Site Loader

Электрическое напряжение: характеристики, влияние, история

Электрическое напряжение – величина, характеризующая напряжённость электрического поля внутри проводника. Термин кажется противоречащим общепринятому, но ниже последует объяснение.

Электрическое поле в эфире

Физики пока не в состоянии сказать, что такое электрическое поле. Собрали массу знаний, даже составили описательные формулы, выражения, но сути не представляют. Одновременно высмеивают понятие эфира, а значит, Алессандро Вольту, давшего имя, используемое теперь для обозначения единицы электрического напряжения. Итак, по нынешним меркам:

Электрическое поле – вид материи, посредством которой взаимодействуют электрические заряды.

Читатели уже догадались, что правило выписано из советского учебника (времён СССР), логично поинтересоваться мнением «идеалистов» на Западе (в противовес материалистам). Википедия на русском даёт уже более осторожное определение, трактуя электрическое поле как часть электромагнитного. Не углубляясь в суть.

Как следовало ожидать, на Западе говорят, что электрическое поле – нечто, неподвластное органам чувств, что определяется через единичный тестовый заряд путём опыта. Определение векторного поля тоже мало сообщает об истинной природе вещей. Приходится признать, что человечество пока не понимает поля и причину их взаимодействия указанным образом.

Решили один вид статических зарядов обозначить положительным, второй отрицательным. Существование двух видов признавал ещё Бенджамин Франклин в XVIII веке. Линии электрического поля начинаются и заканчиваются исключительно на зарядах. Это ключевой постулат, объясняющий работу конденсаторов, экранов и прочих приспособлений. Поле принято обозначать силовыми линиями, исходящими из положительных зарядов и входящими в отрицательные. Не все задумываются над причинами происходящего.

Линии направлены по указанному, пробный (тестовый) заряд (см. определение выше) тоже положительный. Вектор направлен по ходу движения. Общеизвестно, что заряды одинакового знака отталкиваются, если пробный положительной полярности, он стремится удалиться. В ту сторону изображают и линии напряжённости электрического поля. Соответственно, пробный заряд притягивается отрицательным.

Сегодня направление тока перепутано с истинным движением электронов по той причине, что физики избрали пробным зарядом положительный. Бытует мнение, что Бенджамин Франклин ввёл в заблуждение целый Земной шар. Он считал, что стекло обладает избытком электрической жидкости (флюида), назвав заряд стеклянным. Соответственно, смоляное электричество – отрицательное (избыток электронов). Читатели уже догадались, что в момент выбора требовалось сделать наоборот.

Разница потенциалов электрического поля

Вследствие путаницы магнитные полюса Земли (истинные) перепутаны. Впрочем, об этом упоминается в теме, касающейся магнитного поля. Итак, линии напряжённости начинаются на положительных зарядах и заканчиваются на отрицательных. В каждой точке характеризуются напряжённостью – силой, действующей на пробный заряд. Эта величина, разумеется, векторная, направленная согласно с силовыми линиями.

Как следует из определения, единицей измерения напряжённости считается Н/Кл, но на практике применяется производная величина – В/м, которая уже ближе стоит к напряжению и привычным обозначениям тока и разницы потенциалов. Опытным путём, построением картины поля определено, что линии поля не пересекаются. Это траектории движения пробного (тестового) положительного (стеклянного) заряда. Линии напряжённости поля не замыкаются на себя по очевидной причине: направление оказалось бы противоположным на концах, что невозможно.

Из этого вытекает малоизвестный публике факт: при любой удалённости электрических зарядов, силовые линии поля все равно найдут путь. Указанный закон проявляется на всех планах Вселенной. Отсюда происходят принципы действия многих устройств. К примеру, поле внутри металла не существует, свободные электроны занимают такое положение близ поверхности, что их собственные линии напряжённости блокируют проникновение внутрь чужеродной материи (термин взят согласно вышеуказанному определению).  Договорились, что условно изображая поле на чертеже силовыми линиями, физики через их плотность нанесения охарактеризуют размер напряжённости. Из рисунка станет понятен характер распределения силы.

