/solenoid-valve-types.html

Электромагнитные клапаны прямого действия

Третий тип работы электромагнитного клапана может быть достигнут за счет комбинации некоторых свойств типов клапанов прямого и непрямого действия, которые обсуждались ранее. Преимущество так называемых соленоидных клапанов полупрямого действия состоит в том, что они могут работать при давлении от 0 бар, а также могут работать в системах с высоким расходом.Полупрямые электромагнитные клапаны, также известные как электромагнитные клапаны с вспомогательным подъемом, функционально аналогичны по конструкции соленоидным клапанам непрямого действия. Они имеют конструкцию, которая включает верхнюю камеру и нижнюю камеру, разделенную гибкой мембраной. Как и в случае клапана непрямого действия, мембрана имеет небольшое отверстие, позволяющее жидкости заполнять верхнюю камеру и выравнивать давление. Ключевое отличие, которое отличает соленоидные клапаны полупрямого действия от соленоидных клапанов непрямого действия, заключается в том, что плунжер соленоида в соленоидных клапанах полупрямого действия прикреплен к диафрагме и непосредственно контролирует ее положение, в отличие от использования пилота для управления жидкостью в верхнем слое. камеры, как в случае с клапаном непрямого действия.В закрытом положении площадь поверхности верхней камеры превышает площадь нижней камеры, что позволяет диафрагме плотно прилегать к седлу клапана и блокировать поток жидкости между впускным и выпускным портами. Чтобы открыть клапан, подача питания на соленоид приводит к втягиванию плунжера в центр катушки соленоида. Из-за непосредственного крепления диафрагмы к плунжеру это движение плунжера поднимает диафрагму с седла клапана. При этом движение плунжера также открывает проход между верхней камерой и выпускным отверстием.Открытие этого прохода дает дополнительный эффект снижения давления в верхней камере. Когда давление в верхнем переходе падает, результирующий перепад давления дополнительно заставляет мембрану двигаться вверх и способствует открытию клапана и позволяет текучей среде течь от впускного порта к выпускному отверстию. Чтобы закрыть клапан, электромагнитный ток отключается, что заставляет плунжер опускаться и давить на диафрагму, чему способствует сила возвратной пружины в соленоиде.Когда плунжер опускается, порт, соединяющий верхнюю камеру с выпускным отверстием, закрывается, что вызывает повышение давления в верхней камере клапана. Это повышение давления способствует опусканию диафрагмы вниз до тех пор, пока она снова не будет опираться на седло клапана, герметизируя клапан.

Вид в разрезе нормально закрытого (NC) клапана полупрямого действия показан на Рисунке 3 ниже.

Рисунок 3 — Электромагнитный клапан полупрямого действия, нормально закрытый (NC).

Изображение предоставлено: https: // tameson.com / электромагнитный-клапан-типы.html

Конфигурации электромагнитных клапанов

Различные конфигурации электромагнитных клапанов представлены с использованием системы нумерации, состоящей из двух значений — например, 2/2, 3/2 или 4/2. В этой системе с двумя числами первое значение указывает количество портов клапана, а второе значение обозначает количество доступных положений клапана или состояний переключения. Согласно этому обозначению, электромагнитный клапан 2/2 будет представлять клапан, содержащий 2 порта и 2 положения, а электромагнитный клапан 4/3 будет обозначать клапан, содержащий 4 порта и 3 положения.Этот тип системы нумерации используется во многих типах гидрораспределителей и помогает понять, как сконфигурирован конкретный клапан.

Эта система цифровых обозначений сочетается с набором стандартизованных символов или диаграмм, которые служат в качестве графического схематического представления конфигурации клапана. Эти диаграммы иллюстрируют подробную информацию о количестве положений, а также о состоянии клапана в исходном положении (неактивное состояние) и в рабочем положении (активированное состояние).На схеме конфигурации клапана количество показанных квадратов представляет количество положений клапана. По определению, квадрат в правой части схемы показывает состояние покоя клапана, а квадрат в левой части диаграммы представляет клапан в активированном или рабочем состоянии. На схеме также показаны символы, такие как стрелки, которые используются для обозначения направления потока жидкости и других внешних соединений, выполненных с клапаном, например, с трубопроводом.На схемах также содержится символическое представление способа срабатывания пилота и обратного действия. По соглашению, пилотный механизм показан в левой части рисунка, а возвратный механизм — в правой части рисунка.

Например, на рисунке 4 ниже представлено графическое изображение 2-ходового, 2-позиционного нормально закрытого электромагнитного клапана с пилотным электромагнитным управлением и пружинным возвратом:

Рис. 4. Двухходовой двухпозиционный нормально закрытый (NC) электромагнитный клапан с пилотным соленоидом и пружинным возвратом.

Изображение предоставлено: https://www.asconumatics.eu

Когда конфигурации соленоидных клапанов становятся более сложными, сложность схем возрастает, поскольку возникает необходимость добавлять дополнительные детали, такие как номера портов. На рисунке 5 ниже показан набор примеров графического представления различных конфигураций трехходового двухпозиционного соленоидного клапана. Клапан этого типа может найти применение в работе гидроцилиндра или функционировать как регулятор жидкости для переключения между двумя контурами:

Рисунок 5 — Различные схемные обозначения схем трехходового двухпозиционного электромагнитного клапана.

Изображение предоставлено: https://tameson.com/valve-symbols.html

Технические характеристики и характеристики электромагнитных клапанов

Электромагнитные клапаны

определяются с использованием нескольких ключевых параметров и атрибутов, которые связаны с конфигурацией клапана и его рабочими характеристиками. Ниже приводится сводка часто цитируемых спецификаций электромагнитных клапанов. Читателю следует отметить, что эти параметры могут отличаться у разных производителей и поставщиков клапанов, поэтому от поставщика к поставщику могут существовать различия в представлении.Представленные ниже данные должны служить общим индикатором того, что необходимо учитывать при поиске электромагнитного клапана у поставщика.

  • Механизм приведения в действие клапана — отражает средства, с помощью которых изменяется положение клапана или с помощью которых клапан приводится в действие, например, соленоид прямого действия.
  • Конфигурация клапана — отражает количество портов, количество состояний или положений переключения и определенное состояние покоя для клапана, например 3/2 нормально закрытый (NC).
  • Материал корпуса — определяет материал, из которого изготовлен корпус клапана, который может быть алюминием, латунью, бронзой, нержавеющей сталью или техническим пластиком, чтобы назвать несколько возможных вариантов.
  • Тип среды — определяет природу конкретной жидкости (жидкость или газ), с которой клапан может работать без каких-либо вредных воздействий. Примеры типов сред включают аммиак, криогенную жидкость, воздух, мазут, сжиженный пропан (LPG), природный газ, кислород, пар или воду.
  • Размер порта — отражает размерный размер входного и выходного отверстий клапана, представленный в британских единицах измерения, таких как дюймы, или в метрических единицах, таких как миллиметры.
  • Тип порта — определяет желаемый тип порта для клапана, который может быть резьбовым (NPT), соединением с зазубринами или фланцевыми фитингами, чтобы назвать несколько доступных вариантов.
  • Рабочее напряжение — указывает как величину, так и тип электрического управляющего сигнала, который используется для подачи питания на соленоид клапана. Электромагнитные клапаны доступны с широким диапазоном рабочих напряжений переменного и постоянного тока, которые могут использоваться для различных условий применения.
  • Рабочая частота — для напряжений переменного тока частота — это количество циклов переменного тока, подаваемого на соленоид в секунду, обычно отображается в герцах (например, 60 Гц).
  • Коэффициент расхода — коэффициент расхода, или Cv клапана, измеряет способность клапана пропускать через него поток жидкости или газа. Стандартное определение коэффициента расхода заключается в том, что он представляет собой объем воды (в галлонах США), который будет протекать через клапан при температуре 60 o F за минутный интервал времени при перепаде давления на 1 фунт / кв. Дюйм. через клапан (перепад давления на входе и выходе). Большие значения коэффициента расхода отражают больший расход.
  • Максимальное номинальное давление — это максимальное значение давления, с которым может работать клапан, которое может переключаться под управлением контура соленоида.
  • Минимальное рабочее давление — отражает минимальное давление, которое должно существовать в системе для эффективного функционирования клапана. Хотя многие клапаны прямого действия могут работать при давлении 0 бар, для клапанов непрямого действия может потребоваться минимальное давление, которое можно использовать для облегчения срабатывания клапана.
  • Применение — указывает на предполагаемое использование или рынок для клапана, например, в химической, пищевой, медицинской и медико-биологической, нефтегазовой или авиационной и аэрокосмической отраслях.Наличие определения, касающегося предполагаемой отрасли или варианта использования, может оказаться полезным при выборе клапана, поскольку понимание того, что отрасль может помочь выявить дополнительные требования или спецификации, обусловленные этими условиями эксплуатации.

Дополнительные типы электромагнитных клапанов

В предыдущем обзоре типов электромагнитных клапанов были определены основные типы, отражающие их метод работы, такой как прямое или непрямое управление. Есть несколько дополнительных типов электромагнитных клапанов, которые важно включить и которые рассматриваются здесь.

Электромагнитные клапаны с фиксацией

Блокирующий электромагнитный клапан

использует блокирующий соленоид, который позволяет клапану сохранять заданное положение (открытое или закрытое) даже при отключении питания от соленоида. Для этого к узлу якоря добавляется постоянный магнит, который удерживает плунжер в желаемом положении после первоначального включения соленоида. Этот магнит позволяет клапану удерживать это состояние, не требуя постоянного протекания тока в катушке соленоида для создания магнитного поля и удержания плунжера клапана в нужном положении.Защелкивающиеся электромагнитные клапаны имеют преимущество в том, что они снижают энергопотребление приложения по сравнению с использованием типичного электромагнитного клапана, который зависит от катушки под напряжением для поддержания состояния клапана. Как только произойдет фиксация, клапан будет удерживать свое положение в этом состоянии при отсутствии тока, протекающего в катушке соленоида. Устройство можно «разблокировать», просто изменив полярность тока катушки. Использование импульса обратного тока генерирует достаточный магнитный поток, чтобы нейтрализовать поток постоянного магнита, и, следовательно, заставит плунжер вернуться в положение покоя.

В приложениях, где необходимо ограничить общее энергопотребление оборудования или системы, например в тех случаях, когда они работают от батарей, хорошо подходят запорные соленоидные клапаны. Однако при их использовании необходимо учитывать другие условия окружающей среды и механические условия, которым может подвергаться клапан, поскольку для электромагнитных клапанов с защелкой требуются стабильные рабочие условия. Например, оборудование, которое должно работать под воздействием высоких уровней механической вибрации или ударов, может нуждаться в том, чтобы избегать использования фиксирующих электромагнитных клапанов, поскольку эти напряжения могут привести к тому, что плунжер клапана вырвется из постоянного магнита, удерживающего его на месте, что приведет к клапан возвращается из зафиксированного в разблокированное состояние или приводит к тому, что клапан не срабатывает при подаче начального импульса тока.

Электромагнитные поворотные клапаны

Электромагнитные поворотные клапаны позволяют преобразовывать электрическую энергию, подаваемую на катушку соленоида, во вращательное движение, а не линейное движение, как описано ранее, с движением плунжера в соленоид. Есть несколько механизмов, которые могут быть использованы для выполнения этого преобразования, в одном из таких подходов используется набор шарикоподшипников, которые движутся по наклонным дорожкам качения. Когда катушка находится под напряжением, узел плунжера или якоря начинает притягиваться к магнитному полю соленоидных катушек и вращается за счет углового смещения, определяемого движением шарикоподшипников при их движении по дорожкам качения.

Поворотные соленоиды идеальны в качестве средства приведения в действие соленоидных клапанов, поскольку многие клапаны по необходимости требуют вращательного движения штока клапана для открытия и закрытия клапана. Эти клапаны могут быть доступны в двоичном исполнении (вкл. / Выкл.), Где подача питания на поворотный соленоид приводит к полному изменению состояния (закрыто на открытое или наоборот). Они также доступны в так называемых конструкциях пропорционального управления, в которых существует пропорциональная зависимость между величиной приложенного тока и угловым смещением и крутящим моментом вращающегося соленоида.

Сводка

В этой статье представлен обзор электромагнитных клапанов, включая то, что они собой представляют, как они работают, различные типы, конфигурации, а также их характеристики и атрибуты. Для получения информации по другим темам обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, где вы можете найти потенциальные источники поставок для более чем 70 000 различных категорий продуктов и услуг.

Источники:
  1. https://www.omega.ru / en-us / resources / Valve-Technical-Principles
  2. https://www.burkert.co.uk/en/Company-Career/What-s-New/Press/Media/Technical-Reports/Technical-Reports-additional-topics/What-is-a-solenoid-valve -и-как-это-работает
  3. https://tameson.com/solenoid-valve-types.html
  4. https://theengineeringmindset.com/how-solenoid-valves-work/
  5. http://www.solenoid-valve-info.com/solenoid-valve-definition.html
  6. https://www.asco.com/en-us/Pages/solenoid-valves.aspx # / # flt = e30% 3D
  7. https://blog.kimray.com/what-is-valve-flow-coefficient-cv/

Другие артикулы клапана

Больше от Насосы, клапаны и аксессуары

Терминология клапана

Терминология электромагнитного клапана

Сейчас хорошее время для объяснения некоторых используемых терминов, чтобы помочь вам с выбором.

  • 2-ходовой — двухходовой клапан, который включает или выключает поток
  • 3-ходовой — это трехходовой клапан, позволяющий проходить через клапан в камеру, а затем выходить через выпускной клапан.Универсальная функция также может использоваться в качестве переключающего клапана.
  • 5/2 ходовой представляет собой пятиходовой двухпозиционный клапан, который подает жидкость или воздух в один конец устройства двойного действия, а также позволяет выпускать вентиляционное отверстие на другом конце.
  • Нулевой дифференциал — это соленоидные клапаны, которые могут работать при нулевом давлении напора (для работы не требуется перепад перепада давления на клапане). Он делится на две категории: диафрагма прямого действия и соединенная диафрагма.
  • Прямого действия — это соленоидные клапаны, которые активируются исключительно электромагнитными силами в клапане, а не полагаются на давление жидкости.Следовательно, они используются там, где давление жидкости низкое или отсутствует, например, в условиях вакуума или при низком давлении.
  • Дифференциальный привод — это соленоидные клапаны, которые с по полагаются на давление жидкости, чтобы помочь в активации клапана. Это помогает в разработке клапанов с большими отверстиями, более высоким давлением и меньшими змеевиками.
  • Нормально закрытый (Н.З.) означает, что когда на соленоидный клапан не подается питание, порт давления питания закрывается.В случае трехходовых клапанов выходное отверстие открыто для выпускного отверстия.
  • Нормально открытый (Н.О.) означает, что, когда на соленоидный клапан не подается питание, порт давления питания открыт для выходного порта. В случае трехходовых клапанов выходное отверстие закрыто по отношению к выходному отверстию.
  • Степень защиты IP — это международный стандарт, обозначающий степень защиты от воды и твердых предметов. Все наши электрические катушки с разъемами DIN имеют степень защиты IP65.Цифра 6 означает полную защиту от таких мелких предметов, как пыль, а цифра 5 означает защиту от струй воды под низким давлением со всех сторон.
  • Огнестойкость относится только к электрической части соленоидного клапана (обычно это катушка и узел привода) и представляет собой способ сделать клапан безопасным для использования во взрывоопасной атмосфере. Эти клапаны должны быть установлены в соответствии со стандартами электропроводки для данного типа утверждения и в зоне, совместимой с утвержденными нормами и температурным режимом.
  • Рейтинг D.I.P. относится к защите от пыли и воспламенения.
  • N.B. бар относится к давлению: 1 бар = 14,7 фунтов на квадратный дюйм = 100 кПа = 1 атмосфера.

Терминология для шаровых кранов
Сейчас хорошее время для объяснения некоторых используемых терминов, чтобы помочь вам с выбором.

Компоненты
2-ходовые клапаны

  • 2 штуки — Корпус изготовлен из двух отливок и соединен резьбой.
    Преимущество: более низкая стоимость
    Недостаток: трудно снимается с трубопровода, обычно не подлежит замене
  • 3 штуки — Корпус изготовлен из трех отливок и закреплен стяжными шпильками.
    Преимущество: можно снимать с трубопроводов без разрушения, ремонтировать, обычно клапан более высокого класса
    Недостаток: обычно дороже

3-ходовые клапаны

  • 4 штуки — Корпус изготовлен из четырех отливок и соединен резьбой.

Функция
2-ходовая / 2-позиционная

  • Двухходовой клапан, который включает или выключает поток

3-ходовой / 2-позиционный

  • Трехходовой клапан, доступный в двух конфигурациях
    1. L-порт — обычно используется в качестве переключателя потока. В одной позиции порт C подключен к порту A, во второй позиции порт C подключен к порту B.
  • Т-образный патрубок — обычно используется в качестве клапана для слива или сброса давления на выходе.В одной позиции порт C подключен к порту A, во второй позиции порт A подключен к порту B.

Приводы
Пневматические

  • Двойного действия (DA) — пневматический привод, для включения которого требуется воздушный сигнал, а для выключения — второй сигнал
    Преимущество: быстрое управление и меньшая стоимость
  • Spring Return (SR) — пневматический привод с пружинным возвратом, для срабатывания которого требуется воздушный сигнал — пружина для закрытия (также известная как одностороннее действие).Преимущество: для работы требуется только один сигнал — отказоустойчивость в случае сбоя питания или подачи воздуха

Электрический

  • Моторизованный редуктор приводит в действие клапан. Обычно используется там, где нет сжатого воздуха. Более медленная работа — обычно от 12 до 15 секунд. Они также доступны в Spring Return.

Реле давления / вакуума

Сейчас хорошее время для объяснения некоторых терминов, используемых с реле давления, чтобы помочь вам с выбором.

Однополюсный двухходовой (SPDT)
С этим типом переключателя электрическая цепь может быть «замкнута», когда переключатель активирован (общий для Н.О.), или «разомкнут», когда переключатель активирован (общий для Н.З.).

Однополюсный однопроходный (SPST) нормально замкнутый
С этим типом переключателя электрическая цепь будет «разорвана», когда переключатель активирован.

Однополюсный однопроходный (SPST) нормально разомкнутый
С этим типом переключателя электрическая цепь будет «замкнута», когда переключатель активирован.

Зона нечувствительности / гистерезис / дифференциал — это термины, используемые для описания разницы между активацией переключателя и его сбросом. Из-за механики микровыключателя это редко бывает в одном и том же положении.Некоторые из наших коммутаторов имеют фиксированные зоны нечувствительности (серии PMM, VCM), а другие имеют ограниченные регулируемые зоны нечувствительности (серии PSM, PSP, VSM, регулируемые до 30% от полной шкалы).

Set Point — это настройка, при которой переключатель активируется.

Меры расхода

Cv Имперские единицы измерения расхода воды в галлонах США в минуту при 60 ° Фаренгейта с перепадом давления на клапане 1 фунт / кв. Дюйм

Kv Метрическая система измерения расхода воды клапана в м³ в час при температуре от 5 ° C до 40 ° C с перепадом давления на клапане 1 бар

Qn Пневматический расход клапана литров воздуха в минуту при входном давлении 20 ° C 6 бар Перепад давления на 1 бар

Расход через клапан рассчитывается по следующей формуле;

1.3)

cv = Номинальный расход клапана

2. Газы

Q = 400cv √ (P2 + 1.013) x? P x √273 / 273 + t

где

P2 = Давление на выходе

t = Температура газов

Разрабатываемые амперы / вольт или ватты

Ампер = Ватт / Вольт

Вольт = Амперы x Ом

Рабочий цикл — соответствие стандарту IEC

Рабочий цилиндр означает начальную частоту.Формула его расчета следующая:

Время работы / (Время работы + Время отдыха) x 100% = Рабочий цикл

Время отдыха = Время работы x (1 — Рабочий цикл) / Рабочий цикл

Например, время работы 0M-2 составляет 15 секунд.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *