Site Loader

Электрическое сопротивление и его виды

Основные понятия и определения электротехники

Любые устройства, служащие для получения, передачи или потребления электроэнергии, обладают сопротивлением.

Электрическое сопротивление это способность эле­мента электрической цепи противодействовать в той или иной степени прохождению по нему электрического тока. Сопротивление, в общем случае, зависит от материала эле­мента, его размеров, температуры, частоты тока и измеряется в омах (Ом). Различают активное (омическое), реактивное и полное сопротивления. Они обозначаются, соответственно, г, х, z.

Используются также прописные буквы R, X, Z, чаще всего для обозначения элементов на электрических схемах:

 

 

Рис. 1.1. Электрическая схема цепи, содержащей два источника ЭДС с внутренними сопротивлениями R81 л R62, две активные и одну пассивную ветви,

соединенные в узлах а и Ь

Активное сопротивление элемента — это сопротивление постоянному току, Ом,

где р — удельное сопротивление материала, Ом-м,

 

а — температурный коэффициент сопротивления, °С»1;

t — интервал изменения температуры, °С;

/ — длина проводника, м;

5 — поперечное сечение проводника, м2.

Природу активного или омического сопротивления, связан­ного с нагревом материала, по которому протекает ток, объ­ясняют столкновением носителей заряда с узлами кристал­лической решетки этого материала.

Если электрическое сопротивление цепи или его элемента не зависит от величины проходящего тока, то такие цепи или элементы называют линейными. В противном случае говорят о

нелинейных цепях.

Проводимость (активная) — величина обратная омичес­кому сопротивлению и измеряемая в сименсах (См):

 

В зависимости от величины удельной проводимости или

удельного сопротивления электротехнические материалы делят на проводники и диэлектрики или изоляторы (более подробные сведения в главах 3 и 4).

Индуктивное сопротивление — это сопротивление эле­мента, связанное с созданием вокруг него переменного или из­меняющегося магнитного поля. Оно зависит от конфигурации и размеров элемента, его магнитных свойств и частоты тока-

где xL — индуктивное сопротивление, Ом;

/ — частота тока, Гц;

со = Znf — угловая частота, рад/с;

L — индуктивность элемента цепи, (Гн).

Индуктивность можно определить как меру магнитной инерции элемента в отношении электромагнитного поля. По смыслу индуктивность в электротехнике можно уподобить массе в механике. Например, чем больше индуктивность элемента, тем медленнее и тем большую энергию магнитного поля он за­пасает.

Следует отметить, что индуктивным сопротивлением и, сле­довательно, индуктивностью обладают в разной мере все эле­менты электрической цепи переменного тока: обмотки электри­ческих машин, провода, шины, кабели и т. д. В цепях посто­янного тока индуктивное сопротивление проявляется лишь в

переходных режимах.

Выражения для определения индуктивности элементов раз­личной конфигурации приведены в разделе 1.4.

Индуктивное сопротивление обозначается на электрических схемах:

где С —- электрическая емкость, Ф.

 

Емкостное сопротивление — это сопротивление элемента, связанное с созданием внутри и вокруг него электрического поля.

Оно зависит от материала элемента, его размеров, конфигурации и частоты тока; измеряется в Омах (Ом):

Электрическую емкость можно определить как меру инертности элемента электрической цепи по отношению к электромагнитному полю. Электрическое поле между обклад­ками конденсатора создается вследствие разделения зарядов. Разделение зарядов происходит благодаря токам смещения, протекающим в диэлектрике между обкладки конденсатора под воздействием внешнего напряжения. Ток смещения следует понимать как процесс переориентации электрических диполей диэлектрика вдоль электромагнитного поля. Как видно, опреде­ление для тока, предложенное Фарадеем, наиболее привле­кательно для понимания сути токов смещения.

Таким образом, электромагнитная энергия аккумулируется в конденсаторе в виде энергии электрического поля, скон­центрированного в поляризованном диэлектрике между об­кладками конденсатора.

Если напряжение, приложенное к конденсатору, постоянно, то происходит его единичный заряд, после завершения которого ток через конденсатор, уменьшаясь, стремится к нулю. При перемен­ном напряжении происходит периодический перезаряд конденса­тора, поскольку токи смещения изменяют свой знак под воздейст­вием периодически изменяющего свой знак напряжения.

Практически все элементы электрической цепи переменного и постоянного тока в разной мере обладают емкостью. Для линий электропередач учет емкости поводов друг по отноше­нию к другу и по отношению к земле имеет принципиальное значение, поскольку влияет на режим электрических сетей. Например, обычные электрические кабели обладают емкост­ным сопротивлением порядка 10 Ом на 1 км.

На электрических схемах емкостные сопротивления обо­значаются:

 

 

 

 

 

 

Выражения для определения емкости элементов различной конфигурации приведены в разделе 1.4.

Реактивная проводимость, соответственно, делится на

 индуктивную, См,

и емкостную, См,

← Предыдущая | Следующая →
. .. содержание …


Система определения сопротивления образцов керна ARS-200

Система определения сопротивления образцов керна ARS-200 | ООО «Неолаб»

Перейти к основному содержанию