Указанные утверждения приводят к потенциалу. Если силовые линии не пересекаются, начинаются и заканчиваются на зарядах, косвенно следует, что работа совершаемая вдоль каждой не зависит от формы траектории. Подобные поля в физике принято называть потенциальными:

Работа электрического поля по перемещению заряда зависит исключительно от разницы между потенциалами двух точек – начальной и конечной.

Налицо разница потенциалов. К полям рассматриваемого типа относится и гравитационное. Физики Жданов и Маранджян вполне однозначно трактуют понятие потенциала:

Потенциальной энергией точки в поле становится работа, затраченная полем, чтобы переместить пробный заряд на бесконечно далёкое расстояние.

Это не значит, что работа совершена, если заряд прочно удерживается на месте. При освобождении заряд понемногу отдалился бы в бесконечность. Понятна тесная связь магнитного, электрического и гравитационного полей. Из сказанного проистекает определение для потенциала:

Потенциалом называют потенциальную энергию в поле единичного пробного заряда.

Как правило, потенциал считается скалярной величиной, чтобы удобнее производить вычисления. Для определённости пробный заряд берётся положительным, хотя это неверно. Если работа совершается против сил поля при перемещении в бесконечную точку, потенциал окажется отрицательным. Единицей измерения потенциала применяется вольт.

Определение электрического напряжения

Электрическим напряжением называется разница потенциалов между двумя точками поля. Для разграничения среды и эфира принято использовать термин лишь в реально существующих цепях. К примеру, между облаками и грунтом присутствует напряжение в сотни кВ, о чём прямо не говорится. Вместо этого употребляют термин «разница потенциалов» либо «напряжённость». Становится понятным определение, данное выше.

Когда речь заходит об электрическом напряжении, подразумевают некое тело. Если говорят про эфир, оперируют с напряжённостью поля. Это выгодно с точки зрения расчётов. К примеру, амплитуда сигнала на выходе антенны выражается через напряжённость, через указанный параметр определяется чувствительность приёмника – насколько слабую напряжённость поля устройство способно преобразовать в детализированный и понятный человеку сигнал.

Сравнивая единицы измерения, замечаем, что численно напряжённость равна напряжению, делённому на расстояние между двумя рассматриваемыми точками. Это общепринятая физическая формула. Через выражение оценивается напряжённость поля плоского конденсатора. Термины говорят также о людских представлениях:

  1. Напряжение обычно возникает в материальном: предмете, человеке.
  2. Напряжённость наблюдается в отношениях, не представляемые непосредственно в виде материи.

Аналогично напряжённость характеризует поле в эфире, а напряжение описывает проводники и диэлектрики. Эти термины столь разрознены по причине, что теория не отличается стройностью. К примеру, в магнитном поле введены индукция и напряжённость, всем понятно, что первое характеризует поведение материалов и зависит от них, а второе присутствует на абсолютном плане, в эфире. Электрическое поле плохо описано, редкий физик в состоянии сказать, что означает ток смещения в формулах Джеймса Клерка Максвелла.

Итак, показано, что напряжённость считается исходной величиной поля, магнитного и электрического. Электрическое напряжение – производная характеристика, через которую удобно действовать.

Влияние напряжения

Под действием электрического напряжения в проводниках возникает ток, как и при прикосновении внешнего поля. Для поддержания процесса выполняются два условия:

  1. Замкнуть контур из проводников.
  2. Создать движущую силу для восполнения энергии поля.

Диэлектрики ведут себя иначе. До определённых пор энергия поля ориентирует по-новому мелкие диполи материала. Удерживающие силы обладают упругостью, разрешая «запасать» энергию в виде механической. Когда внешнее поле ослабевает, система возвращается в прежнее состояние, отдавая накопленное.

Если электрическое напряжение слишком высокое, наступает отрыв диполей либо расформирование. Что внешне выражается в разрушении материала диэлектрика. Тогда говорят о некотором предельном напряжении электрической изоляции, выше которого вещество неспособно выполнить функции. Для обычных, рядовых бытовых цепей проверка диэлектрика осуществляется электрическим напряжением 500 В.

Из истории

Сложно сказать, кто ввёл понятие напряжения, но в исходном виде термина voltage не отмечалось. Англоязычное слово указывает на Алессандро Вольту. Физики эпохи становления отрасли электромагнетизма чаще применяли термин electrical tension. Это нечто, связанное с напряжённостью из механики. Из категории, что и тензометрические датчики напольных весов.

К слову сказать, напряжённость на Западе называют интенсивностью (intensity). Предполагаемый основоположник Вольта потому, что в трудах всех без исключения учёных начала XIX века проскальзывает словцо – tension. В современном английском слова нет.

Ответ прост: это – сложившаяся дань традиции. К примеру, Алессандро Вольта делал доклады зарубежным академиям наук, но не вооружившись устоявшейся терминологией, на ходу придумывал подходящие обозначения. Ввёл в обиход понятие конденсатора (condensor), которое прижилось гораздо лучше, нежели tension. Мы полагаем, что у слова латинские корни, а в Италии и Испании им до сего дня обозначают электрическое напряжение. Следовательно, если ток берет исходное название от Луиджи Гальвани – так говорили все авторы начала XIX века – tension происходило из уст Вольты.

К сожалению, авторы не проводили углублённое изучение вопроса и не могут привести название работы, где впервые прозвучала речь об электрическом напряжении. Но совершенно точно, что Ампер, Араго, Ом оперировали термином tension.

В английском языке слово voltage едва ли появилось ранее 80-х годов XIX века, IEC ввели единицу вольт лишь в 1881 году. Он составлял 100 млн. единиц напряжения системы СГС. В дальнейшем, как эпредполагается, появилось слово voltage, заменив присутствующее раньше tension.

Электрическое напряжение | Частная школа. 8 класс

Конспект по физике для 8 класса «Электрическое напряжение». Что такое напряжение. Каковы единицы напряжения. Какой прибор используют для измерения напряжения в цепи.

Конспекты по физике    Учебник физики    Тесты по физике


Электрическое напряжение

При подключении лампочки (или какого-либо другого потребителя) к источнику тока в цепи возникает электрическое поле. Оно действует на заряженные частицы с некоторой электрической силой, под действием которой начинается их упорядоченное движение. Возникает электрический ток. При этом при движении зарядов в электрическом поле совершается определённая работа.

РАБОТА ТОКА

Пусть под действием электрической силы Fэл частица с зарядом q переместилась по проводнику из одной точки в другую. Говорят, что при этом электрическая сила совершила некоторую работу Аэл.

В механике мы говорили о том, что механическая работа совершается тогда, когда тело под действием некоторой силы перемещается. При рассмотрении электрических явлений также вводится понятие работы, но здесь речь идёт уже о перемещении электрического заряда. Электрическая сила, действующая на заряд, возникает только при наличии электрического поля.

Работу электрического поля, создающего электрический ток, называют работой тока.

Поскольку действие тока зависит от силы тока в цепи, значит, его работа также должна зависеть от силы тока или от перемещённого заряда.

Нетрудно представить, что электрический ток подобен потоку воды в шланге. Если удерживать оба конца шланга на одном уровне, то никакого течения воды не будет. Если же один из концов опустить вниз, то вода потечёт с более высокого уровня на низкий. Разность уровней воды аналогична напряжению источника тока. Чем выше напряжение (чем больше разница в уровнях воды), тем больше сила тока в цепи (тем быстрее движется вода в шланге).

Понятие работы в физике неразрывно связано с понятием энергии. При совершении работы всегда происходят изменения и превращения энергии. Изученные ранее действия электрического тока на самом деле обусловлены работой тока. При этом происходит превращение энергии движущихся зарядов в другие виды энергии.

Соберём две электрические цепи, содержащие одинаковые по назначению элементы. В первой цепи потребителем электрической энергии является лампочка от карманного фонаря, а в качестве источника тока используется обычная батарейка. Во второй цепи потребитель — бытовая осветительная лампа, подключённая к аккумулятору. Амперметры, включённые в эти цепи, показывают одинаковую силу тока. Но одинаковым ли будет при этом действие тока в каждой цепи? Опыт показывает: лампа, включённая в цепь, источником тока которой является аккумулятор, даёт гораздо больше тепла и света, чем лампочка от карманного фонаря.

Поскольку при одной и той же силе тока его тепловое действие было различным, значит, и работа тока в этих цепях различна. Следовательно, работа тока зависит также от другой его характеристики.

Эту новую физическую величину называют электрическим напряжением. Напряжение, которое создаёт батарейка, значительно меньше напряжения аккумулятора. Именно поэтому при одной и той же силе тока лампа, соединённая с батарейкой, даёт меньше света и тепла.

НАПРЯЖЕНИЕ

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного электрического заряда из одной точки в другую, и обозначают буквой U.

Напряжение равно отношению работы электрических сил А

эл к заряду q, который перемещается из одной точки в другую: U = Аэл/q.

ЕДИНИЦЫ НАПРЯЖЕНИЯ

Единица электрического напряжения называют вольтом в честь итальянского учёного Алессандро Вольта, создавшего первый гальванический элемент.

За единицу напряжения принимают такое электрическое напряжение на концах проводника, при котором работа по перемещению электрического заряда в 1 Кл по этому проводнику равна 1 Дж:

1 В = 1 Дж/Кл.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ

Прибор, с помощью которого измеряют напряжение на полюсах источника тока или на каком-либо участке цепи, называют вольтметром. По внешнему виду и устройству вольтметр очень похож на гальванометр и амперметр. На шкале вольтметра ставят букву V.

При измерении напряжения зажимы вольтметра подключают к тем точкам цепи, между которыми надо измерить напряжение. Как и у амперметра, у одного зажима вольтметра ставят знак « + », у другого — «–».

Клемму со знаком « + » нужно соединить с проводом, идущим от положительного полюса источника тока, а клемму со знаком «–» — с проводом, идущим от отрицательного полюса источника тока.

На электрических схемах вольтметр изображают в виде кружка с буквой V.

Для человеческого организма напряжение в 1 В неопасно. Безопасным для человека считается напряжение до 12 В. Однако надо иметь в виду, что величина напряжения, опасного для человека, зависит ещё и от внешних условий. Например, в сырых помещениях степень опасности существенно возрастает. Происходит это потому, что многие вещества, являющиеся в сухом состоянии изоляторами, во влажном состоянии становятся проводниками электричества. Дело в том, что обычная (недистиллированная) вода является проводником.

Алессандро Вольта (1745—1827) — физик, химик и физиолог, один из основоположников учения об электричестве.

 


Вы смотрели Конспект по физике для 8 класса «Электрическое напряжение».

Вернуться к Списку конспектов по физике (Оглавление).

Электрическое напряжение

5 (100%) 1 vote[s]

Просмотров: 711

Ответы Mail.ru: Электрическое напряжение-это

Электрическое напряжение — это величина, численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи. Напряжение, как и ЭДС, измеряется в вольтах (В) . Установившиеся значения напряжения обозначают прописной буквой U, неустановившиеся значения строчной буквой u. По аналогии с током различают постоянное и переменное напряжения. Постоянное напряжение может изменяться по величине, не изменяя при этом своего знака. Переменное напряжение периодически изменяет и величину и знак.

Электрическое напряжение (U) между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положит, заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с разностью потенциалов между ними. Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника постоянного тока (генератора, аккумулятора, гальванического элемента и др.) . Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется Ома законом: U = IR—E, где I — сила тока, R — внутреннее сопротивление источника, а E — его электродвижущая сила (эдс) . При разомкнутой цепи (I = 0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи. В случае переменного тока Э. н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов. Э. н. обычно измеряют вольтметром. Единица Э. н. в Международной системе единиц — вольт.

физическая величина! численно равная работе по перемещению единицы электрического заряда между двумя произвольными точками электрической цепи.

Электрическое напряжение- это физическая величина которая характеризует электрическое поле. Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Электрическое напряжение -это такая электродвижущая сила (ЭДС), при которой каждый заряд в 1Кулон, пройдя по цепи совершит работу в 1Джоуль.

НЕверные ответы сила это сила а напряжение это плотность этой силы

Электрическое напряжение (U) между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положит, заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с разностью потенциалов между ними. Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника постоянного тока (генератора, аккумулятора, гальванического элемента и др.) . Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется Ома законом: U = IR—E, где I — сила тока, R — внутреннее сопротивление источника, а E — его электродвижущая сила (эдс) . При разомкнутой цепи (I = 0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи. В случае переменного тока Э. н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов. Э. н. обычно измеряют вольтметром. Единица Э. н. в Международной системе единиц — вольт.

КАК МОЖНО ЭТО НЕ ЗНАТЬ, ДА И ГУГЛ ЕСТЬ!!! ну и яндекс, мэил…

Правильный ответ уже сказали!!!

Электрическое напряжение

Одна из наиболее часто употребляемых характеристик в электротехнике — это электрическое напряжение, или просто говорят — напряжение. Очень часто даже у опытных в электротехнике специалистов вызывает затруднение объяснить, что есть это самое напряжение. Такое явление вполне объяснимо тем, что для практических нужд обслуживания электрооборудования не требуется глубокого понимания сути напряжения, достаточно знаний напряжения в пределах понимания Закона Ома.

Тогда возникает вопрос. В каком случае и при каких обстоятельствах необходимо глубокое понимание того, в чем суть электрического напряжения? В первую очередь это необходимо для понимания природы (физики) электричества, а также для разработки новых электротехнических устройств и создания новых электротехнических материалов. С другой стороны, углубленное понимание напряжения способствует самопознанию.

Мысленный эксперимент с плоским конденсатором

Для того, чтобы перейти к объяснению сути электрического напряжения требуется понимать, что такое электрическое поле, силовые линии электрического поля и напряженность электрического поля.

Кроме силовых линий в описании поля присутствуют еще и эквипотенциальные линии, а значит есть еще одна характеристика такая как потенциал электрического поля. Представьте картину равномерно распределенных силовых линий электрического поля, которые пересекают эквипотенциальные линии, причем каждая такая линия будет иметь свое значение потенциала поля. Для такого представления удобно использовать картину электрического поля плоского конденсатора, который имеет две обкладки и полностью заряжен до некоторого максимального значения. На таком конденсаторе будет индуцирован электрический заряд, а пространство между обкладками пусть будет наполнено газообразным диэлектриком, например, воздухом. Каждая обкладка конденсатора имеет некоторое количество заряда Q. Так как обкладки конденсатора выполнены из металла в котором носителем зарядов являются отрицательного типа заряды — электроны, то на одной обкладке будет избыток электронов, а на другой недостаток. Таким образом можно обозначить одну обкладку как +Q, а другую как -Q, и силовые линии электрического поля будут направлены согласно правилам от +Q к -Q. В итоге мы получим картину приведенную на рисунке ниже.

Давайте примем, что размер такого конденсатора больше человеческого роста в несколько раз, пусть обкладки будут представлять собой стены двух больших высоких зданий, которые обклеили металлическими листами сваренными вместе в единый лист. Вы можете свободно перемещаться внутри такого конденсатора от одной обкладки к другой в любом направлении. Мысленно можно представить, что там где изображены силовые линии, кто-то закрепил балки из сухого дерева, а на местах эквипотенциальных линий установлены лестницы из того же материала. В итоге вы сможете свободно перемещаться в таком пространстве внутри конденсатора. Если у вас хватит силы воображения, вы сможете представить такую конструкцию без проблем. Размер может быть любой, но при условии, что протяженность и высота обкладок во много раз больше чем расстояние между обкладками.

Электрическое поле полностью заряженного конденсатора в нашем случае будет статическим, то есть неизменным во времени, его характеристики не меняются с течением времени. Что мы имеем? У нас есть две обкладки обладающие некоторым количеством заряда равной величины, но противоположного знака. Эти обкладки будут притягиваться к друг другу в соответствии с Законом Кулона, но эта электрическая сила скомпенсирована тем, что обкладки прочно закреплены на стенах воображаемых зданий. Картина электрического поля такого конденсатора представлена силовыми и эквипотенциальными линиями, которые обозначены материальными предметами такими как деревянные балки и лестницы. Вы можете свободно путешествовать внутри такого конденсатора и выполнять необходимые измерения. Ни о каком электрическом токе, а тем более о силе тока речи здесь не идет, потому как нет свободных носителей заряда.

Опытный электрик может поинтересоваться, а какое напряжение будет на таком конденсаторе? Это закономерный и справедливый вопрос, но нам следует разобраться что такое это самое напряжение. Тут нам следует вспомнить о пробном заряде, который использовался для объяснения напряженности электрического поля. Предположим, что такой заряд появился и он может свободно перемещаться в пространстве между обкладками конденсатора. Что же это может быть? Представьте, что вы являетесь тем самым пробным зарядом и испытываете на себе дальнодействие электрических сил. Разумеется, в реальной жизни такое маловероятно, но в нашем мысленном эксперименте такое вполне допустимо.

Физическая работа пробного заряда в электрическом поле

Итак, вы превратились в пробный электрический заряд q во много раз меньший чем заряд Q на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил. Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки +Q, и вас будет отталкивать от обкладки с зарядом -Q. Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.

Предположим, что вы вошли в конденсатор со стороны обкладки -Q и вас тут же начало отталкивать от нее в сторону обкладки +Q. Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением. Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки +Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром. В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точки A к точке B (смотрите рисунок выше). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому. В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть +q, тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на -1.

На вас действовала сила и вы переместились из точки A в точку B, другими словами вы двигались от потенциала φa (большего) к потенциалу φb (меньшему). Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние. Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении. Проделав обратный путь из точки B в точку A, вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.

Разность этих двух потенциалов φa и φb и будет являться электрическим напряжением. Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение. При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).

Разность потенциалов Δφ=φ12 всегда показывает какую работу A может совершить носитель заряда q при перемещении этого заряда из точки с одним потенциалом φ1 в точку с другим потенциалом φ2. При вычислении надо иметь в виду, что потенциалы могут быть как со знаком плюс, так и со знаком минус.

Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работа А будет со знаком (+). Таким образом электрическое напряжение — это энергетическая характеристика электрического поля и представляет собой разность потенциалов Δφ. Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение — это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.

Необходимо совершенно ясно представлять в чем заключаются различия между такими понятиями как: напряженность электрического поля E, потенциал φ, и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.

Единицы измерения электрического напряжения

Точно также как и потенциал электрического поля, электрическое напряжение измеряется в Вольтах и часто обозначается либо символом U, либо символом V. Чему равен 1 Вольт? Он равен работе в 1 Джоуль, которую совершает заряд в 1 Кулон. Таким образом, если разность потенциалов равна скажем 12 Вольт, и эту разность (эквипотенциальные линии и поверхности) преодолел заряд, допустим в 2 Кулона, то следует говорить, что была совершена работа 24 Джоуля (12 Вольт умноженные на 2 Кулона).

Когда в электрических цепях существует электрический ток, то происходит движение носителей зарядов вдоль силовых линий электрического поля (направление зависит от знака), источником которого может быть электрогенератор или химический аккумулятор, то на участках цепи происходит падение напряжения (потенциала) и выделяется энергия. В источнике тока происходит обратное, там затрачивается энергия (или была затрачена) на создание ЭДС.

Дата: 01.05.2015

© Valentin Grigoryev (Валентин Григорьев)

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *